Commonly used headers
stdio, stdlib, string, math
#include <stdio.h>

Using relative paths:
#include "..\my_header.h"

Pitfalls:
* Incorrect spelling. No “;” needed.

C Cheat Sheet

Ardithmetic operators
+ (add), - (subtract), *(multiply), / (division), % (modulo)

Shorthand
b +=aj; // b =Db + aj;
c>=1; // c=c > 1;

if else
if(<condition>)
{

<statement>

}

else

{

<other statement>

}

Pitfalls:
* Forgetting brackets:
if(pincode == 1234)
printf("pincode correct");
transferFunds();

* Using the assign operator +instead of
the compare operator:
if(crashLandDrone = 1)

{ /* Writes the value 1 1in
crashLandDrone, then evaluates the
value between the ()-brackets. Since
it is non-zero, it is equal true,
which means the if-statement content
is executed. */

initiateCrash();

3

An extra semicolon:
if(crashLandDrone == 1);
{ /* will always call the crash
function. The +if-statement ends at
the ; and the {} are dinterpreted as
scope-operators.x/

initiateCrash();

}

Comments:

// Single line
/* Multi

line x/

Pitfalls:
* You can nest single line comments in a multi line comment,
but you can't nest multiple multi line comments

Relational operators

== (equal to), != (not equal to), > (greater then), < (less
then), <= (less than or equal to), >= (greater than or
equal to)

Logical operators

|| (logical OR), && (Logical AND), !(Logical NOT)
Bitwise operators

| (bitwise OR), & (Bitwise AND), ~(Bitwise invert), <<
(Shift left), >> (Shift right)

Pitfalls:
* Unintentionally using bitwise operators 1in if statements:
a=1; b = 2;
if(a & b)
{ // The printf is NOT be executed, since Ox01 & 0x02 = 0
printf("a and b are not equal to 0\n");

}

Loops
while(<condition>)

{

<statements>

}

for(<initial>; <condition>; <update>)
{

<statements>

}

do
{

<statements>

}

while(<condition>);

Pitfalls:

* An update statement that does not
update:

int 13

for(i=0; i<10; i+1l) //i+1l does nothing

e A for loop uses semicolon
separators (3;), not commas!

Arrays

// An array called arr which can store 5 integers
int arr[5];

// Add 1 to the THIRD element 1in arr

b = arr[2] + 1;

// Initialize.

int other[2] = {52, 356};

Pitfalls:
* Indexing an array at invalid locations:
a = arr[5]; // index 5 is dillegal

int ¢ = 2, d=3;
a = arr[c-d]; // index -1 is illegal

Data or variable types
int, float, double, char, bool, void

Pitfalls:
* Integer arithmetic floors results: 7/2 = 3

* Numbers stored 1in 1integers are floored:
int a = 3.0/4.0; // results in a = 0

* Floats and doubles cannot represent all numbers
(especially nasty when used as loop 1iterator):
float a = 16777216;
a = a+ 1;
printf("a: %f", a); // a: 16777216.000 (so apparently
// 16777217.000 cannot be represented as a float)

* Not initializing variables:
int aj // Unknown value
int b = a + 1; // Unknown value2

printf format specifiers

%i, %d: int

%u: unsigned 1int

%f: float

%1f: double (remember: Long Float)

%c: char

%s: string (make sure there 1is a \0 char at
the end of the string!)

%x: hexadecimal

Pitfalls:

e printf doesn’t check the types of 1its dinput
arguments! However, they are cast to the
type of the specifier when printed:

int ¢ = 3;

printf("c: %s", c);

/* This will cast the variable c to charx (a
pointer to a char). This means that the
number 3 is used as the address from which
the printf will start printing bytes, until
the first byte of value 0 (='\0') 1is found.
Very evil (and wrong). x/

scanf
scanf(" %d", &myInt);

Pitfalls & Remarks:

¢ Include the leading space in the pattern to dignore all
leading whitespace chars in the user input.

* Give scanf the address of the variable in which the
input must be stored (include a & for all non-pointer
types).

* Make sure the data types match the expected -input

e (For real-life applications: never trust the user !)

Strings (arrays of chars)

// An array called arr, which can store 5

// chars

char arr[5];

// Initializes myStr with 't', 'e', 's',

ltl’ // I\GI

char myStr[5] = "test";

char name[] = "Compiler determines length, and
accounts for the \\0";

Pitfalls & Remarks:

* You can only 1initialize once. (But you can
strcpy into the string later).
char name[] = "My name is Bob";
strcpy(name, "I'm Alice");

- Incorrectly comparing strings in if-
statements:
char t[] = "test";
if(t == "test"){ // <- VERY WRONG!
// This compares the address of t with the
// address of the constant "test'".
// Probably NOT what you would want. Use
// if(strcmp(t, "test") == 0) 1instead.
}

* Overwriting the \0 char:

char arr[4];

/* This strcpy writes a 't' at location
arr[3], and a \0@ at an 1invalid location in
the memory. arr can only store 4 chars.x/
strcpy(arr, "test");

Declaring functions
<return type> function_name(<argl>, <arg2>, ..)
{

<statements>
}
// Function that determines the result of a
// quadratic function of form y(x)=a+bx"2+c
float quad(float x, float a,

float b, float c){

float ans = a + b * x;

ans += c * X * X;

return ans;
}
// Function that returns the 4th array element:
int fourth(int arr[]){

return arr[3];
}
/* In general, variables are passed by value, 1i.e.
the function receives copies of the variables you
use as arguments: */
void doesNothing(int 1input){

input = 500;
}
/* Exception: passing variables as pointers
allows you to edit them inside other functions.
The 3 arguments of the next function are all
pointers: */
void doesSomething(float* num, int list[],

char word[10]){

*num = 9.3;

list[2] = 5;

strcpy(word,"test");
}

void main(void){
int var = 9001; // name does not matter
doesNothing(var); // call our function
printf("var: %i", var); // prints: var: 9001

float myFloat = 1337.0;

char t[10];

int myList[3] = {1,2,3};
doesSomething(&myFloat, myList, t);

printf("%s - %f - %i", t, myFloat, myList[2]);
// prints: test - 9.300 - 5

String manipulation functions (strcpy, strcmp, strlen, strcat, sprintf, toupper, ispunct, etc)

char * strcpy (char * destination, const char * source);

Copy source into destination. Make sure there 1is enough space at the destination!

int strcemp (const char * strl, const char * str2);
Compares the string strl to the string str2. Returns 0 when they are equal. A value greater than zero indicates that

the first character that does not match has a greater value in strl than in str2; And a value less than zero indicates
the opposite. Can be used to sort alphabetically.
Most string functions have case insensitive versions (stricmp), or length delimited versions (strncpy).

Best Practices

* Write lots of comments (which will help yourself understand your own code (so you can reuse it next
week/month/year)). Others (like your qinstructors, boss, colleagues) will also appreciate this.

Even better: start with a skeleton of comments, and fill it in with code as you go along!

Use a consistent indentation style and variable naming (camelCase or underscore_separated).

Think about the problem you are trying to solve, and break it down 1into small parts.

Use the debugging tools you have: for example, add extra printf's to display intermediate variables, or place

breakpoints and inspect the contents of variables (using the “locals” tab, or the mouseover messages).

