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Abstract

of the available resources, or in other words allocatingréseurces

in such a way as to maximize the overall profit. In the contdxt
networks on chip the resources are represented by the coitation band-
width and the final profit is the performance of an applicasapported by the
network on chip.

O ne of the challenges of engineering is to make the best possise

In this thesis we focus on networks on chip providing guaredtperformance,
i.e. guaranteeing for each application the delivery of aiested bandwidth.
In these networks, hardware resources are allocated amghedsto each
application for its entire lifetime. We discuss severalsiohs for delivering
the allocated bandwidth, and we propose models which alewoevaluate
the performance of these solutions. Starting from a geneatd-based allo-
cation model we gradually add more architectural restritithat lower the
implementation cost, but at the same time sacrifice somepeaince.

NoCs with allocation based on discrete rates are very comanohinclude
priority-based, TDM, SDM, FDM, and other NoCs. They all javh the
bandwidth available on the network links into discrete sinitn the case of
TDM NoCs these units are called time slots. The problem afuee alloca-
tion in TDM NoCs consists of finding paths through the netwloekween the
nodes that wish to communicate, and selecting along theks paset of free
time slots that is sufficiently large to fulfill the applicai requirements. After
allocation the bandwidth is guaranteed.

In this thesis, we propose, implement and evaluate allmcatigorithms for all
the proposed performance models. Particular effort isadek to allocation
algorithms for the contention-free routing model, a restre, but low-cost
form of TDM where allocation is particularly challenging. uallocation
algorithms deal both with spatial allocation, i.e., theesébn of a specific
path out of the available paths through the network, and ¢eab@llocation,



i.e., along the time axis. The latter is used for optimizirapdwidth usage
and latency which we will both discuss in depth. We propose algorithms
for the allocation of slots in the time domain, both of whicle show to be
optimal.

We also demonstrate how the TDM schedule can be computech dime,
with low computational requirements. We demonstrate aesygterforming
run-time allocation in FPGA and we implement hardware agegion for the
more expensive operations used by the allocation algorithm

We propose a synthesizable NoC implementation based ootiertion-free-
routing model, called dAElite. Our proposal uses existiagigh flows but has
better performance and reduced hardware cost. The netwpgogs some of
the less restrictive models that we have previously intceduthus allowing a
better allocation of resources.

Finally, we present how the communication requests of tiseaif® handled
by the interconnect. We propose optimizations such as watdescing and
latency hiding techniques at the interface between IPs laadNoC and we
demonstrate the performance benefits of the proposed agppioacal appli-
cations.

The main conclusions of this thesis are that, compared tdea rate-based
NoC offering guaranteed bandwidth, introducing fixed diseallocation units
causes a performance loss of 18% while using headers losg¢isear15%,
under the considered, realistic scenarios. Other facsoi) as topology, in-
order delivery, etc. cause only a minor performance lossfillde/Ethereal to
lose 46% compared to an ideal rate-based network, whileAldite network
introduced here loses less than 26% and is at the same timexpensive to
implement.
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Chapter 1

Introduction

For more than five decades, the microelectronics industsysatained an
evolution unmatched in any other field. The underlying pimeegon that has
allowed this evolution is the miniaturization of siliconuilges. This minia-
turization enabled two secondary phenomena: integratichaa increase in
architectural complexity.

Integration meant that individual transistors were graljmegyether into logic
gates, logic gates into circuits with more complex functieventually leading
to the birth of the microprocessor and today the system gm ois a result,
functions that were previously performed by separate mritt components
were merged into single chips. At the same time the total rarrobtransistors
per system has increased many orders of magnitude, allawarg and more
functionality to be added and increasing performance.

While miniaturization decreased the manufacturing costtaasistor, it was
also necessary to decrease the design cost per transishis. isTwhy the
evolution of design tools and methodologies played a ctuola in allowing
system evolution and integration. Although there is nowrangt emphasis
on reusing intellectual property (IP) that has been desigdeployed in other
products and verified in the past, interconnecting thesadjr existing designs
remains today’s challenge.

1.1 Design trends

As the trend of device miniaturization continues the numtifetransistors
per chip doubles every couple of years. The increasing tyecan be used
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in several ways: the size of the chips can be reduced, indiVidrocessing
blocks can become more complex thus providing higher psicgspower,

more functional blocks can be integrated on the same chipduleg the

size of chips, although beneficial from the cost point of yieannot be done
indefinitely because at a certain point the cost of packaging terminals
would become dominant. The direction that is left and id ptibmising is

the integration functions that were traditionally perfearby different devices
into a single device.

Integration has several benefits: the cost of several paskageliminated
and the need for connections that would normally go to theidetof the

chip is removed. Integration improves performance becaossmunication

bandwidth available on chip is significantly higher than dffp. It decreases
power consumption as driving external pins uses much mareggrihan on-

chip communication. Another important benefit is the redytleysical size of
devices which is more appealing to customers.

Traditionally IP blocks were connected using a single busa drierarchy
of buses. The parameters of these components could be ryaohaken
by a skilled engineer and the components themselves couldskentiated
from a library to obtain a working system. However, this agmwh will not
scale to designs having tens to hundreds of cores, becaoggoes cannot
afford increasing the engineering effort per device. Tigrgonstraints become
increasingly difficult to meet and verification becomes diffi to perform.

Analyzing the system from the performance point of view dsgcomes in-
creasingly difficult. While the computation requiremerdsifdividual proces-
sors can be generally analyzed and verified for many reabfiplications, the
communication performance requirements are less stfarglard since the
interactions between different IPs need to be taken intowtc If the system
fails to meet the performance requirements, redesigniagrtierconnect (or
entire SoC) may be a time-consuming and costly operatioris therefore
desirable to have automated tools to dimension and verifyriferconnect.

These tools start with a high level system or applicatiomiregnents and auto-
matically generate an interconnect that the system conmpeaee attached to.
This interconnect may also be verifiable by constructiomftbe correctness
and performance points of view. One such type of autométicgdnerated
interconnects are networks on chip [GDR05, MM04] which wé discuss in
this thesis. They represent a promising solution for theraunnect of future
designs having an increasing number of IPs.

In this thesis we study the algorithms and methods behindnifeeconnect
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design tools. The rest of this chapter is organized as fallo8ection 1.2
presents an overview of traditional and modern intercons@ations. Section
1.3 presents an overview on networks on chip. Section luhfrarizes the
thesis contributions and Section 1.5 presents the steicfithis thesis.

1.2 Overview of chip interconnect solutions

A typical system consists of a collection of master and sIBMalocks. Master
IP blocks, e.g. microprocessors, make requests, like famgke modifying
the contents of a memory location or of a status registedénai peripheral.
Slave IP blocks, e.g. memories, receive, process and cotiferaxecution of
these requests.

In the following paragraphs we present traditional and modeterconnect
solutions. These interconnects are also represented umeFigl.

A trivial solution, theback-to-back connection(Figure 1.1a), can be em-
ployed when a single master IP needs to be connected to & stale IP.
Ideally only wires are required for this connection, bustholds true only as-
suming the two IPs agree on the language used to perform thengaication.
A protocol defines the conventions regarding the commubicdtetween IPs:
the set of physical signals, their allowed values and timing

The requests usually have memory access semantics, i.momeead and
memory write operations. Here the request and its respoilidgeweferred to
as transactions. Several signals are characteristic twt@qml supporting these
transactions. Command signals are used to perform a hawabeaveen the
two IPs. Using these signals, a master IP specifies whendepte a request
and a slave IP responds when it can accept or serve the refdesess signals
(usually part of the command signal group) indicate a spetiéimory location
where the data should be stored or where it has to be read ffém.actual
data may be transfered either from the master to the slaueWhich case we
call the transaction a write transaction or it can be readt faen the slave IP.

A more complex interconnect is needed when multiple mastefoa multiple
slave IPs are present. Various approaches are possiblethgimain tradeoff
being between performance, e.g. latency and throughpdtcest, e.g. chip
area and power.

The shared busapproach [SLKHO02] is one of the least expensive intercon-
nects in terms of area. From a logical point of view it can bensas a mul-
tiplexer of requests coming from the master IPs followed ldemultiplexer
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Figure 1.1: Interconnect solutions.

with outputs connected to the slave IPs (Figure 1.1b). lotjma however, a
“wired and” or a “wired or” was used instead of the multiplesad the signal
was distributed to all the slave IPs which decided indepethgavhether to

respond to the request or not. The slave IP block is seleeteeidon the value
of the address lines. An arbiter controls which master IRlblwas access to
the shared bus at each moment in time. Typical example of Busks are
APB [Lim08] for ARM based system or OPB [Cor01] from IBM.

The disadvantages of this approach are poor performaneegperating fre-
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guency (at least in the “wired and/or” implementation),hfgpwer consump-
tion as switching occurs on longer wires than would be ne¢dégnsmit the
information between source and destination, and the fatttlltiple masters
cannot make requests at the same time. Another disadvaistabat slow
IP blocks can block the shared portion of the interconnectafdong time
preventing other IPs from performing their own operatiomsrdghe bus.

Two possible improvements are thegmented bu$CJIW*99, PSL03] (Figure
1.1c) and thebus hierarchy [WM88, SKL*07] (Figure 1.1d). Both these
approaches attempt to mitigate the performance and powsrdbthe bus
approach. The gain in power efficiency comes from the fadtdigaals are not
required to propagate to all slave IP blocks, but only in #levant segments.
Multiple requests can be served in parallel in the diffessgments and slow
IP blocks no longer slow down the entire system. It is custyni@ isolate
slow IP blocks in slower sections of the hierarchy for exampl

The design of such systems is however less straightforwRebjuests may
be initiated in different segments at the same time and iexiggntly of each
other. When these requests need to be served outside theilsegment
and they furthermore require access to resources that théyafty block, a
deadlock situation may occur. Special hardware may neee totoduced
to avoid or resolve deadlock situations. The topology oflihie hierarchy is
typically constrained to a tree to limit the possibility afch deadlocks. A
typical example for this type of interconnect is IBM Core@ent [Cor99].

The centralcrossbar (Figure 1.1e) is a high-performance interconnect solu-
tion. It also comes at a very high cost, with(mn) hardware complexity,
wherem is the number of masters amdthe number of slaves. However, the
regularity of the circuit and careful floorplanning can maken large designs
feasible [PKP10]. The crossbar does not exploit localitg@hmunication as
all data has to travel to a central location. The cost of wihas connect IPs
that are spread across the surface of the chip to the cemtedidn is also high.
The performance benefit comes from the fact that the numberogsts being
served at the same time is maximized and the latency is vergdoarbitration
needs to be performed only once for a request to travel frorastanto a slave
IP block.

Direct connections(Figure 1.1f), which may be all-to-all connections or only
the required subset, can be regarded as the opposite ofghEtmm the logical
point of view they are similar to the crossbar as they alloansactions to
occur simultaneously as long as they occur between diffenaster and slave
devices. They differ though in that the data does not havextelto a central
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location, but is sent over dedicated wires to its destimatid his solution
requires abundant wiring resources. On the other hand,dtse ahly needs
to travel the physical distance between source and ddstirsd the switching
energy is reduced. A typical implementation of this type mEiconnect is
ML-AHB [Lim01] from ARM. At the logic level, this type of inteconnect can
be seen as the opposite of the shared bus approach: a request fnaster
IP is demultiplexed and sent to the proper slave IP block e&/herarbiter and
multiplexer combine the requests from multiple masters.

Networks on chip [DT01, BDM02, SSM 01, IHCEOQ7, Art05] (Figure 1.19)
borrow concepts from the large-scale communication nédsvéo create a
scalable on-chip interconnect. They typically consist efwork interfaces
which transform the transaction requests and responsedatd packets which
are then transmitted over a network of routers to the dd&imawhere they
are transformed back into transactions understood by thesmonding IP.
The data packets usually travel over links with lower bithli thus reducing
the needed wiring resources. The routers can be connectad arbitrary
topology. This is an advantage compared to bus hierarchigshviypically
support only tree topologies.

Table 1.1 gives an overview of the advantages and disadyesitaf the
interconnect solutions earlier presented. The biggeshgth of networks
on chip is scalability, NoCs can scale essentially to any emof on-chip
connected components. The cost of the solutions has altessty discussed
in the previous paragraphs. Regarding the throughput measudifferentiate
between two usage scenarios. Simple interconnects offeat gerformance
when a single pair of IPs is communicating at any time, theenexpensive
interconnects are able to serve multiple communicatingsfsmultaneously.
What we defined as energy efficiency is the length of wire siibjeto switch-
ing activity to support the communication compared to aalidguation where
data follows the shortest distance between source andhdtsti. Finally, the
number of arbitration levels indicates how many times a estjis subject to
arbitration before reaching the destination. A higher nemf arbitration
levels may indicate a higher latency, but also less compidividual arbiters.

In the next section we will have a look into the charactersstf NoCs.

1.3 Networks on Chip

Some of the first NoC studies [DT01, BDM02, SSB1] pointed out that
traditional interconnects are reaching their limits andiffeint approach
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back-to- shared segmented bus xbar direct NoCs
back bus bus hierarchy connect

scaling 2 10 tens tens 10-100  low tens 10+
wire cost low low low low high very high average
logic/buff cost none very low low low high high average
throughput highest  very low low low highest highest high
single conn throughput high low high high high high high
energy use efficiency good poor average average average good good
arbitration levels none one many many one one many

Table 1.1: Interconnect advantages and disadvantages

is needed to achieve scalability in designs with potentihlindreds of IPs.
Networks on Chip leverage on the experience gathered in4scgle networks
and in particular in high-performance multiprocessor cotars.

The typical characteristics of a NoC interconnect are:

1. Packetization and serialization. A network on chip translates and

encodes into fixed-size words the requests and responsasgcbiom
IPs [SAWG10, RDPO05, HIJK04, BM03, SBB06]. This allows the
network links to use a lower number of physical wires. In fddithis
encoding introduces a level of abstraction in that indiaidhits lose
their meaning during network traversal. This means thatnisgvork

logic does not need to be concerned with the semantics of dkee d

traveling through the network, and at the same time it alldvesetwork
to act as a bridge between IPs using different bus protoctite link
width can also be arbitrarily reduced to conserve resounden the
communication requirements are low.

2. Link sharing mechanisms are typically provided by NoCs. These

allow the multiplexing of several streams of data over thmesghysical

medium. Common schemes are space division multiplexingM5D

[MSAA09, BWMT09, LL11, LMS"05], time division multiplexing
(TDM) [GDRO5, LZT04, WZLY08, ZFK09], either in the conven-
tional slot allocation approach or in an arbitrated (e.gunadsrobin,
priority) link time sharing scheme. Wavelength division Itiplexing
was also proposed in the context of optical NoCs [SBCO7, 88
KC11, CA11].

3. Topology [BC06, BCGF07, LGM™09] in networks on chip is typically
less constrained than in bus-based interconnects. Ircpkanti unlike a
bus hierarchy, a network on chip is not required to be a trpeltgy.
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The NoC topology can be adapted to the chip floorplan and can be
optimized to take into account the communication requirgsibetween
IPs [BJM™05, OMO5, Ben06, CP08, SCK06, SMBDM10].

. Switching model. Networks on chip can be split in two large cate-
gories: circuit-switching and packet-switching netwofkSCO06]. Cir-
cuit switching networks [GDR05, BWNO09, LST00, LWS 02] allocate
relatively long-lived connections between source andimnisbn, and
provide high bandwidth and low latency over these connasti¢tn con-
trast, packet switching networks [SLB07, ACG3, BB04, BCGKO04,
BB04, MMV09, Bje05] use arbitration at each network node &od
each data packet. Under low network load, packet switchetgorks
provide good latency. One concern for packet switching agtsvis the
“saturation point,” where an increase in traffic causes prdjgortionate
increase in latency. In this thesis we focus on circuit-shiitg NoCs,
although some of the performance models we introduce in €hapare
also applicable to packet-switching NoCs.

. Routing is the process that decides the path the data takes between
source and destination. Networks on chip, unlike bus hibias, typ-

ically offer more than one path between source and desimatr his
characteristic can be used to balance load [LZJ06, ACPPDBQS].

A large research effort was focused on finding deadlock-foeging
strategies that are nevertheless able to balance traffieabwdth faults
[DA93, Dua9l, PHKCO06, KS93, CQSD99].

. Flow control is the process of managing the rate of data transmis-
sion in an interconnect, to avoid buffer overflow. Flow cohtmn
NoCs tends to be more elaborate than in bus-based systenR {0/
PABBO05, OM06, ANM05] because NoCs allow pipelining of transac-
tions. Pipelining is necessary to achieve high frequenopefation and
thus high communication bandwidth.

. Distributed operation. A network on chip is composed of modules that
operate autonomously and in parallel. This is important asdids a
single centralized control unit such as a bus arbiter, ttet rmpresent
bottleneck. However, it is not uncommon to have a singlereénircuit
for less frequent functions, like network configuration [6iG.

. Quality of service (QoS)is often defined as the ability of an ar-
chitecture to guarantee performance requirements likelvoiaith and
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latency. Some NoC implementations offer higher prioritpd &hus
higher performance to a subset of applications by defineffj¢rclasses
[BCGKO04, BCV05]. Others offer bandwidth and latency guarantees
through resource reservation [GDR05, MNTJ04a, LSTOQ]. likpfions

or communication channels are in this situation isolatechfeach mak-
ing their performance more easily analyzable.

These characteristics also represent degrees of freeddoCrlesign. Several
of these parameters are explored in Chapter 2 through tip@gabof network
models implementing specific parameter choices. We wilb akturn to

discuss them in later chapters in the context of allocatigordhms target-

ing routing and link sharing or in the context of hardware liempentation.

Table 1.2 presents a map of the chapters that will take irdoudsion these
parameters.

parameter resource allocation hardware implem.
selection offline online NoC IP intf.

Chapter 2 Chapter 3 Chapter4 Chapter5 Chapter 6 Chapter 7
F-1 Serialization v
F-2 Link Sharing \Y
F-3 Topology
F-4 Switching Model
F-5 Routing
F-6 Flow Control
F-7 Distributed op.
F-8 QoS v \Y

< < < <
< <
<

< < < <

Table 1.2: Chapter-parameter relation

1.4 NoC design

Consider the generic design flow, illustrated in Figure WRich is used for
the design of an on-chip interconnect, in particular a netvom-chip.

The design flow starts from a set of application domain (t@at@le) require-
ments, e.g. optimization of average throughput in geneugbgse applica-
tions, worst-case guarantees for embedded real time ola@mey for control
applications. These requirements specify whether QoSagtess need to be
provided [GH10], whether applications need to be isolatedhfeach other
[HGBHO09, HG10, BGK 11] or how resources need to be shared. Based
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application domain
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select NoC
parameters

NoC template Chapter 6,7
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|

Chapter 2
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4 I @ design time
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l
resource
allocation Chapter 5 working platform
@ run time

I
working platform
Figure 1.2: An interconnect generation flow and the comptenehthis flow
addressed in this thesis

on these requirements, the type of NoC or, as presented tinSdc3, the
parameters of the NoC can be chosen. In Chapter 2 we provideaysis of
several network models that may be used in determining sdmine metwork
parameters.

In Chapters 6 and 7 we present our proposed NoC implememtdaticgeted
at embedded systems for real-time multimedia. Our propizssahsed on
parameter choices we found to be desirable for an interabnp@viding
QoS guarantees in the analysis in Chapter 2. We have dedebfibrary
of hardware models, that can be dimensioned and instashtietimg already
existing tools from the Athereal tool-flow [RDB5, HCGO7b].

Even with a fixed hardware instance, there may be additiorgteds of
freedom in the functioning of the network. In the case of ouppsed
network, these degrees of freedom are represented by tetienl of routes
and the link sharing schedules for each of the network cdiurec We call the
computation of these routes and schedussurce allocatiorand we dedicate
a large part of the thesis to algorithms used for this conmjmuta Chapters 3
and 4 will discuss design-time resource allocation whilegar 5 will discuss
allocation at run time.
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In the following section we present the contention-freetimgumodel, which
is the implemented by our proposed network. This model isaaattteristic
our network shares with the Athereal network [HG10].

1.4.1 The contention-free routing model

The contention-free routing model is a model for circuittsiMng networks
that make use of time division multiplexing for sharing tlek$ between
multiple connections. In a circuit-switching network, ¢ptived connections
(or circuits) are established between IPs and while estadddi they reserve
network resources on a path through the network betweerPghthls making
sure that data can flow at a certain rate between source atidadies. To
avoid excessive blocking and possible under-utilizatibis inecessary that
links could be shared between multiple connections (isely a fraction of
the link bandwidth is reserved by one connection insteatiefthole link).

[P [Plg=-O—{F]

\
\.connections

AP — [P

link sharing

Mo
AR
L SN
, e :
’ \ ‘

Figure 1.3: End-to-end connections between IPs are shaetvgprk links.

A convenient mechanism for link sharing is time division tipléxing or
TDM. TDM specifies that connections can take turns in usirigla according
to a strict schedule. When a connection is established, omeooe entries
(or slotg in this schedule are marked as belonging to that connecfidre
number of slots allocated to one connection determinesdhdwidth of that
connection.

The contention-free routing model (as proposed in [GDR®B}vever goes
further than simple TDM slot reservation. It specifies thalen switching

from one link to another on the path from source to destinatdata is not

allowed to wait. That is, when arriving at a router in one tishat, the data
must depart on the next link in the immediately next time-@fgure 1.4). It

follows from this that connections never wait for each ottence the name
“contention-free routing.”
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Figure 1.4: Contention free routing.

This is a very restrictive requirement, but it has significhenefits. Firstly,
the network traversal latency is very low, because data doeseed to wait at
each router, and secondly, the buffer requirements at titerdéevel are also
very low.

The contention-free routing model unfortunately also hrasrgleasant effect.
The relative position of slots on all links that are used by @onnection

becomes “locked” and finding a schedule that avoids colisibetween any
connections at any point in their path becomes a very difffmablem. In this

thesis, we will analyze the impact of this restriction onfpenance and cost
and we will provide algorithms for solving the allocatioroptem.

1.4.2 Thesis contribution

This thesis has several contributions: (1) a performanedysis of network
parameters through the use of several models, (2) allocatgorithms target-
ing (contention-free) routing and (3) an efficient hardwianplementation of
the dAElite network on chip that supports contention-freeting and hence
offers bandwidth and latency guarantees. We detail thesiilootions in the
following paragraphs.

To explore the effects of variousetwork parameterswe have developed a
range ofnetwork modeldo analyze the (guaranteed) performance. These
range from generic models, applicable to any type of intemeat to special-
ized models that match the hardware implementation of aor&tlvased on
contention-free routing. For each of the models we providgsiof measuring
performance which allows us to determine tradeoffs of werimterconnect
choices. We evaluate the impact (on performance) of patit@in, the impact

of link division granularity, the impact of having alignetbts, the impact of
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requiring or not requiring in-order delivery and severaiwak topologies.

We develop and implemeatgorithmsfor the computation of TDM schedules
(resource allocatiop both at design time and at run time. We demonstrate
several of the allocation algorithms to be optimal. For tiame allocation,
we optimize our algorithms for execution on embedded praswith little
memory and low processing power. We accelerate the algorith imple-
menting part of its functionality in hardware and we alsdneate the speed of

a fully hardware-accelerated solution.

We propose a No@ardware implementatioaupporting contention-free rout-
ing which compares favorably in terms of cost and perforraatacthe state
of the art. Our proposal features multicast and multipatiting and has a
low connection set-up time. Our approach also avoids thddreaverhead.
We design the hardware required to interface IPs to the mitamm chip. We
propose improvements at the level of this interface thaticedhe running
time of applications by making better use of the network béadth and hiding
latency.

1.5 Thesis Overview

In the following we detail the organization of this thesidieh is also repre-
sented in Figure 1.5. The thesis is structured around a settaork models,
ranging from ideal interconnects existing only as a mathmaaformulation
to realistic models that allow a physical implementation.

In Chapter 2 we analyze the performance impacts of variotwank pa-

rameter choices. The performance variations are detedhiigecomparing
different network models that differ in these choices. Wa/fite mathematical
formulations based on linear programming for the perforeaanf the first five
models, while for the rest the performance is measured blyiagpallocation

algorithms that will be described in the later chapters.

In Chapter 3 we discuss in depth the algorithms that are uspdrform path
allocation in the more restrictive models introduced in @ba 2. Where
possible we employ optimal algorithms and we demonstradi tptimality.
We also give an overview of the complexity of these algorghm

In Chapter 4 we present algorithms for slot selection whighwsed in con-
junction with the path selection algorithms to guaranteertam latency bound
for each communication channel. We prove these algoritlorisetoptimal
which allows us to use them as a bound in evaluating the padoce of
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Figure 1.5: Thesis Overview.

the algorithms previously proposed in the literature. Ehakjorithms are
applicable only to the single path models. We also look ihtodffects of slot
selection on actual application performance and we prowidee elaborate
definition of latency constraints.
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Whereas most of the algorithms presented so far are only tnh@ée used at
design time, in Chapter 5 we present algorithms for path brigslection that
can be executed at run time. We evaluate the speed of thdthfgorersus
the connection requirements and background traffic, andeptedifferent
tradeoffs between the quality of the allocation, hardwasmurces and speed.
We also evaluate the various overheads involved with keepack of used
resources and the interaction with the design-time aliocdtow. We present
ways to accelerate the allocation in hardware.

In Chapter 6 we propose a network on chip implementatioedalAElite that

supports several of our proposed network models, offersicast services and
has very low configuration time. We implement our proposdiardware and
we show it to perform favorably in terms of hardware area gekd to other
networks reported in the literature.

Chapter 7 focuses on how the raw communication serviceddmo\by the
network can be translated into transaction-level servaféered to the IPs.
We present here optimizations regarding bandwidth use atethdy hiding
techniques and we analyze the overall effect on the exetctitioe of real
applications.

Finally, Chapter 8 concludes the dissertation by summnagiair contributions
and presents future possible directions of research.






Chapter 2

Theoretical bounds on allocatable
capacity

work characteristics (Section 1.3) that affect implemgatacost and

guaranteed performance. Starting with a most general mietwee
specialize the NoC until we arrive at the contention-freatirgg model which
can be implemented in hardware at a low cost. At the same tiendesign a
range of resource allocation methods adapted to each rieswequirements.

To arrive at a NoC template, we analyze in this chapter sevasfl n

For this task we propose a range of interconnect modelsrirdfalifferent
levels of abstraction. These models address the netwonaaieaistics and
degrees of freedom discussed in Section 1.3. We evaludézatif topology
choices, different routing strategies, different grarities of link bandwidth
division and a generic switching model versus the contarftiee routing
mechanism.

The models representing interconnects with differentigectural restrictions
require different algorithms for network resource allamat For the more
general models we use linear-programming-based algasitionperform the
allocation. These algorithms are able to guarantee an apsiatution globally
for the entire set of communication channels. Linear pnogning is however
too expensive to perform for the more detailed models. Iniqdar, under
the contention-free routing model, the problem of findingi@glly optimal
allocation was shown to be NP-complete [SB@8]. For these cases we
use algorithms that optimize the allocation of each indigidchannel but
are not able to guarantee a global optimal solution (actossehtire set of
channels). We evaluate the performance of these algoritlync®@mparing to

17
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the performance of the more general models.

The list of models is found in Figure 2.1. At the top of the figwtands the
most generic model (Model 1), as close as possible to an ideatonnect.
Each model successively introduces architectural réistnie or uses a less ef-
ficient, but also less computationally intensive, allomatilgorithm compared
to the models above it.

ALLOCATION MODELS ARCHITECTURE
ALGORITHMS CHARACTERISTICS
o | Linear Programming -
- L-1 . [=2
L ereererrerrereeeereeseesessessesenesserserseseesfy \ m——m——mm—— e A-1 ideal topology | ©
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g ILPNI ) W (3)LP ]
£ Integer Linear Programming . -
2 L2 N\ SN A-2 continuous bw division
ol gy discrete bw division |
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5] L heuristics, L-6 <]
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L. L _____M__ L__— = ;
A-7 Wwith and without header overhead }— 3

Figure 2.1: Network models, with their corresponding aesttural character-
istics and allocation algorithms.

The earlier models are generic, i.e. the interconnect cheriatics/design
choices have not yet been fixed, and they provide bounds équetformance
of any type of interconnect. Later models represent pdaiiddoC templates
that can be physically instantiated in hardware (Figurg. 212 Chapter 6 we
will provide a hardware implementation of a NoC (dAElite)hiash supports
all models starting with Models 8 without a header overh@dmk same models
could in theory be supported by the distributed routingieersf Athereal but
at a much higher cost. aelite which is closer to our propaagiports Models
10 and 12 with header overhead. Model 12 is useful in the gbifeonline
allocation which is discussed in Chapter 5.

A distinction must be made in what the performance of thesdatsorep-
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MODELS Network Performance

bound for any rate-based intercon-

bound for any rate-based intercon-
iLPni(2) p— : .
nect with a given topology

bound for networks with fixed
1/n rate-based arbitration includ-
ing frame-based arbitration, TDM
[WZLY08], SDM [WSRSO05]

bound to guaranteed
performance

actual guaranteed
performance

dAElite (Chapter 6)
/thereal [GDRO5]

Figure 2.2: Network implementations corresponding to tifferént models.

resents. Models 8 and 12 represent the performanceidhaitained (and
guaranteed) by dAElite and Athereal respectively. Modedsrépresent a
bound on the performance theduld be achieved by the specified networks,
assuming no other technical restrictions exist, e.g. ngutiestrictions or
limited buffering at the intermediate nodes. Furthermdéwoe hetworks using
frame-based arbitration the performance guarantee musebandwidth that
is delivered in each and every frame whereas in a generibested arbitration
scheme the performance that can be guaranteed only conterra/erage
delivered bandwidth.

