
Commonly used headers
stdio, stdlib, string, math
#include <stdio.h>
Using relative paths:
#include "..\my_header.h"

Pitfalls:
• Incorrect spelling. No “;” needed.

Commonly used headers
stdio, stdlib, string, math
#include <stdio.h>
Using relative paths:
#include "..\my_header.h"

Pitfalls:
• Incorrect spelling. No “;” needed.

Arithmetic operators
+ (add), - (subtract), *(multiply), / (division), % (modulo)

Shorthand
b += a; // b = b + a;
c >>= 1; // c = c >> 1;

Arithmetic operators
+ (add), - (subtract), *(multiply), / (division), % (modulo)

Shorthand
b += a; // b = b + a;
c >>= 1; // c = c >> 1;

Data or variable types
int, float, double, char, bool, void

Pitfalls:
• Integer arithmetic floors results: 7/2 = 3

• Numbers stored in integers are floored:
int a = 3.0/4.0; // results in a = 0

• Floats and doubles cannot represent all numbers
(especially nasty when used as loop iterator):
float a = 16777216;
a = a + 1;
printf("a: %f", a); // a: 16777216.000 (so apparently
 // 16777217.000 cannot be represented as a float)

• Not initializing variables:
int a; // Unknown value
int b = a + 1; // Unknown value2

Data or variable types
int, float, double, char, bool, void

Pitfalls:
• Integer arithmetic floors results: 7/2 = 3

• Numbers stored in integers are floored:
int a = 3.0/4.0; // results in a = 0

• Floats and doubles cannot represent all numbers
(especially nasty when used as loop iterator):
float a = 16777216;
a = a + 1;
printf("a: %f", a); // a: 16777216.000 (so apparently
 // 16777217.000 cannot be represented as a float)

• Not initializing variables:
int a; // Unknown value
int b = a + 1; // Unknown value2

Arrays
// An array called arr which can store 5 integers
int arr[5];
// Add 1 to the THIRD element in arr
b = arr[2] + 1;
// Initialize.
int other[2] = {52, 356};

Pitfalls:
• Indexing an array at invalid locations:
a = arr[5]; // index 5 is illegal
int c = 2, d=3;
a = arr[c-d]; // index -1 is illegal

Arrays
// An array called arr which can store 5 integers
int arr[5];
// Add 1 to the THIRD element in arr
b = arr[2] + 1;
// Initialize.
int other[2] = {52, 356};

Pitfalls:
• Indexing an array at invalid locations:
a = arr[5]; // index 5 is illegal
int c = 2, d=3;
a = arr[c-d]; // index -1 is illegal

Comments:
// Single line
/* Multi
 line */

Pitfalls:
• You can nest single line comments in a multi line comment,
but you can't nest multiple multi line comments

Comments:
// Single line
/* Multi
 line */

Pitfalls:
• You can nest single line comments in a multi line comment,
but you can't nest multiple multi line comments

Relational operators
== (equal to), != (not equal to), > (greater then), < (less
then), <= (less than or equal to), >= (greater than or
equal to)
Logical operators
|| (logical OR), && (Logical AND), !(Logical NOT)
Bitwise operators
| (bitwise OR), & (Bitwise AND), ~(Bitwise invert), <<
(Shift left), >> (Shift right)

Pitfalls:
• Unintentionally using bitwise operators in if statements:
a = 1; b = 2;
if(a & b)
{ // The printf is NOT be executed, since 0x01 & 0x02 = 0
 printf("a and b are not equal to 0\n");
}

Relational operators
== (equal to), != (not equal to), > (greater then), < (less
then), <= (less than or equal to), >= (greater than or
equal to)
Logical operators
|| (logical OR), && (Logical AND), !(Logical NOT)
Bitwise operators
| (bitwise OR), & (Bitwise AND), ~(Bitwise invert), <<
(Shift left), >> (Shift right)

Pitfalls:
• Unintentionally using bitwise operators in if statements:
a = 1; b = 2;
if(a & b)
{ // The printf is NOT be executed, since 0x01 & 0x02 = 0
 printf("a and b are not equal to 0\n");
}

if else
if(<condition>)
{
 <statement>
}
else
{
 <other statement>
}

Pitfalls:
• Forgetting brackets:
if(pincode == 1234)
 printf("pincode correct");
 transferFunds();

• Using the assign operator instead of
the compare operator:
if(crashLandDrone = 1)
{ /* Writes the value 1 in
crashLandDrone, then evaluates the
value between the ()-brackets. Since
it is non-zero, it is equal true,
which means the if-statement content
is executed. */
 initiateCrash();
}

• An extra semicolon:
if(crashLandDrone == 1);
{ /* will always call the crash
function. The if-statement ends at
the ; and the {} are interpreted as
scope-operators.*/
 initiateCrash();
}

if else
if(<condition>)
{
 <statement>
}
else
{
 <other statement>
}

Pitfalls:
• Forgetting brackets:
if(pincode == 1234)
 printf("pincode correct");
 transferFunds();

