
Kees Goossens <k.g.w.goossens@tue.nl>
Electronic Systems Group
Electrical Engineering Faculty

CompSOC ASIC with 4 cores & NOC, 2019

5EWC0
Programming & Engineering Challenge

Kees Goossens

https://kgoossens.estue.nl/docs/studiekeuzecheck/

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

2
Let's try out the online quiz on menti.com

• where are you following to this lecture?

• go to www.menti.com and enter the code 2778 4171

http://www.menti.com/

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

3
Mentimeter

• are you following this lecture on
1. a computer / laptop
2. tablet
3. phone
4. smart glasses

• I'll assume that on 1-3 you can program, later

spectacles.com

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

5
outline

• computers are everywhere
• what is the course about
• why is programming important
• C programming language practicum

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

6
course goals

• to learn to
– program in the C language
– design a system from a real-world problem statement

• EE: Rock Your Baby
• AT: Energy Challenge

Kees Goossens <k.g.w.goossens@tue.nl>
Electronic Systems Group
Electrical Engineering Faculty

CompSOC ASIC with 4 cores & NOC, 2019

Computers

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

8
computing: the personal computer

TRS-80 Model 1
my first computer in 1980
4 KB, 1.7 MHz IBM 5150 PC, 1981.

16 KB, 4.7 MHz

Osborne 1, the first “portable” computer
– only 10 kilos.

iPad mini, 256 GB, 2.5 GHz,
0.3 kilo

iPhone Pro, 512 GB, 3.1 GHz,
0.19 kilo

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

9

ASML chip manufacturingPhilips medical imaging

computing: embedded & cyber-physical systems

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

10
computing: cars contain networks of computers

TUE's STORM electric motorbike
– went around the world
– EE automotive students!

up to 100 computers and
six networks in modern cars

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

11
the importance of computers

• critical infrastructure
– financial system
– all communications, including Internet, satellites, your mobile phone
– power grid

• cars, trains, planes, e-bikes, ...
• medicine, hospitals, smart pills (electronic, not psychedelic)
• microwave, washing machines, passports, clothes tags, ...
• ...

• invented & built by engineers (you!)
• any modern system is too complex to design & build without computers

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

12
designing & manufacturing chips

phone

wafercool guy in a factory (“fab”)

package

iPhone 12 A14 die, 4x CPU, 1x GPU

motherboard
or PCB

`` ```` ``
``̀`

`` ``

``

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

13
Computer Architecture, Programming, Embedded Systems

sensor input actuator outputphysical
world

embedded system

software
running on
hardware

full picture will be covered in 3 courses:
• 5EWC0 programming
• 5EIC0 Computer Architecture I
• 5AIB0 Sensing, Computing, Actuating

Kees Goossens <k.g.w.goossens@tue.nl>
Electronic Systems Group
Electrical Engineering Faculty

CompSOC ASIC with 4 cores & NOC, 2019

5EWC0
Programming & Engineering Challenge

C programming

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

15
why is programming important anyway?

• engineering in general
– problem analysis
– structured approach & logical thinking
– precision

• science relies on mathematics, modelling, & experiments
• EE also designs systems

• automation is essential à programming!

• programming is relatively easy
• the real skill is problem solving

especially so in programming
- the computer does exactly what you tell it do
- not what you intend or think to have programmed
- embedded systems are often safety critical

– programming errors can lead to fatalities

in general, programming errors
à failing or wrong experiments
à invalid analysis
à bugs in systems
à incorrect conclusions

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

16
PYNQ-Z2 board – during the programming labs

• used in at least 3 of your courses
• dual-core ARM processor
• Ubuntu Linux
• programmable logic

optional monitor

USB

Ethernet

your laptop

your board

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

17
PYNQ-Z2 board – in the challenges

• used in at least 3 of your courses
• dual-core ARM processor
• Ubuntu Linux
• programmable logic

USB

Ethernet

your laptop

your board

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

18
programming

• many different programming languages
• C

– is the most widely used language in the world
– especially for embedded systems
– is at the boundary between hardware & software

• in this practicum
– online interface
– printing
– variables
– loops (automation)
– input (data dependence)
– conditionals (data dependence)

Kernighan & Ritchie, "C Programming Language",
2nd edition, ISBN: 978-0-13-110362-7

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

19
Mentimeter

• have you programmed before?
• what programming languages?