The rest of this chapter is organized as follows. In Sectidnv2e discuss
the assumptions we make regarding the interconnect thatoanenon to all
models. Section 2.2 then details the restrictions each hmdzessively
introduces. In Section 2.3 we describe the allocation nusttemnployed. The
allocation methods based on linear programming are destlibre as they are
the result of directly applying a linear programming optation tool to the
formal description of the problem. For the other methods wnlg give a brief
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overview as we will provide a detailed description in thddaing chapter.
Section 2.4 presents a performance comparison of the vanmdels. Note
that some of the models are purely theoretical and their paolpose is to
provide a theoretical bound to the achievable performaegardless of the
network characteristics. Section 2.5 presents relatedk wond Section 2.6
states our conclusions.

2.1 General assumptions

Some of the assumptions we make are common to all models! duraéx-

periments IPs are assumed to communicate over connectimigghconstant
bandwidth. Bursty traffic can be dealt with by using buffaydevel out the
load, overallocating bandwidth or by setting up and teadagn connections
to correspond with the bursts. In the latter case we onlyidenghe time
interval between any set-up or tear-down operations ligetine interval when
the networks is in a stable state.

Each of the models is evaluated as follows:

The network has to support a set of bidirectional connestieach of which
has a required bandwidth. We emphasize the fact that thestegibandwidth
representguaranteed bandwidtthat the network should be able to deliver.
Each connection consists of two unidirectional channelgquest channel
and a response channel. Latency requirements are not taleeadcount in
this chapter as most models do not support them. Latencynisidered in
Chapter 4.

The NoC consists of network interfaces (NIs), routers antivoek links
(Figure 2.3). IPs are tightly connected to a network infand we assume
there is no restriction in the speed of communication betmtbe two. Each
network interface has a single link to a router. Betweenawuinultiple links
exist, as defined by the network topology.

network

[}
[}
[}
[}
1
[}
1
|
:
: topology

Figure 2.3: Network on chip.
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The general assumptions, which are unchanged througheuh#sis, are as
follows:

GA-1 The network consists of point-to-point unidirectibm@mmunication
links; bidirectional or full-duplex links are modeled asavgeparate
unidirectional links.

GA-2 We assume all links to have equal capacity; the moddlsisiag slots
(Models 1-4 and 6) are trivial to extend to handle differbatdwidth
links if desired.

GA-3 The network does not drop or re-transmit data, for a oekvthat uses
dropping or retransmission we only model the useful througtand
ignore the dropped packets; this provides a conservatiferpgance
bound (a network using dropping cannot perform better thannet-
work without dropping which uses the same model).

GA-4 Our allocation algorithms assume |IPs that are alreadyp®ed to net-
work nodes; in our experiments we will use two mappings: asdn-
tially arbitrary) mapping with the first IP mapped to the fiMdt, the
second IP to the second NI and so on, and the mapping prodyadbe b
UMARS algorithm [HGRO7].

GA-5 It is allowed to have multiple IPs mapped to the same NY & is
allowed to have multiple NIs connected to the same routdh twese
features are used in some of our experiments.

To compare the quality of our allocation algorithms agaihetstate of the art
[Han09] we use the same conventions for bandwidth computalink width
and header overhead. Our tools also use the same input foXidatfiles) as
the Athereal toolchain [HG10] leading to potential syresdietween the two
flows.

2.2 Architectural restrictions

An ideal interconnect provides infinite bandwidth and ha® zatency. The
laws of physics obviously prevent us from achieving that anddo cost
concerns. There are many choices in the interconnect destjbalance cost
against performance. We start with an idealized networkehatlich ignores
cost, though it still abides by the laws of physics. We theadgally introduce
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models with more restrictions, lowering cost at the expesfsperformance
and we evaluate the impact of each of these restrictions.

The most general model starts with the following assumptighich will then
be invalidated by the more restrictive models:

A-1

A-2

A-3

A-4

A-5

A-6

The network topology is ideal. Models 1 and 2 assume thatemtion
only happens on the Nl-router links and not on the routeterolinks
inside the network.

The data arrives and departs from a router in (arbitriafyfitely divisible

quantities (from a continuous range as opposed to a disseetd values).
The link bandwidth can also be divided between the connestibat use
it in arbitrary (continuous domain) proportions; startwith Models 2
and 4 the link bandwidth can only be divided into discrete ants.

No assumptions are made regarding the switching mestmanihe
bounds provided by this model can be applied to any type eféon-
nect, including bus hierarchies; the contention-freeingutodel will be
introduced starting with Models 5 and 7.

In-order arrival of messages at the destination is nébread; we will
take into account the order of arrival at the destination adeis starting
with Model 8.

Routing of a single communication channel over multipkghs is al-
lowed, our only concern is that all data must eventually heigs desti-
nation; a restriction consisting of routing each channelr@vsingle path
will be introduced starting with Models 10 and 12.

Non-minimal routing with respect to distance is allowdthe models we
use optimize the path length either globally or per connegthowever
the successful allocation criterion takes precedencesteaaton on path
length will be introduced in Models 11 and 12.

No network header overhead is considered. Header oaériseoptional
starting with Model 8.

We present these assumptions in more detail in the follow@agions.
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2.2.1 Ideal versus real topologies

A major factor impacting the cost of a network implementati®the network
topology, as it directly affects the length and number ofewjrthe number
of routers and the router degree. We wish to determine whdtlieenetwork
topologies used in practice incur a loss in terms of netwertgomance when
compared to an ideal topology.

For the ideal topology we use a model that only restricts tedividth of
the links that connect the Nlis to the core of the network (vwseiae all-to-all
connections without a limit on bandwidth inside the networkhis model is
represented in Figure 2.4.

IP
[N =

x
P || bandwidth | )
limit ,  ho bandwidth
)
|

+

limit

Figure 2.4: Ideal, all-to-all topology, a bandwidth limitlg considered for the
links between NIs and Routers.

With an ideal topology assumption, the overall performamicéhe network is
limited by the IP or group of IPs having the largest inboundwtbound traffic.
In our tests we found that in many cases the NI to router litiksaturate first
which means that the evaluated topology behaves like tta idpology.

In practice the all-to-all topology is not used because £high wiring cost.
Topologies commonly used instead are the mesh and conthtreesh, ring,
torus, spidergon, and fat tree.

The mesh (Figure 2.5a) topology has the advantage of mapgirygwell on
the 2D surface of the chip, especially in the case of homamenenulti-cores
which are composed of fixed size IPs replicated in a matrixcttre. For each
topology it is possible to connect multiple NlIs to each ro(kgure 2.5b vs.
Figure 2.5a). Using multiple NlIs per router decreases the @l the topology
and the hop count, but increases the pressure on the routartér links.

Other commonly used topologies include: ring (Figure 2.6ajus (Figure
2.6b), spidergon [MSVOO07] (Figure 2.6c), fat tree [Lei83;@] (Fig 2.6d).
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Figure 2.5: Mesh with one NI and multiple Nls per router.

For all topologies, each of the links is assumed to be bitdoral (thus
modeled as two separate links in opposing directions) aadccépacities of
all links are assumed to be equal.

2.2.2 Continuous versus discrete bandwidth division

As mentioned previously, in a NoC links are typically sharbtultiple com-
munication channels are allowed to make use of each link,aame&chanism
has to be provided to divide the link bandwidth between ckinn

In the more general models we assumed this division can Berperd into
arbitrarily fine-grained quantities (which can be représéry real numbers).
In practice, this division can only be performed into diserenits dictated by
the link sharing mechanism employed. In Models 2 and 4-12 Nogvdhe
link bandwidth to be split inta: units, each of them equal t'n of the total
bandwidth (for simplicity, when constructing the performa models we will
assume the unit of allocation to beand the total link bandwidth to be). The
value ofn is constant throughout the network. Note that often, butheays,
n may be made very large at low cost, so that these models dpmtexmodels
1 and 3 closely.

The use of a fixed allocation unit may be for example due to hysipal link
division mechanism employed, as it is the case for spadsiaivmultiplexing
(SDM), or a limitation of the arbitration scheme, as it is tase with frame-
based arbiters. Even when the arbitration scheme does mateintly suffer
from this limitation, its practical implementation may. rFexample, in the
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Figure 2.6: a) Ring, b) Torus, c) Spidergon, d) Fat tree ogiels.
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general case of rate-based arbiters, the credit countedshysthe arbiter are
still expressed as a binary number with finite precisionsthodel is valid for
networks where allocation is constrained to fixed unit$ of bandwidth.

Inan SDM scheme, am-bit wide link can be divided inta k-bit independent
lanes, wherenk = m. This imposes a restriction on the maximum value of
n, sincen has to be a divisor of:. The cost of routers is also affected by the
choice ofn as we will see shortly.

In a network using frame-based arbiters, connections éoeatd a certain
(integer) number of slots in a frame of size A particular form of frame-
based arbitration is time-division multiplexing (TDM) wieeconnections are
assigned fixed slots inside the frame. The frame is called & Tiheel to
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emphasize the periodic nature of the schedule.

The size of the TDM wheel or frame has an effect on how long aection
may have to wait for its turn as well as how much buffering Wl needed.
The higher the: the longer the waiting period and the larger the buffers. On
the other hand, a low will result in a coarser division when allocating the link
bandwidth to different connections.

A coarser division, i.e. smaller, may cause a channel to receive more than its
required bandwidth because the allocation is rounded upetméxt available
value (Figure 2.7). A finer division has lower overhead bghker latency and
buffering cost.

< E— —
k] || ||
2
S ] — —
c
S _—
3| B8%B.q- [ | O =
£l i =
2| §8 L N i
= 24
23, L o o =
bandwidth bandwidth béndwidth
divided over divided over divided over
4 slots 6 slots 12 slots

Figure 2.7: Requested bandwidth being allocated over Bolgporting differ-
ent link division granularities.

Models starting with Model 4 and below, which enforce a dartiak division
granularity, are reasonably easy to implement in a clasSEa or TDM
scheme. These particular implementations also guardmethe performance
bound offered by the model can be achieved, although théfactonnections
can be routed over multiple paths of different lengths méapduce additional
complications regarding the reassembly of data at therdetn.

A router used in an SDM scheme is depicted in Figure 2.8. Eattednput
and output links of the router is split inte SDM lanes. A router allowing
maximum flexibility would allow routing any of the input lagé¢o any of the
output lanes. The hardware complexity of the route? {ap?) wherep is the
number of ports and a port is considered ta:blanes wide.

A TDM router (Figure 2.9) that offers the same routing flekipias the SDM
router, would have to provide buffering space #fof DM slots for each input,
for example in a circular buffer. Data from each of the inpufférs may
have to be forwarded to multiple output ports during one e&yttius a multi-
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Figure 2.8: Space Division Multiplexing in one router.

port memory is required. The complexity of the hardwarepigrg physical
floorplanning issues is agai(np?).

North output ~ South output

Vi \ L \

| I

West input

Figure 2.9: Time Division Multiplexing in one router.

2.2.3 A generic link-sharing mechanism versus contentiofree
routing

In the previous section we pointed out that providing maximfiexibility in
link bandwidth allocation in a TDM scheme withslots requires an expensive
crossbar and buffering space for the data transmitted in slets.

It is possible to reduce the required buffer capacity andstrar size by
sacrificing some of the flexibility in choosing the slots alited to a connection
on the incoming and outgoing links. Under the contenti@a® frouting model,
the routers employ a buffer for a single data flit (the size @aM slot) for

each link (Figure 2.10). This implies that data needs to bedaded by each
router in the next slot immediately after its arrival to madgace for the next
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incoming packet. The hardware complexity of the router i& 1@(p?) and
does not depend on the length of the TDM period, or in othedg/tite number
of lanes the link is partitioned into.

North
input North output  South output
West input im i i
1 1

1
LI

South
input

Figure 2.10: Router in a TDM scheme using the contentioa-foeiting model.

Having the data dispatched immediately in the next slotss aleneficial in
terms of reducing the worst-case network traversal latefidyis very strict
limitation however makes the allocation process more diffibecause the
position of the allocated slots is “locked” on all links on atlp belonging
to a communication channel.

All models starting with Model 7 use the contention-freethogi model.

2.2.4 Multiple paths versus a single path

Networks on chip typically provide path diversity, i.e. riple possible paths
for data to reach its destination. The method of choosingétle in a network
is called routing.

Depending on the network implementation, for a single seulestination

pair, data may be allowed to travel over a single path or oudtiphe paths.

Conventionally, the first type of routing is called deterisiic and the second
is called non-deterministic. In [SG09] we describe newddgbs a multi-path
routing method which cannot be classified as non-detertigniis the true

sense of the word (the route selection is performed in a nh@téstic manner
according to a TDM schedule). We prefer to use therefore inteninology

the notion of multi-path instead of non-deterministic.

All models except Model 10 and Model 12 impose no restricti@am the
number of paths used by each communication channel. Clanrel even
be arbitrarily split over multiple paths, can recombined &an take arbitrary
detours (Figure 2.11).
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Figure 2.11: Communication channel split over multiplehgat

2.2.5 In-order versus out-of-order delivery

One concern when routing over multiple paths is that paakeght arrive in
another order than they were sent. As the data usually neduks processed
in its original sequence, expensive reordering bufferginede employed to
reorder incoming packets.

In a generic network out-of-order deliveries can be death Wy using buffers
at the destination to hold the packets that arrived too aamtil the packets
that should have arrived before them but did not are alsaveteln addition

to the cost of the buffers this scheme has a bandwidth ovéyieause the
packets need to carry ordering information.

In contrast, under the contention-free routing model, #tevork traversal time
is known from the allocation phase, and it is possible to kiovadvance

whether packets belonging to the same connection will akereach other
when using different paths. Because the delay per hop is, fpattis with the
same length will always deliver the packets in order, anchdge paths with

slightly different lengths out-of-order delivery can beoied by not letting

packets be sent on a longer path immediately before sentlireg packets on
a shorter path (Figure 2.12). This introduces neverthetese restrictions on
the allocation process and may result in a loss in perforeanc

Algorithms that insure in-order delivery are discussed arerdetail in Chapter
3.
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Figure 2.12: Enforcing in-order delivery in the contentfoee routing model.

2.2.6 Minimal versus non-minimal routing

While architecturally some NoCs support routing over patimger than the
shortest distance between source and destination, it malgendesirable to
allow such a routing for reasons of latency or power effigjenc

Allowing non-minimal routing also enlarges the solutiorase but makes the
allocation process more computationally expensive, éalbheevhen exhaus-
tive search is used. For design-time allocation we geneastbume that non-
minimal routing is allowed, but the online allocation algiom that we will
discuss in Chapter 5 only performs a search of minimal roirtesrder to
minimize the allocation time.

2.2.7 Header overhead

Data traveling through a network often has to carry addiiamformation like
route to destination or internal link or network status vhioes not represent
useful bandwidth. Such data is typically placed ahead ofudeful payload
and bears the name of header.

While this calculation is specific to Athereal, a certaindeeaverhead can be
expected in other network implementations as well. In Céraptwe present a
network implementation that avoids the header overhead.

Models 8-12 can either take headers into account or ign@d¢ader over-
head. When the header overhead is considered, we use thecéttheader
size model [Han09]. In Athereal, a network packet occupeésden one and
spkt Slots, each slot havinggi words. Using the default values efx = 3
andssir = 3 and given that the network header size is one word, the eftigie
(useful data versus the total size of the packets) is bet&&&% in the worst
case (one-slot packets, 1 header word and 2 payload word€&8% in the
best case (with a packet size of three slots, the packetsterdil header word
and 8 payload words).
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Models 8 to 12 can either include or ignore the header overhea

2.3 Allocation methods

Networks on chip offer freedom regarding the path data usesatel to
destination. This freedom can be used to balance the neteadkin such a
way that the link capacity is not exceeded for any of the linkse contention-
free routing model imposes additional restrictions remmydhe arrival and
departure times of packets at each hop which also need t&dritzto account
when computing the routing.

The allocation step assigns paths to each communicatiomehand under
some models allocates specific TDM slots. It has an impontalet in the

overall network performance. This section describes tloeation algorithms
we have used for the different models.

L-1 For the general models, not taking into account all nektwmplementa-
tion details, we usdinear programming(LP) which globally computes
an optimal solution across all communication channelshis ¢ase, the
solution to the problem results directly from using a staddgptimization
tool on the problem formulation. LP problems can be solvédiehtly in
polynomial time. We will discuss the LP-formulation for Meld 1 and 2
in Section 2.3.1.

L-2 When the link bandwidth has to be allocated in discretangjties (the
invalidation of assumption A-2) the LP method has to be mgaaby
aninteger linear programminglLP) method. The problem formulation
given in Section 2.3.1 still applies, but the variables aredd to integer
values.

L-3 In Section 2.3.3 we show how ILP optimization can be useddampute
globally optimal slot allocation in a model using contentiibee routing
(Model 5). This is however extremely expensive and we coulg apply
it to very small topologies. Unlike LP, ILP problems cannetdmlved in
polynomial time (the general ILP problem is known to be Niaptete).

For detailed models where using ILP optimization is not ifdas we choose
a less computationally-intensive approach. This appreaakists of finding a
route and schedule for one channel at the time, and markéngstdd resources
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so that they are not used by the other channels. We call thitatative
approach.

This approach is not guaranteed to be globally optimal, itkieshe fact that
some of our algorithms produce individual one-channelcalions that are
optimal. The resulting performance is sensitive to the om&vhich the indi-
vidual channels are allocated. We have found that allogdtigher bandwidth
channels first provides better performance, and thereferdnave used this
strategy in our experiments. The same iterative approachusad by the
UMARS algorithm [HGRO07] as well as tools used in the routirfgpbysical
wires [HSO01].

For the models supporting multi-path routing the allogatidindividual chan-
nels is performed using minimum-cost maximum-flow algarnighor iterative
exhaustive search. For the single-path routing we use skkiawsearch per
communication channel.

L-4 An iterative method where théndividual channels are allocated by the
flow algorithmis used for the Model 6. lterative search using the flow
algorithm is discussed in Section 2.3.2.

L-5 The flow method can be extended to take into account theakgmment
of the contention free routing model, in the same way the bikth-3
extends L-2. The same formulation from section 2.3.3 apgliere. The
algorithm thus modified is applied to Model 7.

L-6 The flow method is also used for producing multi-path sohs when
in-order delivery is required. In order to cope with in-ardielivery and
optimize header overhead, additional heuristics, desdrib Chapter 3,
are used. We also fall-back to single-path allocation iféduces a better
result than the flow algorithm. This allocation method iscuse Models
9and 11.

L-7 An iterative method where théndividual channels are allocated using
single-path exhaustive searchused for the models which support only
single-path routing (Models 10 and 12).

L-8 In Section 2.3.5, we present an alternative method fodpcing multi-
path solutions by applying the single-path search sevienaktfor a single
channel. Model 8 uses this method in addition to the stansiagle-path
and flow methods.

In the following we discuss each allocation method in moraitie
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2.3.1 Linear Programming

This section covers the allocation Methods L-1 and L-2.
Network communication formulated as a multi-commaodity flow problem

The multi-commaodity flow problem [Hu63, Sai68] is an optiipn problem

dealing with the transport of goods, commoditiesinside a network. Com-
modities can represent material goods or abstract, quabiéfentities like data
flowing through a communication network. The network is esged in the
form of a multigraph (typically a graph) having a capacitiaehed to each of
its edges. Each of the commodities has a source, a sink anchande The

capacity of each edge is divided between the commaoditieg) tiis link. This

formulation applies very well to the case of a network camgyinformation.

We use a variation of this problem calldte maximum concurrent flow prob-
lem[SM90]. Under this formulation, the optimization targetigactorr that
all demands should be scaled by in order to make the delivesgilple for all
commodities. That is, the requirements are scaled whilpikgeheir relative
ratios constant, to the level where we can provide the maxindelivery.
Equivalently we can keep the requirements constant, wbdkrg) the capacity
available on all links. This can be seen as an attempt tordeterwhat is the
minimum frequency the network needs to run at in order to kaneously
satisfy the bandwidth requirements of a set of applications

The multi-commaodity flow formulation makes use of a constovalaw simi-
lar to Kirchhoff’s current law, which states that, at eaclki@oexcept the sinks
and the sources, the commodity coming in must be equal torteeoing out
over time. In terms of networks, this is equivalent with thlesumption that
packets are not dropped.

We present a mathematical formulation of the transport ¢d darough the
network. This formulation represents the multi-commodlibyv problem as a
linear programming problem which is solved using an offshelf LP solver
tool, glpsol [Fou]. The LP method produces a solution forrthéing problem
for Models 3-4. All models using LP allocation assume mpéth routing
where out-of-order delivery is allowed (see Figure 2.1).

LP formulation of the multicommodity flow problem
Consider the following sets used in our formulation:

e V/ the set of network nodes (NIs and Routers)

e [ the set of network links
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e J the set of communication channels
e R the set of routerf C V

e P. C F the set of links arriving at router
P, = {p, € E|p, arrives at router}

e (), C F the set of links departing from router
Q. = {q- € E|q, departs from router}

Each network communication channel has a source netwoekface pro-
ducing data, a destination network interface consuming,datd may use
bandwidth on any of the network links. Technically speakitfye data is
produced and consumed by IPs that are mapped to the NlIs, baongider
that the connection between IPs and NI never representstlarteuk. We
denote byy; the bandwidth of data being inserted into the network by the
source of channej € J (which is also equal to the data consumed by the
destination). They; values are normalized to the bandwidth provided by 1
slot. The link bandwidth is the product of the link operatiingquency and
link width, divided by the number of slots. We always assunlialawidth of
one word and the number of slots is only important for the IL&thnd.

We denote by:.; with e € E,j € J the bandwidth used on each lirkby
each communication channglagain normalized to the slot bandwidth. The
paths used by each communication chanren be extracted from the values

Zej+
The following equations and inequalities constrain thethmh. They are both
necessary and sufficient to guarantee the assumptions cflMbelt.

Negative bandwidth values are not allowed (Equation 2.@jn&formulations
use the sign to represent the direction of movement thromghdge but we
do not use this approach. As discussed in Section 2.1 wedgrigiks to be
unidirectional.

The bandwidth used by each communication channel on edckslaways a
positive amount. The transport in the opposite directionthebe represented
over the return link rather than a negative value.

26 >0 ,Vee B, VjeJ (2.1)

The total bandwidth used on one link by all communicationnecieds taken
together must be at most equal to the link bandwidth (Eqo&i@). s is the
number of slots.
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Zzej <s ,Ve€E, (2.2)
j€J
Models 1 and 2 omit the constraint 2.2 for edges not having bashbne of
their endpoints.

The total amount of data belonging to a communication chaam&ing at
one router must also depart from the same router, eitheughroouter-to-
router links or through the links to the source and destmahlls (Equation
2.3).

Y zej=> zj VreRNjelJ (2.3)

e€EP, e€Qr

if e is a link originating at an NI then

. when the NI is the source ef
=4 W _ (2.4)
0 otherwise
if e is a link arriving at the NI then
. when the Nl is the destination ef
vy =1 _ (2.5)
0 otherwise

Equations 2.4 and 2.5 ensure that all data originates frarptbper source
and is delivered to the proper destination.

An allocation consists of finding all.; values or, in other words, the band-
width used by each communication channel on each of the mietings.

The number of equations increases with the product of thebeuwf channels
and the number of links, more precisely it|i§|(2|E| + |V]). In practice
the flow problem for an 8x8 mesh network with 200 communicatibannels
could be solved in reasonable time (in the order of minutes) off-the-shelf
LP software glpsol.

When the result is constrained to use only integer numbesi@is 2 and 4)
the problem becomes an ILP problem which is much more difficukolve
than its LP counterpart (ILP problems with bounded varialdee known to
be NP-hard). For our largest tests (8X8 mesh and torus, ariceawith 64
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nodes), the running times of the glpsol tool (which is alste dab solve ILP
problems) were in the order of hours and even days.

In Appendix A, we present example code that describes th&-sarmmodity
flow problem in the GNU MathProg modeling language.

2.3.2 lterative, single-channel allocation using the flowlgorithm

This section describes Method L-4.

Global optimization methods are generally too expensivéHe computation
of a channel allocation when we need to take into accounhealtietails of the
more complex models, i.e. Models 6-12. A more practical aggin consists in
allocating channels one by one, each channel allocatiorkinlg its network
resources from being used by subsequent allocations @RyuB).

START

1 channel exists
that is not yet
allocated?

FINISH

select channel with highest
bandwidth requirement

¥

allocate
channel

allocation
successful?

reserve
resources

%

Figure 2.13: Iterative channel allocation flowchart.

Individual channels may be allocated with the flow algorithas we will
explain in this section, or with other path-finding methaoals we will present
in Section 2.3.4 and Section 2.3.5.
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The iterative method starts with an empty network, in whitiHiaks have

their full capacity (Figure 2.14a, for simplicity only liskin one direction are
represented). As channels are allocated one-by-one @&y b, c, d), part
of the available link capacity is consumed. Each new chaalh@tation can
only make use of the link capacity that was not yet consumeithdyprevious
iterations. For example, the 4th channel allocation canemede only of the
link capacities in Figure 2.14e.

A B Cc A B c B
° 105. 10;. .0.3;.0.3;. ®
10l 1.0 10l OBl Ogl
.—>.—>0 ([ ] [ ]
D 10 F F E
a) |n|t|a| state b) allocation 1 c) allocation 2

B o1_C A 7 B C

o——>0 o—>0——>0

o———>0 . . .

E 017F
d) allocation 3 )remalmng capacity after
3 allocations

Figure 2.14: Steps in the iterative flow allocation algarith

We formalize the method as follows: L&t E, J, R, P,, (), have the same
meaning as in section 2.3.1. Let, be the remaining capacity on linke E
after then-th allocation,c.y = s.

The flow problem can be seen as a restriction of the multi-codity problem
in the particular case when the number of commodities edual¥e can use
the same formulation of the flow, except that Equation 2.2@aced by 2.6
(we assume channejsc J are numbered..n and allocated in that order).

Zej < Cej (2.6)

We computec, ;1) = cej — 2. The allocation of channel consists of
finding thez.; valuesVe € E. Although it is possible to use the LP solver this
“single-commaodity” flow allocation, it is more efficient tonfil a solution using
flow algorithms [EK72]. Flow algorithms can perform real noen as well as
integer optimization in polynomial time.

Whereas in the global allocation method the distance @itevas unimportant



38 CHAPTER 2. THEORETICAL BOUNDS ON ALLOCATABLE CAPACITY

in deciding the success or failure of the allocation, in theative method it is
important to select shorter paths, because in this way nem@urces are left
available for the following allocations.

The algorithm we employ is the minimum-cost maximum flow aildpon
[EK72], which is optimal in terms of both provided bandwidthd path length.
The algorithm is described in more detail in Section 3.2.

The flow algorithm by its nature produces multi-path allama.

2.3.3 Allocation using graph splitting in the ILP and flow methods

This section describes Methods L-3 and L-5 as extensiortsedffethods L-2
and L-4.

As mentioned in section 2.2.3, the contention-free routimgdel imposes
aditional restrictions with regard to the alignment (in ¢irof the incoming
and outgoing slots. More precisely, a packet arriving at mger has to be
forwarded to its output in the immediately next time slot. isTks a highly

limiting restriction since it locks down the timing of allab used by one
communication channel on the path between source and aéstin On

the positive side, contention-free routing is very inexgea to implement in
hardware [GH10].

We attempt to determine the penalty this restriction intices by comparing
the performance models that have the restriction with nsotleht do not.
Because performance is affected by the allocation algarigmployed, we
make use of equally powerful algorithms in the comparisornd® 4 can be
compared to Model 5 since both guarantee globally optini@tations. Model
6 can be compared to Model 7 as both make use of iterative ehalocation

using the flow algorithm.

To model contention-free routing link sharing constraing use a graph
splitting approach. The network is represented by a gragimgd.this approach
each network node is represented byodes in the graph (isplit into s
nodes), whera is the number of slots in the TDM table. Each network link is
represented by edges in the graph (Figure 2.15). Each graph node represents
the possibility of reaching its associated network node aerain time slot

and each graph edge represents one time slot on a networlQiisiph edges

are connected between nodes in taking into account the Hap ofeone time

slot.

We model the problem of allocating all communication chasrfer the
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Figure 2.15: Network nodes (a) and graph nodes after split (b

contention-free routing model using the following set ofiatipns. These
equations are similar to the ones used in Section 2.3.1 efeeghe intro-
duction of third dimensiort € 1..s to the array: representing the allocation.

The bandwidth used by each communication channel on eatit) (g is
either 0 or 1, 1 representing the bandwidth of 1 slot (Equa2id’.)

Zejk € {0,1} ,Ve € E,Vj € J,Vk € {1..5} (2.7)

The sum of bandwidths used by all channels on the same slotitk & as
well 1 (Equation 2.8.)

D zejr <1 Ve € B,Vk € {1..s} (2.8)
jeJ

At each router the amount of data (belonging to a particutanection) that
is incoming during one slot will leave in the consecutive $lequation 2.9.)

Z Zejk = Z Zej((k+1) mod s) Vkel.s, VjeJ (29)
ecP: e€Qr

At the links connecting the Nis to the routers, a communizathannel can
make use of any of the available slots (Equations 2.10 arid.2.1

if e is a link originating at an NI then

Z - { y; when the Nl is the source ef (2.10)

he(l s) 0 otherwise
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if e is a link arriving at the NI then

y; when the Nl is the destination ef
D k=

h ] (2.11)
he(los) 0 otherwise

Performing an allocation consists of finding all;, values. These values
indicated exactly which slots on which links should be alled to each of

the communication channels. The solution generated innthisthough may

use multiple paths and may result in out-of-order deliverie

The set of equations and inequalities can be solved diregtign ILP solver
(Model 5), but because the number of equations is very lange,|LP prob-
lems in general cannot be solved in polynomial time, we atg able to run
such tests for very small topologies (2x2 or 3x3 meshes withs and a small
number of connections).

A more feasible approach consists in using the iterativeamh described
previously. In the iterative approach we need to defing, the remaining
capacity on slok of edgee after allocating channgl. By extension the initial
capacity isc.or = 1.

