
Commonly used headers
stdio, stdlib, string, math
#include <stdio.h>
Using relative paths:
#include "..\my_header.h"

Pitfalls:
• Incorrect spelling. No “;” needed.
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Arithmetic operators
+ (add),  - (subtract), *(multiply), / (division), % (modulo)

Shorthand
b += a; // b = b + a;
c >>= 1; // c = c >> 1;
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Data or variable types
int, float, double, char, bool, void

Pitfalls:
• Integer arithmetic floors results: 7/2 = 3

• Numbers stored in integers are floored:
int a = 3.0/4.0; // results in a = 0

• Floats and doubles cannot represent all numbers 
(especially nasty when used as loop iterator):
float a = 16777216;
a = a + 1;
printf("a: %f", a); // a: 16777216.000 (so apparently
         // 16777217.000 cannot be represented as a float)

• Not initializing variables:
int a;         // Unknown value
int b = a + 1; // Unknown value2
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Arrays
// An array called arr which can store 5 integers
int arr[5];
// Add 1 to the THIRD element in arr
b = arr[2] + 1;
// Initialize.
int other[2] = {52, 356}; 

Pitfalls:
• Indexing an array at invalid locations:
a = arr[5];     // index 5 is illegal
int c = 2, d=3;
a = arr[c-d];   // index -1 is illegal 
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Comments:
// Single line
/* Multi
 line */

Pitfalls:
• You can nest single line comments in a multi line comment, 
but you can't nest multiple multi line comments
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Relational operators
== (equal to), != (not equal to), > (greater then), < (less 
then), <= (less than or equal to), >= (greater than or 
equal to)
Logical operators
|| (logical OR), && (Logical AND), !(Logical NOT)
Bitwise operators
| (bitwise OR), & (Bitwise AND), ~(Bitwise invert), << 
(Shift left), >> (Shift right)

Pitfalls:
• Unintentionally using bitwise operators in if statements:
a = 1; b = 2;
if( a & b )
{ // The printf is NOT be executed, since 0x01 & 0x02 = 0
  printf("a and b are not equal to 0\n");
}
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if else
if(<condition>)
{
 <statement>
}
else
{
 <other statement>
}

Pitfalls:
• Forgetting brackets:
if(pincode == 1234)
  printf("pincode correct");
  transferFunds();

• Using the assign operator instead of 
the compare operator:
if(crashLandDrone = 1)
{ /* Writes the value 1 in 
crashLandDrone, then evaluates the 
value between the ()-brackets. Since 
it is non-zero, it is equal true, 
which means the if-statement content 
is executed. */
  initiateCrash();
}

• An extra semicolon:
if(crashLandDrone == 1);
{ /* will always call the crash 
function. The if-statement ends at 
the ; and the {} are interpreted as 
scope-operators.*/
  initiateCrash();
}
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Loops
while(<condition>)
{
  <statements>
}

for(<initial>; <condition>; <update>)
{
  <statements>
}

do
{
  <statements>
}
while(<condition>);

Pitfalls:
● An update statement that does not 

update:
int i;
for(i=0; i<10; i+1) //i+1 does nothing
● A for loop uses semicolon 

separators (;), not commas!
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Strings (arrays of chars)
// An array called arr, which can store 5 
// chars
char arr[5]; 
// Initializes myStr with 't', 'e', 's', 
't', // '\0'
char myStr[5] = "test"; 
char name[] = "Compiler determines length, and 
accounts for the \\0";

Pitfalls & Remarks:
• You can only initialize once. (But you can 
strcpy into the string later).
char name[] = "My name is Bob";
strcpy(name, "I'm Alice");

- Incorrectly comparing strings in if-
statements:
char t[] = "test";
if(t == "test"){ // <- VERY WRONG!
  // This compares the address of t with the
  // address of the constant "test".
  // Probably NOT what you would want. Use
  // if(strcmp(t, "test") == 0) instead.
}

• Overwriting the \0 char:
char arr[4];
/* This strcpy writes a 't' at location 
arr[3], and a \0 at an invalid location in 
the memory. arr can only store 4 chars.*/
strcpy(arr, "test");
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scanf
scanf(" %d", &myInt);

Pitfalls & Remarks:
• Include the leading space in the pattern to ignore all 
leading whitespace chars in the user input.

• Give scanf the address of the variable in which the 
input must be stored (include a & for all non-pointer 
types).

• Make sure the data types match the expected input
• ( For real-life applications: never trust the user !)
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printf format specifiers
%i, %d: int
%u: unsigned int
%f: float
%lf: double (remember: Long Float)
%c: char
%s: string (make sure there is a \0 char at 
the end of the string!)
%x: hexadecimal

Pitfalls:
• printf doesn’t check the types of its input 
arguments!  However, they are cast to the 
type of the specifier when printed:

int c = 3;
printf("c: %s", c);
/* This will cast the variable c to char* (a 
pointer to a char). This means that the 
number 3 is used as the address from which 
the printf will start printing bytes, until 
the first byte of value 0 (='\0') is found. 
Very evil (and wrong). */
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Declaring functions
<return type> function_name(<arg1>, <arg2>, …)
{
  <statements>
}
// Function that determines the result of a
// quadratic function of form y(x)=a+bx^2+c
float quad(float x, float a,
           float b, float c){
  float ans = a + b * x;
  ans += c * x * x;
  return ans;
}
// Function that returns the 4th array element:
int fourth(int arr[]){
  return arr[3];
}
/* In general, variables are passed by value, i.e. 
the function receives copies of the variables you 
use as arguments: */
void doesNothing(int input){
  input = 500;
}
/* Exception: passing variables as pointers
allows you to edit them inside other functions. 
The 3 arguments of the next function are all 
pointers: */
void doesSomething(float* num, int list[], 
                   char word[10]){
  *num = 9.3;
  list[2] = 5;
  strcpy(word,"test");
}

void main(void){
  int var = 9001;   // name does not matter
  doesNothing(var); // call our function
  printf("var: %i", var); // prints: var: 9001

  float myFloat = 1337.0;  
  char t[10];
  int myList[3] = {1,2,3};
  doesSomething(&myFloat, myList, t);
  printf("%s - %f - %i", t, myFloat, myList[2]);
  // prints: test - 9.300 - 5
}
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String manipulation functions (strcpy, strcmp, strlen, strcat, sprintf, toupper, ispunct, etc)
char * strcpy ( char * destination, const char * source );
Copy source into destination. Make sure there is enough space at the destination!

int strcmp ( const char * str1, const char * str2 );
Compares the string str1 to the string str2. Returns 0 when they are equal. A value greater than zero indicates that 
the first character that does not match has a greater value in str1 than in str2; And a value less than zero indicates 
the opposite. Can be used to sort alphabetically.
Most string functions have case insensitive versions (stricmp), or length delimited versions (strncpy). 
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Best Practices
• Write lots of comments (which will help yourself understand your own code (so you can reuse it next 
week/month/year)). Others (like your instructors, boss, colleagues) will also appreciate this.

• Even better: start with a skeleton of comments, and fill it in with code as you go along!
• Use a consistent indentation style and variable naming (camelCase or underscore_separated).
• Think about the problem you are trying to solve, and break it down into small parts.
• Use the debugging tools you have: for example, add extra printf's to display intermediate variables, or place 
breakpoints and inspect the contents of variables (using the “locals” tab, or the mouseover messages).
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