SEWCO
Programming & Engineering Challenge

Kees Goossens

R T S
OC ASIC Wwith 4 cores & NOC, 2019

https://kgoossens.estue.nl/docs/studiekeuzecheck/

Kees Goossens <k.g.w.goossens@tue.nl> T U 5%3:?;?? oF
Electronic Systems Group e TECHNOLOGY

Electrical Engineering Faculty

Let's try out the online quiz on menti.com

* where are you following to this lecture?

* go to www.menti.com and enter the code 2778 4171

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

http://www.menti.com/

Mentimeter

« are you following this lecture on
1. a computer / laptop

2. tablet
3. phone
4. smart glasses

spectacles.com

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

outline

computers are everywhere

what is the course about

why is programming important

C programming language practicum

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

course goals

« tolearnto
— program in the C language —
— design a system from a real-world problem statement THE
« EE: Rock Your Baby
« AT: Energy Challenge PROGRAMMING
LANGUAGE
© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

Computers

Kees Goossens <k.g.w.goossens@tue.nl> T U 5::13:?;5? oF
e e
ectronic Systems Group TECHNOLOGY

Electrical Engineering Faculty

computing: the personal computer

TRS-80 Model 1
my first computer in 1980
4 KB, 1.7 MHz

® 0 »

iPad mini, 256 GB, 2.5 GHz,
0.3 kilo

© Kees Goossens
Electronic Systems

IBM 5150 PC, 1981.
16 KB, 4.7 MHz

studiekeuzecheck
2025-06-18

S - Q
———

=

C i

Osborne 1, the first “portable” computer
—only 10 kilos.

iPhone Pro, 512 GB, 3.1 GHz,
0.19 kilo

TU/e

computing: embedded & cyber-physical systems

Philips medical imaging ASML chip manufacturing

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

computing: cars contain networks of computers

up to 100 computers and TUE's STORM electric motorbike
six networks in modern cars — went around the world
— EE automotive students!

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

the importance of computers

« critical infrastructure
— financial system
— all communications, including Internet, satellites, your mobile phone
— power grid

 cars, trains, planes, e-bikes, ...

» medicine, hospitals, smart pills (electronic, not psychedelic)

* microwave, washing machines, passports, clothes tags, ...

 invented & built by engineers (you!)
» any modern system is too complex to design & build without computers

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

designing & manufacturing chips

package

© Kees Goossens . L i ; go;rgéboard TU/e

Electronic Systems

Computer Architecture, Programming, Embedded Systems

13

/’éﬁ
actuator output>

physical
world

wa FITEEE - TERTT.

full picture will be covered in 3 courses:

+ SEWCO programming

» 5EICO Computer Architecture |

» 5AIBO Sensing, Computing, Actuating

© Kees Goossens studiekeuzecheck TU/e
Electronic Systems 2025-06-18

SEWCO
Programming & Engineering Challenge

C programming

Kees Goossens <k.g.w.goossens@tue.nl> T U 5::13:?;5? oF
Electronic Systems Group e TECHNOLOGY

Electrical Engineering Faculty

why is programming important anyway?

* engineering in general
— problem analysis
— structured approach & logical thinking
— precision

v

especially so in programming

- the computer does exactly what you tell it do

- not what you intend or think to have programmed
- embedded systems are often safety critical

+ BE also designs systems __programming errors can lead to fatalties

« automation is essential > programming!

» science relies on mathematics, modelling, & experiments

v

in general, programming errors
—> failing or wrong experiments
- invalid analysis

- bugs in systems

» the real skill is problem solving m

* programming is relatively easy

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

PYNQ-Z2 board — during the programming labs

» used in at least 3 of your courses
* dual-core ARM processor

* Ubuntu Linux
* programmable logic

Ethernet

your laptop

optional monitor

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

PYNQ-Z2 board — in the challenges

» used in at least 3 of your courses
* dual-core ARM processor

* Ubuntu Linux
* programmable logic

Ethernet

your laptop

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

programming

. . SECOND EDITION
« many different programming languages THE
- C
— is the most widely used language in the world @
— especially for embedded systems PROGRAMMING
- LANGUAGE
— is at the boundary between hardware & software
BRIAN W KERNIGHAN
DENNIS M.RITCHIE
¢ in thIS praCticum Kernighan & Ritchie, "C Programming Language",
— online interface 2nd edition, ISBN: 978-0-13-110362-7
— printing
— variables

— loops (automation)
— input (data dependence)
— conditionals (data dependence)

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

Mentimeter

» have you programmed before?
* what programming languages?