Equation 2.8 is replaced by Equation 2.12:

> zeji < ceji Ve € E,VE € {1..s} (2.12)
jeJ

And c(j41)x IS computed as, (1), = Cejk — Zejk-
Channel allocations are performed one-by-one, accorditiget flow-chart in

Figure 2.13. One allocation consists of computing the setibfesz ., Ve €
E Vk € {1..s} for a fixedj which is the channel being allocated.

As the flow algorithm produces multi-path allocations, Hiert steps must be
taken in order to insure in-order delivery. These stepssisting in verifying
path lengths and discarding inappropriate paths will berigsd in detail in
Chapter 3. When minimal routing is used (Model 11), delivisralways in-
order (since data has a fixed propagation delay.)

2.3.4 Single-path exhaustive search

This section describes Method L-7.
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The single-path exhaustive search method is also an itenatethod, allocat-
ing connections one by one. Starting with an empty netwoijuiie 2.16a),
it finds paths between source and destinations for each ctiamén turn and
every time a path is found it marks the slots used on that pattnat they
can not be used by subsequent connections (Figure 2.16b8idgle path
exhaustive search is only used for the slot-based modelsl€Md0 and 12
use single-path search exclusively, models 9 and 11 usaifedisback option,
and model 8 uses it as part of repeated single-path search.)

AOomO B omm C Ao Bomm C B
*—>0—>0 *—>0—>0 [
o —>0——>0 [ ] [ ]
OO E COxa F F E
a) initial state b) allocation 1 c) allocation 2
Borrm C A B o C
o——>0 *—>0——>0
lu:n:n lu:n:n oo
[ ] Oe—>0——>0
F DO EOOF

. e) remaining slots
d) allocation 3 after 3 allocations

Figure 2.16: Steps in the iterative single-path allocatityorithm.

We can formalize the single path method using the same aptatsed in
the previous section. Léf, F, J, R, P, Q, have the meaning defined in the
previous sections.

Let z.;, be the bandwidth used on slbtof link e by channelj andc,;; the
remaining capacity on the same slot-link after the all@zatf channelj, with
ceor, = 1 being the initial capacity.

The problem consists in finding a path= (e1, es...¢;,) With e, € E, Va €
{1..n}, e, being adjacent edges, the first one departing from the sowade
and the last one arriving at the destinatien:= (sourcg, v1), ea = (v1,v2)

.. en = (vn_1,destination), and a set of slot§' = {s,,, 5a5..-54,}, ¥ > 0
that satisfies the bandwidth requiremént(S) > y;. S represents the set of
slots used by the communication channel on the ingress dgebandwidth
provided by the set of slotS, bw(S) is a function of the set of slots. When
no header overhead is assumed, the value of the providedvizihds propor-
tional to|S|. If header overhead is assumed the computation of this value
more complex and it is discussed in Chapter 4.
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All the slots used by the patR must be available:
Clen)j((awta—1) mod s) = 1 Vo € {l.n}, Vw € {1..y} (2.13)
The value ofc after the allocation of is computed as follows:

0 if3re{l.n}ste=e;andspiz—1)mods) €S
Co(i = .

U+DE ceji. Otherwise
(2.14)

The strategy we use to find paths is exhaustive search. Phtménimnal
length are enumerated first and for each path we verify if tagimum set of
available slots is sufficient to satisfy the bandwidth regpient. If none of the
paths can provide sufficient bandwidth because of the pus\atiocations (for
example if in Figure 2.16e, a channel from B to F requires &sidereas only
two are available), we attempt to find all paths of minimalgiénplus 1, then
minimal length plus 2, until a solution is found or the algion can determine
that no solution is possible. To avoid excessively long mgtimes, the search
is abandoned without completely exploring the solutiorcepahenl0” paths
were examined or the path length exceeds the distance betseesce and
destination plus 16, i.e., we allow a detour of 16 hops. Thaplete details
of the single-path allocation algorithm are presented ictiSe 3.1, while the
different options to comput§ are covered in Chapter 4.

In all our algorithm implementations we use the same datetsire to keep
track of the available slots between allocations (the array) and as a result
it is possible to allocate some of the connections using tive dlgorithm and
others using the single-path approach.

2.3.5 Multi-path using repeated single-path exhaustive s&ch

This section described Method L-8.

Allocating channels over multiple paths conceptually &ffamore freedom to
routing, but the flow algorithm which produces multi-patloehtions might
produce in some instances worse results than the singlesphittion because
it produces paths that are too fragmented and use more Beadéproduces
paths of different lengths that need to be discarded fordewodelivery. For
this reason we introduce an additional metheggeated single-path exhaustive
search to compute multi-path solutions for Model 8.

This method computes a multi-path solution, by calling thgle-path exhaus-
tive search algorithm repeatedly for a single channel. eghod, illustrated
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in Figure 2.17, takes advantage of the single-path exhaustiarch algorithm
to minimize the header overhead.

( START )

attempt to allocate all remaining
bandwidth for the current channel

Allocation
successful?

number of paths

attempt allocating
any bandwidth

Allocation
successful?

maximum
path length
reached?

Yes

subtract allocated bandwidth
from desired bandwidth

increase allowed
path length

I

Figure 2.17: Multi-path using iterative exhaustive sedfoha single channel).

The multi-path iterative exhaustive search will be desatim depth in Section
3.5. Model 8 in our experiments uses both the (repeated)espagh and the
flow methods for computing an allocation.

2.4 Performance comparison of the proposed models

In this section, we use a set of benchmarks to evaluate tlierpemce of the
various network models and of the allocation algorithms.

The basic unit of benchmarking in our evaluation igssecase By usecase
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we mean a set of connections between specific sources aribdests, each
of them having a given bandwidth requirement. Latency caitgs are not
included in this evaluation as they are not supported by mustels. For a
successful allocation the interconnect described by eaatehmust be able to
support all connections in one usecase simultaneouslyn&tweork frequency
needed to support the bandwidth of all connections simediasly is used as
a figure of merit for each of the models.

As a matter of convention we use a default link width of 3ZIptus side-
band information which is not available as part of the allabke bandwidth.
This matches the default parameters of the Athereal netwbith can be
used to implement Models 10 and 12, as well as our proposeativhes
implementation which we will present in Chapter 6. The baidthwspecified
in the models is the product of the frequency and the link kvidt

Note that the frequency and link width do not have meanindaslate values.
The same bandwidth can be delivered by a network with hafirdggiency and
links twice as wide. In these experiments we are only intecem the relative
performance of the models and we ensured that link widthscansistent
across the models.

For the LP methods, the frequency is obtained directly bgctislg the link
bandwidth as the optimization target and dividing the resyorted by the LP
solver by the link width. For the iterative methods, it is fouusing binary
search.

We employ three sets of benchmarks:

e random benchmarks: The IP pairs are chosen randomly witlorami
probability, with one additional constraint that each IPsinbie at the
end of at least one communication channel. The bandwidthinegent
for each communication channel is also chosen randomlig, wvitform
probability in the interval [10..400 MByte/s].

e permutation traffic: IPs communicate in pairs, accordingédl defined
patterns [DT03]. The required bandwidth is the same foraihections.

e task graphs of real applications reported in the literatarenultimedia
system [HMO5], a digital TV system [HG11], MPEG-2 [LCOMO0S8],
VOPD and MWD [VdTJO02].

Two types of mapping are used in the experiments. We call thiedinedirect
mappingas it statically assigns the first IP to the first NI, seconddRhe
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second NI and so on. The second one is the mapping producée b MARS
algorithm [HGRO7] which also targets the contention-freeting model. The
UMARS algorithm tries to reduce the distance between conicating nodes,
sometimes having the adverse effect of mapping multipleadRke same NI
when that is not required (the direct mapping will resultis being mapped
to different Nis as long as the number of Nls is at least as)aryve found
that the UMARS mapping behaves worse in many cases undesmratrdffic.

In the graphs that indicate performance, by performance wannthe in-
verse of the frequency of the network needed in order to stippe usecase
(supporting the usecase means guaranteeing the requineviolsh). High

performance thus corresponds to a low required operatieguéncy. For
each combination of topology and allocation method we cdmfhe average
frequency over 20 usecases.
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2.4.1 Small networks with random traffic

Experiments 2.1-2.5 present the performance of differemtlets under ran-
dom traffic on five topologies: mesh, torus, fat tree, spidiergnd ring. For
clarity, we selected a subset of the available models, septeng a walk
through the model graph, from the most to the least generteoimodels.
Each step in this walk represents a particular NoC desigitehio Figure 2.1.

In all the following experiments, the model numbers aredatid in parenthe-
ses. Model numbers suffixed with the letter “h” indicate msdehich include
the header overhead computation. In each graph the valeewenalized to
the performance of Model 1, which is the most general and lesdrictive.
Since this model is topology agnostic the normalized valares consistent
between the graphs representing different topologiesikperiments 2.1-2.5.
The values represent averages over 20 randomly generaedses.
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Experiment 2.1: 4x4 mesh network, random traffic, 16 IPs,atthections, 16
slots.
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Experiment 2.2: 4x4 torus network, random traffic, 16 IPs¢cdnections, 16
slots.

In general, the less restrictive the model, the better tmfopeance, but that
does not necessarily hold true when the allocation methodtiguaranteed to
be optimal (LP Models 1-5 are optimal, but the iterative rodthare not). The
drop in performance of each model, compared to the modetdéffusing the

same mapping) is annotated in each experiment.

The difference between Models 1 and 3 (in each graph) showsrhoch

the network topology restricts performance compared todaalitopology,

assuming ideal switching, buffering and link sharing mod#Ve find that

topologies in general are not a large factor constrainimfpp@ance, at least
under random traffic, a notable exception being the ringltapo In the ring

topology, mapping the communicating IPs as close as pesildach other is
particularly important and the mapping produced by UMARSuHes this time
in better performance.

This is easily explained if we compare the average usage-odbuter links
(we will call them peripheral linkg to the average usage of router-to-router
links (we will call themcore linkg. In a mesh, all the data transmitted through
peripheral linkswill be divided after the first router over severare links(4

such links if the source node is located at the center of thehn®links when
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Experiment 2.3: Quaternary fat tree network (2 levels)deoan traffic, 16 IPs,
40 connections, 16 slots.

located on the edges and 2 links when located in the corrieng)load being
spread over multipleore linksit is less likely that theore linkswill constitute

a bottleneck. On the other harare linksare shared between communication
channels between different source-destination pairs. mpl& estimation of
the relative occupation qferipheral linksversuscore linkscan be performed
in the following way. Each communication channel uses éxa&cperipheral
linksand a variable number abre links dependent on topology. In the case of
the mesh and torus, the numbeicofe linksused by a communication channel
is in the order ofD(y/n), in the case of the fat tre@(log n) and in the case of
the ring and spidergo®(n). At the same time the mesh has slightly less than
2 core linksfor eachperipheral link the torus exactly 2, the fat tré&e(log n),
the spidergon 1.5 and the ring only 1. It is easy to see thaeotion on the
core linksof the ring and spidergon networks will quickly increasehntihe
value ofn.

One way to mitigate the saturationpéripheral linkswould be to use multiple
links to connect each NI to one or more routers. One solutidhis direction

is proposed in [CFD11]. This would increase the pressureame linksand

thus making better use of the network topology.



50 CHAPTER 2. THEORETICAL BOUNDS ON ALLOCATABLE CAPACITY

\© \© . .
$° S direct mapping ——
1+ — o o UMARS mapping =5C<= |
- -
2 2
5 5
< < o
b b 9|
08 |- o%s X o $® &° .
= . < Vv N
S * 4
g 0 o - b
© < 3 <K o
£ S S S0 o §° o0
o | by by X X 2 N °© o o e
g o6 | B R SR RS AR
= < o e 5 S 2”97 97 o
S % % X X = o [ e [les
c " > {0 3 { X o
< < KX X X < < S
£ LR | | s o S| RS
g oaf 5 <h S S A
g sl e || i s SIS
s s 533 5 ey 55 o Pt s
< I 5 % o o 5 e e
e o 5 <3 o S . o o
02} ZN XN % > > 33 o2 b ISoX
: = <o s < < & 0% 0 5%
25 25 % o o " 3 K K b
o % & X3! X3! > x o <o PG
2 2 e o< e e < X ot o]
5 25 o o o " < X % !
0 2o b >3 b9 b9 b x < 5 >0
Y <o % %, %, %, % WA So 4,
%, e Y @6‘ @O 3 %,
Ot G G 2% 9% G g

Experiment 2.4: 16 node spidergon network, random traficlPls, 40 con-
nections, 16 slots.

A large drop in performance is observed from Model 3 to Model #his

corresponds to the effect of discrete link division, as akmd in Section
2.2.2. We use TDM tables with 16 slots, which is in the middiehe usual
range (more generally, this is the performance of any nétwsing frame-
based arbitration with a frame size of 16 or a rate-basedarktthat enforces
allocation in units of 1/16 of the link bandwidth). We make etteption for
the ring network where 16 slots were insufficient for a susftésallocation

and a TDM table of size 32 was used instead.

The difference between Models 4 and 6 marks the switch frompdéimal al-
location algorithm to the iterative algorithms. The itératalgorithms exhibit
very good behavior providing results almost as good as thimapalgorithm.

The effect of the contention-free routing constraints carséen in the differ-
ence between Models 6 and 7. We find this to be most surprisid@atrong
argument in favor of the contention-free routing modelcsithe hardware
cost to support this model is much lower. While Model 6 assumgatimal
buffering Model 7 uses virtually no buffers inside the roate

The effect of guaranteeing or not guaranteeing in-ordevel® can be seen
in the performance difference between Models 7 and Modelrgded Model
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Experiment 2.5: 16 node ring network, random traffic, 16 #®sconnections,
32 slots.

9, in-order delivery is achieved by dropping paths that \@ozduse out-of-
order delivery due to difference in path length. The algonitis analyzed
in-depth in Section 3.4. From the results it would seem thate is very
little to be discarded, although the difference in perfancebetween the two
models is not necessarily equal to the bandwidth discattiedifandwidth can
be allocated over other paths). In-order delivery does mairia significant
performance penalty.

The impact of header overhead can be observed in the droprfiorp@nce
between Model 9 and Model 9h. The difference in performaiadis in the
expected range of 11.1% to 33.3% as discussed in Sectioh 2.2.

The difference between the models (and allocation algosjhsupporting
multi-path routing and those supporting single path rautnly, can be seen
in the variation in performance from Model 9h and Model 10hulfi4path
routing offers a modest performance benefit.

The difference in performance between Models 10h and 12hdga enforc-
ing a minimal routing strategy. This difference is also vieny.

We also compare our allocation algorithms against the aiion produced
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by the UMARS approach [HGRO7] which is used by the Atherealgte
flow. We are able to perform this comparison because we usddame
conventions regarding the link width and bandwidth compoia Note that
the Athereal mapping that is used in the experiments is alspuated by
UMARS. From the hardware point of view /Athereal supports 8ddd with

header overhead so the difference in performance is a rekdifferences
in the allocation algorithms employed. These differences discussed in
more detail in Chapter 3 and Chapter 4. Our algorithms coefamrably
to UMARS.
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Random traffic with different numbers of connections

We analyze the effect of varying the number of connectiomsafoetwork of
fixed size (Experiments 2.6 and 2.7). We present here théisdsuthe mesh
topology only, as the results for the other topologies foltbe same trend.

We observe that the performance penalty related to the liigidn granularity

(Model 3 versus Model 4) and header overhead (Model 9 versaudeMdh)

increases with the number of connections, which is not veeben given
that a higher number of connections will require a finer drisof the link

bandwidth with fewer allocated slots per connection. Whely one slot is
allocated per connection, the theoretical value of headerhead is 33.3%,
which is very near to the value found experimentally. Anriesting observa-
tion is that the benefit of the multi-path solutions over timgke-path is higher
for a higher number of connections.

24 connections ——1
32 connections
48 connections
64 connections m—

] 0.0%
0.0%
i 0.0%
0.0%

0.8

0.6

Performance (normalized)

0.2

Experiment 2.6: 4x4 mesh network, random traffic, 16 IP$erdht number
of connections, direct mapping, 16 slots.
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Experiment 2.7: 4x4 mesh network, random traffic, 16 IP$erdht number

of connections, UMARS mapping, 16 slots.
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2.4.2 Uniform (random) traffic

Despite choosing connection destinations and requestatiMidths in a uni-

form manner, the random traffic used in the previous experisnés not

uniform because connections are persistent and througlomamassignments
some destinations and sources statistically receive highadwidths than
others. If the connections were not persistent the load dvbellaveraged over
time; this is the situation described in the literature agoum random traffic.

We perform another set of experiments where we enforce egoalind and

outbound traffic from all IPs. We achieve this by requestingequal number
of incoming and outgoing connections for each IP and settirgconnection

bandwidth requirements (and the channel bandwidth remeints) to be equal.
The results are presented in Experiments 2.8 and 2.9.
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Experiment 2.8: 4x4 mesh network, uniform (random) traffi§ IPs, 2
connections/IP, 16 slots.

We observe that, compared to the plain random traffic saerarithe mesh
network there is consistently a larger gap between the rmoddlhere is
an unusually large gap between Model 1 and Model 3 (this oalypkned
previously in the case of the ring network, Experiment 2.%)iclh means
that one of thecore linksis saturated first, even with ideal routing and load
balancing (Model 3 uses a globally optimal allocation aiktpon). This is not
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Experiment 2.9: 4x4 torus network, uniform (random) traffié IPs, 2 con-
nections/IP, 16 slots.

entirely unexpected because no individpatipheral linkwill saturate before
another (the usage on glkripheral linksis the same), but the load abre
links is not balanced in the same way.

The traffic however poses no challenges to the torus netwdikhaoffers

better path diversity and better chances at balancing I&atause in these
experiments the channels had equal bandwidth and the nuohlséots was

divisible by the number of channels (16 slots and 2 chanriels)possible

for the bandwidth division granularity to not incur any c@stodel 4 versus

Model 3in Experiment 2.9). Iterative allocation methodsaso helped by the
increased path diversity with little difference betweemiterative and globally
optimal allocation methods that operate on the same haedaanhitecture

(Model 6 versus Model 4).

This time, the mapping produced by the UMARS algorithm bekaworse in
all models. When UMARS itself is also used for the allocatibe Athereal
mapping is still worse, but by a lower margin. The fact that #ithereal
mapping is worse under Model 1, indicates that UMARS attechpb map
multiple IPs to the same NI, possibly trying to shorten tretatice from source
to destination, but this proved to be a suboptimal choice.
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2.4.3 Permutation traffic in small networks

Another type of traffic commonly used in testing network pariance is the
permutation traffic [DTO3]. In permutation traffic each ndues a connection

to only one other node. The pattern of connection is gengiiata way such

as to stress a particular network topology or to simulateep 8t a parallel
algorithm (for example the parallel fast Fourier transfhrBecause permuta-
tion traffic targets combinations of specific positions ia thpology only the
direct mappings used. All connections have equal bandwidth requirements
The number of slots was set to 16.

Experiments 2.10-2.14 show the performance of the proposadkls under
permutation traffic.
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Experiment 2.10: 4x4 Mesh network, permutation traffic, B6,116 slots.

The different permutation patterns are defined as follotis ssumed that the
source and destination are encoded as integers between0-ahgdn usually
being a power of 2 and a square number):

1. for bit complement traffic, the destination is obtained by inverting the
bits of the source. This is equivalent to saying that noclemmunicates
with noden — 1 — 3.
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Experiment 2.11: 4x4 Torus network, permutation traffic)2§, 16 slots.

2. for bit reverse traffic the destination is obtained by inverting the bit
positions in the encoding of the source. For example if thecgwonode
is s = 000110(7) then the destination i¢ = 011000y).

3. fortranspose traffic sources and destinations are assumed to be located

in a square matrix (as it is the case with the mesh and toraeh Bode
communicates to its symmetric over the main diagonal.

4. fortornado traffic, with nodes arranged in a square matrix the destina-

tion d is at a constant distande= ,/n/2 from the source on both the
horizontal and vertical axes.

The definitions for transpose and tornado traffic types welapted for 2-
dimensional mesh and torus networks. The 2-d versions afdh@nunication
pattern are also used for the ring network.

Permutation tests are more demanding in termsag link usage. The
matrix transpose and bit complement are especially diff@ages for the mesh
network. The tornado traffic was specifically designed tesstithe torus and
ring topologies. On the other hand, they use a lower numbepohections
than our random traffic tests: only one connection per IP.s€quently there
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Experiment 2.12: Quaternary fat tree network (2 levelsjppeation traffic,
16 IPs, 16 slots.

is a smaller drop in performance due to link division graritya(Model 3
versus Model 4). The header overhead is also reduced, thecause fewer
connections (and as a result fewer communication channegsijt in more
slots allocated per communication channel and consecslibis form larger
packets with lower relative header overhead (see Chapter 4)

There is a larger difference in performance between theargsvand alloca-
tion algorithms supporting multi-path and the ones allgvimly single-path
allocation (Model 9h versus Model 10h). Iterative methddedel 6 versus
Model 4) also display a loss that is more significant than teeof random
traffic.

Although the fat tree network has ideal behavior under Modet and 6, when
using the contention-free routing the performance degradere than in the
case of the torus network which provided excellent perforcean all models.
In general, the fat tree is considered a better topologyapparently this is not
so when using the contention-free routing. We attribute thia mismatch in
slot alignment for paths that traverse a different numbée\adls in the fat-tree.



THEORETICAL BOUNDS ON ALLOCATABLE CAPACITY

CHAPTER 2.

60

: — 9%6°08
&
voE® bl
gge? %GES
oacE? &
2529 %0" N
= %00 S
- og° %00 DESEESTEDOES] L ./w,\O
= %00 R
N
0l
%00 LBt o oS
%01 S

%Y €T
%' €T
%¥'€T
%0'ST
R
Ntwo.o KRR PO O A/o @/,
%8'TT |
%00
o\”o.o S S S ST
%TTT |
%T'IT
%S'T
%S'T
%00 [
%T VT
%L'E
%L’
%T YT |
%0°0¢
%0003 SRS 2 @
o [ S KA D
%002 | VG

1
0.8 -
0.6 [
0.4
02

(pazijewlou) aouewlopad

16-node Spidergon network, permutatiaffi¢, 16 IPs, 16

Experiment 2.13

slots.

tornado &

transpose
bit complement

bit reverse  me—

%EEE
%9'vC

%1 V1
%S LT
%S'LT
%T VT

%009
%0'SL
%0'GL
%009

%Z'25
%185
%L'EE
ARA

1
0.8 -
04
0.2 -

(pazijewlou) asuewlopad

Experiment 2.14: 16-node ring network, permutation traffie 1Ps, 16 slots.
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2.4.4 Permutation traffic in large networks

A set of tests over larger topologies (Experiments 2.18)Yshows the scaling
properties of different topologies. The number of slots waseased to 32 to
allow finer granularity in sharingore links The ring topology did not allow
successful allocation in the majority of cases and was ethitfThe UMARS
allocator could not deal with networks of this size.

The worst scaling properties belong to the Spidergon tapoldrhe perfor-
mance of the torus network drops now below that of the fatwrigieh remains
at levels similar to the experiments using 16 nodes. Notabgervations are
that the topology itself is the main cause of performance fosthe mesh and
Spidergon (Model 1 versus Model 3), but the other consdiggs so. The
iterative allocation method performs much worse than toebaloptimization
on the torus topology (Model 6 versus Model 3) which is sonmgttwe did
not find in the other experiments. Finally multi-path rogtiperforms much
better than single-path on the fat tree network (Model 9sw&Model 10h).
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Experiment 2.15: 8x8 mesh network, permutation traffic, B4, B2 slots.
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Experiment 2.16: 8x8 torus network, permutation traffic]@d, 32 slots.
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Experiment 2.17: Quaternary fat tree (3 levels), permotatiaffic, 64 IPs, 32

slots.
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2.4.5 Real applications

In the following we present the performance of the proposstvork models
under communication patterns extracted from real appdicatreported in the
literature. The number of TDM slots has been set to 16 for @tlieations

except [HG11] which used a large number of connections anained a larger
number of slots. In all cases, a mesh network of the apprepsae was
instantiated.

The task graphs for these applications are representedjime=2.18. For the
MPEG-2 application [LCOMO08], as the bandwidth of each catioa was not
specified, we assumed equal bandwidths.
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Experiment 2.19: 4x4 mesh network, MultiMedia System [HW0&ffic, 16
IPs, 16 slots.

Experiment 2.19 presents the performance of the proposeattlsmon the

MultiMedia System described in [HMO05] and Experiment 2.26ing the

application in [HG11].

Experiment 2.21 presents the performance of the modelshiarMPEG-

2 application described in [LCOMO08]. For this investigatithe necessary
bandwidths were set to a constant value as they were notfiggeti the

literature and the input and output were modeled as sepanates.
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Experiment 2.20: 2x4 mesh network, digital TV [HG11] trafBdPs, 60 slots.

Experiments 2.22 and 2.23 present the performance of theelsddr the
VOPD and MWD task graphs presented in [VdTJ02].

The applications presented very little problems, even fier simple mesh
topology. The main sources of inefficiency were the disctigtie division

(Model 3 versus Model 4) and the header overhead (Model Qsédvodel

9h). We consider that the reason for this is that these aifgits involved
a small number of IPs with simple communication patterns. ekfeect that
with the emergence of many-core systems applications wplioit parallelism
more than in the past and communication requirements widbivee more
demanding.
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Experiment 2.22: 4x3 mesh network, VOPD [VdTJ02], 12 IPsslbts.
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Figure 2.18: Traffic types reported in the literature: a) timgdia system
[HMO5], b) VOPD [VdTJ02], ¢) MWD [VdTJ02], d) MPEG-2 [LCOM(8
e) digital TV [HG11].



THEORETICAL BOUNDS ON ALLOCATABLE CAPACITY

CHAPTER 2.

68

direct mapping ———

UMARS mapping
Q

O
ixi

N

Y

AP RN AR R AP A SR P
S SIS S

A R A TSR R AT TR TSR
S S S SIS

P R R SN TS SR A7 SR A
BSOS ESCESTENTES

B PSS AT SR T SIS TS
OCEOTEOTEOTEDEEOTEOTE

e
OCEOTEOTEOTEDEDTEOTE

S A Y AP AV

SO EE TSN

K SRR TS S SR RIS S

DS e e e S N %

(2] K3 R R R K K RS S R R R R R S 3R R KK
ST E R I R IREAIKER,

o

R R 3 K SRR 5 R 5 SRR K
PSRRI ISR,

Il
o @
o

02 |

L L
© <
o o

(pazijewuou) ssuewlopad

4x3 mesh network, MWD [VdTJ02], 12 IPs, Ibéss

Experiment 2.23



2.4. PFERFORMANCE COMPARISON OF THE PROPOSED MODELS 69

2.4.6 Performance of different topology sizes under randortraf-
fic

We return to the random traffic model to perform a study of nragpthe same
communication pattern over topologies of different sizésis time we use
a system with 64 IPs and 100 connections. For the 8x8 meslomppthis
corresponds to one IP for every NI, but for the smaller togiee several IPs
will have to be mapped to the same NI. Tdieect mappings used. When the
number of NlIs is lower than the number of IPs, more IPs are &cted to the
same NI by wrapping around the list of NIs. The number of shes set to
32.

We also study topologies with up to 4 NiIs connected to eacteroi larger
number of NIs means thaeripheral linkswill be slower to saturate.

In this graph, instead of nhormalized performance, we praserfrequency of
the network that is needed to support a usecase. The resdadh model
and each topology is computed as an average over 20 usec@sesvoid

encumbering the graphic we represent only some of the modétmdels 8

and 10h are of particular interest, because Model 8 is stgghbry the dAElite
network that we will propose in Chapter 6 and Model 10h is sutgal by the
/Ethereal network.

The results are presented in Experiment 2.24.

There are larger performance gaps between the ideal nemtkhe phys-
ically realizable multi-path enabled network and betwed®sn multi-path and
single path when larger topologies or topologies havingenidis per router
are considered. In general, the gain of multi-path is higitegncore linksare
more congested.

2.4.7 Summary of experiments

Two behaviors are seen in the presented experiments. Asard@mn we will
call these scenaridght andheavy load Whether the load is light or heavy is
dependent on topology and the type of traffic.

e Under light load, topology is not a limiting factor and Model 1 and
Model 3 exhibit the same performance. Unteavy loag not only do
we see a drop in performance between Model 1 and Model 3, st ea
of the subsequent models behaves worse than the previoubese
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Experiment 2.24: Network frequency versus topology sizete same use-
cases (random traffic) allocated on all topologies (lowéxeiter).

There are topologies that cope well with any kind of trafficiroother words,

any type of traffic idight load for that topology. As a convention we call these
strong topologiesWe call topologies that deal badly with most kinds of traffic
weak topologiesThering topology is a weak topology, strong topologies are

thefat treeand thetorus, with themeshandspidergornbeing somewhere in the
middle.

e Small networks deal better than larger networks with moptesyof
traffic when the traffic is scaled proportionally with the esinf the
network. When the amount of traffic is fixed a larger networgvites
a better solution.

e Bandwidth division granularity produces a sizable ovedheagardless
of whether the load ifight or heavy The difference between Models
3 and 4 reaches 38% in some cases. An exception is the uniform

traffic tests, when channels of equal bandwidth can matatigaly the
division granularity.

e Performing the allocation iteratively presents little to performance
drop underlight load, compared to global optimization. This can be
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seen in the comparison between Models 4 and 6.

e The contention-free link sharing model does not incur adgvgrfor-
mance penalty compared to a generic link sharing model ulngler
load and even undehneavy loadthe drop in performance is hardly ever
larger than 10%. This is an important find as the contentiea-fouting
model is much less expensive to implement.

e In-order delivery restrictions (Model 7 versus Model 9) &dnardly any
effect, in some cases the model using in-order delivery @veduces
improvements due to the additional heuristics employedhdt alloca-
tion algorithm.

e The multi-path allocation model provides improvements pared to
the single-path approach, most visibly untdeavy traffic

e The usage of headers produces a large drop in performanes both
light andheavyload, but especially when the number of connections is
high.