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

20
online C programming

• https://www.programiz.com/c-programming/online-compiler/

your program

https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

21
online C programming

• https://www.programiz.com/c-programming/online-compiler/
• press 'run'

– compile program
– run program
– (input &) output shown on the right
– change the text and rerun

your program input for your program &
output from your program

https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/
https://www.programiz.com/c-programming/online-compiler/

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

22
Mentimeter

• did you run Hello YourName?

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

23
printing squares: printing

#include <stdio.h>

int main (void)
{
 printf("printing squares up to 3\n");

 printf("0\n");
 printf("1\n");
 printf("%d\n",4);
}

• functions:
– always start from the main function
– printf, scanf

• function contains one or more statements
• each terminated with a semicolon ;
• function arguments: printf(format string, arguments)

• now we must change the program
every time we want to have a different size

• that’s not very useful

• how to generalise for any number of squares?

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

24
printing squares: variables

#include <stdio.h>

int main (void)
{
 printf("printing squares up to 3\n");

 printf("0\n");
 printf("1\n");
 printf("%d\n",4);
}

• a variable declaration gives a name to a memory location
• assign a value in the variable with =

this stores the value in the memory
– size = 3;

– we can do this multiple times
• look up the current value of the variable in memory when it is used in an expression

– e.g. i*i

• now it's just longer
• still need to change the program

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

25
printing squares: variables

#include <stdio.h>

int main (void)
{
 printf("printing squares up to 3\n");

 printf("0\n");
 printf("1\n");
 printf("%d\n",4);
}

• a variable declaration gives a name to a memory location
• assign a value in the variable with =

this stores the value in the memory
– size = 3;

– we can do this multiple times
• look up the current value of the variable in memory when it is used in an expression

– e.g. i*i

• now it's just longer
• still need to recompile

Why do we have variables?

• computer memory is a long list of locations (e.g. 16 MByte is 4194304 locations of 4 bytes each)
• without variables we would have to use & keep track of numerical addresses

(0..4194303) instead of variable names such as i, size, ...
• if the program changes then the compiler may change the location of a variable
• variables allow clearer programs are quicker to write and easier to modify and maintain

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

26
printing squares: while loop

#include <stdio.h>

int main (void)
{
 int i, size;

 size = 3;
 printf("printing squares up to %d\n", size);
 i = 0;
 while (i < size) {
 printf("square=%d\n", i*i);
 i = i +1;
 }
}

• we only write the printf statement only once
• even if the loop is executed thousands of times!

• now it's shorter
• but still need to change the program

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

27
printing squares

#include <stdio.h>

int main (void)
{
 int i, size;

 size = 3;
 printf("printing squares up to %d\n", size);
 i = 0;
 while (i < size) {
 printf("square=%d\n", i*i);
 i = i +1;
 }
}
}

1. initialise variable i to 0
2. check if condition i<size is true
3. if yes, then execute the loop body
4. execute the iterator (i=i+1 è i=1)

1. check if condition i<size is true
2. if yes, then execute the loop body
3. execute the iterator (i=i+1è i=2)

4. check if condition i<size is true
5. if yes, then execute the loop body
6. execute the iterator (i=i+1 è i=3)

7. check if condition i<size is true
8. if no, exit the loop
• note that i equals 3 after the loop

// the loop is the same as:

i = 0; // store 0 in memory

printf("square=%d\n", i*i); // lookup 0 & multiply & print 0

i = i +1; // lookup star, add 1, store 1

printf("square=%d\n", i*i); // lookup 1 & multiply & print 1

i = i +1; // lookup star, add 1, store 2
printf("square=%d\n", i*i); // lookup 2 & multiply & print 2

i = i +1;

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

28
printing squares: while loop

#include <stdio.h>

int main (void)
{
 int i, size;

 size = 3;
 printf("printing squares up to %d\n", size);
 i = 0;
 while (i < size) {
 printf("square=%d\n", i*i);
 i = i +1;
 }
}

• we only write the printf statement only once
• even if the loop is executed thousands of times!

• now it's shorter
• but still need to recompile

Why do we have loops?

• to avoid duplicating repetitive code
• allow for a variable number of iterations without editing & recompiling the program (e.g. size)
• shorter programs are quicker to write, contain fewer errors, and are easier to maintain

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

29

#include <stdio.h>

int main() {
 int i, size, sum;

 size = 1000;
 sum = 0;
 i = 1;
 while (i < size) {

 sum = sum + i;
 i = i + 1;
 }
 printf(" the sum up to %d is %d\n", size, sum);

}

printing sum

• change the program to print out the sum of the numbers 1 up to size
• for size == 3 the sum is 1+2 = 3
• for size == 1000 the sum is 1+2+...+999 = 499500

your code here!
you can download this, to get started quicker: see
http://www.es.ele.tue.nl/~kgoossens/teaching/skc/

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

30
Mentimeter

• How did it go?