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

online C programming

* https://www.programiz.com/c-programming/online-compiler/

© Kees Goossens
Electronic Systems

i

C

fita-

your program

?rogramiz
C Online Compiler

main.c L & m Output

1 // Online C compiler to run C progrdm online |
2 #include <stdio.h>
3 v
4~ int main() {

// Write C code here
printf("Hello world\n%);

return 0;

O 0 N o n

studiekeuzecheck
2025-06-18

Learn Python App

Clear

TU/e

https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/

online C programming

* https://www.programiz.com/c-programming/online-compiler/

e press 'run'
— compile program
— run program

— (input &) output shown on the right

— change the text and rerun

R’ogramiz
C Online Compiler

your program

ng main.c Ll I & III:IIII

1

:

4~

E N
O 0 N O

© Kees Goossens
Electronic Systems

// Online C compiler to run C progrdm online
#include <stdio.h>

v

int main() {
// Write C code here
printfl“Hello world\n"b;

return 0;

studiekeuzecheck
2025-06-18

input for your program &
output from your program

Output

/tmp/Ws9AYel6tc.o

Hello world
| A4

Learn Python App

Clear

TU/e

https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/

Mentimeter

 did you run Hello YourName?

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing squares: printing

@ main.c . C Output
1 #include <stdio.h> /tmp/eT304r4LXB.o
2 int main (void) printing squares up to 3
3~ square=0
4 printf("printing squares up to 3\n"); square=1
(E;) printf("square=0\n"); square=4
6 printf("square=1\n");
<, 7 printf("square=%d\n", 4);
- 8)'l
+ functions:
. _ * now we must change the program
— always start from the main function every time we want to have a different size
— printf, scant « that’s not very useful
+ function contains one or more statements
* each terminated with a semicolon ; + how to generalise for any number of squares?

» function arguments: printf (format string, arguments)

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing squares: variables

2

@

C

fita

main.c L S

1 #include <stdio.h>

2 int main (void)

2= |

4 int i, size;

5 size = 3;

6 printf("printing squares up to %d\n", size);
7 i = 0; |printf("square=%d\n",| i*i);
8 i = 1; |printf("square=%d\n",| i*i);
9 i = 2; |printf("square=%d\n",| i*i);

10 }

Output

/tmp/eT304r4LXB.o
printing squares up to 3

square=0
square=1
square=4

* avariable declaration gives a name to a memory location

* assign a value in the variable with =
this stores the value in the memory

size = 3;

— we can do this multiple times
* look up the current value of the variable in memory when it is used in an expression
— eg. i*i

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

now it's just longer
still need to change the program

Clear

TU/e

printing squares: variables

; 'E‘ main.c . & m Output Clear

g #include <stdio.h> /tmp/eT304r4LXB.o
@ int main (void) printing squares up to 3 '
{ square=0 f
int 1, size; square=1
(E; size = 3; square=4

1 0; printf("square=%d\n", i*i);
i =1; printf("square=%d\n", i*i);
2; printf("square=%d\n", i*i);

fita

i

1
2
3~
4
5
6 printf("printing squares up to %d\n", size);
7 .
8
9
0 }

Why do we have variables?