The most restrictive model usually performs at between 40 &% of

performance of the ideal model. We consider this perforraaicbe quite
good, considering all the restrictions that were introdiftem the ideal model
to the physical hardware implementation. Most of the penfomce loss is not
due to the allocation algorithm.

2.5 Related Work

Ring, spidergon and mesh networks have been evaluated iDGBGing hot-
spot and random uniform traffic. In [BC®7] an MPEG-4 task graph is used.
The switching model used by the network was wormhole whisterg popular
among network on chip implementations because of the low afosuffers,
and the method of evaluation was simulation.

We evaluate or model using analytical methods instead ofilsition. The
contention-free switching model has a deterministic batrawvhich is easily
analyzable.

A circuit-switched interconnect (crossroad interconioectarchitecture) is
evaluated in [CSCO08] using the task graphs for the VOPD andM&(s-
plications presented in [VdTJ02]. The paper presents tmpyobptimization
techniques.
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A framework for the modeling and simulation of networks oipdh presented
in [CCG'04]. The proposal relies mainly on SystemC simulation.

Mesh, concentrated mesh and hypercube NoCs with 16-nodesvaluated
in [GMB108] using RTL equivalent SystemC simulation. The authoesais
manually-created high-contention traffic pattern.

Mesh and point-to-point interconnects are evaluated in JHG Several
interconnect options are discussed, with a focus on sdityabiBuffering
requirements are evaluated, the paper presents a comparfisoigh-level
estimations of the resulting network cost to synthesisltgsu

Fat tree and irregular (custom generated) topologies aigiaed in [KD10]
using MWD and MPEG 4 task graphs. The study also discussiis trarsts
and temporal access patterns which are not covered by aly. stu

A contention-free optical NoC with Spidergon topology isaleated in
[KH09]. The type of traffic used is random uniform and the aasibn method
is simulation.

Energy and latency driven mapping onto a NoC are evaluat@dNtC T05]
on a collection of mesh, torus and fat tree topologies. Thdystises FFT,
Romberg integration and Image processing applicationgiashmarks for the
network.

Point-to-Point, NoC and bus interconnects are evaluat¢d@®MO08]. The
study presents an analytic performance comparison, veddan FPGA.
MPEG-2 is used as a benchmark.

Mesh, fat tree and reduced unidirectional fat tree topel®gire benchmarked
in [LGM*09] using uniform random traffic. The study addresses physic
layout concerns for the fat tree.

An analytical model for the performance of the Spidergonvoek is provided
in [MSVOOQ7]. The paper presents results for network latemtyen using
uniform random traffic.

In [MPCJO08] the authors show how NoC models can be used invéidaation
of MPSoC designs. As a proof of concept MIJPEG and h264 are rinated
in SoCs supported by 2d mesh and torus networks.

A model is introduced in [OMMO08] to evaluate NoC latency. The study
proposes a technique to avoid simulating the movement dfdlg of packets,
instead focusing on the movement of the header and traiter flihe study
uses mesh and torus networks with random uniform, normapareto on-off
traffic.
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Mesh, torus, fat tree and octagon wormhole networks areuated in
[PGJ"05] using uniform, Poisson and self-similar random traffic.

Lossy on-chip interconnects with mesh, Spidergon and Wisdve topolo-
gies are studied in [SBEO0S].

Mesh and BMIN (binary fat tree) networks were evaluated iM(B] using
simulation and analytic measures. Uniform traffic and ldific were used.

Analytical performance models were proposed for the toraswvork in
[SKFO08b, LOQ9], for mesh in [SKFO08a] and hypercube in [EKb,
PSO06].

The relation between mapping and routing is studied in [TQM¥]. While
in our experiments we consider only two mappings, it wouldriveresting to
extend this study to include different mapping strategies.

The multicommodity flow formulation is very suitable for tmg problems
and has been employed before both in the routing of wiresysipal circuits
[CILC96] and in network routing [TDBO3].

Multicommodity flow is specifically applied to circuit-swtiing networks in
[LR95].

The benefits of allowing non-minimal routing for load balergcare presented
in [MKY *+05].

We believe that in this chapter we offer a thorough invesibgaof a wide
range of network models against several variables: togplogtwork size and
traffic type.

2.6 Conclusions and Future Work

In this chapter we have proposed and evaluated several rietaamiels. These
models allow us to determine the performance implicatidngdous design
choices, for example topology, routing and switching meddra. The perfor-
mance analysis in this chapter leads to some interestingusions which are
useful in the context of NoC design.

We illustrate the performance difference between netwooklels in Figure
2.19. The numbers here are based on an average over ExperitnkR.23.
The individual data points in each experiments were firstayed individually
and each experiment contributed with equal weight in thd finarage.

One of the first conclusions is that topology in general is aaatignificant
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MODELS AVERAGE DIFFERENCE ~ STANDARD
IN PERFORMANCE  DEVIATION

(1) LPNI —_—

real topology 82% 17.6%

discrete 17.9% 14.0%
bw division

iterative 19.9% 12.6%
allocation

@ flow

routing

@ flowslots

in-order 259% 11.5%
delivery

header 39.7% 12.8%
overhead

@ floword
headers

single-path 426% 11.9%

minimal routing 0.1%  0.4%

) contention-free 249%  10.9%

358% 15.2%

Figure 2.19: Model performance summary.

limiting factor. This means that very simple topologieselithe mesh and
torus are a good choice, especially as they map very well ¢opthysical

chip floorplan. The performance drop of 8% is in large part tluthe low

performance of the ring and spidergon topologies whichrdmrted negatively
to the average (without these experiments, the average)is 2%

Some performance loss is attributed to fixing the allocatcenularity to a
discrete value. This is a limitation of many network implertaions and
link sharing schemes, but most notably SDM, TDM, FDM and #&doased
arbiters. Under some circumstances it can be a limitationrdite-based
arbiters (depending on how the rate is expressed) which srbéoverhead
applies to a large class of networks.

Another important finding is that allocating connection® day one does not
generally incur a large performance loss. This is impoftastuse it allows us
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to use computationally less expensive allocation algorithSuch algorithms
will be presented in the next chapter.

Finally, one of our goals was to determine if the contenfie® routing model
proposed by Athereal incurs or not a large overhead (therdaiheetwork
supports models 10h and 12h from our evaluation and guastehieving
the performance indicated by these models). We found tHempegince loss
to be modest when considering the hardware cost advantdgetda of 10-20
times is claimed in [GH10]) of contention-free routing. Wdhat of the 43%
drop in performance, roughly 15% are due to header overhedhd &6 due to
bandwidth division granularity. Other network implemeitdas are likely to
suffer from these overheads as well.

In Chapter 6 we propose a network implementation called dé&Hmhat sup-

ports a broader range of models (Models 8-12, which are alirtbdels based
on in-order-delivery contention-free routing). It alsoedonot suffer from
header overhead, thus losing on average less than 26% ferdeal NoC

performance. Our proposal is also cheaper to implementAtidereal.

Regarding future research, we already envision extendiortee range of
network models. It would be interesting to see for examplatigithe effect of
restrictions like single-path routing or even X-Y routing the more general
models, e.g. Model 3. It would also be interesting to comphesactual

performance of classic store-and-forward, virtual-éubtigh or wormhole
networks to the performance bounds provided by our curremtets. Finally,

the models presented here should be put to use in tools dioteslfor the

automated design of networks on chip.






Chapter 3

Single and multi-path allocation
algorithms

n this chapter, we describe in detail the path-finding alpari used in the
experiments in Chapter 2 for Models 6-12. We also presetadifacation
algorithms that ensure in-order delivery in Models 8-9.

The problem of finding a path and slot allocation for a set ofnaxtions is
similar to the problem of routing physical wires in integmtcircuits. Com-
pared to the wire routing problem, the number of connectmmnsalgorithm
has to handle is several orders of magnitude lower, in thgeraf hundreds,
but the problem formulation itself is more complex becausenections do
not have equal bandwidth requirements and this is reflectéidei amount of
resources that are allocated to each connection.

All the path-finding algorithms here are used in conjunctidgth the iterative
method presented in Section 2.3. Instead of looking for &ajlp optimal
solution (by global we mean a solution that optimizes all oamication
channel allocations simultaneously), channels are adoane by one, earlier
allocations blocking resources to the detriment of latércations. This is
similar to how physical wire routing tools operate, as wallthe previous
FEthereal tools [HGRO7].

The algorithms can be split in two categories: algorithnat thse slot masks
and algorithms that use graph-splitting. In addition, wespnt the generic
flow algorithm used in Model 6, which only produces path alimn and

does not produce a slot allocation. This algorithm forms seldar the more
complex algorithm that do perform slot allocation.

Algorithms based on the slot mask approach use a representatt the

77
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network topology as a directed graph, each node repregeatiarouter or
onenetwork interfaceand each directed edge representing omigirectional
network link Each directed edge has an associated table indicatindnwhats
are available on the link it represents (Figure 3.1).

7
-7

Figure 3.1: One-to-one graph representation of the nettogidogy with slot
masks attached to edges. Grayed slots are occupied.

The graph splitting algorithms use a different represé@riadf the network
topology. Each network node, i.eetwork interfaceor router, is represented

by s nodes in the graph, whereis the number of time slots (each network
node is thus “split” intos different graph nodes). Each graph node represents
the ability to reach its corresponding network node durirggidain time slot
(Figure 3.2). Each unidirectional network link is also eg@nted by directed
graph edges. Each graph edge represents one slot on onelnktko
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Figure 3.2: Network topology represented through a graph gglit nodes.

Graph edges are connected to graph nodes in such a way asdseartpthe
link traversal delay. Nodel, is connected ta; and A,,_; back again ta3,
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due to wrap-around at the end of the slot table. Note that emeterse link
By is connected tad; and B,,_1 to Ay so the new graph is directed and the

links do not form pairs between the same graph nodes.
The structure of the remainder of this chapter is presemt&igure 3.3.

models mask based graph splitting
single-path
/| exhaustive search
'
ILPNI (2) (3)LP
generic flow
algorithm

(does not produce
slot allocation)

Section 3.2

flow algorithm
with graph splitting

Section 3.3

in-order delivery
for flow algorithm

Section 3.4

o
@
. a
<
T

iterative maximum
bandwidth search

multi-path
Section 3.5

Figure 3.3: Algorithms discussed in Chapter 3 and the maHeiscorrespond

to.

The allocation methods for the Models 1-5 were already dised in Chapter
2. Because they are based on Linear Programming, they tafissemply
applying an off-the-shelf LP optimization tool to the foripaoblem definition.
In Section 3.1 we provide a description of the single-pathaeistive search
algorithm which is the simplest and at the same time the oosest to the
algorithm used by state-of-the-art allocator (UMARS) [HGR The generic
flow algorithm, used to perform allocation in Model 6 is pre®el in Section
3.2. The adaptation of the flow algorithm to include time slist presented
in Section 3.3. The optimal algorithm to select paths whesutt in in-order
delivery is presented in Section 3.4. A method for iterdgiv®mputing multi-
path allocations is presented in Section 3.5. Related warkspresented in
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Section 3.6. Section 3.7 presents our conclusions.

3.1 Exhaustive search Single Path

Path finding under the contention-free routing model is darated by the fact
that it needs to take into account not only the bandwidthlabts on each link
but also the slot alignment. Consider the example in Figute 3

® == u::” ©m
= |
®F=06

Figure 3.4: Example graph for the path finding problem, usets sre grayed
out.

Assume that we want to find a path from A to E offering the baitvi
equivalent of 2 TDM slots. There are two possible routes: -&& and A-B-
D-E. At first look, the A-B-C-E appears to be a better optionaaese the links
BC and DE have a lower slot occupation ratio. If we look at tbeaignment
though, we observe this is not the case since link BC bloclksajrihe only
two available follow-up slots after the traversal of link A&Bnd as a result the
route A-B-C-E does not meet the minimum bandwidth requirgm&he A-
B-D-E route on the other hand does provide the needed batidWwatause,
when the delay of one slot per hop is considered, the twoablaikslots on the
each of the links AB, BD, DE align perfectly.

Simple path finding algorithms like Dijkstra’s algorithm i[99] operate by

successively building partial solutions starting from esdeighboring the
initial node and working their way to more distant nodes. ylluse the

computed path to the near nodes to find the path to more distalets. When

multiple paths may be used to reach a certain network nodssichl path-

finding algorithms store only one path leading to that notle, dne having

minimum cost. Based on this one stored path the algorithyrts tieach nodes
which are further away. As it can be observed in Figure 3%dpproach does
not work when slot alignment needs to be taken into account.

Assume again a path needs to be found between node A and nodtb B w
bandwidth corresponding to 2 TDM slots. The first portiontod path, from
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®F=>F0
Svilly
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Figure 3.5: Classic path finding algorithms fail to find a siolo.

node A to node B can be traversed in two ways: using the dinektA-B
or through the longer route A-F-B. Each of these paths allawlgferent slot
alignment. A classic path finding algorithm will prefer ofwrse the shorter
path and will not concern itself with the alternatives. Byiadh starting with
slots 1-2 on link A-B does not allow any follow-up alternasy either through
B-C-E or B-D-E. The path A-F-B-D-E however provides a cotrsaution.

The fault of the algorithm consists in the fact that when nBds reached it
is impossible to tell which way of getting there is bettertlsis depends on
the slot alignment on future links (i.e. links that were neplered yet). The
way to work around this problem is to store all possible padhistermediate
nodes.

The Athereal tools employ a branch-and-bound solution [BIGRhoosing
to construct and store all intermediate paths in the ordiemngfth, starting from
the source node. The problem with this approach is that thebeu of paths
explodes exponentially with the path length and memory éxled to store all
paths (Figure 3.6). The problem is to some extent avoideditmnating early
the paths that do not provide sufficient bandwidth.

® é@a@»@ %éé.@Jcsmcst

length 0 length 1 length 2

Figure 3.6: The number of possible paths grows exponentidth length.
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3.1.1 Proposed exhaustive path search

We propose instead an exhaustive search based on the lo&tigranethod
that while still having exponential running time requir@saanount of memory
which only grows linearly with the number of nodes and links.

Our solution has two steps: a fast, breadth-first searchtésrdee the distance
from all nodes to destination, and then the actual exhaustarch.

The breadth-first search is a particular case of the Dijkalgarithm where
all links have equal cost. The search starts at the destinatde because this
provides estimate of the distance from each of the othergiodbe destination
node. The estimate is optimistic because it takes into attoanly available
bandwidth on each link and not the slot alignment.

This step allows us to quickly determine during the exhaastiearch which
edges are leading towards the destination and which arétadgo provides a
bound on the distance from source to destination.

The algorithm, which is straightforward, is described imgédithm 3.1.1. All
distances, stored in the vectdist, are expressed in terms of the number of
hops to destination.

We will use the following notation:

o V the set of network nodes
e F the set of network links (graph edgesy (u,v),u,v € V
e S the set of slotgy, s9...5,

e S, . the set of available slots on linle, v) € E

The exhaustive search of a single path is performed by agieeualgorithm
which constructs one-by-one all possible paths leadingpéadestination. In
order to explore first shorter paths, the algorithm limits detour, i.e., the
difference between the length of the path and the minimurgtteproduced
by the breadth-first search. The detour is computed duriegstarch by
adding the level (the number of edges already part of theentpath) to the
known (bound on) distance to destination and comparingntaslengththe

sum of the minimum distance and the allowgetour The value ofdetour

is varied between 0 and 16. It is prohibitive to increase tlikie even
further because the number of generated paths increasesejally with

their allowed length.
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Algorithm 3.1.1: Breadth-first search

input :V, E, S, . according to the previously defined notation
Destinationc V' the destination node
bw;. required bandwidth

output: dist..] a list of distances from each nodeDestination

/I Q1S A QUEUE
enqueueDestinationon Q;
visitedV] + false
visitedDestinatior < true;
disf{V] < oo;
distDestination < 0;
while  # () do
q + headOfQ);
dequeueq from Q;
for w € V with (w, ¢) € F do
if bandwidtt{S,, ) < bw, A —visitedw] then
visitedw] « true;
distfw] < distq] + 1;
enqueuew on Q;
end
end

end

We provide a formal description of the recursive algoritmlgorithm 3.1.2.
The rotate function shifts the contents of a slot table by one positioras to
take into account the delay of one slot per link.

For explaining the functioning of the algorithm, considee tfollowing ex-

ample illustrated in Figure 3.7. The network illustratedehdas a mesh
topology with a size of 4x4. Several communication chanhelge already
been allocated and therefore some of the slots are already Eer clarity we
only represent the slot tables of interest.

Consider the problem of finding a path from the local NI of RWU20 to

the local NI of Router 03. Furthermore consider that linksLARD2 and

R21-R22 are already loaded to the extent that the bandwidtheocurrent

communication channel cannot be satisfied regardless dlthelignment.

This fact will be taken into account by the breadth-first skamnd will result in

assigning a larger distance value to Router RO1 for exanple.distances to
the destination NI, found by the breadth-first search argvatam the bottom-
left side of each router in Figure 3.7.
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i E E__ﬁ__i Network interface
N X X rj R
R10 R11 R12 R13 outer
5<J A AN A ® .
N ---- Saturated Link
E E Link with sufficient

\/(& Vs T bandwidth available
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>\/< T by the pathfinding algorithm
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4

Figure 3.7: Search example.
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Algorithm 3.1.2: Recursive backtracking exhaustive search

input :V, E, S, . according to the previously defined notation
Destination Sourcec V' the source and destination nodes
dist|..] a list of distances from each nodelestination
bw, required bandwidth
maxLengtithe maximum length of a path to destination

output: A pathP = (p1, p2...p,) With n < maxLengthp, € E which satisfies the
and a set of slots),..,, which meet the bandwidth requirements and do not
conflict with any of the reserved slots on the patifwhen properly rotated to
take into account the propagation delays).

usedFE] « false
recursiveéSource S, 0, 0);
function recursivénode crtS level path) begin
if node= Destinationthen
/l SOLUTION FOUND, UPDATE IF CURRENT SOLUTION
// 'S BETTER THAN THE ONE STORED
P <« path
Spath < CrItS,
return true;
end
found« false
for w € V with (nodew) € E do
NXtS<— rotategcrtS) N Snode w»
if bandwidtlinxts < bw; then
/I WE MEASURE THE BANDWIDTH OFnxtS WHICH ALREADY
/I TAKES INTO ACCOUNT SLOT ALIGNMENT
continue;
end
if level+ disffw] + 1 > maxLengthhen
/I WE LIMIT THE DETOUR
continue;

end

if used(node w)] then

/I WE DO NOT ALLOW REVISITING EDGES
continue;

end

used(node w)] « true;

found« foundV recursivéw, nxtS level+ 1, appendpath (node w)));
used(node w)] + false

end
return found

end
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The backtracking search starts at the source NI withaxLengthlimit of

7, corresponding to @etour We represent values at the top of the stack
corresponding toode crtS(slots)level distinodd in Figure 3.8. The behavior

is similar to that of a depth-first search, except nodes aifisited for each
possible path.

node slots distance level (stack depth)
source (T TTT] 7 0

Rz20 [TT1T] 1

R21 [T 5 2

R11 [T ] 4 3

Riz2 [T 3 4

R13 HE T 2 5 lﬁme
RO3 NI

R12 [T 3 4

RO2 EET 2 5

RO3 HEET] 6

dest [N ] O 7

Figure 3.8: Sequence of values found at the top of the stagkglalgorithm
execution.

The search follows the links that lead to nodes with a lowstadiice to the
destination, i.e.disfnodg value. If the initial search wittmaxLength=
distSourcé does not produce results, the search will be repeated using a
increased value omaxLengthwhich will allow visiting nodes with higher
disy..] values.

During the search thertSvariable stores the list of slots available (with proper
alignment) on all links from the source to the current nodbe §et of slots
available at the next node to be visitagtSis built equal to the intersection
of thecrtSset, rotated by one position as to take into account the délage
slot for the next hop, with the set of slots available on ti khat is being
traversed.

It can happen that the new slot setSdoes not meet the necessary bandwidth
requirement (for example the 7th row in Figure 3.8 the dedidebandwidth is

0 as no slots are available). In the given example, when thesive function

is called withnode=R13, the R13-R03 link is discarded by tti@nstruction

in line 2, while the other links leaving from R13 will be disdad by theif
instruction in line 3 because they lead to more distant nodes

This causes thior statement in line 1 to finish without a recursive call and thus
the algorithm will return (or backtrack) to the previousdéin the program
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stack where théor loop continues iterating through the neighbors of R12.

In our example the next link from R12 already leads to a sofytbut the
algorithm does not stop when the first solution is found arstiizd looks for
other paths that may have better header overhead. As togSetay contain
more slots than there are actually needed, when the déstiniat reached
another algorithm is used to select the slots which are tolbeased to the
given channel. The algorithms used for this purpose areepted in Chapter
4.

The search is abandonedlii” paths have been analyzed for a single channel
allocation without finding a solution. This is however a veaye occurrence in
our experiments (occurred twice in a set of tens of thousahdsperiments).

When the length of the allowed path is above the minimal vdtug possible
for the path finding algorithm to return to a previously \ésitnode. For
example, in Figure 3.7 iaxLengthis set to 9 instead of 7, when reaching
node R13 it would be allowed to select node R12 as follow-upis Thay be
supported by the hardware, in fact both Athereal and theitiAgtwork we
propose in Chapter 6 support this feature. It should howeuéebe allowed
to reuse the R12-R13 once Router R12 is reached for a seaued Tihis is
not a hardware limitation but a limitation of the path-finglialgorithm which
cannot take into account the fact that slots on link R12-REy meed to be
used twice. To avoid this situation we have introduced altbiiveck in line 4.
The arrayused] keeps track of which links are part of the current solutidw (t
links which are found on the stack).

The algorithm is flexible and supports further adaptatidios, example if
desired we could deny returning to an already visited nddgiti the previous
example, we could deny turns or introduce additional costtions or path
selection criteria.

The algorithm has a time complexity which is exponential hie distance
between source and destination. The exact function depamdse arity of

the network routers. For a mesh network, considelifging the distance
between nodes andlthe detoura rough estimate of the complexity would be
o2+ (zmgﬁ))_ This can be interpreted as: misroutes can take place in any

of the [ + d steps except for the last, hence the fac(f%n‘f;ﬁ) and at each
hop, once we decided whether it is going to be a misroute gnmethave on
average 2 choices.
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3.2 Bandwidth allocation using Network Flow

The concept of flow is used to model the movement of goods ¢frau
transportation network. It can be intuitively visualizekkl the flow of water
through series of pipes joined at nodes, or electricity uglpan electrical
distribution network. Pipes or electrical wires have aaartapacity which
can be seen for example as the physical diameter or sectite @ipe or the
maximum electrical current a wire supports without ovetinga The same
model applies well to communication networks as we will preshortly.

The network is modeled as a directed gragh= (V, E) whereV is the

set of vertices andv the set of links and graph-based algorithms exist that
can provide an answer to whether it is possible to move ainegaantity

of “goods” between given points in the network or optimize ttost of such
movement from the point of view of distance traveled.

Each edge in the graphe E has a given capacity which we call The actual
amount of goods transported through that edge wefgahd f. < c., Ve €
E. Goods are moved from@ourceto aDestinationnode in the graph and are
not lost along the way, therefore a conservation law musiyapp

(i,9)eE (¢.4)eE
fa = . fag)» Ve € E\{SourceDestinatior}

? J

capacity (used)

301) %
®@

m© 07"
m®4

Figure 3.9: Example flow.
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The flow algorithm however does not impose restrictions on tiee move-
ment of goods is distributed among the available graph e(igjgare 3.9), it
may split and then recombine in arbitrary manner at intefatedhodes.

Flow networks are thus suitable for modeling network comitation as long
as routing over multiple paths is allowed. Graph nodes ia tsise would
represent routers, edges network links, the goods mayseqirelata and the
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edge capacity the link bandwidth. The result of the flow atpar will be the
path or paths that data needs to be routed over in order tb tkadestination.

The allocation is performed on a channel-by-channel bésis the iterative
methods presented in Chapter 2. The initial capacities qualdo the link
capacity, but as connections are allocated, their flow gafueare subtracted
from the capacities available to the following connections

The allocation of one connection starts with an “empty” flgw= 0, Ve €
E (Figure 3.10a). Remember that the previously allocatechections are
already taken into account in the modifiedalues. The flow algorithm that
we used is based on finding so called “augmenting paths” (Eigl0b), paths
between source and destination whose links are not yetsetlfi, < c..

3(0),.77 ~ ~.1(0)
RSN
a) @ . 2(0) ’_-:7 @ \\2(0) cost 0
200~ SN
©7 J=lo
5(0)a ® ~71(0)
3(0) AN ~00)
SN
\ /®% cost 2 x (1+1+1)
. =G
5(0) SN @ --"1(0)

N

\ 22 \2(23\ cost 1x (1+1-1+1+1)
e

Figure 3.10: Computing flow using augmenting paths.

Because we wish to minimize the cost of communication (imgof path
length) we make use of a minimal-cost path-finding algorittarfind the
augmenting paths. This approach guarantees that the lovesalof the flow
(> cck fe x edgeCodt]) is also minimal [EK72]. Although it would be
possible to assign different costs to edges in our impleatiemt we assume



90 CHAPTER 3. SINGLE AND MULTI -PATH ALLOCATION ALGORITHMS

all edges have a cost equal to 1.

One advantage of the flow algorithm compared to simply apgha path-
finding algorithm several times is that it is able to displagerevious unfavor-
able allocation to increase the flow, as shown in Figure 3.k0this example
the first allocation (Figure 3.10b) blocked all direct wafsaaching F from A.
The augmenting path finding algorithm is allowed to traversalready used
link (the C-D link) in the reverse direction, pushing back flow on that link.

This operation introduces an additional complication @&sdbst of removing
an unit of flow is negative and the path finding algorithm had®doable to
cope with negative edge costs. We use an optimization by Bdsand Karp
[EK72] which avoids the problem of negative edges withoutdifying the
functionality of the algorithm. This optimization congistf modifying the
way the distance to a node is calculated by the path findinoyighgn.

A formal description of the algorithm is given in Algorithn3s2.1 and 3.2.2.
Using the approach of Edmonds and Karp, the distance froradhece node
to any other node is split in two components: kaown distance and an
incrementaldistance. The&nowndistance is stored in the (treK V'] array)
and is known because it was determined in a previous execafithe path-
finding algorithm. Théncrementaldistance is the increase in the distance to
one node from one execution of the path-finding algorithmnotlaer due to
the fact that some of the network resources have alreadyiiizad.

The path-finding algorithm only computes timerementaldistance which is
accumulated into thekV] array after each augmenting path is found. The
known component of the distance is subtracted from the edge castigh
visible to the path-finding algorithm. Figure 3.11 presehtscontents of the
ellV] array after the first allocation in the previous example (Fég3.10). The
path-finding algorithm determines the incremental costroédge according
to Equation 3.1.

el{src] — eldest +1 for forward edges

3.1
elldest — elsrc] — 1 for push-backedges (1)

iCOStsrc,dest = {

From the point of view of the path-finding algorithm, the iacrental cost (the
only cost seen by the algorithm) &drward edges A-B, B-D, C-E, E-F is 0,
and so is the cost gfushing backlow through edge C-D. The incremental
cost of reaching the destination is also 0, which means kieahttual cost of
the new path found will be the same as that of the previous path
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Algorithm 3.2.1: Flow algorithm

input : V, E, ¢[E] according to the defined notation
Destination, Source V the source and destination nodes
bw;. required flow (bandwidth)

output: f[E] capacity used on each edge

elV] « 0;

FIE] «0;

while bw,. > 0 do

disf{V] < oo;

maxfV] < 0;

disfSourcé «+ 0;

Q + {Source;

> find augmenting path (Algorithm 3.2.2);

if maxfDestination) = 0 then
| falil;
end
j < Destination
fincrement<— min(maxfDestinatior, bw,.);
while j # Sourcedo
if pushbackj] then
| f1(4, predecessdy])] « f[(j, predecessdy])] — fincremeni
else
| fl(predecessdy], j)] « f[(predecessdy], j)] + fincremeni
end
J + predecessdy];
end
for j € Edo
| eKj] < eKj] + costjl;
end
bW, < bW, — fincrement

end
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Algorithm 3.2.2: Flow algorithm - Main loop of augmenting path find

input : all variables of Algorithm 3.2.1

output: updatesost..], maxf..], predecessdr.], pushback.]
while  # () do

q < argmin,distq];

Q@+ Q\{q}s

for j € V with (¢,7) € Edo

end

e

end

cap « min(maxfql, (g, /)] — f[(4,)]);
if cap= 0V distj] < distg] then
| continue;
end
dd <+ distlg] + 1 — elj] + eKql;
if dd > dist[j] then
| continue;
end
distj] «+ dd;
maxfj] «+ cap
predecessdy] « g;
pushbaclj] < false

Q<+ QU{j};

for j € V with (4,¢) € E do

cap «— min(maxtq], f[(J, 9)]);

if cap= 0V distj] < dist/g] then
| continue;

end

dd « distlg] — 1 — elj] + eKq];

if dd > dist]j] then
| continue;

end

distj] «+ dd;

maxfj] «+ cap

predecessady] + ¢;

pushbaclj] < true;

Q<< QU{j};
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Figure 3.11:eV] costs associated to the nodes of the graph.

After a path if found by the path-finding algorithm, for exdmpath A-B-D-
C-E-F, the flow value is increased on tteeward edges and decreased by the
same amount on theush-backedges. This amount is limited by the leftover
capacity of anyorward edge along the way or the existing flow ipash-back
edge.

When both the capacities and the requirements are integ@esvé follows
that the result of the flow algorithm only uses integer valtimss unlike the LP
formulation presented in the Chapter 2 can efficiently saiteger problems.
The algorithm has polynomial running time [EK72]. Becaudges have unit
cost, an augmenting path can be computed with time compléxitE|). The
maximum number of augmenting paths is bound’iyE| - |V'|) [CSRLO1],
but in practice, in our problem it may be bound by the grariylaf network
link division. The maximum number of augmenting paths isthuhe number
of TDM slots or SDM lanes, and the complexity of the algorite®(|E| - s).