• Using the assign operator instead of
the compare operator:
if(crashLandDrone = 1)
{ /* Writes the value 1 in
crashLandDrone, then evaluates the
value between the ()-brackets. Since
it is non-zero, it is equal true,
which means the if-statement content
is executed. */
 initiateCrash();
}

• An extra semicolon:
if(crashLandDrone == 1);
{ /* will always call the crash
function. The if-statement ends at
the ; and the {} are interpreted as
scope-operators.*/
 initiateCrash();
}

Loops
while(<condition>)
{
 <statements>
}

for(<initial>; <condition>; <update>)
{
 <statements>
}

do
{
 <statements>
}
while(<condition>);

Pitfalls:
● An update statement that does not

update:
int i;
for(i=0; i<10; i+1) //i+1 does nothing
● A for loop uses semicolon

separators (;), not commas!

Loops
while(<condition>)
{
 <statements>
}

for(<initial>; <condition>; <update>)
{
 <statements>
}

do
{
 <statements>
}
while(<condition>);

Pitfalls:
● An update statement that does not

update:
int i;
for(i=0; i<10; i+1) //i+1 does nothing
● A for loop uses semicolon

separators (;), not commas!

1

C Cheat Sheet

Strings (arrays of chars)
// An array called arr, which can store 5
// chars
char arr[5];
// Initializes myStr with 't', 'e', 's',
't', // '\0'
char myStr[5] = "test";
char name[] = "Compiler determines length, and
accounts for the \\0";

Pitfalls & Remarks:
• You can only initialize once. (But you can
strcpy into the string later).
char name[] = "My name is Bob";
strcpy(name, "I'm Alice");

- Incorrectly comparing strings in if-
statements:
char t[] = "test";
if(t == "test"){ // <- VERY WRONG!
 // This compares the address of t with the
 // address of the constant "test".
 // Probably NOT what you would want. Use
 // if(strcmp(t, "test") == 0) instead.
}

• Overwriting the \0 char:
char arr[4];
/* This strcpy writes a 't' at location
arr[3], and a \0 at an invalid location in
the memory. arr can only store 4 chars.*/
strcpy(arr, "test");

Strings (arrays of chars)
// An array called arr, which can store 5
// chars
char arr[5];
// Initializes myStr with 't', 'e', 's',
't', // '\0'
char myStr[5] = "test";
char name[] = "Compiler determines length, and
accounts for the \\0";

Pitfalls & Remarks:
• You can only initialize once. (But you can
strcpy into the string later).
char name[] = "My name is Bob";
strcpy(name, "I'm Alice");

- Incorrectly comparing strings in if-
statements:
char t[] = "test";
if(t == "test"){ // <- VERY WRONG!
 // This compares the address of t with the
 // address of the constant "test".
 // Probably NOT what you would want. Use
 // if(strcmp(t, "test") == 0) instead.
}

• Overwriting the \0 char:
char arr[4];
/* This strcpy writes a 't' at location
arr[3], and a \0 at an invalid location in
the memory. arr can only store 4 chars.*/
strcpy(arr, "test");

scanf
scanf(" %d", &myInt);

Pitfalls & Remarks:
• Include the leading space in the pattern to ignore all
leading whitespace chars in the user input.

• Give scanf the address of the variable in which the
input must be stored (include a & for all non-pointer
types).

• Make sure the data types match the expected input
• (For real-life applications: never trust the user !)

scanf
scanf(" %d", &myInt);

Pitfalls & Remarks:
• Include the leading space in the pattern to ignore all
leading whitespace chars in the user input.

• Give scanf the address of the variable in which the
input must be stored (include a & for all non-pointer
types).

• Make sure the data types match the expected input
• (For real-life applications: never trust the user !)

printf format specifiers
%i, %d: int
%u: unsigned int
%f: float
%lf: double (remember: Long Float)
%c: char
%s: string (make sure there is a \0 char at
the end of the string!)
%x: hexadecimal

Pitfalls:
• printf doesn’t check the types of its input
arguments! However, they are cast to the
type of the specifier when printed:

int c = 3;
printf("c: %s", c);
/* This will cast the variable c to char* (a
pointer to a char). This means that the
number 3 is used as the address from which
the printf will start printing bytes, until
the first byte of value 0 (='\0') is found.
Very evil (and wrong). */

printf format specifiers
%i, %d: int
%u: unsigned int
%f: float
%lf: double (remember: Long Float)
%c: char
%s: string (make sure there is a \0 char at
the end of the string!)
%x: hexadecimal

Pitfalls:
• printf doesn’t check the types of its input
arguments! However, they are cast to the
type of the specifier when printed:

int c = 3;
printf("c: %s", c);
/* This will cast the variable c to char* (a
pointer to a char). This means that the
number 3 is used as the address from which
the printf will start printing bytes, until
the first byte of value 0 (='\0') is found.
Very evil (and wrong). */