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

31
printing sum

#include <stdio.h>

int main() {
 int i, size, sum;

 size = 1000;
 sum = 0;
 i = 1;
 while (i < size) {

 sum = sum + i;
 i = i + 1;
 }
 printf(" the sum up to %d is %d\n", size, sum);

}

• change the program to print out the sum of the numbers 1 up to size
• for size == 3 the sum is 1+2 = 3
• for size == 1000 the sum is 1+2+...+999 = 499500

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

32
printing squares: scanf

#include <stdio.h>

int main (void)
{
 int i, size;

 printf("up to what number? ");
 scanf("%d", &size);
 printf("printing squares up to %d\n", size);
 i = 0;

 while (i < size) {
 printf("square=%d\n", i*i);
 i = i +1;
 }

}

• we ask the user for input
• no need to change the program!

• you need to type in the number 10
(or another number)

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

33
printing squares: scanf

#include <stdio.h>

int main (void)
{
 int i, size;

 printf("up to what number? ");
 scanf("%d", &size);
 printf("printing squares up to %d\n", size);
 i = 0;

 while (i < size) {
 printf("square=%d\n", i*i);
 i = i +1;
 }

}

Why do we have input (scanf) statements?

• one program be applied to different data every time it's run
• program can be interactive with user

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

34
Mentimeter

• what happens if you type in -10? why?

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

35

#include <stdio.h>

int main (void)
{
 int i, size;

 printf("up to what number? ");
 scanf("%d", &size);
 if (size < 0) printf("Size must be positive\n");
 else {

 printf("printing squares up to %d\n", size);
 i = 0;
 while (i < size) {
 printf("square=%d\n", i*i);

 i = i +1;
 }
 }

}

printing squares: if statements

• we need to check user input

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

36

#include <stdio.h>

int main (void)
{
 int i, size;

 printf("up to what number? ");
 scanf("%d", &size);
 if (size < 0) printf("Size must be positive\n");
 else {

 printf("printing squares up to %d\n", size);
 i = 0;
 while (i < size) {
 printf("square=%d\n", i*i);

 i = i +1;
 }
 }

}

printing squares: if statements

Why do we have conditional (if) statements?

• program can react differently for different input data
• checking for invalid input
• dealing with exceptions, e.g. first and last iteration of a loop

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

37
simple EE problem

• consider an electrical circuit with resistors, which can be placed in

– series

– parallel

– combinations

see: https://courses.lumenlearning.com/physics/chapter/21-1-resistors-in-series-and-parallel/

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

38

e

simple EE problem

• using Ohm's law any combination of resistors can be replaced by a single equivalent resistor

à

e
à

Re = R1 + R2 + R3 + R4

1/Re = 1/R1 + 1/R2 + 1/R3 + /1R4

series:

parallel:

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

39
simple EE problem

• using Ohm's law any combination of resistors can be replaced by a single equivalent resistor

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

40
simple EE problem

• we will write a program that computes the equivalent resistance
• as we add resistors (the arrows are reversed)

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

41

3

programming it

• write a program that
– starts with a wire (resistance = 0)
– then repeatedly asks for a resistor to be added either in series or parallel
– computes the equivalent resistor

1

1 2

1 2

3

1 2

4

requiv = 0
rnew = 6

e

6+12 = 18

e

1/(1/18 + 1/9) = 6

e

6 + 3 = 9

requiv = 6
rnew = 12

requiv = 18
rnew = 9

requiv = 6
rnew = 3

requiv = 9

requiv = 0

e

0 + 6 = 6

0

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

42

3

programming it

• write a program that
– starts with a wire (resistance = 0)
– then repeatedly asks for a resistor to be added either in series or parallel
– computes the equivalent resistor

1

1 2

1 2

3

1 2

4

requiv = 0
rnew = 6

e

6+12 = 18

e

1/(1/18 + 1/9) = 6

e

6 + 3 = 9

requiv = 6
rnew = 12

requiv = 18
rnew = 9

requiv = 6
rnew = 3

requiv = 9

requiv = 0

e

0 + 6 = 6

0

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

43

3

programming it

• write a program that
– starts with a wire (resistance = 0)
– then repeatedly asks for a resistor to be added either in series or parallel
– computes the equivalent resistor