3.3 Flow algorithm for the contention-free slot model

The flow algorithm can be applied to a graph in which each negeesents a
network router and each graph edge a network link, but it ¢smlze applied

to the “split” graph introduced in Chapter 2. In the formeseait will produce

a routing function (a way of distributing connections’ load the physical

links) suitable for Model 6 of Chapter 2. In the second cagwatluces an
contention-free slot allocation with proper alignmentéaich communication
channel.

The produced solution nevertheless has some disadvantdgesflow algo-
rithm does not take into account how many different physiedhs are used to
allocate the communication channel. We mitigate the effetthis problem
by the introduction of one heuristic: for each augmentinthgaund by the
flow algorithm, we attempt to allocate more slots, preferaoinsecutive to the
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one just allocated, on the same physical path. This is algseated to reduce
the header overhead, because consecutive slots over tleepsdimmay skip
the routing header. While this heuristic may reduce the remal different

paths generated for one communication channel by the flowrithign it does

not completely eliminate the problem. The result of the floaynbe using
multiple paths. The dAElite network that we present in Chagt supports
multi-path routing.

We can further reduce the total number of paths used formguiy falling
back to the single-path allocation algorithm if the mubitip solution does not
have an advantage in terms of either path length or numbetilizied slots.
Models 8 and 9 in Chapter 2 fall back to the single-path sotytivhile Model
7 uses a pure-flow approach.

Routing over multiple paths may result in another unwantiéece namely
out-of-order delivery. Out-of-order delivery can ariseemtsome packets take
longer paths than others (Figure 3.12a). Solutions to ttablpm consist of
the reordering of packets at some point of convergencemiitid network or at
destination. This approach however can result in reassedeialdlock [MS80]
(Figure 3.12b) or in the case of reordering at the point ofveagence may
introduce circular dependencies also causing deadlogki(&i3.12c¢).

deadlock when reordering deadlock when reordering

causes of O .
out-of-order arrivals at destination due to at the point of convergence
insufficient buffer space due to a circular dependency
A (reassembly deadlock) between input queues
@ o @ {buffer! A1 J[IB]
< A _TTIITA] ==
& [ B: I Ac]
a) b)

Figure 3.12: Different delays causing out-of-order deljvé) and deadlock
situations (b, c).

Using the contention-free routing model it is possible tofgren multi-path

routing while completely avoiding out-of-order delivenycawithout the threat
of deadlock. The network traversal time is proportionalh® humber of hops
on the path taken by packets and is not influenced by otherfacthis allows
us to determine at design time for a given set of paths and stegiting slots
whether they arrive in order or not. A verification step isfpened in-between
calls to the augmenting path finding function and paths tlwadevproduce out-
of-order deliveries are discarded from the solution. Thegervation is still
maintained so that the flow algorithm does not attempt tocatk the same
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paths again. Although this is suboptimal it is necessary.

The flow algorithm applied to the split graph has a complesity) (| E||S|?)

where E is the set of edges of the original (non-split) graph #hthe set of
slots. A single search for an augmenting path is performed eamplexity
O(|E||S]) because each edge has been split jstoslots, and at mostS|

searches are performed because each path will use one ghod gmon-split)
link from the source node and that link only H&3§ slots.

The algorithm selecting the paths that should be discasipdeisented in the
following section. The algorithm is optimal in that it minires the bandwidth
of the discarded paths (and thus it maximizes the combinadvaidth of the
remaining paths).

3.4 Path selection for in-order delivery

When a conflict exists between paths generated by the flowithigoin the
sense that they would produce out-of-order arrivals, wesbdo discard as
many of the paths as necessary, until the remaining onesipeazhly in-order
deliveries. We use a deterministic algorithm based on dyn@anogramming
to select which paths need to be discarded.

The problem can be formulated as a Monotonic SubsequenckleRro
[Sch61], for which optimal solutions exist with polynomi@ne complexity.
The paths are ordered by slot departure time and the solotigst comprise a
subsequence with only increasing arrival times.

Further complications arise from particularities of ouolgem. Because
consecutive slots have a different payload efficiency (eousve slots do
not need to repeat the packet header), the items in the semumeed to be
weighted, and, the algorithm needs to take into account tlag-around that
occurs at the end of the slot table.

The associated weight for each path does not introducefisgni changes to
the algorithm, but in order to cope with the wrap-around, dlgorithm will
have to be applied repeatedly in a window which slides ovelligh of paths.
A similar problem taking into account wrap-around problesrdéescribed in
[AAN 107].

A formal description of the algorithm is given in Algorithm431. The algo-
rithm is optimal in the sense that it provides the highessitds bandwidth for
the given set of paths.
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Algorithm 3.4.1: In-order path selection

input : set of paths with given departure time slot, count of altedalots and length
output: reduced set of paths with in-order delivery

s < number of time slots;
Duplicate path;...p,, asp,+1...p2, With delays;
solution + 0;
for Vi € {1,2,...n} do
consider seQ={p;...pitn-1};
Q <+ Q\ {p; € Q |p; arrives later tham; ,,_1 };
Q is the working window;
initialize t1...tay,, tg = 0;
for all flowsp; € @ do
best + 0;
for all flowsp, € Q,¢ < j do

if p, arrives beforep; andt, > tpes: then

best <+ 1;
‘ predecessor; < g,

end
end
tj < tpese+ bandwidth ofp;;
if t; is best solution so fathen

‘ solution <—solution reconstructed by following the chain of

predecessors gf

end
end

end

The complexity of the path selection algorithmO$n?) wheren is the number
of paths to the destination and is given by the three nestedslin the
algorithm. In practice the value of is very smalln < |S| and this algorithm
does not contribute significantly to the running time of thecation.

3.4.1 Proof of optimality for in-order path selection

In the following, by path we will refer to a path from sourcedeestination and
an associated set of contiguous available slots on that path

Let A be the set of all pathd = {p;|p; is a path}. In the following we will
assume thatl has at least one element.

Let us assume, without any loss of generality, that withinaan of the size
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of the slot tablem, p; departs no later thap;1,Vi € {1,2..n — 1}. We say
without loss of generality because the indi¢esf p; can be chosen in such a
way that the departure times of paths..p,, are chronologically ordered. Let
b; > 0 be the bandwidth delivered by pathandr; the arrival time of path;
when considering a particular slot table revolution startitp; (Figure 3.13).
The bandwidth takes into account the header overhead.

T
arrival

departure '

Figure 3.13: Slot table wrap-around.

Definition 1. A solution to the problem is a non-empty sétC A which
ensures in-order delivery.

We formalize the requirement for in-order delivery as:
Vpi,p; € X with i <j — 1, <rj, rj<nri+s

wheres is the duration of one slot table revolution. Note that at s®ntaining
a single path, that is, all sets of the forkh = {p,} are solutions because
a single path cannot produce out-of-order deliveries. @she previous
formalization we observe that the implication is alwaystaince there is no
1 < 7 among the valid indices.
Let {x be the set of all solutions.
p;€X
Letus denoteB(X) = Y b,
vie{l..n}
Definition 2. We call an optimal solutiopd € £x, a solution that maximizes
B(A)
B(A) = max B(X
(A) = max B(X)

Let & 4 be the set of all optimal solutions.

Let X; € {x be a solution with the property that € X;, let{x, be the set of
all solutions containing;, and.4; an optimum over the séty;.
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Lemma 1.

Proof. We use the following property of the maximum:

max_ f(z) = max(max f(z), mayx f (v))

We show thaty = U £x,. Obviouslyéx, C &x, Vi sincelx is the set
ie{l.n}
of all solutions, and also U ¢x, C &x. For the reverse implication, if
ie{l.n}
X € {x, according to Definition 1, there is at least one elemegnt X, but
thenX € {x, becaus€y; is the set of all solutions that contaif. O

This implies that by finding the maximum in each g&t and selecting the
highest value found, we obtain the global maximum. It alsplies that the
element ing x, for which this maximum is achieved is a global optimum.

Explanation: In algorithm 3.4.1, the outer loop iterates over the locdina
Ai.

We show how the optimum can be found over the&ggt The solution can
be easily generalized since the table of slots is periodicaaperiod with the
length of one slot table revolution can be chosen so thagitstvith a slot
associated with any of the paths

Explanation: In the implementation of the algorithm, this is achieved by
duplicating the list of paths with the proper increment inval time and
selectingn paths starting at position As an optimization, paths that are
already known to conflict with path; in terms of order of arrival are already
discarded at this point.

Let@, ; be asubsets ol sothatQ; ; = {p; € A|1<i < j}

Let X ; with j € {1..n} be a solution with the property that; ; C Q; ; and
p1 € Xy 5 andp; € X ;. Let{x, ; be the set of all such solutions.

Note that anX; ; does not necessarily always existpasaindp; may produce
out-of-order deliveries thu§y, ; may be the empty set, but a solution exists at
least forj = 1 whichis X ; = {p1 }.
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We defineA; ; as an optimal solution within the subsg, ;, thus

B(Ai;) = max B(Y)

Yeixy,

Sincelx, , has only one element, which{g: }, A1 1 = {p1}.

Lemma 2. For anyk > 1, if A, j exists, we can compuié; , = A ; U {py}
by selectingj < k which maximize# 4, ; with the restriction thap; and p;,
produce in-order delivery.

Proof. We first prove that the in-order delivery condition fos and p;, is
sufficient to ensure in-order delivery for the entire skt;,. If A;; is a
solution, r; > 7, Vi < j = rp > r; > r;, Vi with the property
thatp; € A; ;. Since we are only interested in the case whdig, exists,
ri < 11+ s, butry <, Viwith the property thap; € Ay ; = 7, <7 +s,
for the same values af which is the second property required by definition 1.

We prove by mathematical induction that this method of aoiesing A, ;,
ensures the optimality criterion.A; ; = {p:} is obviously optimal, since
when a single path is available no more bandwidth can beeatelivthan that
provided by the path itself.

We prove the induction step by contradiction. Assume;..A;;_; are
optimal sub-problem solutions as earlier described!;lf, were not an optimal
solution, there exists!] , so thatB(A] ) > B(A1 ).

A . contains at least one elemgntwhere; < k. Letp; be the element with
the highest index < k. Let A ; = A} \ {px}. A} ; is a set containing only
elements from?); ; and provides in-order delivery because its superbsgt
provides in-order delivery.

{p;,pr} provides in-order delivery for the same reason, which iggplihat
A1 U {py} respects the requirements for in-order delivery. It foklothat
Ay 1 is at least as good a solution &s ; U {p;} and as a resulB(A, ;) >
B(Ai,;) + by, but B( ,17’?) > B(Air) = B( ,17]») + b > B(Ag) >
B(Ai i) +br = B( ’17]-) > B(A; ;) which is impossible, becausé, ;
was already assumed to be an optimal solution t¢he subproblem (from
a previous induction step, ds< k). O

Lemma 3.
B(A;) = max (B(Ai;))

ie{l.n}
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Proof. We again use the property that: max f(z) =
r€AUB

max(r;leazlc f(x),rzjleaé(f(y)). We show thattx, = L1J §x,,- It is first

i=1..n
of all obvious that{y,, € £x, as any element ofx, , is a solution and
it contains p;, therefore U {x,; € &x,- For the proving the reverse

i=1..n
implication{x, C U ¢x, ,, consider an element; € {x,. Sincen is a

i=1..n

finite value, we can fing <= n so thatj is the highest index of an element
pj € X1, that isAk > j,pr € X1. It results thatX; C Q1,5, but at the same
time we also know thap, € X, p; € X; and X, is a solution, therefore
X € §X1,j' |

This implies that by finding the maximum in each ggt ; and selecting the
highest value found, we obtain the maximum oggr. It also implies that the
element inlx, ; for which this maximum is achieved is optimum owg, ,
which based on Lemma 1 also a global optimum.

3.5 Iterative maximum-bandwidth-search multi-path

As mentioned in Section 3.3 the flow algorithm may generaletisos with

a less than optimal header overhead. In addition some oféties pnay need
to be discarded due to out-of-order deliveries. On the dilaad the single-
path approach is more restrictive in terms of routing and maty always
find a solution, but it does optimize slot arrangement for imamxn useful

throughput.

We study another method of computing multi-path allocatibased on the
single path algorithm. This method is used in Model 8 in addito the

other methods presented in this chapter. Compared to theafppnoach, the
advantage is that this method makes use of the header odesp&enization

and the number of different paths can be limited to a givemesal The

disadvantage is that unlike the flow algorithm it cannot ldisp unfavorable
paths once they are allocated.

A formal description of the algorithm is given in Algorithm331. Theallocate
function implements the functionality of Algorithm 3.1.2tlvthe difference
that crtSis initialized to S \ slotMasksuch as to deny the usage of slots in
slotMask The function is assumed to return a list of the allocatetsslo
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Algorithm 3.5.1: Iterative Maximum Bandwidth search algorithm

allowedPathLengtk— length of shortest path froilBourceto Destination
pathLengthLimik— allowedPathLength- 16;
DWheeded— bW;.;
slotMask« 0;
paths« 0;
while bWheededa> 0 dO
PWequest— DWheeded
S « allocatgSourceDestination bw,..q..s:, allowedPathLengttslotMasK;
if successhen
| finish;
else ifpaths# maxPathghen
PWeequest<— any;
S+
allocatg Source Destinationbw, ..t , allowedPathLengttslotMask;
if successhen
bWheeded— DWheeded— Bs;
slotMask<«— slotMaskU S
paths«+ paths+ 1;
continue;
end
allowedPathLengtk— allowedPathLength- 1;
if allowedPathLength- pathLengthLimithen
| fail;
end
for i where s; € slotMaskdo
| slotMask«— slotMaskU {s;+n—1 mod n};
end

end

The algorithm executes up tmaxPathsiteration. In every iteration it first
attempts to allocate all remaining bandwidth using one péathinimal length.

If the allocation is unsuccessful, the algorithm has twaanst to increase the
allowed path length or to allocate part of the bandwidth gisiminimal length
path. The second option is preferred unless the maximum euwipaths
has already been reached. When no bandwidth at all can lwattbfor the
given path length the algorithm increases the allowed paigth. The same
pathLengthLimibf length of the minimum path plus 16 is used as in the case
of the single-path search as well as the limit.6f explored paths.

To avoid out-of-order deliveries, the algorithm uses a-siasking technique
(Figure 3.14). A slot mask is updated with all slots that watecated
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(Algorithm 3.5.1, Line 1) but in addition, every time thealled path length

is increased one guard slot is added before a previouslgaaéld slot or a
previously marked guard slot. If a path of lengths allocated, before a path
of lengthn + m is allocatedmn guard slots will have been inserted in front of
the slots used by the path of length This ensures that packets traveling over
the path of lengtm + m will have enough time to reach the destination and
will not be overtaken by packets traveling over the shortghp

departure arrival

0110 ,,,, LETH]

PN

iE
i

5 hops

[3)]

@
O

allowedPathLength
he f " slotMask |
the first allocation
finds the shortest path lllll 3

no other path with this length is found
so allowedPathLength is increased

every time the allowed path
length is increased we OIIII 4
introduce guard slots that

prevent allocations starting 0...5 5

at those points in time
allocation denied because it
uses one of the guard slots EIIIII

Figure 3.14: In-order delivery is ensured through the usguafd slots.

The complexity of the algorithm is linear in the number obaled paths, but
the single path allocation which is a sub-step of the algorihas exponential
complexity in the length of the paths.

3.6 Related Work

A solution which performs mapping, single path routing atat allocation
in the Athereal network is presented in [HGRO07]. While we dbperform
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mapping, our solution is sufficiently similar to be appliin a combined
mapping-routing flow.

Enhancements to the solution in [HGRO7] were proposed inGAh] to

deal with multiple use-cases and in [HCGO07a] to share albutéimeslots
between multiple connections. These enhancements do meatlgiconcern
the algorithm allocating individual channels but rathes telation between
the different allocations.

A graph-splitting approach was employed in [MBD5] and [MMBO07] to
provide online allocation. The algorithms based on grapittisg have the
advantage of running in polynomial time, but they can onlgdace one-slot
allocations.

A solution for path and slot allocation in the Nostrum [MNA&) network but
also applicable to Athereal is presented in [LJ08]. Thetiwolus a technique
equivalent to the graph splitting approach entitled “lagioetworks.” The
algorithm is also part of an iterative approach.

A rip-up strategy to deal with multiple channel allocatiois used in
[SBGT08]. Individual allocations are still performed by enumamg all
feasible paths and selecting the best path found. The papdies that storage
memory for all paths is required, which we avoid in our baagiing solution.
A detour of maximum 2 is allowed, which is much lower than tladue we
allow in our experiments. The rip-up approach could also to@leyed in
conjunction with our algorithms.

We have previously proposed a multi-path allocation atbori producing
disjoint paths for security applications in [SG11]. Muyf@th routing with
disjoint paths has been previously studied in [Kol05, LGOApplications of
multi-path routing for security, load balancing and faaletance are discussed
in [Rab89].

Multi-path routing in NoCs has been previously proposedMABDMO7],
the method presented there requires a complex mechanisnstioeein-order
delivery but it does not require complex calculations to fimel paths like our
solution does. In-order delivery in larger (system-levedjworks was studied
in [KMF +05].

The problem of multi-path routing in networks with resoun@servation
i.e. asynchronous transfer mode or ATM was studied by Cidbrale
[CRS99, CRS97], and was shown to provide a benefit in termsmi@ction
establishing time, while having mixed results from the haidth point of
view.
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A close equivalent to our proposed multi-path routing schémlarge scale
networks is non-redundant dispersity routing [Max07].

An overview of routing algorithms for QoS NoCs is presentad GN98].
The algorithms referenced here however do not need to takeaitcount
the complexity of performing the allocation in the time damas well (slot
allocation).

Our exhaustive search algorithms improve upon the statheofit in terms
of size of the network they are able to deal with and the marinaliowed
detour. To our knowledge we are the first to propose multipatiting in the
context of networks based on the contention-free routingeho

3.7 Conclusions and future work

In this chapter we have presented in detail the allocatignrahms used for
the experiments in Chapter 2. In general we strive to actoptienality in our
solutions, either by performing an exhaustive search oftietion space or
by designing algorithms that find an optimum in more efficieays.

We accomplish this to a large extent, but even though thédtsasfiindependent
steps in the allocation process are known to be optimal theativresult of the
allocation is not necessarily so. With the addition of hgticé we produce
results very close to the theoretical bounds, as attestethiebgxperimental
results in Chapter 2.

While our methods compare favorably to the state of the adrims of quality

of the results we do not yet support all the features of thte gt the art.

The ability to perform mapping, simultaneously deal withltiple usecases
[HGO7] and support for channel trees [HCGO07a] are subjectiufure work.



Chapter 4

Latency and slot selection

n the previous chapters we have focused entirely on allaggpiaths
I through the network that can supply a given bandwidth. Ia dhiapter

we shift our attention to the latency of network communimatiln Athe-
real the network latency has two components: the netwoxetsal latency,
which depends only on the path length, and the scheduliegdgt the time
a connection has to wait for its turn in the TDM table. Whiletérms of
network traversal latency not much can be done assuming ianonim length
route is already selected, we explore how latency is affeoyethe selection of
different patterns of slots in the TDM schedule. We also mheitee the effect
of network latency on the execution time of actual applaraiunder different
optimization scenarios.

The operation of slot selection is performed after a patlwvéeh source and
destination has been found, and consists of selecting aetsolbghe slots
available on that path, subset which preferably has a minimeber of

elements and necessarily meets the bandwidth and lategairements. Slot
selection is performed for each of the candidate paths foyrde path-finding

algorithm described in Chapter 3.

The problem can be formulated as follows: along a given chaidipath, a set
of slots with proper alignment (available slots) is foundmimal subset of
this set should be selected, which provides a required bigtidand latency.

A greedy algorithm to solve this problem was proposed in [B¢dn This
algorithm was however not optimal, in that it did not minimithe resources
that were allocated to satisfy the constraints. We proposagorithm based
on dynamic programming that we show to be optimal. The newrglgn
presents savings in terms of used resources averaging 6&eatugilization

105
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ratios while at certain design points (particular combora of latency and
bandwidth requirements) it can provide an improvement gis b 33%.

The algorithms we present here are applicable both the &gheetwork, and
the dAElite network that we propose in Chapter 6. Some of fitgrgzations
in these algorithms specifically target the header overloéathereal while
our network does not have a header overhead. We will indiiatiee proper
time what changes need to be introduced in the algorithm ppau the
different models. When comparing to the algorithm in [Hajh@® use the
model with headers, as this is the one targeted by the congpaigorithm.

We also develop a more powerful model to express latencytieints which
allows setting bounds on the latency of longer messages. ndigde an
algorithm for optimally solving problems that use this fadation as well.

This chapter is organized as follows: Section 4.1 presdmseffect of slot
selection on communication and application performanneSdction 4.2, we
formalize the problem definition. Section 4.3 presents ttevipusly used
algorithm for the problem of slot selection. Our proposegodthm and a
proof of its optimality is presented in Section 4.4. An erdeth problem
formulation and its solution are presented in Section 4./8e domplexity of
the proposed algorithms is analyzed in Section 4.6. Expmriad results are
presented in Section 4.7. Related works are presented tioSdc8. Section
4.9 presents our conclusions.

4.1 The effect of slot selection on communication and
application performance

In this section we study the effect of slot selection on comication param-
eters and the performance of applications that are usingJtii2to commu-
nicate with a remote memory. For the communication perfocaave will

use analytical measures, while application performandebeievaluated on
an FPGA system based on the Athereal NoC and Microblazegsarse The
analytical model will assume the presence of headers.

Under the contention-free routing model link bandwidth igidkd into a
discrete number of TDM slots. Each communication channelll@ed a
number of slots that determine the delivered bandwidth iralamost linear
fashion. The distribution in time of these slots has an inhpacthe time a
connection has to wait for its turn during a TDM wheel revimatand hence
is important when considering latency restrictions.
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Even when latency is not critical from the point of view of thgplications,

due perhaps to latency hiding techniques, lower latencashave a beneficial
effect on the size of the buffers used in communication asgitimal operation
buffer sizes are proportional to the round trip delay.

Particularities of the Athereal implementation regardireyheader overhead
make slot selection a more difficult problem. Athereal eygpla header
carrying routing information in the first slot out of a seqoerof consecutive
slots belonging to the same connection and also repeate#uehevery three
slots in longer such sequences to allow transmitting @edit

The result of this is that a sparse distribution of slots fles a better latency
but has a worse header overhead while a dense (groupedputisin has
worse latency but better payload efficiency (Figure 4.1).

grouped [T T [ T T T T 11
BT [T I T T BT J1

sparsef[] [ [ T [ [ AT [ [ H

Demptyslot

EI] slot with header

[ stot with 100% useful payload

Figure 4.1: Header overhead varies with the distributioslafs.

Many combinations, regular and irregular are possiblehénexperiments we
present here we will use the patterns in Figure 4.2 whichr efieious latency
- header overhead trade-offs. The header overhead is alvedy®en 1 word
in 3 (the size of a slot is 3 words) and 1 word in 9, thus betwekd% and
33.3%. The reported latency represents the average waitimegof a two-
word message (thus a message that only requires one slotgliecan be
transmitted. The efficiency is the ratio of useful payloath®total amount of
data transmitted on a link.

The data present in all these figures was computed using &rtiealamodel,
which, due to the predictable nature of the network is cotepleaccurate.

The average latency is not necessarily the only concern,articplar for
applications with real-time requirements the highestrieyemay be of more
importance. Figure 4.3 presents a histogram of the latenice 2 word
messages of the allocation schemes in Figure 4.2 that usats8 shs can
be expected though, the result is very much in line with theraye latency
value, and the distribution of latency values is flat.

For messages up to two words in length a single slot is suffi¢@®transmit
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Figure 4.2: The average latency and bandwidth deliveredlbgations using
different patterns of 32, 8 and 4 slots out of 32.

the entire payload. The maximum latency is thus the longelstycbetween
two allocated slots. When we consider larger message sinaesputing the
latency becomes more difficult. Figure 4.4 shows a histogrhtatencies for
3-words messages.

It can be easily seen in this case that the sparse distnibofiglots (a) is no
longer the most efficient one, being surpassed by (b) and erage also by
(d). A 3-word messages size is typical for a single word wiriémsactions:
one word represents transaction qualifiers, one is the ssldred one the data
to be written.

When the message size is even further increased, for examnfi@word
message which would correspond to a 8-word write trangatioexample the
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Figure 4.3: Histogram of message latency (2 data words) &oious slot
distributions.

update of a line of cache, the balance is shifted even futthive advantage of
grouped slot patterns and the disadvantage of sparsernzatiigris can be seen
in Figure 4.5. Slot distributions that for short messagesizere surpassed
in terms of both bandwidth and latency: (c) and (f), now pdevihe best and
second-best average latency.

In Section 4.4 we propose an algorithm for slot allocaticat ttonsiders only
the maximum 2-words latency problem, while in Section 4.5nilEintroduce
an algorithm that optimizes the slot allocation for the mafes of longer
messages.

Measurements of the effect of latency in a real system

We would like to determine if the previous analytical measuof latency
have a corresponding effect on the preformance of reabliglications. We
use an FPGA prototype supported by the Athereal network iprirckvhich
a MicroBlaze processor running various applications perfoaccesses to
a remote memory, i.e., a memory to which it only has accessutjtr the
network. The test setup will be presented in detail in Chapte
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Figure 4.4: Histogram of message latency (3 data words) &oious slot
distributions.

As benchmark applications we use from the most to the leastidding in
terms of memory bandwidth: remote memory read and writedpapsmall
subset of the Livermore Loops kernels [McM86], and a JPE@dieg appli-
cation. For each of these applications, each of the slotqetin Figure 4.2 is
employed on both the request and response path (alwaysheitatme number
of slots both in both directions), and with all possible atitgents between the
request and response slots. We evaluate both the cases latesmey hiding
techniques were used and where they were not.

In Figures 4.6-4.8, we present histogram of the relativeciase in application
running time compared to the case where the entire link battdwas dedi-
cated to the communication channel. A slot table of 32 slas used in the
experiments, thus/4 of the link bandwidth corresponds to 8 allocated slots
and1/8 of the link bandwidth to 4 allocated slots.

Figure 4.6 represents experiments where no latency hidicigniques were
used. As the system is most sensitive to increases in latédrdigplays the
highest variations in application running time.

It is important to note that there is significant overlap lestw the scenarios
using 4 and 8 slots, that is, for some patterns of allocatatd,s8ame or better
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Figure 4.5: Histogram of message latency (10 data wordsydadpus slot
distributions.

performance can be obtained by a 4 slot allocation comparezht8 slot

allocation which essentially uses double the network nesmu Also some
of the 8 slot allocation perform (almost) same as well as tiiebfindwidth

allocation. The gap in performance between the most and &ffisient

allocation is significant, the performance in the synthbéachmarks varying
by a factor of almost 3x. The JPEG application is computatigrintensive

and only uses the remote memory to read the input data andgeadhke output
result. Some variation in performance is observed neveghgbut not to the
same extent as in the case of the synthetic benchmarks.

The second round of experiments involves a latency hidiogrigue for the

write transactions, that is posted writes (with a bandwiditimization to

group consecutive write operations into bursts when theesdds are con-
secutive). The same type of histograms as in the previoues ar@spresented
in Figure 4.7. There is now a more clear separation betwesmltbcations

using 4 and 8 slots. The spread of results is also diminishet ¢the different
X axis.)

With latency hiding techniques for both the read and writerafions (Figure
4.8) there is a clear separation based on delivered barfgwidible especially
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in the cases of the read and write loops. There is still someasgphetween the
best and worst case for the same number of slots, but muclktedduhen
compared to the previous scenarios. The JPEG applicatiim,ite/very low
average bandwidth requirement is virtually unaffected bthlthe pattern and
the number of allocated slots.

Our conclusion is that, if latency hiding techniques areussd, the distribu-
tion of slots has a very important effect on application perfance.
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4.2 Problem formulation

It is relatively easy to verify whether a given set of sloteypdes the desired
bandwidth and latency. It is sufficient to determine the mmaxn distance (in
time) between two slots the number of slots and which slatsqmt a header
overhead. Comparatively, given a set of slots which praviad®re than the
necessary bandwidth and/or better latency, it is much mifiieudt to deter-
mine a minimal subset of slots which provides the minimunun@mnents.
Finding this subset is the problem that we would like to solve

To simplify the implementation, the bandwidthv is always expressed in
terms of words per slot table revolution. The number of wgresslot table
is derived from the bandwidth of a link, the size of the sldiléa required
bandwidth, and by rounding up to the nearest integer value.

The worst-case scheduling latency for a communication rodidris equal to
the maximum distance in time between two allocated slots dkpressed in
slots. The latency for the transmission of one word of datr tive network
is equal to the scheduling latency plus the network travéasency which is
trivial to compute since it is equal to the path length.

max latency

LI 7 {1 [ ]

delivered bandwidth
E] unused slot

occupied (background) slot
|:| current allocation

Figure 4.9: Problem formulation.

4.3 The previously used algorithm

The algorithm previously used to solve this problem was gsep in [Han09].
It is a greedy algorithm which does not guarantee an optimlatisn. The
steps of the algorithm are illustrated in Figure 4.10 andran&b description is
given in Algorithm 4.3.1.