Declaring functions
<return type> function_name(<arg1>, <arg2>, …)
{
 <statements>
}
// Function that determines the result of a
// quadratic function of form y(x)=a+bx^2+c
float quad(float x, float a,
 float b, float c){
 float ans = a + b * x;
 ans += c * x * x;
 return ans;
}
// Function that returns the 4th array element:
int fourth(int arr[]){
 return arr[3];
}
/* In general, variables are passed by value, i.e.
the function receives copies of the variables you
use as arguments: */
void doesNothing(int input){
 input = 500;
}
/* Exception: passing variables as pointers
allows you to edit them inside other functions.
The 3 arguments of the next function are all
pointers: */
void doesSomething(float* num, int list[],
 char word[10]){
 *num = 9.3;
 list[2] = 5;
 strcpy(word,"test");
}

void main(void){
 int var = 9001; // name does not matter
 doesNothing(var); // call our function
 printf("var: %i", var); // prints: var: 9001

 float myFloat = 1337.0;
 char t[10];
 int myList[3] = {1,2,3};
 doesSomething(&myFloat, myList, t);
 printf("%s - %f - %i", t, myFloat, myList[2]);
 // prints: test - 9.300 - 5
}

Declaring functions
<return type> function_name(<arg1>, <arg2>, …)
{
 <statements>
}
// Function that determines the result of a
// quadratic function of form y(x)=a+bx^2+c
float quad(float x, float a,
 float b, float c){
 float ans = a + b * x;
 ans += c * x * x;
 return ans;
}
// Function that returns the 4th array element:
int fourth(int arr[]){
 return arr[3];
}
/* In general, variables are passed by value, i.e.
the function receives copies of the variables you
use as arguments: */
void doesNothing(int input){
 input = 500;
}
/* Exception: passing variables as pointers
allows you to edit them inside other functions.
The 3 arguments of the next function are all
pointers: */
void doesSomething(float* num, int list[],
 char word[10]){
 *num = 9.3;
 list[2] = 5;
 strcpy(word,"test");
}

void main(void){
 int var = 9001; // name does not matter
 doesNothing(var); // call our function
 printf("var: %i", var); // prints: var: 9001

 float myFloat = 1337.0;
 char t[10];
 int myList[3] = {1,2,3};
 doesSomething(&myFloat, myList, t);
 printf("%s - %f - %i", t, myFloat, myList[2]);
 // prints: test - 9.300 - 5
}

String manipulation functions (strcpy, strcmp, strlen, strcat, sprintf, toupper, ispunct, etc)
char * strcpy (char * destination, const char * source);
Copy source into destination. Make sure there is enough space at the destination!

int strcmp (const char * str1, const char * str2);
Compares the string str1 to the string str2. Returns 0 when they are equal. A value greater than zero indicates that
the first character that does not match has a greater value in str1 than in str2; And a value less than zero indicates
the opposite. Can be used to sort alphabetically.
Most string functions have case insensitive versions (stricmp), or length delimited versions (strncpy).

String manipulation functions (strcpy, strcmp, strlen, strcat, sprintf, toupper, ispunct, etc)
char * strcpy (char * destination, const char * source);
Copy source into destination. Make sure there is enough space at the destination!

int strcmp (const char * str1, const char * str2);
Compares the string str1 to the string str2. Returns 0 when they are equal. A value greater than zero indicates that
the first character that does not match has a greater value in str1 than in str2; And a value less than zero indicates
the opposite. Can be used to sort alphabetically.
Most string functions have case insensitive versions (stricmp), or length delimited versions (strncpy).

Best Practices
• Write lots of comments (which will help yourself understand your own code (so you can reuse it next
week/month/year)). Others (like your instructors, boss, colleagues) will also appreciate this.

• Even better: start with a skeleton of comments, and fill it in with code as you go along!
• Use a consistent indentation style and variable naming (camelCase or underscore_separated).
• Think about the problem you are trying to solve, and break it down into small parts.
• Use the debugging tools you have: for example, add extra printf's to display intermediate variables, or place
breakpoints and inspect the contents of variables (using the “locals” tab, or the mouseover messages).

Best Practices
• Write lots of comments (which will help yourself understand your own code (so you can reuse it next
week/month/year)). Others (like your instructors, boss, colleagues) will also appreciate this.

• Even better: start with a skeleton of comments, and fill it in with code as you go along!
• Use a consistent indentation style and variable naming (camelCase or underscore_separated).
• Think about the problem you are trying to solve, and break it down into small parts.
• Use the debugging tools you have: for example, add extra printf's to display intermediate variables, or place
breakpoints and inspect the contents of variables (using the “locals” tab, or the mouseover messages).

2