1

1 2

1 2

3

1 2

4

requiv = 0
rnew = 6

e

6+12 = 18

e

1/(1/18 + 1/9) = 6

e

6 + 3 = 9

requiv = 6
rnew = 12

requiv = 18
rnew = 9

requiv = 6
rnew = 3

requiv = 9

requiv = 0

e

0 + 6 = 6

0

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

44

3

programming it

• write a program that
– starts with a wire (resistance = 0)
– then repeatedly asks for a resistor to be added either in series or parallel
– computes the equivalent resistor

1

1 2

1 2

3

1 2

4

requiv = 0
rnew = 6

e

6+12 = 18

e

1/(1/18 + 1/9) = 6

e

6 + 3 = 9

requiv = 6
rnew = 12

requiv = 18
rnew = 9

requiv = 6
rnew = 3

requiv = 9

requiv = 0

e

0 + 6 = 6

0

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

45

#include <stdio.h>

int main (void)

{

 float rnew, requiv = 0.0;

 int cmd = 0;

 while (cmd != 2) {
 printf("Equivalent resistor is %f\n", requiv);

 printf("Series (0), Parallel (1), or Quit (2)? ");

 scanf("%d", &cmd);

 if (cmd == 0 || cmd == 1) {

 printf("Resistance? ");

 scanf("%f", &rnew);

 }

 ... insert your code here ...
 }

 printf("Bye!\n");

}

Ohm's law

floating point (real) number

you can download this, to get started quicker: see
https://kgoossens.estue.nl/docs/studiekeuzecheck/

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

46
Mentimeter

• did you know Ohm's law?
• is the assignment clear?

Mr. Resistance (and voltage and current)

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

47
too easy? compute PI

• use the Leibniz formula
• https://en.wikipedia.org/wiki/Leibniz_formula_for_pi

#include <math.h> // for M_PI=3.1415...
#include <stdio.h>

int main (void) {
 double mypi;
 ...
 // to print the currently computed value of mypi

 // and the difference with the real value M_PI
 printf("%30.28f %+30.27f\n", mypi, mypi-M_PI);
 ...

}

https://en.wikipedia.org/wiki/Leibniz_formula_for_pi
https://en.wikipedia.org/wiki/Leibniz_formula_for_pi

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

48
now let's program!

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

49
Mentimeter

• the problem was ...

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

50

#include <stdio.h>

int main (void)

{

 float rnew, requiv = 0.0;

 int cmd = 0;

 while (cmd != 2) {
 printf("Equivalent resistor is %f\n", requiv);

 printf("Series (0), Parallel (1), or Quit (2)? ");

 scanf("%d", &cmd);

 if (cmd == 0 || cmd == 1) {

 printf("Resistance? ");

 scanf("%f", &rnew);

 }

 if (cmd == 0) requiv = requiv + rnew;
 if (cmd == 1) requiv = 1.0/(1.0/requiv + 1.0/rnew);

 }

 printf("Bye!\n");

}

Ohm's law

• looks good, but this program contains a bug
• what happens when we immediately insert a resistor in parallel?

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

51

#include <stdio.h>

int main (void)

{

 float rnew, requiv = 0.0;

 int cmd = 0;

 while (cmd != 2) {
 printf("Equivalent resistor is %f\n", requiv);

 printf("Series (0), Parallel (1), or Quit (2)? ");

 scanf("%d", &cmd);

 if (cmd == 0 || cmd == 1) {

 printf("Resistance? ");

 scanf("%f", &rnew);

 }

 if (cmd == 0) requiv = requiv + rnew;
 if (cmd == 1) {

 if (requiv == 0.0) requiv = rnew;

 else requiv = 1.0/(1.0/requiv + 1.0/rnew);

 }

 }

 printf("Bye!\n");

}

Ohm's law

• exception: the first resistor always replaces the wire
• (better) alternative: use requiv = (requiv * rnew)/(requiv + rnew)

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

52
Mentimeter

• conclusions

© Kees Goossens
Electronic Systems

studiekeuzecheck
2025-06-18

53
information

• see https://kgoossens.estue.nl/docs/studiekeuzecheck/
• for this presentation and some more information on C programming

• thank you for participating, and I hope to see you in September!