The algorithm always allocates the first available slot, et attempts to find
available slots situated at the maximum distance imposdteiatency limit.
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Algorithm 4.3.1: Slot selection algorithm presented in [Han09]

input : set of available slotgl C S = {s1..5,,}
I maximum allowed latency measured in slot periods
B,- required bandwidth
output: A C A which satisfies the bandwidth and latency constraints

firstFreeSlok— 1;
while firstFreeSlot< n A Sirstrreesiot A do
| firstFreeSlot— firstFreeSlot+ 1;
end
if firstFreeSlot> [ then
| fail;
end
A~ {SfirstFreeSIo};
lastAllocatedSlot— firstFreeSlot
while firstFreeSlot+ n — lastAllocatedSlot> | do
slot + min(lastAllocatedSlot- I, n);
while slot > lastAllocatedSloh sgor € A do
| slot« slot—1;
end
if lastAllocatedSlot slotthen
| fail;
end
lastAllocatedSlot— slot;
A — AU {Ssiot};

end
slot « firstFreeSlot
while B4 < B, do
if slot> n then
| fail;
end
if sgiot € A then
| A — AU {Ssiot};
end
slot < slot+ 1;

end

If these slots are occupied, the algorithm retreats to aitada slot farthest
from the current slot but within the latency limit.

Slots found in this way are repeatedly added to the solutidii the wrap-
around latency is satisfied or the algorithm fails to find & #hat can be
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to previously allocated slots)

Ej % ] ] ] m ] ] ] ] ] ] Ifirstslotallocated

| max latency |
I I

go as far as the latency limit allows

—
il A [ A2 [ [ [ 1111

e
then fall back to the last unoccupied slot

/—\
lZ 1|1 HVZ |11 1 |

v 1B | 111 H

<—
j repeat until wrap-around
latency is satisfied

] allocate additional bandwidth
until requirement fulfilled

0 h
[(TA THIEZZ 1 1 1 1 I 1 Sptimal would be
E] unused slot |:| current allocation

occupied (background) slot E]:| allocated slot with header

Figure 4.10: Steps of the original algorithm.

allocated.

In the end, the algorithm adds available slots as necesssdiybandwidth
requirement is satisfied.

As illustrated in Figure 4.10 the algorithm does not alwaysipce an optimal
result. Some of the causes may be:

e The original slot choice leads to an suboptimal solutionisTould be

avoided by running the algorithmtimes starting at each slot.

e Successive allocations do not take into account the factrthdtiple

consecutive slots have to be allocated anyway because bétiowidth
requirement.

e The final allocation for bandwidth does not guarantee a mawireffi-

ciency in terms of headers.
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4.4 Proposed algorithm for the slot selection problem

We propose an algorithm for slot selection based on dynangigramming.
We show this algorithm to be optimal in that it uses a minimahber of slots
to meet the latency and bandwidth constraints.

A formal description of our algorithm is given in Algorithnds4.1 and 4.4.2.
We denoter as the number of slots after which a header needs to be rdpeate
slotSize the size of a slot in words, headerSize the sizeedfidfader in words.

If the network does not make use of headers the value of h®aderan be set

to 0 andr has a value of 1n is the number of slots in the TDM table. We
assume &Zatency A) function is defined which computes the latency provided
by a set of slotsA.

Our algorithm first restricts solutions to a list of slotsrtay with one non-
selected slot followed by one selected slot (Figure 4.13)it&ating over all
rotations of the slot table, with wrap-around, we ensureciheerage of the
entire solution space, one exception being a table witHah selected, which
is treated as a separate case.

Eg\zesrlgtelected slecond slot always selected
: | [ 17 11 1111]
egll [ 12 111111111
DEO TP | 111111 A
E vz | LI 111117 |

Figure 4.11: Solutions start with one non-selected, falldviby one selected
slot.

We then build a set of optimal partial solutions, ; ;. Partial solutions are
constructed by adding slots to other partial solutionsluhé set of partial
solutions is sufficient to guarantee it contains an optimurer dhe entire
solution space.

In the following we give a formal description and in-deptipknation of our
algorithm. We will assume, without reducing generalityttath solutions and
partial solutions start with a non-selected slot followgdhe selected slot.

Let S be the set of all slot§s, s9, ..s, }, and letA C S be the set of available
slotsA = {s; € S|s; is not occupied.
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Algorithm 4.4.1: Optimal slot selection

input : set of available slotgl C S = {s1..5,,}
I maximum allowed latency measured in slot units
B,- required bandwidth
output: .4 which minimizeg.4| while satisfying bandwidth and latency constraints

if B, > B4V LatencyA) > [ then
| fail;
end
hdrSlotSize— slotSize- headerSize
solutionA «+ A;
BA “— BA;
for Vi € {1,2,..n} do
reorder original4, S to start with slots;, s; becomes;;;
if s € Athen
Az 11+ {82};
Ba,,, < short
for Vk € {3,4,..n} do
for Vi e {0,1.r —1},Vj € {1..k — 1} do
-Ak,i,j — @;
BAk,i,j +— 0;

end
i=1;
for Vj € {2.k—1} do
for v € {0,1..r — 1},Vy € {max(2,k —1)..k — 2} do

if B, ., <Ba,., , +hdrSlotSizehen

‘ Ba,., < Ba,.,_, +hdrSlotSize
Apij — Ay zj—1 U Sk;

end

end

end

for Vie {0,1.r —1},Vj € {2..k— 1} do

x=(i—1) mod r;

gain « slotSize

if i =1then

| gain<« hdrSlotSizge

end

if Ba,., <Ba,_,,,; , +0ainthen
Buay,,; < Ba, 1., ., +0an
Apij < Ar—1,2,5-1 U Sp;

end

end
end

> search for best solution (Algorithm 4.4.2);

end

end




4.4. PROPOSED ALGORITHM FOR THE SLOT SELECTION PROBLEM 121

Algorithm 4.4.2: Search for optimal selection

input : all local data structures in Algorithm 4.4.1
output: .4 which minimizeg.4| while satisfying bandwidth and latency constraints

for Vk e {n—1+1,..n} do
/I LIMITING THE SEARCH TOn — [ + 1 ENSURES THAT THE LATENCY LIMIT
// 1S OBEYED AT WRAP-AROUND
for Vie {0,1.r —1},Vj € {1..k — 1} do
if B, < Ba,., then
if j < |A| \Y (j = |.A| ANBy < BAk,i,j) then
/I NOTE THAT | Agi ;| = j
A -Ak,i,j;
Ba < Ba,, ;;
end
end

end
end
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Let Ay ; ; be a subset ofsy, s3..., 5.} N A with s, € Ay ; 5, having exactly
j elements, i.e.|A;; ;| = j, and ending withy selected slots, wherg is
any natural number so thatmodr = i or in other wordss;,_, ¢ Ay ;; and
{Sk—q—I—la Sk—q+2-++ Sk} C Ak,i,j- Obviouslyj < k — 1.

Furthermore, partial solutions are required to obey thenkat limit on the
interval 2..k, i.e., there should be no gap larger thian the set of slots. They
are however not required to obey the latency limit at the vawqund of the
TDM table. Whether they obey or not the latency limit at weapund is only

a function ofk because we know that, is the last slot belonging to the set and
the first slot isss.

(T VA e T 11T

latency !
l I I I I I Dé:l [f || consecutive 2
I I I I:I I I .%: consecutive 1
HENEEE -.iﬂ

Figure 4.12: Building partial solutions by adding a slotrett €nd of an existing
partial solution.

The reason behind the classification of partial solutionghgir modulor
number of ending slots is that it enables us to compute théviidih obtained
by attaching one additional slot at the end of the partialtsmh (Figure 4.12),
that is, if the bandwidth delivered by;,_1; ;1 is Bay 151 the bandwidth
delivered byAy_1 ;1 U sy is:

Bay_ i _10se + slotSize-headerSizewheni = 0

By, .. = _ :
k,(i+1) mod ,j { Ba,_.,,_.us, + SlotSize otherwise
4.1)

When attaching one slot to a solution in which the last slotasselected (a
non-consecutive slot, line 2 in Algorithm 4.4.1), we alwaay the header
penalty and the number of slots at the end of solution becdmes

Bait mod vy = BAy_p.i;_10s, + SlotSize-headerSize 42)
wherem > 1 '
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It is easy to see that any solution having at least two slgts;; j > 2 can be
built from a solutionA, , ;1 by adding a new slot on the positidn and the
delivered bandwidth can be computed using one of the Eqatidl and 4.2.
To obey the latency limit it is mandatory thiat— = < [.

The global optimum is found by enumerating all the generatggl; sets and
selecting the one which:

1. Provides the necessary bandwidth

2. Obeys wrap-around latency requirement

3. Has the lowesf value (number of used slots)
4. For the lowesy value has the highe#ly, , .

Proof of optimality

Let us denoted,, ; ; a setA;; ; that is optimal in that for the giveh, i, j it
provides the largest bandwidth. We argue tHat; ;, if it exists can only be
obtained by adding a sldt to one optimal se#,. , ;1. Indeed, if that was
not the case, theml;, ; ; would be obtained from a non-optima, , ;_; as
Azyj-1U{sg} andBy, .. = Ba,,,_, + qwhereq is a constant dependent
only onz andk, derived from Equations 4.1, 4.2. Note that- x < latency

to obey the latency requirement.

But sinceA; ;1 is not optimal3A, , ;1 sothatBy, ., > Ba,,,, =
Ba,., —1uisy T4 > Ba,,; and Ay ; ; is not optimal, which would contradict
the hypothesis.

It results from here that if we generate all feasidlg, ;_, sets (or at least one
set for each{z,y,j — 1) ) we can generate, if it exists, and, ; ; set.

An optimum to our original problem, that is, a subsetSofvhich satisfies the
latency bound, and has a minimum required bandwidia, can always be
expressed as a sdy, ; ;, by properly selecting values fér, i andj, but since
Ay i ; uses the same number of slofsand it provides bandwidth as high as
any of theA; ; ; sets, Ay ; ; is also an optimal solution, with the added benefit
that among the solutions that ugelots it also provides the highest possible
bandwidth, which goes beyond the original problem requiets
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4.5 Enhanced formulation of the latency problem

The previous formulation only guarantees a bound on the #mennection
has to wait for its next allocated slot. This translatesdaliyeinto the latency
of sending one slot’s worth of data. Some network messagesgthare longer
than one slot. A single write operation for example has 3 woedcommand
word, an address word and a data word. Messages encodingreadte
bursts may be even longer.

Obviously an implicit guarantee exists that a 4-word tratiea will take at
most twice as long as the 2-word transaction, a 6-wordsdios 3 times as
long and so on, all because once a connection got access $tootiee latency
bound applies to the arrival of the next slot. A straightfard/way to impose
a maximum latency for the duration of am-word transaction is to impose a

latency ofmlﬁ to the 2-word transaction and use the previous algorithm.

This approach however may result in over-constraining tiatisn, as we
will show in section 4.7. As an alternative we present a seé&bot allocation
algorithm that can produce an optimal allocation with thestraint that within
any window ofw slots,n words of data can always be delivered (Figure 4.13).
By optimal allocation we mean here that a minimal number atissls used.

at least m words of data

l
|

within any window of size n
|

l
|
!

| o W7z | | 1 1] |
L —— H ——
including wrap-around

[ ]unused slot
occupied (background) slot

E]:l [T current allocation

Figure 4.13: Enhanced formulation.

4.5.1 Slot allocation algorithm for the enhanced formulaton

The algorithm we propose in Algorithm 4.5.1-4.5.2 is baseddynamic
programming. Its complexity is polynomial in the size of tiable of slots,
but exponential in the size of the considered window.
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Let w be the size of the window. The algorithm starts rotating tbetable

for all combinations
of w-2 starting slots

NV | 7 [ TR T T T

build an optimal solution
for each combinations of
i n-1slots ending at slot k

based on the combinations of w-1 slots ending at slot k-1

T
]
]
]
]
]
]
]

Figure 4.14: Algorithm for the enhanced formulation.

such that the first slot is an occupied slot. In the case thslicais are available,
either the solution consists of all slots, which is trivial, one slot can be
arbitrarily excluded from the solution and marked as ooedpi

In a top-level loop, the algorithm iterates through all plolessets of the slots
$9..8w_1 provided these slots are available and separately runsrehsies a
solution constrained to using these starting sets.

Each iteration of the top loop consists of exhaustive sesrama window of
sizew — 1 which slides over the entire slot table.

We introduce here a formal notation and describe the algoriteps, after
which we will provide a full formal description in Algorithe4.5.1, 4.5.2.

Let S be the set of all slot§s, s2, ..s, }, and letA C S be the set of available
slotsA = {s; € S|s; is not occupiedl.

Let Ay—1,sTARTC A N {s2..5,,—1} be the starting set. The top loop of the
algorithm iterates over all,,_; sTART

We consider the propertfP(A,i) to be true if A provides the necessary
bandwidth over the windows;..s; yw—1} OF {S;..Sn, S1..Sw+i—n—1} When the
window wraps-around.

We use the notation ofly ¢, . oo winne C 15151} OF A ¢, for sets
having the following relation between the values:pnd the member slots:

Sq € Akack—u7+27ck—w+3 ,,,,, Ck = Cq = 1, \V/q € {{k —w + 2]{?}}

Notice thatA c, . . 0.crwis,...c, May still contain elements; for i < & —
w + 2 as only the membership of elemenis_,,12..s; IS enforced by the-
values. Ay, ¢, sets divide the solution space in regions with a certain gntgp
For different values ok these sets may overlap.
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We named,, ¢, a valid partial solution if:
Ao, N{51.-5w—1} = Aw—1,START

and
Apc, hasP(Ag.c,,)Vi € {1.k —w+1}

A set Axyicy = Aktlep_wes..cr,l CAN be obtained from ei-
ther Ak o.c, wigce OF Akoci_wis.c, DY adding elements,, ;. A set
Ak t1,cp_wis,..cp0 1S €qual to a setdy ¢, with the proper correspond-
ing c values. In order to verify the validity ofA;,;c, , as a solu-
tion as long as it was obtained from a séf ., it is enough to verify
P(Ari1,0,1, k —w+2). Conversely, ifd 1 ¢, ,, is avalid partial solution,
Api1,0401 /{8K41} = Ao, is also avalid partial solution a$;, ¢, only needs

to verify P(Axy1,0,,15 1) P(Aks1,04.0 F—w+1) which Ay ¢, , | already
does and the absence of st@t ; has no influence since it does not belong to
any of the windows.

We define an optimal valid partial solutiof, ¢, ., a valid partial solution
Ajy1,0,,, Which minimizes|A; 1 c,,,| (the number of used slots). We
computeAy 1 ,c,,, from eitherAy o, —wi3.c, OF Ak 1,c,—wt3..c,,» SElECENG
the Ay, ¢, with a minimal|.Ay, ¢, | and ensuringP(Ax41.0,, .,k —w +2). A
proof the optimality of this method is presented in sectidh2l

We use the following numeric example to illustrate the fiowihg of the
algorithm (Figure 4.15). In a TDM schedule with 6 slots, thetss; and
s5 have already been reserved by other connections. We wishotidp a
communication channel that can deliver 4 words of data withaximum
waiting delay of 4 time slots.

I % I window size 4
E] available slot words/window required 4
occupied slot

Figure 4.15: Numeric example for the enhanced problem fatiomn

The algorithm begins by rotating the slot table with an ogedslot in the
position s (Figure 4.16). Since the TDM schedule is periodic this opena
has no effect on the communication parameters.

The algorithm will then iterate through all combinationstbé slotsss-ss
(actually we are interested in the windaw-s3 which is needed by the wrap
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around windows, but we already know the siptannot be selected). Because
slot s3 is also not available, we have only two choices for the stgrget
A, —1,s7ART UsIng the previous notation we will denote them

Aw—1,5TART= A3,000 = () and

Ay—1,5TART= A3010 = {52}

all possible combinations

T O A
A D T A
_________ -““-: A 40100

Z: B Y

Figure 4.16: Steps of the algorithm for the enhanced fortimua all slot
possibilities for the window [2-3] are considered

The rest of the algorithm will be run once for each of these,seith the
solution constrained to start with the given selection ofssl It is observed
though that the starting sets oo (Figure 4.16a) does not produce viable
solutions even for the first window;-s4, so we focus on solutions with
Ay—1,5TART= A3010-

The algorithm successively generatés sets for values ok increasing from
w to n. The algorithm does not alloww > n which in fact would not even
be very useful as we could request a desired bandwidth fontine elot table
revolution instead. There are twé, ¢, sets that can be generated with the
starting restrictionsd g)100 and A4 (0y101 (Figure 4.16b) (we represented in
brackets the; value which is known during set generation, (yy;9o does not
haveP (A4 c,1,) and therefore it is not a valid solution and will not be used i
constructingAs ¢ sets.

Ay 101 Will be used to construct twels ¢, sets (Figure 4.17)A5 (1)010 and

As (1011, both of which provide the necessary bandwidth. Whenever we
build these sets we keep track of their cost. In general eBch, set can

be used to build twady 1 c,,, Sets assuming such sets are valid solutions
and correspondingly, eachy,; ¢, ., set can be obtained from either of two
Ay.c, sets. For examplels o9 could also have been obtained fraf oo1

if such a solution were valid. When two possibilities existdonstruct a
set we prefer of course the least expensive one. For comaeign our
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algorithm implementation we use a cost®f (actually a very high integer
value in C) to denote an invalid solution. When building the,; ¢, ., sets
we verify P(Ax11,0,, .,k — w +2). Agy1,c,,, IS guaranteed to also verify
P(Ari1,041,1), Vi <k —w + 2 becausely ¢, already does

Bandwidth offered within the current window is
verified every time an A-set is generated

------i A4~°t1%1 i_._._-_-_-i A5‘1t0120 — % D I Asot00 cost2
cos cost2  SSIU -
i _____ %gl.gl A6‘0101 cost 3
i-- gl%gl. __i A5,1tU:131 i _____ VAE... As,om) cost 3
cost3  SoIT -
i _____ %gl.. A6,0111 cost 4
Bandwidths within wrap-around windows are verified - e—
when tr\:\g windvg)lwsI a\tNthgendl:)f tryg slotvrable a\lfe gl;clanerated —> | |<|T_

Figure 4.17: Steps of the algorithm for the enhanced fortimraA-sets are
generated

The number of4; combinations as presented in Figure 4.17 is increasing
exponential and limited bg“~!, wherew is the size of the window. When
the A,, ¢, sets are built, in addition to verifyin® (A, ¢c,,n — w + 1) we
verify P(A,.c, . q) wrap-around windowg € {n — w + 2..n}. The wrap-
around bandwidth can be verified just by using the valuelpf ; starTand
Cn—w+2.-Cn @nd is thus independent of the other elementd,in-, (the ele-
ments not specified by thevalues orA,,_; star?-

A global optimum to the slot selection problem is also a sethef form

A, ¢, for particular values ofd,,_1 starTandc,_,42..c,. By iterating over
all possible combinations ol,,_1 startandc,—+-2..c, and finding optimal
solutions inside the partial solution spacésc, we find the global optimum
solution to the problem.

In Algorithm 4.5.1 we give a formal description of the aldgbnn.
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Algorithm 4.5.1: Outer loop of the algorithm for the enhanced formulation

input : set of available slot¥” C S = {s1..s,}
w < n size of a window
bw, required bandwidth within each window of size
output: .4 which minimizeg.4| while satisfying bandwidth constraint

W < rotatd V) so thats; ¢ W;
best« ();
bestCost— oo;
for dods..dy—1 € {0,1} x {0,1} x ...{0,1} do
if E'Z,dz = 1,Si ¢ W then
| continue;
end
cosfw..n, {0,1}"] + oc;
if bandwidtt{0da2ds..d,,—11) < bw, then
| continue;
end
cosfw, 0dads..dy 1] 1+ 35" dy;
if bandwidtt{0dz2ds..d,,—10) > bw, then
| costw, 0dads..dy—10] + 05" di;
end
> build partial solutions (Algorithm 4.5.2);

for cica..c, € {0,1}* do
if cos{n, c1cz..c,y] < bestCosthen
bestCosk— cosin, cica..cy];
/| FOLLOW PREDECESSORS AND ADD INITIAL SLOTS
best« (;
En—wi1--En < C1..Cop,
for j «+ n—wtowdo
| ej=pre[j+1,ej11€j42..€510);

end
€9..6p—1 < do..dy_1;
for j + 2ton do

if e; = 1then

| best + best U {s;};

end

end

end

end
end
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Algorithm 4.5.2: Build partial solutions in the algorithm for the enhanced
formulation
for g < w+1tondo
for cica..c, € {0,1}*~1 do
if bandwidtticics..c,,) < bw, then
| continue;
end
if cw =1Asq ¢ W then
| continue;
end
wrapOk < true;
if ¢ = nthen
for j « 2tow do
if bandWidthjCj+1..Cw0d2d3..dj,1) < bw, then
| wrapOk+— false;
end
end
end
if —wrapOkthen
| continue;
end
if cos{qg — 1,0¢1¢2..¢4—1] < €cOStg — 1, 1cica..cp—1] then
cosiq, c1¢a..¢yp] + ¢y + €0Stg — 1, 0c1¢a..C0p1];
‘ preq, ci1ca..¢] < 0;
else
cosiq, c1¢a..cyp] + ¢y + €0Stg — 1, 1eica..Cop—1];
‘ prelg, cica..c] < 1;
end

end
end
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4.5.2 Proof of optimality of the algorithm for the enhanced brmu-
lation

We prove by mathematical induction that the setg., generated using
the algorithm previously described are optimal solutiamshie sub-problem
| Ak, | = minimum, A, ¢, , k > w — 1 is a valid partial solution.

The base for the induction is At= w —1 (A4, ¢, is not defined fok < w—1).
Fork = w — 1 a single valid partial solution exist4;, ¢, = A,—1,sTART(frOm
the definition of a valid partial solution), therefore thidigion is optimal.

Fork > w — 1 we prove thatd,1,c,,, can only be obtained froml; c,
sets using the method described in the algorithm. We demateghis using a
proof by contradiction.

Consider a se#ly11,¢,_,, . 5..c,,1 Which is an optimal valid partial solution. If
this set could be written ad;, ¢, U {s), + 1} where A, ¢, is not an optimal
solution, therd Ay, ¢, with |Ay ¢, | < |Ak,c,| (the existence of;, ¢, implies
the existence of &, ¢, ). If Ay c, U {si + 1} verifies P(A; ¢, U {si +
1}, k —w+ 2) then Ay, ¢, verifiesP(Ag o, U {si + 1},k —w + 2) because
in the window that needs to verify the bandwidth requirememaperty the
slots in the two sets are completely determined by the values, o..ci. 1. if

Bri1,cpwigecel = Ar,c, U sk + 1},
|Br41,C41 | = 1+ Ar.cp | < 14 Akcp | = [Brt1.00 | < Mbkt1,05_uys e |

which is a contradiction, because we assumed that; ¢, _, . ,..c,,1 Was an
optimal valid partial solution.

Furthermore, using the same reasoning, if one optima.lAé%,k leads to a

optimal partial squtionASll chwigocp 10 @Nd muItipIeAl(f)Ck exist, they all

lead to optimal partial solutionﬂ,(g1 cr_wis-cp,1+ LIS therefore sufficient to

store oneA,, ¢, for each value ok and the vectot’;, like our algorithm does.

Analogously we can prove thaty. 1, . ,..c,.0 Can only be obtained from a
Ay c,, set.

Consider an optimal global solutioA. For one iteration of the top-level loop
of the algorithm,A,,_1 starT= ANs51..54,—1. During this iteration,A matches
the definition ofA,, ¢, for a certain value of the vectar,, and furthermore,
because it minimizeBA| is also an optimal partial solution of the typk, ¢, .
Because the algorithm iterates over all possible valuesaiovC,, it will also
find an optimal solutionA4,, ¢, with the C,, vector of A the same as the’,
vector of A4, ¢, and|A,, ¢, | = | A| . Because the verification of the bandwidth
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requirement in wrap-around window& A, c.., q), ¢ € {n —w + 2..n} only
depends on thé', vector andA,,_1 stary SinceA is a valid solutionA,, ¢, is
also a valid solution and thus a global optimum.

4.6 Algorithm complexity

Consider the following notation for the calculation of cdexity:

e 12 is the number of slots in the slot table
e m is the number of free slots < n, worst case¢ = n

[ is the maximum distance between slots

r is the maximum number of consecutive slots after which tredae
needs to be repeated

e w is the size of the window for the enhanced algorithm

The original algorithm performs a linear search for the first available slot,
in complexity O(n). This is followed by a search for free slots at intervals
of length, which imply testing of at most — 1 slots, which is agaif(n)
complexity. Another linea©)(n) complexity search is sufficient to determine
the additional slots necessary to satisfy the bandwidttstcaimt, therefore
the total complexity of the original algorithm i9(n). No special memory
structures are used except fot the list of slots which hasragngecomplexity

of O(n).

The dynamic programming algorithm is runt times for each rotation of the
slot table in which the second slot is available (as expthimeSection 4.4).
Each of these runs involves building a table of partial sohs (4;,; ;) of size

n? x r. When slotk is available (which happens for of the slots)Ay ; ; is
computed based dnx r other values, andl;, ; ; with 7 # 0 is computed based
on one other value. The complexity to compute the tabl@(is:? [ * r)

and the total algorithm complexit§ (m? * [ * ) which is in the worst case
O(n? x I + r). The memory complexity is dominated by the size of the tables
mentioned and i® (n? ).

An exhaustive searchwhich we used to verify our solutions can be performed
by testing alR™ combinations of the free slots, for each combination hatang
determine whether it satisfies the latency and bandwidthirempents which

is typically done in complexityO(n). This can be easily achieved with
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O(n x 2™) complexity, but it can also be optimized making the latencgl a
bandwidth computation incremental (readjusting bandwigitd latency values
with the decision of including or excluding each independsat), resulting
in a complexity ofO(2™). In the worst case, the complexity 3(2"), but it
should be noticed that the exhaustive search is practieal fev large slot table
sizes if the occupancy ratio is high. For example, on a corelylempty table
of size 32, the exhaustive search would have to iterate ¢firapproximately 4
billion solutions, however, if the table is 50% full, it walibnly have to iterate
through 65536 solutions. The memory complexityig).

The enhanced algorithmiterates in its outer loop through up 2¢—2 condi-
tions for the initial slots. For each of these a table of $ize w) x 2" needs to
be constructed, each element in the table being computed lsestwo other
elements. Removing the constant factors, the complexity({® — w) * 4").
The number of actual valid states is also affected byrthe ratio, but in a
relatively complex manner, therefore we only provide a Wwoese complexity
measure. The advantage compared with the exhaustive siathht the
complexity does not increase exponentially with the sizehefslot table. The
memory complexity i) ((n — w)2").

4.7 Experimental results

In this section we compare our proposed algorithm with thegiral greedy

algorithm. For performing the comparison we use slot tablits a certain

percentage of slots marked as occupied (background traffid)we request
both algorithms to provide an allocation for every feasitenbination of la-

tency and bandwidth. For slot table sizes up to 16 we use &glmand traffic

all the combinations of occupied and unoccupied slots (65&8nbinations

in total). For the larger slot table sizes, as this methodires unfeasible we
produce 1000 samples at each background traffic ratio (ttmvauof occupied
slots divided by the total number of slots).

We additionally verify the dynamic programming against ahaeistive search
algorithm for slot table sizes up to 24. It is generally nosgible to run the
exhaustive search on the larger tests because of its exjdrrenning time.

Our proposed algorithm produces in many cases a betterigoltitan the
greedy algorithm. We represent the improvement for slofetaizes of 16,
24, 32, 40 in Figures 4.18-4.21. The improvement can takefosms: in

some cases, the required bandwidth and latency can be réeliusing fewer
slots. In the graphs, this is called “slot improvement.” \Winet producing slot
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improvement, there is still a chance that the dynamic prognang algorithm
delivers more bandwidth than is required due to the graitylaf slots and
that bandwidth is higher than the one of the greedy algorithmthe graphs
this is called “bandwidth improvement.”

6.00%

T T T
Slot improvement —+—
BW improvement ---x---

5.00%

4.00%

3.00%

Improvement

2.00%

1.00% ¥

0.00%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%  100%
Background traffic

Figure 4.18: Improvement in slot utilization vs backgroumilization, 16
slots.

The plots represent an average over all requested condrigatf latency and
bandwidth versus the amount of background traffic.

Obviously little gain can be obtained when the slot tablesgeatially empty or
when it is completely full. Some improvement exists thougha completely

empty table because the original algorithm does not prgpeakk into account
bandwidth gain at wrap-around. The largest gains are in tidgle section

of the interval, corresponding to average backgroundzatitbn. In practice,
when allocating a usecase, the first channel allocatiorb&ifperformed on an
empty slot table, thus zero background utilization whiletfar allocations will

encounter some background utilization. If high utilizatis never reached it
means the network was probably over-provisioned; if it Bcheed too early
there is a good chance the allocation will not succeed at all.

Focusing the region of the data with average backgrounidatiibn (25% and
50%), we analyze the improvement with respect to the reqddatency and
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Figure 4.19: Improvement in slot utilization vs backgroumilization, 24
slots.

bandwidth. We can see that for very tight latency constsahmre is hardly any
gain since there is very little flexibility in choosing theaued slots. This effect
is more pronounced with a small slot table. Also very littirgis made when
the required bandwidth is very low or very high. For the firase it means
that for latency-only constraints the initial greedy algun is performing very
well, for the latter obviously when the entire bandwidth aeé& be allocated
only one solution exists and that consists of allocatingrelavailable slots.

There is also some periodicity visible in the graphs alorgréyuired latency
axis. This is influenced by the modulo of the slot table size@smthe number
of additional slots due to the bandwidth requirement) tordwiired latency.
The optimal algorithm works better when this modulo is cidsezero which

means there is little slack in satisfying the requirement.

It is also noticeable that for the lower bandwidths the graphve is inde-
pendent of bandwidth. This is because even with just thedsteonstraint a
certain bandwidth is provided anyway.
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Figure 4.20: Improvement in
slots.

slot utilization vs backgroumtlization, 32
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Figure 4.21: Improvement in slot utilization vs backgroumilization, 40
slots.
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Figure 4.22: Improvement in slot utilization vs requestatéihcy and band-
width, background traffic 8/16 slots.
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Figure 4.23: Improvement in slot utilization vs requestatthcy and band-
width, background traffic 8/32 slots.
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Figure 4.24: Improvement in slot utilization vs requestatémcy and band-
width, background traffic 16/32 slots.
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Performance results for the enhanced formulation

The enhanced formulation allows us to provide latency guaes for longer
messages without over-constraining the solution. Conskaefollowing ex-
ample:

We wish to provide a bound on the latency of a 4-word messagertaximum
of 12 slots. With the original algorithm, the only way to a&e this is to set
the one-slot (2 words) latency to half the value of the boasdepresented in
Figure 4.25.