« computer memory is a long list of locations (e.g. 16 MByte is 4194304 locations of 4 bytes each)
» without variables we would have to use & keep track of numerical addresses

(0..4194303) instead of variable names such as i, size, ...
» if the program changes then the compiler may change the location of a variable

» variables allow clearer Erograms are ﬁuicker to write and easier to modif¥ and maintain

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing squares: while loop

main.c 41

1 #include <stdio.h>
2 int main (void)
3- 4

4 int i, size;
5 size = 3;
6

7

8~

e B

printf("printing squares up to %d\n", size);

£, i=0;
- while (1 < size) {
9 printf("square=%d\n", i*i);
10 1=1 +1;
11 }
12 H

* we only write the printf statement only once
» even if the loop is executed thousands of times!

© Kees Goossens studiekeuzecheck
Electronic Systems 2025-06-18

Output

/tmp/eT304r4LXB.o
printing squares up to 3
square=0

square=1

square=4

* now it's shorter
* but still need to change the program

Cle

TU/e

printing squares

#include <stdio.h>

int main (void)

{ 1. initialise variable ito 0
int i, size; 2. check if condition i<size is true
size = 3; 3. if yes, then execute the
printf ("printing squares up to %d\n", size); 4. execute the iterator (i=i+1 = i=1)
i=20;
while (i < size) { 1. check if condition i<size is true
2. if yes, then execute the
i=i 41; 3. execute the iterator (i=i+1=» i=2)
}
} 4. check if condition i<size is true
// the loop is the same as: 5. if yes, then execute the
i=20; // store 0 in memory . . .
=|+ =
// Lookup 0 & multiply & print 0 6. execute the iterator (i=i+1 =» i=3)
i=1i +1; // lookup star, add 1, store 1
// lookup 1 & multiply & print 1 7. check if condition i<size is true
i=1i +1; // lookup star, add 1, store 2 . .
// lookup 2 & multiply & print 2 8. if no, exit the IOOp
i=1i+1; .
© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing squares: while loop

'z‘ main.c - & m Output Cle

1 #include <stdio.h> /tmp/eT304r4LXB.o
2 int main (void) printing squares up to 3

3~ square=0
4 int i, size; square=1

(E; 5 size = 3; square=4
6 printf("printing squares up to %d\n", size);

£, 7 i=20;

- 8- while (i < size) {
9 printf("square=%d\n", i*i);
10 i=1+1;
11 }
12)

Why do we have loops?

« to avoid duplicating repetitive code
» allow for a variable number of iterations without editing & recompiling the program (e.g. size)

* shorter iroirams are iuicker to writeI contain fewer errorsI and are easier to maintain

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing sum

main.c L & Output Clear
1 // Online C compiler to run C program online /tmp/apYyTf0Chh.o

2 #include <stdio.h> the sum up to 1000 is 499500

3

4~ int main() {

fit @ﬂ@

5 int i, size, sum;

6 size = 1000;

7

8 . .

. you can download this, to get started quicker: see
10 your code here! http://www.es.ele.tue.nl/~kgoossens/teaching/skc/
11
12
13 printf(" the sum up to %d is %d\n", size, sum);

14

» change the program to print out the sum of the numbers 1 up to size
» forsize ==3the sumis 1+2=3
» for size == 1000 the sum is 1+2+...+999 = 499500

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

Mentimeter

« How did it go?

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing sum

’E‘ main.c . S m Output Clear
1 // Online C compiler to run C program online /tmp/apYyTf0Chh.o

2 #include <stdio.h> the sum up to 1000 is 499500
3

4~ int main() {

C

5 int 1, size, sum;
6 size = 1000;
&, 7 sum = 0;
- 8 i=1;
9- while (i < size) {
10 sum = sum + 1i;
11 i=1i+1;
12 }
13 printf(" the sum up to %d is %d\n", size, sum);
14

» change the program to print out the sum of the numbers 1 up to size
» forsize ==3the sumis 1+2=3
» for size == 1000 the sum is 1+2+...+999 = 499500