12 1 [z Hl 1111 ]

2 words/6 slots

4 words every 12 slots

Figure 4.25: A bound on latency of 1 selected slot every & gjoarantees that
4 words can be delivered every 12 slots.

This method of reducing the problem to a more simple forniahowever
will fail to find solutions in some instances. For examplethwihe same
requirements used above, if 6 consecutive slots are oatwgid cannot be
used a solution with latency 6 does not exist but it is posdibffind a solution
that provides 4 words within any window of 12 slots (Figur2é).

g g
of o}
of of

4 words every 12 slots

ceeee | fe——--
including all wrap-around windows

Figure 4.26: In some situations it is not possible to allecatwords every 6
slots, but it is possible to allocate 4 words every 12 slots.

The enhanced algorithm in Section 4.5 can provide an optitealselection
whenever one exists directly for the words/window problemmfulation. The
algorithm nevertheless has some practical limitationshat tts complexity
is exponential in the size of the window. While this is a liatibn of the
algorithm, the same method that is used for extending thpesobthe basic
algorithm to messages of longer size can be applied hereassan terms
of solution quality (although we did not investigate thigeéhg In our experi-
ments we used a window size of 12 and a slot table size of 3Z;haddlow
computation times in the order of 1 second.
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We perform a series of tests to determine the success ratee afrthanced
(optimal) algorithm against the method of reducing the obto the original
formulation. We plot the success rate against the numbecaodfiped slots
(background traffic). For each value of the background trafe have gen-
erated 1000 random sets of occupied slots. The results avensh Figures
4.27-4.30.

We perform the tests for words/window requirements thaetedirect equiv-
alent in the original formulation: 4 words/12 slots is eglént to 1 slot out of
6 (due to header overhead), 6 words/12 slots to 1 slot out®fvbrds/12 slots
to 1 slot out of 3 and 12 words/12 slots to 1 slot out of 2. Usiatues that
are not divisors of 12 would only exaggerate the disadvastad the original
algorithm which would need to round the value to the neardgsger latency.

100.00% ¥ 3=

Y ‘ Enhancea algorithm - 4‘/12 —
- Classic algorithm - distance 6 ---x---

80.00% [

60.00%

Success rate

40.00%

20.00% [

0.00% . ! ! -
0 5 10 15 20 25 30 35

Occupied slots out of 32

Figure 4.27: Probability of successful allocation when 4dgaare required in
a window of 12 slots.

With an empty slot table obviously both algorithms have rmuite finding
a solution but as the number of available slots decreasemdirad solution
becomes more difficult. The optimal algorithm is of coursaenefficient than
the original algorithm which may miss some solutions. Fev leandwidth
(words/window) requirements the optimal algorithm canvjte a solution
under roughly 10% higher load. Under higher bandwidth neoents, the
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Figure 4.28: Probability of successful allocation when Gdgaare required in
a window of 12 slots.

gap increases to 30% .

In addition to being able to provide the requested bandwirdthore situations,
the enhanced algorithm can provide a more efficient solutiothat it requires
fewer slots to satisfy the requirement. The original aldyoni always produces
sparse slot allocations which have a disadvantage in tefimsagler overhead.
In contrast, the enhanced algorithm always produces amaptsequence of
slots, taking into account the header overhead.

The average number of slots used in the allocations that sum@essful using
both methods is represented in Figure 4.31. The averagefiped across
all loads. It is apparent that for low bandwidth requirerseiie difference is
minimal however the situation changes for the high bandwidguirements
which have solutions with more densely packet slot tables.
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Figure 4.29: Probability of successful allocation when 8dgaare required in
a window of 12 slots.
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Figure 4.30: Probability of successful allocation when i&tdg are required
in a window of 12 slots.
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Figure 4.31: Average number of slots used by each algorithm.
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4.8 Related Work

The problem or routing in NoCs has been widely studied [AGRRIA93,

HMO03, HMO04]. Our algorithm is related to the routing probldt instead of
spatial allocation it deals with allocation along the tinxésa lt is expected to
be used in conjunction with an algorithm for route selectioa TDM network
for latency optimization.

Our technique applies in general to NoCs using TDM, like Nost
[MNTJO04b], aSoC [LSTO00] and the TDM network in [WZLY08]. Albugh
some implementation details like the computation of heaglerhead are spe-
cific to the Athereal implementation we believe that simplaablems arising
in other implementations could be solved by the same alguarit

A related algorithm achieving both path and slot allocatisrpresented in
[TLZ09]. Different slot assignments schemes are evalyateinely dis-
tributed, random and consecutive. However the method doepnovide
latency bounds and does not target complex header overlsbathe found
in AEthereal.

The algorithm previously used to solve this problem is pmneesek in [Han09],
we use this to compare the performance of our algorithm. Ayorghm
improvement involving path rip-up and reallocation on tdptlee normal
Athereal algorithms is presented in [SB@B]. While we do not directly
investigate this technique we consider our algorithm to dmpmatible with
it.

An analysis of communication latency after the slots havenbselected is
provided in [NHCG10], while [HWM 09] details the relation between com-
munication performance and the overall application bedravi

In a similar network implementation with more relaxed cosisits on slot
alignment, a graph coloring algorithm is proposed by [LZ]T@3 solve a
slot allocation problem. Our algorithm is to a large extemttiwated by the
restriction that in Zthereal slots need to be forwarded emé#xt link without
delay. However other TDM networks may choose to do this eveaniit is
not mandatory, in order to improve latency.

4.9 Conclusions and future directions of research

In this chapter we have analyzed the effect of slot selecdiboommunication
and application performance and we have proposed optimgalitdms for the
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problem of slot selection. Because our algorithms are @dtihey can be used
as an absolute measure for the performance of previoughopeal algorithms.

Our algorithms offer gains in terms of allocation efficieranyd thus network
performance at negligible cost (the only cost is an incréasenputational
load at design time.) If allocation is performed at run tintlee previous
algorithm may still be preferable.

The slot selection algorithm is currently only targeting gingle-path search.
In the iterative multi-path search it can be used without ffilcations to pro-
vide optimal slot selection with regard to bandwidth. If afythe multi-path
algorithms is used, but restricted to only use same-lengthspit is possible
to use the same algorithm with only one modification in Equat.1 to take
into account the fact that consecutive slots on differetthgaeed to repeat
the header. It might however be possible to integrate Igtbased decisions
deeper into the path search algorithm, leading to furth@ravements.






Chapter 5

Online allocation

As the computation of the slot allocation in networks usimg ¢ontention-free
routing model is fairly complex, it is customary to perfortist computation

at design time. Connections can be set up dynamically atimm as needed
based on pre-computed tables. All usage scenarios cowgsisted to be taken
into account at design time when computing the allocatiohis 15 suitable

for streaming applications, applications that have wefirced communication
behavior or applications that require guarantees for thenconication perfor-

mance.

There are however classes of problems that do not have suckdefimed
behavior, where communication is dynamic or dependent erirfput data,
or do not require bandwidth and latency guarantees. Thgdeaions may
receive then network resources on demand, in the form ofdffest services.
However, supporting best-effort services in the form of ake&switching
network implementation was shown to be very expensive [GHr@ packet-
switching in general is known to be less power efficient thacud-switching
[KSWJ06, BWM09].

We propose the implementation of Best-Effort like servioesr the existing
Guaranteed Throughput Circuit Switching network by pearfioig the alloca-
tion of channels online, at run time. Channels allocatetisway do not have
the advantage of receiving guarantees from design timenbytdan make use
of whatever network resources happen to be available wiegreatte requested
at run time. The allocation may also fail and the connectidhhave to wait
until more network resources become available.

In this chapter we present algorithms and a system setupnforeochannel
allocation. We demonstrate our method in an FPGA prototyagseth on

147
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the /Ethereal network. The allocation algorithm is impletedrin software
written in the C language. We measure its performance whemmPGA on a
Microblaze embedded processor. We also demonstrate a &iar@wcelerator
that implements some of the more time-consuming compuisémd we offer
a blueprint for a fully hardware accelerated allocator.

This chapter is organized as follows: Section 5.1 preseetemgl consid-
erations regarding channel allocation in Circuit Switchinetworks. The
data structures required by the allocation algorithm aesgmted in Section
5.2. The pathfinding algorithm is presented in Section 5.8riods options
for bandwidth computation are presented in Section 5.4. uefnlint for a

fully hardware accelerated allocator is presented in 8e&i5. Experimental
results detailing the speed of the allocator are present8ddtion 5.6. Related
works are presented in Section 5.7. Section 5.8 presentsoogtusions.

5.1 Channel allocation in Circuit switching networks

In a typical circuit switching network resources are altedain a distributed
manner, using probes or setup packets. Each router haséagsvbf the state
of the links it is connected to. A set-up packet travels thfothe network
incrementally, allocating the required bandwidth on eaak it visits (Figure
5.1). The disadvantage of this method is that it is not pdéssid know
beforehand if the entire path to the destination is avadlatble path currently
being set up blocks the already allocated links until failisrdiscovered and a
mechanism to tear down the path must be provided. Measwseseéd to be
taken to avoid deadlock situations, which may result iningutestrictions.

router in charge of performing
the reservation on the next segment

source insufficient bw

|
®?>?>©—>®—l—>® destination

reserved T |

at some point on the path the bandwidth may be
insufficient and the allocation must be abandoned

1930ed
dnjas

1

Figure 5.1: Path reservation in a classic Circuit-Switghmetwork.

By comparison, in our solution, the entire allocation istfgsnulated in a
processing node which has knowledge of the entire stateeohdwork and
only then the path is reserved (hence clients must contacténtral node
to request a connection). When a path is not found by the fitsingt, the



5.2. DATA STRUCTURES 149

algorithm searches alternatives using a backtracking adetintil a path is
found or all options are exhausted. The algorithm runninghercentral node
keeps track of the network state, including all connectialiscated using
the design-time allocation method as well as the ones a#ldcasing online
allocation.

5.2 Data structures

A routing algorithm requires knowledge of the underlyingwark topology
and available network resources. In this section we desthid data structures
used to represent this information. In all situations weedgfor simple data
structures with minimal memory footprint and we selectethdigpes with the
minimum bit-width that allows storing the necessary values

The developed algorithms can be applied to any network ¢gggoby only
changing the static arrays that describe the topology. odlgh topology
specific optimizations would be possible we preferred usipglogy agnostic
algorithms at some cost in execution speed. We have choseroption
because it does not affect actual algorithm complexityjtiarly adds a small
overhead to computation due to unnecessary look-up opesatiFigure 5.2).

Q destination
)

T '
'
source !

Hﬁ. __—__>O

J

Figure 5.2: All outgoing links of a node are enumerated bypghth finding
algorithm but the ones leading away from the solution are éaiately dis-
carded.

We provide complete integration between the on-line atiooamode and the
classic design-time allocation flow used by Athereal. Wetlisesame files
and file-formats at design time to generate the C code of thieeoallocator
and a compatible scheme of identifiers for the network iate$ and ports.

Both links and network nodes are identified by numeric IDstwdek nodes
are sorted by type, first network interfaces then routenskd are considered to
be unidirectional (bidirectional links are stored as twpasate unidirectional
links). Links are sorted by their source node. One tallfs{in Figure 5.3)
stores the destination of each link. Another taldtalf) stores the first link
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in the table of links that belongs to each IP. The last entrig table marks
the end of the links table. This corresponds to the CompdeResv Format
[Pis84] for sparse matrix representation.

| h nod.e ID link ID
example encoded grap i start dest : slots distance

0 [1] o —[4]3[2]1
/—\> 1 12| 1 1[=[1]1[1
®<\—/® 2 1] 2 2[1-[1]2
3 3] 3 3211
4 1] 4 4[3[2[1]=

end 12| 5

14| 6

0] 7

1] 8

EEEEEEED 3] 9

Figure 5.3: An example network and tables used to descsbefpblogy, the
algorithms accept an arbitrary directed graph, althougprattice unidirec-
tional links appear in pairs with opposite directions.

The same numeric link ID used as an index in tlesttable is also used as
index in theslotstable (Figure 5.3). Depending on the usage scenario, we can
have multiple slot tables, for example for offline (guaraafeallocated slots
and for best-effort channels.

We also store a symbolic list of identifiers for debuggingpmses. In our
FPGA prototype we can obtain debug information about thée sth the
network and the allocation process, directly over a seiigd tonnected to
aPC.

5.3 The path finding algorithm

The path finding algorithm we use is essentially the sameaSiigle Path
allocation described in Chapter 3 with several modificatioreant to improve
performance:

¢ the recursive backtracking implementation has been regdlhy a finite-
state-machine like implementation which does not make tissarsive
calls and thus avoids function calling overhead.

e for now, latency restrictions are ignored.

o the first solution found is accepted, without looking fortbesolutions.
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¢ the final stage of the algorithm, the slot selection is penfedt using a
simple greedy algorithm which selects the first availabbésshstead of
the more complex algorithms described in Chapter 4.

A formal description of the algorithm is given in Algorithm3®1. A stack

is simulated by théevelvariable. The algorithm makes use of the following
tables: the list of link destinationdesflinkld]; a table indicating the index
of the first link departing from a nodgirstLink[node] and the last link
lastLinkinodg (in fact the two are implemented by a single tald@art] =
firstLink[], because in the list of links nodes receive consecutiveesrsp
lastLinkn] = firstLink[n+1]—1; the two separate names were kept for clarity);
an array of distances from each nodeltetination, dist[nodeld]; a table of
available slots on each linkots[linkId);

Exiting the search once a solution has been found or the lséarto be
abandoned is also less costly using non-recursive appr@adrall we found
the non-recursive implementation to perform better tharézursive one.

5.4 Computation of the available bandwidth

Within the path finding, the most time-consuming operatiesnchecking
whether enough words of data can be delivered by the avaikibts. This
is complicated by the Athereal header usage scheme (Fighre 5

the first slot in a group a header needs to be inserted
carries a header after three slots for transmitting headers

LERPT [T T T T R T 7]

consecutive slots may skip headers

D unused slot
E]:l used slot with header overhead
>l K header overhead is 1/3

D used slot

Figure 5.4: Header overhead in Athereal.

In the following sections we propose and evaluate severshade of com-
puting the bandwidth delivered by a set of slots. The firsthoetperforms
an exact computation using a loop executed in software, éhensl method
is based on look-up tables and when headers are involveddpsownly an
approximation.
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Algorithm 5.3.1: Non-recursive exhaustive pathfinding

input : source anddestination nodes
required Bw the required Bandwidth
output: Path fromsource to destination which satisfies the bandwidth constraints
will be found stored isol Link|[1..level]

level«+ 1;
crtNode+ source
crtSlots«+ S;
crtLink « startcrtNodé;
while level> 0 do
if crtNode= destinationthen

process solution;

break;
end
nxtSlots« shift(crtSlotg and notslotgcrtLink];
crtDest«+ desfcrtLink];
slotsOK«+ bw(nxtSlot$ > requiredBw
if disticrtDesi < allowedDistance- levelA slotsOKthen
solutiorfleve| « crtNode
solLinKlevel « crtLink;
avSlotflevel « crtSlots
level+ level+ 1;
crtSlots«+ nxtSlots
crtNode« crtDest
crtLink « firstLinklcrtDest;
continue;

end

crtLink < crtLink + 1;

if crtLink > lastLinKcrtNodd then
level«+ level—1;
crtNode« solutiorflevel;
crtLink < solLinKlevel + 1;
crtSlots«+ avSlotdevel;

end

end

5.4.1 Exact bandwidth computation in a software loop

The exact computation requires sequentially testing tbetable twice. On
the first pass we determine the number of usable slots at thefetne slot
table. We need this in order to determine the position of desadh the first
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Algorithm 5.4.1: Exact computation of the available bandwidth
input : n size of slot table
s[0..n — 1] list of available slots,
a value ofl represents an available slot
output: Bandwidth in terms of number of data words per slot tablelgion result

result« 0;
count«+ 0;
fori<n—1to0do

if s[i] # 1then

| break;

end

count« count+ 1;
nd

f count= n then
// WHEN ALL SLOTS ARE AVAILABLE WE CONSIDER THE FIRST ONE TO HAVE

A HEADER
count<« 0;

= o

end
count« countmod3;
fori<0ton—1do
if s[i] = 1then
result«+ result+ slotSize
if count= 0 then
| result < result— hdrOverhead
end
count«+ (count+ 1) mod3;
else
| count« 0;
end

end

OO R DT 1T R B

count number of usable
slots at the end

allows computing the position of
headers at the beginning

[ I
other groups always start with a header

Figure 5.5: Exact computation of available words.

group of slots (Figure 5.5). The method is described in Athor 5.4.1.
On the second pass, the groups of consecutive availabtesstvidentified and
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the deliverable bandwidth is calculated. Because declegin is necessary in
both passes the program is slow.

5.4.2 Bandwidth approximation using lookup tables

If the size of the slot table was very small it would be feasilol use a look-up
table to immediately determine the number of available woflthe size of the
lookup table increases exponentially with the number ofss6. This is a
much less computationally intensive solution as it can igiethe result with
a single memory access, but its disadvantage is a higher iggeguirement.
For a realistic size of the slot table of 16 slots, the cosheftable would be
prohibitive.

A less memory intensive solution would be to split the slbtedanto groups of
slots of reasonably small size and perform a lookup operdtipeach group.
The difficulty is that in the networks that employ headershéEtal) we cannot
know for certain which of the slots have headers and whichado n

It is possible to assume conservatively that the all slote Headers. The
allocation algorithm would produce correct results, bmdy fail to find some
solutions which were feasible. We have computed that as erage over all
combinations of used and unused slots in a table of size $Grasg that all

slots have a header underestimates the bandwidth provigedéslot table
by 15.5%. A more accurate solution is to assume that the fastrsa group

always has a header (Figure 5.6). This never causes oveadisiy the total

bandwidth provided by the set of slots and the differencén¢éoreal value is
only 3.3% on average when the size of a group is 6. A group $i@aequires

a lookup table of only 64 entries.

split the slot table into groups of 6

a single lookup provides the number
of available words per group

1

T T BRI B LT [T EF
? ? ?

but we assume the first used slot in a group carries a header

Figure 5.6: Approximate computation of the available words

In networks which do not have a header overhead, like the aprepose in
Chapter 6 the group-based lookup produces the exact result.
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5.4.3 A hardware accelerator for bandwidth computation

Most of the computations performed by Algorithm 5.4.1 aréqrened with
very small operands, for exampd®untcan be represented with only 2 bits,
while for the variablgesultup to 6 bits may be necessary. These computations
can be efficiently performed in a dedicated hardware uniirtggwery low cost.

We propose and implement a module which performs the barlwimmpu-
tation in hardware. The module is described in Figure 5.fallbws the same
logic as the software implementation, but it replaces mbstecomputations
with look-up operations.

For example the following strategy is used to compute theevafcountat the

end of the first loop in Algorithm 5.4.1. Slots are organizedjioups of three.

A block calledphaseindicates how many slots are available at the end of a
group and whether or not all slots are available. When atksioe available
the value otountmodulo 3 is taken from the previous block, if that block also
happens to have all slots available from the one before itsandn, using a
ripple type of logic.

l l | I | l | | | | | ] I example slot table

lookup to determine consecutive
Iphase | Iphase | Iphase | Iphase | Iphase | slots in groups of 3
I 11 | _— count consecutive
L L L L ¢ |_— propagate

Pl Pl Pl ] 1 9

P —r > > > count value after

> first loop
2 2 2 2

ripple-logic to compute the
position of headers

—

L

lookup to determine the

T
T

BW BW BW BW BW delivered bandwidth when
ook ook E ook E look ook | header positions are known
-up -up Ld-up Ld-up -up

s a a a sum-up the total

delivered bandwidth
Figure 5.7: Hardware module to directly compute the exaatlver of avail-
able bandwidth.

The bandwidth offered by each group of three slots is alsopeed using
look-up tables, but unlike the approximate computatiorvipresly described
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we also take into account tlmuntof slots module 3 before each block, thus
performing an exact computation. At the end, the looked Uipegare added
together.

FPGA synthesis in the Xilinx Virtex-6 technology of a modplerforming the
computation on a table of 16 slots indicates a working freguef 288 MHz
and an area utilization of 108 LUTs and 59 registers. Thegdesiinterfaced
with the Microblaze processor using the low-latency FSkdin The design
is pipelined, with 2 pipeline stages for the actual comportain addition the
ones necessary to interface it with the microprocessor.

5.5 A blueprint for a hardware allocator

In this section we provide a blueprint for a circuit implerting the entire
allocation algorithm described in Algorithm 5.3.1. Whileewlo not offer a
synthesizable hardware description we model this circu#riough detail to
allow us to estimate its speed. Being a circuit with a spizgdlfunction its
cost will be lower than the cost of a general purpose processbits program
memory running the same algorithm in software.

We start with the following observations:

1. The state of the program is stored in 4 varialde®l, crtNode, crtSlots,
crtLink and a stack.

2. The algorithm has one loop in which the entire processmpgiformed.

3. Inside the loop, the program may branch on 4 possible pathghich
one is only take once, when a solution is found.

The first way in which the hardware accelerated implemesriatan improve
on the performance of its software counterpart is by exegugeveral opera-
tions in parallel.

In Figure 5.8 we represent in vertical columns the operatitrat can be
executed in parallel grouped by the branch they belong tbfram left to right
the scheduling of these operations based on their deperdenic previous
operations.

There are several operations that can be parallelized:

1. arithmetic operations: increment and decrement and adsgn are all
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iteration
(while loop in line 6)

@ slots[] and not | Bw stage1|Bw stage2| <reqBw ].—>

crtDest[] dist[] <allowedD

invalidate all other speculations

(i Coﬁgg'?g) lev+1 firstLink[] | avSlots*[] and proceed with now resolved
— branch in line 21
solution*[]
solLink*[]

(ifconﬁg;og) | solution

(if condition crtLink++

line 24) | lastLink] | < lastLink

invalidate previous speculation
lev-1 avSlotsl] | 4ng speculatively assume only the
solution[] if condition in line 24 is true

solLink[]

speculatively assume
all if conditions are false

clock LEGEND

cycle
table[] | memory read operation
table*[] | memory write operation
arithmetic operation

Figure 5.8: Operations in the algorithm that can be execun@drallel; code
references point to Algorithm 5.3.1.

performed on low bit-width operands, therefore having aakdd unit
for each instruction would not represent a large cost

2. we use of course for the bandwidth computation the actelémodule
presented in section 5.4 which is pipelined and has a thyutghf one
computation per cycle

3. arrays are independent and we assume they can be acaegsedllel;
no array is written in more than one place and we assume thk ista
implemented as a dual-ported memory which allows simutiaseead
and write access.

To further improve performance we make use of speculatigrec@ation is
in general expensive, if it is used inside microprocessous,in our case it
has almost no cost. We observe that the two longer branchege¢he for
variable states anyway, so we could speculatively proceidd tiwe shorter
branch and, if it turns out the decision was wrong, overrigedtate variables
with the ones from the longer paths. The stack is only updayetthe longest
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path and it updates a stack element that is above the onesysdpby the
other paths.

time (clock cycles)
—_—

) ) ) ) ) ) )

I initialize I i| slots] |i[ andnot [i|Bwstagel| le stageZI | I <reqBw N |
i crtDest] i dist]] i <allowedD i i i i
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i solution ? | #{ solution*[]{ } ; ; i here would resultin £
| : | e | ! | | i invalidating all <
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Figure 5.9: Operations in the algorithm that can be spedealgitexecuted.

Figure 5.9 presents the operations that can be executedhiigbd speculation

is used. The number of instructions executing in paralleldases to roughly
20, although some of them will have to be discarded becausearfg specu-
lations. It can be observed that none of the operations appe&e within the

same column.

The most convenient way to implement a circuit to achieve plairallelism is
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by having a separate pipeline for each execution path,estréited in Figure
5.10. Each level of speculation will occupy a different stag each of the
pipelines.

Lo Lo Lo

o ot
o I B e

level crtlink é:ﬂ

|
——
I
% | —— l
|soILink*[l]|| crtDest[]” slots[] | |so|ution‘[1]|

solution[]

and not

[irstLink(] |

1

avSlots*[§]

LEGEND
- memory read operation
— memory write operation
input value
@ @ single-operand arithmetic
two-operand arithmetic

mm—— register

Figure 5.10: Hardware module for accelerated path comiputat

The decision logic at the end of each execution path controlg the state

variables are to be updated. We did not represent here tledingpstage

invalidation logic nor the initialization logic. The perfoance of the hardware
allocator will be estimated in Section 5.6.2 by running ¢ésaof the software
algorithm execution on a model of the pipeline.

5.6 Experimental results

In this section we evaluate the performance and memory negents of our
online allocation algorithms. We evaluate both the sofea@mly and the
software combined with the hardware computation of banthwidoposed in
Section 5.4.3 by executing the program on an embedded Mazelprocessor
in an FPGA prototype. The hardware accelerator for bandwidmputation
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was connected to the Microblaze processor through an F&L lifor the
high-level model of the fully hardware accelerated aldnitwe perform a
performance estimation by simulating the delays of theriatepipeline on a
trace obtained from the software implementation.

We have evaluate the performance of the allocation algarith mesh network
topologies of size 4x4, 6x6 and 8x8. The number of slots weinghe

experiments is 16, the maximum number of requested wordslpetable

revolution thus being 40. When the bandwidth computatiopeisormed in
hardware, the speed of the algorithm does not depend on thbarwof slots,
but the number of slots is limited to 32 because this is thehwvid the FSL
link.

Our performance measure consists in the number of cyclesltwithm
needs before it can either find a solution or determine thaallcation is

not possible. We perform exhaustive search of minimal pathdescribed in
Algorithm 5.3.1. Itis possible to perform a search of longaths by increasing
the allowedDistancevariable but that may lead to an unacceptable increase in
the running time. It would also be possible to bound the cdatfmn time

by requiring the algorithm to give up after a certain numbgatempted
paths. This can be achieved by forcing an exit out of the lo® 5n the
same algorithm.

The main factor affecting the duration of path computatisrthie distance
between the source and destination. When the network |azatdsor close to
zero it is expected that the first path found gives a succealification. The
algorithm running time will then increase linearly with tpath length. This
behavior is confirmed by the experimental results in Figutd 5

One interesting fact is that the running time levels off oerevdecreases for
the larger path lengths. This is because the only nodes with a high
distance are in the corners of the mesh. The path finding itigar not
encountering any obstructions chooses a path along theadfe network
where routers have a lower number of ports. Since the afgorénumerates
all ports regardless of whether they are useful or not ([EiguR), fewer router
ports means a reduced running time.

It is expected that under network load, the running time @f #itigorithm
would increase. We generate network load (named here maokgrtraffic)
by allocating random connections until a certain averagd ls achieved. The
average behavior of the three methods with 10% backgrowalitopresented
in Figure 5.12. This represents an an average over all respibandwidths.

It can be seen that the running time has significantly ine@asd furthermore
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Figure 5.11: Allocation time vs. path length, 8x8 mesh, 0%kigeound traffic.

it is exponentially rather than linearly dependent on tretadlice. It may be
desirable in this case to limit the number of consideredgdfrthe algorithm
considers only one path instead of exhaustive search, theing time is
expected to return to the values in the previous graph, lustitcess ratio
will be severely impacted.

The combination of background traffic and requested barttivatso has an
important effect on the running time. When the requestediwiith is very
low and the background traffic is not extremely high, a path lba easily
found, almost as easily as in the case with no backgrounfictraff the
requested bandwidth is much higher than the one that coudddmmmodated
by the network, the algorithm will determine quickly that route is possible.
The longest running times are obtained when the nearestakemam allowed
for a successful allocation.

This relation between success rate and running time is coadirby the ex-
periments in Figures 5.13-5.20 which present the running &ind the success
rate as a function of requested bandwidth and distance fiereiit values of
background traffic.
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Figure 5.12: Allocation time vs. path length, 8x8 mesh, 1086Kground
traffic.
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Figure 5.13: Allocation time vs. path length and requestaxddividth, 4x4
mesh, 10% background traffic.
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Figure 5.14: Success Rate vs. path length and requestedioiimd4x4 mesh,
10% background traffic.
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Figure 5.15: Allocation time vs. path length and requestaxdividth, 4x4
mesh, 20% background traffic.
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Figure 5.16: Success Rate vs. path length and requestedioiimd4x4 mesh,
20% background traffic.
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Figure 5.17: Allocation time vs. path length and requestaddividth, 8x8
mesh, 5% background traffic.
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Figure 5.18: Success Rate vs. path length and requested/ioiimdBx8 mesh,
5% background traffic.
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Figure 5.19: Allocation time vs. path length and requestaddividth, 8x8
mesh, 10% background traffic.
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Figure 5.20: Success Rate vs. path length and requestedioiimdBx8 mesh,
10% background traffic.
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It can be observed how the peak of the running time graph feedhirom the

requested bandwidth of 34 words per slot table revolutidRigure 5.13 to 18
words per slot table revolution in Figure 5.15. This is caligg the increase
in background traffic which decreases the chances of su’fotefiscation.

For the 4x4 network, path-finding computation remains indraer of hun-

dreds up to thousands of cycles. To that is added the timeedefed book-

keeping (keeping track of which slots are in use and whichmatg which is

also in the order of 100 cycles. As the time needed by /thtresgt up paths
is also in the order of hundreds of cycles [HGO07], the ovedh&fgperforming

allocation at run time is not particularly high.

For the 8x8 network the number of explored paths may need taried
in order to allow reasonable running times, especially wb@mmunicating
nodes are distant.