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing squares: scanf

'E‘ main.c » S m Output C
1 #include <stdio.h> /tmp/eT304r4LXB.o
2 int main (void) up to what number? 10
3-4 printing squares up to 10
4 int i, size,; square=0
@ 5 printf("up to what number? "); square=1
6 scanf("%d", &size); square=4
¢ 7 printf("printing squares up to %d\n", size); square=9
- 8 i=0; square=16
9~ while (1 < size) { square=25
10 printf(“"square=%d\n", i*i); square=36
1" i=1+1; square=49
12 } square=64
13 }| square=81
|
» we ask the user for input * you need to type in the number 10
* no need to change the program! (or another number)
© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing squares: scanf

'z‘ main.c . Output C
1 #include <stdio.h> /tmp/eT304r4LXB.o
2 int main (void) up to what number? 10
3-4 printing squares up to 10
4 int i, size; square=0
@ 5 printf("up to what number? "); square=1
6 scanf("%d", &size); square=4
£, 7 printf("printing squares up to %d\n", size); square=9
o 8 i=0; square=16
9~ while (1 < size) { square=25
10 printf(“"square=%d\n", i*i); square=36
1" i=1+1; square=49
12 } square=64
13 }| square=81
|
Why do we have input (scanf) statements?
* one program be applied to different data every time it's run
© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

Mentimeter

* what happens if you type in -10? why?

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing squares: if statements

'z‘ main.c o S m Output Cle
#include <stdio.h> /tmp/eT304r4LXB.o
int main (void) up to what number? -1
- { Size must be positive
(E; int i, size;

scanf("%d", &size);

1
2
3
4
5 printf("up to what number? ");
6
7
8
9

£, if (size < 0) printf("Size must be positive\n");
- - else {
printf("printing squares up to %d\n", size);

10 i=0;

1~ while (1 < size) {

12 printf("square=%d\n", i*i),;

13 i=1+1;

14 }

15 }

16 }

* we need to check user input

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

printing squares: if statements

. r"n 1
main.c . J (

0

m Output Cle

1 #include <stdio.h> /tmp/eT304r4LXB.o

2 int main (void) up to what number? -1
34 Size must be positive
4 int i, size;

= printf("up to what number? ");
6

7

8

9

@ [y @

scanf("%d", &size);

<, if (size < 0) printf("Size must be positive\n");
- ~ else {
printf("printing squares up to %d\n", size);
10 i=0;
1~ while (i < size) {
12 printf("square=%d\n", i*i);
13 i=1+1:
14 } Why do we have conditional (i f) statements?
15}
16} « program can react differently for different input data
. » checking for invalid input
. dealini with exceitionsI e.i. first and last iteration of a Iooi
i TU/e

simple EE problem

« consider an electrical circuit with resistors, which can be placed in

— series ~“W— W

R, R, R, R,
(@)

— parallel ”% ”2% ”3% ”‘%

{ TR
— combinations [T AT L
S VR

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

simple EE problem

« using Ohm's law any combination of resistors can be replaced by a single equivalent resistor

series: W S —\A;V‘— Re=R;+R, +R; + R,
2 (a) 3 4
|
parallel; "E A3 "’33 ”‘% ~> “’L’e"‘ 1/R. = 1/R; + 1/R, + 1/R; + /1R,
|
(b)
© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

simple EE problem

« using Ohm's law any combination of resistors can be replaced by a single equivalent resistor

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

simple EE problem

« we will write a program that computes the equivalent resistance
» as we add resistors (the arrows are reversed)

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

programming it

« write a program that
— starts with a wire (resistance = 0)
— then repeatedly asks for a resistor to be added either in series or parallel

— computes the equivalent resistor 0
—_— requiv = 0
Equivalent resistor is 0.000000
Series (0), Parallel (1), or Quit (2)? 0 .
Resistance? 6 — W requiv.=0 —MA- 0+6=6
Ry rnew = 6 Re

Equivalent resistor is 6.000000

© Kees Goossens
Electronic Systems

programming it

« write a program that
— starts with a wire (resistance = 0)
— then repeatedly asks for a resistor to be added either in series or parallel

— computes the equivalent resistor 0
—_— requiv = 0
Equivalent resistor is 0.000000
Series (0), Parallel (1), or Quit (2)? 0 .
Resistance? 6 — W requiv.=0 —MA- 0+6=6
Ry rnew = 6 Re

Equivalent resistor is 6.000000
Series (0), Parallel (1), or Quit (2)? 0
Resistance? 12

iv = 6 =
Equivalent resistor is 18.000000 VWA M- o W= 6+12=18

rnew = 12
Rq R e

© Kees Goossens
Electronic Systems

programming it

« write a program that
— starts with a wire (resistance = 0)
— then repeatedly asks for a resistor to be added either in series or parallel

— computes the equivalent resistor 0
—_— requiv = 0
Equivalent resistor is 0.000000
Series (0), Parallel (1), or Quit (2)? 0 .
Resistance? 6 — W requiv.=0 —MA- 0+6=6
Ry rnew = 6 Re

Equivalent resistor is 6.000000
Series (0), Parallel (1), or Quit (2)? 0
Resistance? 12

Equivalent resistor is 18.000000 ~“W—M— i::;lz :26 V:V 6+12=18
Series (0), Parallel (1), or Quit (2)? 1 it R2 °
Resistance? 9
Equivalent resistor is 6.000000 WM requiv = 18
F R A SIS WA /(118 + 1/9) = 6
Re
R3

© Kees Goossens
Electronic Systems

programming it

« write a program that
— starts with a wire (resistance = 0)
— then repeatedly asks for a resistor to be added either in series or parallel
— computes the equivalent resistor 0

—_— requiv

Equivalent resistor is 0.000000
Series (0), Parallel (1), or Quit (2)? 0 .
Resistance? 6 — W requiv. =0 - AMA- 0+6=6

Ry rnew = 6 Re

Il
o
—

Equivalent resistor is 6.000000

Series (0), Parallel (1), or Quit (2)? 0

Resistance? 12 .

Equivalent resistor is 18.000000 ~“W—M— i::;lz :26 YW= 6+12=18
Series (0), Parallel (1), or Quit (2)? 1

Resistance? 9

Equivalent resistor is 6.000000 VYW—W requiv = 18 1118 + 1/9) = 6
R R ﬁA/V\— =

Series (0), Parallel (1), or Quit (2)? 0 ‘1 ! 2 F‘ rnew = 9 Ao ()

Resistance? 3 R3

Equivalent resistor is 9.000000

Series (0), Parallel (1), or Quit (2)? 2 VWA .
Ry Ry requiv = 6 _M/_ 6+3=9

ByE! rnew = 3 B

1 Ry e

© Kees Goossens studiekeuzecheck R3 TU/e

Electronic Systems 2025-06-18 requiv = 9

Ohm's law

#include <stdio.h>
int main (void)

{

float rnew, requiv = 0.0; floating point (real) number
int cmd = 0;
while (cmd != 2) {

printf ("Equivalent resistor is|%$f\n"| requiv);

printf ("Series (0), Parallel (1), or Quit (2)2 ");

scanf
if

(cmd == [l cmd == 1)] {

printf ("Resistance? ");

scanf ("S£" &rnew) ;

. insert your code here ...
}
printf ("Bye!\n");

you can download this, to get started quicker: see
https://kgoossens.estue.nl/docs/studiekeuzecheck/

studiekeuzecheck
2025-06-18

© Kees Goossens
Electronic Systems

Equivalent resistor is 0.000000
Series (0), Parallel (1), or Quit
Resistance? 6

Equivalent resistor is 6.000000
Series (0), Parallel (1), or Quit
Resistance? 12

Equivalent resistor is 18.000000
Series (0), Parallel (1), or Quit
Resistance? 9

Equivalent resistor is 6.000000
Series (0), Parallel (1), or Quit
Resistance? 3

Equivalent resistor is 9.000000
Series (0), Parallel (1), or Quit
Bye!

(2)7 0
(2)7 0
(2)? 1
(2)7 0

(2)? 2

TU/e

Mentimeter

» did you know Ohm's law?
* is the assignment clear?

Mr. Resistance (and voltage and current)

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

too easy? compute Pl

* use the Leibniz formula
* https://en.wikipedia.org/wiki/Leibniz formula for pi

1 1 1 1
1 | — |

3 5 7 9

#include <math.h> // for M PI=3.1415...
#include <stdio.h>
int main (void) {

double mypi;

// to print the currently computed value of mypi
// and the difference with the real value M PI
printf ("%$30.28f $+30.27f\n", mypi, mypi-M PI);

}

© Kees Goossens studiekeuzecheck
Electronic Systems 2025-06-18

TU/e

https://en.wikipedia.org/wiki/Leibniz_formula_for_pi
https://en.wikipedia.org/wiki/Leibniz_formula_for_pi

now let's program!

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

Mentimeter

« the problem was ...

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

Ohm's law

#include <stdio.h>
int main (void)
{
float rnew, requiv = 0.0;
int cmd = 0;
while (cmd !'= 2) {
printf ("Equivalent resistor is %f\n", requiv);
printf ("Series (0), Parallel (1), or Quit (2)? ");
scanf ("%d", &cmd) ;
if (cmd == || cmd == 1) {

printf ("Resistance? ");

scanf ("$f", &rnew);
W WA
} R, R, R, R,
if (cmd == 0) requiv = requiv + rnew; w
if (cmd == 1) requiv =

- 1.0/ (1.0/requiv + 1.0/rnew); g##
R,
}

printf ("Bye!\n"); ”

* looks good, but this program contains a bug
» what happens when we immediately insert a resistor in parallel?

studiekeuzecheck
2025-06-18

© Kees Goossens
Electronic Systems

Equivalent resistor is 0.000000

Series (0), Parallel (1), or Quit (2)? 0
Resistance? 6

Equivalent resistor is 6.000000

Series (0), Parallel (1), or Quit (2)? 0
Resistance? 12

Equivalent resistor is 18.000000

Series (0), Parallel (1), or Quit (2)? 1
Resistance? 9

Equivalent resistor is 6.000000

Series (0), Parallel (1), or Quit (2)? 0
Resistance? 3

Equivalent resistor is 9.000000

Series (0), Parallel (1), or Quit (2)? 2
Bye!

TU/e

Ohm's law

#include <stdio.h>

int main (void)

{
float rnew, requiv = 0.0;
int cmd = 0;
while (cmd !'= 2) {

printf ("Equivalent resistor is %f\n", requiv);

printf ("Series (0), Parallel (1), or Quit (2)? ");

scanf ("%d", &cmd) ;
if (cmd == || cmd == 1) {

printf ("Resistance? ");

scanf ("$f", &rnew);
}
if (cmd == 0) requiv = requiv + rnew;
if (cmd == 1) {
if (requiv == 0.0) requiv = rnew;
else requiv = 1.0/(1.0/requiv + 1.0/rnew);

}
printf ("Bye!\n");

» exception: the first resistor always replaces the wire

Equivalent resistor is 0.000000
Series (0), Parallel (1), or Quit
Resistance? 6

Equivalent resistor is 6.000000
Series (0), Parallel (1), or Quit
Resistance? 12

Equivalent resistor is 18.000000
Series (0), Parallel (1), or Quit
Resistance? 9

Equivalent resistor is 6.000000
Series (0), Parallel (1), or Quit
Resistance? 3

Equivalent resistor is 9.000000
Series (0), Parallel (1), or Quit
Bye!

» (better) alternative: use requiv = (requiv * rnew)/ (requiv + rnew)

© Kees Goossens
Electronic Systems

studiekeuzecheck

(2)7 0
(2)7 0
(2)? 1
(2)7 0

(2)? 2

TU/e

Mentimeter

e conclusions

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

information
53

» see https://kgoossens.estue.nl/docs/studiekeuzecheck/
« for this presentation and some more information on C programming

 thank you for participating, and | hope to see you in September!

© Kees Goossens studiekeuzecheck TU/e

Electronic Systems 2025-06-18