5.6.1 Memory requirements

The compact representation presented in Section 5.2 allewe provide a
complete description of the network topology with memorgngtexity O (n+
m) wheren is the number of nodes and the number of links.

For a 4x4 mesh network the memory size used by the topologyigéen is:

80links x 1 byte/link

321Ps x 1 byte/IP

13bytes (scalar data)
125bytes

I+ +

For an 8x8 mesh network the size of the tables is:

352links x 1 byte/link
128IPs x 2 bytes/IP

14 bytes (scalar data)
622bytes

I+ +

An array of distances (Figure 5.3) is used by the path-findiggrithm. This
array is particularly problematic as its size&d$nm) (n rows andm columns)
wheren is the number of network interfaces andis the number of network
nodes. Each row in this array represents the distance from all nodes to
network interfacei. Only one row at a time is necessary during the path-
finding process and this row could be recomputed as neededién to save
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memory. When the topology of the network is regular, for egemesh, it is
also straightforward to compute these values on-the-fieats of storing the
table. For a 4x4 mesh network the size of this table is 512sbytsle for 8x8
it is 8 Kbytes.

The set of available slots is stored in a packed format with iomeger for
each link, one bit of that integer representing one slot an lthk. This
provides a straightforward representation for up to 64sdibte largest integer
size allowed by the MicroBlaze compiler). The advantageaddition to the
low memory requirements is that up to 32 slots can be mariguilat once
(the microblaze is a 32-bit processor, although the compilews 64 bit
arithmetic, operations will be split into multiple 32-bitstructions). Finding
a common subset of slots between two links can be done usirigrati
operation while advancing time by one slot can be performét @ shift
operation.

The size of a slot table in the 8x8 mesh scenario with 32 séotg08 bytes.

5.6.2 The speed of the algorithm completely implemented indrd-
ware

We estimate here the speed of the fully hardware accelenagldmentation
of the algorithm presented in Section 5.5. For this purposeexract traces
from the algorithm running in software, traces indicatirigtaken branches,
and we use the model in Figure 5.10 to compute the number tdyequired
by the computation.

There is an almost linear dependence between the speed coftveare
implementation and the estimated speed of hardware, effectly by the ratio
of execution of different branches and initialization tenéndividual channel
allocation times using the hardware implementation (el and the mea-
sured software implementation with bandwidth computatooelerated one
are represented in Figure 5.21.

On average, the fully accelerated algorithm performesrh@gifaster than the
one with accelerated bandwidth computation and 42.4 tiaseif than the one
without any acceleration (Figure 5.22).
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Figure 5.21: Speed of the hardware implementation vs. so&wnplementa-
tion with accelerated bandwidth computation, 4x4 mesh, f@ifization.
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Figure 5.22: Average speed of all methods, 4x4 mesh 20%atiiin.

5.7 Related Work

Dynamic time slot allocation in a TDM NoC has been studiedotfin
[MBD T05]. The paper reports allocation times in the order of 10@0es per
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hop on an ARM processor. This is deemed sufficient for an antgdeeality
3d rendering application. The path-finding algorithms usgraph-splitting
approach like the one described in Chapter 3 and are onlytalieal with a
bandwidth requirement of one slot. The reported size of gtevork is a few
tens of routers.

In [MMBO7], the authors propose runtime mapping of applmas on a multi-
core design also supported by the Athereal NoC. The patmdradgorithm
employs as well a graph-splitting method. The algorithrmiog time is not
presented.

A hardware accelerated NoCManager to perform path-findimtyadlocation
is presented in [WF08]. The network architecture employethat case is
simpler, not making use of TDM (the equivalent Athereal guréd with
only 1 TDM slot). The NoCManager was found to require 10 to y&es for
the allocation of one channel.

In [tBHK T10], the authors discuss routing in the context of run-tirpplia

cation mapping. Their experiments show that the failuressigning tasks
to specific locations in the system has a high probabilityestuiting from a
failure in computing proper routing.

The assignment of virtual channels (or VCs) at run time in & ¥odiscussed
in [KSWJO06]. Although the platform is different, the appebais similar. a

central authority assigns network resources (this timeairchannels instead
of time slots) to connections requiring service guarante€ke problem is

solved using a simple path-finding algorithm as it does noeha deal with

the more complex time-domain allocation we encounter inefet.

The hardware acceleration of graph algorithms includireygloblem of the
shortest path is discussed in [Hue00]. The graph repregamellows chang-
ing the graph connections at run time which can be used touatdor the
reservation and the release of links. While the shortedt paiblem formu-
lation cannot be applied directly to produce allocatioret tiequire multiple
slots for the same connection, it can be used for singleadilmtations.

A hardware accelerated solution for the routing wires in PR@&signs is
presented in [DHWO02] with reported speed-ups of 10x-1000xs approach
could be used as well to compute single-slot allocations.

An FPGA acceleration of the reachability and shortest patiblpms is also
presented in [MHHO2].
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5.8 Conclusions and future directions of research

In this chapter we have presented an online implementafidineoallocation
algorithm which can be used at run time to dynamically comphe com-
munication channel allocations. Our implementation isimizied for low
resource usage and is able to properly take into account\and eollision
with previoysly allocated communication channels.

We also present methods to accelerate in hardware one ofdrearpensive
operations of the allocation algorithm and we present agvioefor a full
hardware allocator. We have found hardware acceleratipnodde a signifi-
cant advantage in terms of speed.

Our method currently targets only the single-path allacatlgorithm. We
regard multi-path allocation as a promising direction faufe research as the
allocation algorithm is capable of executing in polynontiiade.






Chapter 6

dAElite NoC Hardware
Implementation

In this chapter, we propose a network on chip implementdatiased on the
contention-free routing model. Based on the models intedun Chapter 2
our network can implement Models 8-12 without a header aath The clos-
est implementation to our proposal is aelite [HSGO09] (athghkight version

of AEthereal) which supports Models 10 and 12 with a headetheaee. We

call our proposal dAElite, as it uses distributed routingtéad of the source
routing used by aelite.

The study of various network models in Chapter 2 indicates tbss re-
strictive models offer potentially better performance. r @atwork improves
performance compared to aelite in three significant wayslldws a finer
granularity of bandwidth division without increasing laty, it removes the
header overhead, and it allows multi-path routing at no tadil cost. In
addition it supports multicast, which aelite does not.

The first performance gain comes from a finer granularity efitik bandwidth
division. In a TDM network, the granularity of allocationgé/en by the size
of the TDM table. A large TDM table results in more efficiernibahtion, but
it may increase the scheduling latencies as connectiorestbavait longer for
their allocated slot(s) in the TDM table. It would be possilh reduce the
scheduling latency by reducing the slot size, but in a€fite would increase
the header overhead. dAElite does not suffer from headehead and as a
result can reduce the slot size, offering a better link divigranularity for the
same absolute duration of a slot table revolution.

The second gain comes from the removal of the header overlaedite uses

173
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source routing for packets, which means the path taken by packet has to
be encoded into the header of that packet. This results iradeneoverhead
between 11.1% and 33.3% as explained in Chapter 4. Not oaly lt to
support long paths the header size or the link width may neée increased.
dAElite uses a distributed routing model which does not iregilne presence
of headers.

The third performance gain is related to routing flexibilithe experiments in
Chapter 2 and Section 6.4 show that the allocation can berpeefl better if

communication channels are allowed to be routed over nhelltipths. This is

somewhat analogous to adaptive routing in packet switchatg/orks which

may provide better load balancing by dynamically switchiraghs to use less
congested links.

In this chapter we will present the proposed NoC hardwareit@ature and we
will evaluate its performance. The rest of this chapter ¢gmaized as follows.
Section 6.1 presents the hardware implementation detaildAElite network.
The network configuration process is presented in Sectidn Bection 6.3
presents how multicast is achieved in dAElite. The hardwarst of and
performance of the proposed solution is evaluated in Sedid. Related
works are presented in Section 6.5. Section 6.6 presentsoogtusions.

6.1 Hardware implementation

In this section we present the hardware implementation opoaposed NoC.
We start by presenting an overview of a typical system basatilite, after
which we will give the details of the configuration infrastture, the router and
NI architecture. All these elements were implemented asigdein FPGA.

6.1.1 System overview

A typical SoC platform based on dAElite is exemplified in Fig6.1. dAElite
is a connection based network. For a master IP to communioateslave
IP over the network, a connection is set up between two né&thivaerface
shells, one connected to the master, the other connectdtktsldve. The
network interface shells have the role of translating tiopeiest between the bus
protocol spoken by the IPs and the packet format used by ddtea traversing
the network. This setup is similar to that of aelite (Figurgé @ [HG10]).

IPs are connected to the NI shells by lightweight local buskiEh have the
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Figure 6.1: Example dAElite platform instance.

role of either demultiplexing requests to different netkvoonnections at the
master side, or multiplexing requests from different netwghells (and thus
network connections) at the slave side. This is becausedtveork connec-
tions are long-lived and an IP can have several connectionsgltaneously
open to multiple other IPs.

The buses may be configurable, on the master side to seleesaddnges cor-
responding to each connection, on the slave side to selsittation schemes
and priorities.

A typical usage scenario is that the required connectiorssat up before
starting an application or an execution phase of an apjaital he application

can use the configured connections during that executioseplighout further

intervention to the network configuration. The connectiarestorn down once
they are no longer needed. Setting up and tearing down ctionezan be

done dynamically without affecting the normal operationthed system, i.e.,
an application can use existing open connections whilerstiie being set up
and torn down.

6.1.2 Configuration infrastructure

The configuration infrastructure is used to set-up anddeam network con-
nections by updating the contents of the slot tables ingidéers and Nis, to
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set and read back flow control information for each connactio perform the
synchronization of the slot counters inside NIs and rouéerd to configure
buses adjacent to the network.

We implement the configuration logic as a dedicated broadetsvork with
a tree topology, with links running in parallel to a subsethsd normal data
network links. This subset is chosen in such a way as to magitttie distance
from the configuration node to any of the network nodes.

One IP, by convention calledost has exclusive access to the configuration
logic. The host performs write operations to a configuratioodule. These
writes typically have a wide data width, e.g., 32-bit, comsghto the width

of the configuration links. The configuration module thudadizes the data
words received from the host into several, smaller bit-vidonfiguration
wordswhich are inserted at the root of the broadcast tree.

If the host does not need to send at one time as many configunabrds as
are contained in a data word, it can perform “0-padding.” €befiguration
module will also send “0” values into the configuration brcast tree when it
has no data to send.

The configuration tree provides of forward and a reversespatine forward

configuration path is of broadcast type. Each non-leaf natteaf/s a router),
forwards all the configuration data it receives to all its detweam neighbors.
The Nls, being leaves in the tree, do no forward the incomimgfiguration

messages. They do however produce messages for the cotidiguwfbuses
using a different type of link. The configuration payload esdrialized into
wider 37-bit words which are then translated by an NI shedl the proper bus
standard transactions (DTL in our case) used by the configarports of the

buses.

On the reverse path in the configuration tree, messages rgent@vard the
configuration module. To avoid arbitration on the resporetl,ghe host only
issues one message requiring response at a time. In ourtbasequests
requiring a response are read operations directed at tteetabdes of the Nis.

The requests and responses traveling through the confyunagtwork take
the form of packets, the format of which will be presented égtidn 6.2.1.

6.1.3 Routers

The structure of network routers is presented in Figure B&cause we are
using a distributed routing mechanism each router contaistot table to
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store the TDM schedule. Incoming packets are “blindly” ssli{switched)
based on this schedule. A high operating frequency can evachbecause

no arbitration is required and the router does not need tmiemathe packet
contents.

The schedule for packet destinations, or more preciselgdlece of each of
the outputs during each slot, is contained in a slot table.oénter iterates
circularly through this slot table and the selected row isdu control the
router crossbar. A configuration submodule, implemented state machine
is used for setting the initial value of the counter, as we @ificuss in Section
6.2.4 and to update the contents of the slot table.

~—| N|] ™
EIR=1=
81 g &
3| 3| 3
Router yal
m —{he config out 1 config
| / [ config out 2 reverse path
input2 | x-bFr control L\
input 3 o 1 ot |
o) I
g / - configuration broadcast
<} !
»

Figure 6.2: dAElite Router

On the configuration connections, the router simply cogiesiniput value to
all of the outputs on the forward path and performs an “or’rafien between
all inputs writing the result to the output on the reversdpat

Data is thus buffered twice inside the router: once after thaversal, and
once after crossbar traversal. The latency per hop is thed fixtwo cycles.
To simplify the network design, configuration data is alsdfdred twice at
each hop in the configuration tree. This allows the configomalinks to be
treated in the same way as the data links when dealing withgiconstraints.

6.1.4 Network Interfaces

Network interfaces have the role of providing connectiousrdahe network.
A network interface (NI) is connected using a network dai& tb a network
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router, and one or more links to network interface shellschElink to an
NI shell supports a connection to another NI shell at the rotfide of the
network. NlIs thus multiplex several communication chasieving NI shells
as endpoints to a single network data link.

As specified by the contention-free routing model, the pckelonging to
different connections are inserted into the network onlgpegcific times. The
arriving packets are also forwarded to the proper NI shededabn their arrival
time, according to a strict schedule. The departure angadsrschedule is
stored inside a slot table which is part of the NI. The sloteatontrols the
multiplexer and demultiplexer in the same way the routet ible controls
the router crossbar.

Figure 6.3 presents a diagram of the network interfaces. rigteork slot
table, same as the one of the router, is indexed with the \@fl@ecircular
counter and is programmed by a configuration submodule. & ef the
data connections there are input and output FIFOs, crediitecs for end-to-
end flow control and decision logic for enabling or disablthg sending of
data from an input FIFO to the network.
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Figure 6.3: dAElite Network Interface

Credit-based flow control is provided by the NI for each of three-to-one
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connections going over the network (optionally flow contoaln also be
disabled on a per-connection basis). Two credit countexsused for each
connection. One credit counter keeps track of how many wofdsorage

space are available in the output FIFO at the other end ofdtveank. An input

FIFO is only allowed to send data into the network if the vadfi¢his credit

counter is different than 0 and the slot table indicates thes connections’
turn to send data. A second credit counter accumulates tméewof words

that were delivered to the destination from the output FIFe value of this
counter is sent back to the other end of the connection iryestet allocated
on the return path and the counter is reset.

As connections are bidirectional, credits for one dirattioe sent on separate
bit-lines alongside data in the opposite direction. Theaszte credit lines and
data obey the same TDM scheme and there is actually no distinoetween
the two at the router level. Other networks, like aelite [H®send the
credits inside packet headers, but that approach is noleviaye as dAElite
does not employ packet headers. The number of bit-linespating credit
information is configurable. To make better use of theses|itiee value of the
credit counters is sent serialized, over the 2 cycles of a Tl In our test
design, 3 wires dedicated to sending credit data are surftifde sending the
value of a 6-bit credit counter during each slot cycle.

The configuration submodule is responsible for updatingrotietwork state
information like enabling or disabling connections, eivadlr disabling flow
control for each connection, and reading or writing flow cohinformation
to credit counters. It also identifies special messageshndrie destined to the
buses and deserializes them to the bus configuration shell.

6.2 Network configuration procedure

This section describes in detail the network configuratamks$. Special atten-
tion is given to the connection set-up and tear-down whithdésmost complex

operation. We describe as well as packet format for the atherations and
we present our proposed method for synchronizing the slohteos inside

routers and network interfaces.

6.2.1 Configuration packet format

The configuration is performed using configuration packaissisting of one
or more words, transmitted one per cycle over the configurdiinks.
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The configuration links have small bit-width that is equaltite size of the
configuration words. To optimize the logic of the state maekigoverning
the configuration process, this width is selected in such ya tvat each of
the parameters listed below can be encoded in a single coafigl word in
addition to one bit marking the command headers.

e a value uniquely identifying a specific router or NI, of sideg, N)
whereN is the number of network elements;

¢ two values identifying one input and one output port of aeowor a null
entry, of size(2 x logy(p+ 1)) wherep is the maximum number of ports
on any router;

e an NI port (connection) number or null value, and an additidsit to
indicate whether the input or the output slot table is to beabgd, of
size (1 + logy(c + 1)) wherec is the largest number of connections
supported by an NI; and

o the value of a credit counter plus one indicator bit (whichrkeavalid
response data), of siZé + log,(b+ 1)) whereb is the size of the largest
buffer the counter must keep track of.

A configuration word size (including a one-bit marker for ketctype flits) of
7 bits is sufficient for a network with 64 network elementsu¢ess and NIs),
routers with an arity of 7, network interfaces supportingai31 channels and
buffer sizes of up to 31. From here onwards, we denotafiguration word
a 7-bit word transmitted on a configuration link.

The format of the configuration packet is illustrated in Fay6.4. An end-of-
packet is implicitly marked by the beginning of a new packet, can also be
marked explicitly. The configuration mechanism suppores\thiting of slot

tables, reading and writing credit information, writingtsts flags governing
NI behavior, and resetting internal TDM counters.

The first word in each packet indicates the type of configomatommand.
The first bit is always zero for a command word. The packet &snfior the
various operations are as follows (Figure 6.4):

For set-up and tear-down operations, the command word@sfed by a list of
slots used at the destination NI, represented as a bit-midlsiome bit per slot.
A list of the traversed Routers and Nls follows, each with@esponding input
and output descriptor. Each affected NI/Router recogritzasvn identifier (a
constant parameter defined at circuit design time) fromishahd modifies its
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PACKET TYPES NOTES
network reset [ [0] [=[=][=[=[=[1] initializes the NI and Router timers
read credits [0] [=[=I[0[1T4T0
from NI credit 1 NI id
counters | 1] port
write credits [0] [F[=I1T1T1T0
or status flags| [1] NIid
toNI (1] _[sell port
1] value | select between credits/flags
§_§ L oitis possible to perform multiple
11| : [selll port | write operations to credit counters
L L1 value or flags of the same NI
write local [ [0] [=[=][1]o1]0
bus ] 1] NI id
configuration | [1] value

T . serialized data

MSB first

co?nection [0] [=I=I[o[1T0[0

setu t

or tegrdown % 2 &: | list of affected slots
% ;Il lNng:irt target NI
1] [nl__id , _
[1] [port ] dest intermediate router
% (1) [N gjrt source NI

SPECIAL FLITS . _

empty fit [ [0] [OTQIOTOIOI0] e sy packet - o oo
this is an optional flit

end-of-packet [ [0] [=[=][1]0[0[0] used to mark the end of a packet

Figure 6.4: Format of the configuration packets.

internal slot table. The path set-up procedure will be dieedrin detail in the
following sections.

Comparatively, the other configuration operations are Empor the reading
of credits, a header, the NI identifier (ID), the port (cortie number
are broadcast into the network and the addressed NI willgréze its own
identifier from the packet and will reply with the counterw@lover the reverse
configuration link. The response consists of the credit tawalue and a bit
(an MSB of 1) that marks the presence of data.
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Writing of credits is similar, except after the port selectioe new value of
the counter is sent. The addressed NI, once selected will Wed¢ching for
port/value pairs. In this way, writing multiple credit caars of a single NI
can be done in a single configuration packet.

Writing to a bus programming port is again performed with akea marked

by a distinctive header. The addressed NI will deserialimeréceived data to
the shell connected to the configuration port of the bus. \&d tisis approach
for compatibility reasons with existing configurable bugplementations.

6.2.2 Setting up and tearing down connections

For setting up or tearing down a network connection, sevaratations have
to be performed:

1. setting up network paths;
2. initializing credit counters; and

3. initializing bus address decoders.

Steps (1) and (2) have to be performed for the both the regumestesponse
channels. Step (3) is the last one performed as it signalsetbus that it can
start using the connection for transferring data.

Connection tear-down can be performed in the following way:

1. the bus address decoders are reset;

2. the credit values are read back from the credit countechéck if all
data items have reached their destination; and

3. the request and response paths are torn down.

Step (1) ensures that no more requests will be pushed ovesotiigection
which is torn down. Step (2) is necessary to make sure thatauohets
belonging to the connection that is being torn down areistiflight through
the network. Step (3) performs the actual path tear-down.amadditional
safety measure to prevent packets being sent over haldmsm paths, the
connection can be disabled using by setting a (per-cormmgctionfiguration
bit inside the NI.
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6.2.3 A path set-up example

We illustrate in this section step-by-step how a path setsuperformed.
Consider the system in Figure 6.5. We analyze the operafi@etting up
a path from port 0 of NI10 to port O of NI11. The IP which has &scé&
the network configuration, which we call thest IP, writes data words to the
configuration module. As the bit width of the dedicated camfigion links is
typically lower than the data width of the bus, a single wiiten the host may
contain multiple configuration words (for this system 4),iethare sent over
the configuration link by the configuration module.

P HsH Ni10 R10 /7 N\ [Niq fBH—[mem
fsH
| sk
IP NI0O mem
(host) 1Ex
§ sl
"""" LEGEND
configuration ! ceceeses Connection being set up
module i _
-------- Configuration link
v ? Network data link
DATA WORDS SERIALIZED CONFIGURATION WORDS
from host -
header - indicate path set-up
0x 01421 0_4 =7 1o list of affected slots
Ox 8d0e263 IP—miM} select output 0 at NI1 ] (pair1)
E——aB} for input 1 select output 2 at R11 1 (pair 2)
Ox 818a4c2 R} for input 2 select output 1 at RO1 :| (pair 3)
MOy select output 0 at NI10 | (pair 4)

Figure 6.5: Path set-up example.

The first configuration word is a header that informs all thevoek elements
that a path setup sequence will follow. It is uniquely idked by a most
significant bit with a value of 0 and the decimal value of 4 ie tast 4 bit
positions. The next two configuration words contain a tallslats affected
by this path set-up operation. We assume here a slot taldes& The two
bits set to one in this example identify slots 7 and 4.
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Three cycles after starting the path set-up process (Figuta), allowance
being made for whatever pipeline stages the configuratigit lmay contain,
the complete slot table has been registered at router RO rwhters RO1 and
R10 have just recognized the path set-up header and en&trad snode. This
is because each router has two pipeline stages on the catfogupath, thus
delaying the configuration by two cycles for the next rouiarthe broadcast
tree. The configuration module, having emptied its sea#ilin register is able
to accept one more data word.

The configuration words after this point are organized imgalhe first word

in a pair identifies a network element while the second diessnmodifications
to the slot table of the identified element. The MSB of eachdaierset to

identify a valid configuration word. For the first word, a valof 1 in the

MSB-1 position identifies an NI while a value of 0 identifiesocaiter. The 1D

is stored in the least significant bits. For Nlis the leastifitant bits identify

the port (connection) number and the following bit idengifilee input or output
slot table. For routers, the least significant bits identify input port and the
immediately higher bits the output port.

The meaning of the configuration words in Figure 6.6a is thievang: for
the defined slots, the input of the Network Interface NI11thdve forwarded
to channel 0. On the previous path segment, but one time atti¢ie router
R11 should forward data from input port 1 to output port 2.

After two more clock cycles (Figure 6.6b), the path set-updes reaches R11
and NI10, the slot table is registered in R10 and R01, and therfetwork
element identifier pair reaches R00. Because R0O does ragmize its own
ID in this pair, it ignores the pair but at the same time it tesa(bitwise) its
table of affected slots by 1 position.

Four cycles later (Figure 6.6b), after another 4 configaratiords have been
transmitted, the table table of affected slots is finallyexoby all network

elements, rotated by a different number of positions. Sp tfed network

element IDs in the configuration packets never matched t#mezit IDs of

the traversed routers. The number of rotations in the slietaeems to
depend so far on the distance from the root of the configuratee, but this is
misleading. The number of rotations actually depends omtimeber of path

elements in the received list that did not match the localaet element ID.

Eventually a configuration word carrying the proper ID rescthe network
elements that need to be configured. In our case that happeakasieously
for R10, R11, NI11, as shown in Figure 6.7.

In order to avoid configuring upstream nodes before dowastraodes, we
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configuration words that are

R10 p )
........ currently traversing this router

vaIii Router 11

stored list of affected slots

“inTrout2 \ mrrm/
LN 110 TG
in= 0 the list of affected
slots is loaded by
cfg { ROO from the
—>{E configuration
S packet
0Ox 8DOE263
NI10
header

ROO shifts internally
the list of affected
slots, because it does
not recognize its own
ID in <pair1>

0x 818A4C2
+2 cycles

==

Figure 6.6: Path set-up, slot table registered at the fitgero

had to take an additional precaution: we need to verify tloapath for data
exists that is shorter than the difference in configuratiath pength from the
root of the configuration tree. Optionally the enable-disabhechanism per
connection can be employed for the same purpose.

The update of the slot table is not performed instantangdud through the
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NI10 R10 R11
; ir3 % air2 *
== =
—al
O - -N\_----
»
0x 818A4C2 1 R10, R11 and NI11
+2 cycles recognize their own ID
cfg in the configuration words
v and start updating their
slot tables

Figure 6.7: Path set-up, slot table update takes place in R1D, NI11.

use of a counter, one slot table element is initialized egclec We preferred
this approach to reduce the cost of FPGA implementations ifhplies that a
cool down period is necessary before another path set-upaoddwn may
take place. A hardware cool down timer inside the configoratnodule
enforces this policy by delaying channel set-up packet éxsads long as it
is different from 0. Other configuration packets are allowleding this time
so the initialization of credit counters of bus address dec®can overlap with
the initialization of slot tables.

The list of traversed routers/NIs begins at destinationrsuee that down-
stream routers are initialized before the upstream NI antere start sending
packets. For each item in the list, the slot table which wasisehe beginning
of the packet is rotated by one slot so that all routers albagath, when they
recognize their ID in the list, already have the properlgmdid table. It is not
mandatory that a packet contains a complete source-tordtish NI path,
independent path segments can be initialized as well. Erse used to set
up broadcast trees, for example.

Appendix B provides an example configuration program.

6.2.4 Slot counter synchronization

The dAElite network is at the logical level a synchronousaek implementa-
tion, which furthermore relies on a notion of global time.iSimay in practice
be difficult to achieve [LSGB11] due to clock skew issues imgdadesigns.
Nevertheless, studies have shown [BKVWO03] that clock skeWes in the
order of tens of picoseconds are achievable. Other appeeamtist [HSGO09]
that avoid the problem by offering synchronous behaviohatlogical level
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while relying on a mesochronous or asynchronous implentientat the
physical level.

In this section, making abstraction of how the synchrommaissue is solved
at the physical level, we show how to solve the issue of syrghing the
slot counters at the logical level. To illustrate the syoclization problem,
consider the following scenario, illustrated in Figure.8/& use the following
simplification which allows us to explain the synchroni@atimechanism: as-
sume that the clock skew between neighboring nodes (hodearthconnected
by a network link) is sufficiently small to allow correct dati@nsmission
between the nodes and allow the node to agree on a common ofathe
current time slot when they exchange data. Over large distapetween nodes
that are not connected using a link that is not required.

topology being discussed clock skew may accumulate over

multiple hops even to the extent that
distant routers do not agree on the
current slot number
CLK
00
{slotnr X slot1 X slot2 X slot3 X

< propagation delay

DATA __—>

sent by R0O X ioo X b1 X

after link |

traversal X DO X D1 X

registered |

by RO1 _ X0 X o1 X

\—!  leclock skew

slack—} e |

e L LT LT L F LT T
slotnr :X slot1 X slot2 X slot0 X

CLK *
R02

slotnr slot1 X slot2 X slot0 X
eefoe LT LT LT L LT T T
slotnr __slot1 X slot2 X slot3 ¥ sloto X slot4
instantaneous ' l—'_|
global reset : :
reset should be here for R03 | | instead it happens
for it to agree with R02 on slot number here

Figure 6.8: dAElite relaxed synchronous model.

This may be a reasonable assumption for a mesh network whkseakre short
and connect only physically neighboring nodes. The immbrg@pect here is
that each router agrees on the value of the slot counter aafulésto transfer
data to its neighbors. It is sufficient if this happens onbnirthe logical point
of view, regardless of the physical implementation.

If the slot counter values were reset using a global resaeakignd that reset
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signal did not follow the same skew pattern as the clock, ésetrsignal will
inevitably be sampled on the wrong clock edge in one of théowuarclock

skew domains. (Figure 6.8 shows how an instantaneous rigsetl svhich

does not follow the pattern of clock skews causes R02 and ®@Bagree on
the current slot number).

To solve this problem we provide a reset mechanism whichvalthe logical
view of network time. The reset signal is transmitted as eigpgacket
through the configuration network. This packet will arrivietlae different
nodes in different clock cycles, but the logical delay iswno(two cycles
per hop) and the nodes compensate for it by initializingrthkeit counters to
the distance to the root of the configuration tree. This smiualso allows for
pipelined links which can be useful in achieving high freaueof operation.

Another advantage of this approach is that it allows ressorghing the NoC
slot counters after a partial power down.

6.3 Multicast

dAElite offers a mechanism to achieve multicast that is b&ithple and
efficient. The TDM schedule in a dAElite router is implemeahtes a table
that specifies for each output port which input port shoukel data be taken
from during each cycle. Two (or more) output ports are alldwe use the
same input port as a source (Figure 6.9).

P NI10 ~ ~ Ni11:fEH—[mem
R19 s [Eh
K
Host T B S N [Tt = e
IP Hste" ROQ RO1 HsH
By
5 ':‘ V_V E outputs North and East are
....... (partial) Path 1 1 |=]=]-1 instructed to get their data
a==e Path2 2 (w]=]w] from the same input (West)
2 “|Z|Z| during slot cycle 2

Figure 6.9: Multicast in dAElite

The multiple paths to the different destinations form a,treeted at the source
NI. This is more efficient and offers higher performance thawing separate



6.4. PFERFORMANCE AND HARDWARE COST 189

connections from the source NI to all destinations becauteeilatter case the
bandwidth on output link of the source NI would need to bediid between
all the connections.

The initialization of multicast trees is made possible Hgwaing a configura-
tion packet to set up partial paths; i.e., paths that staatratiter instead of a
source NI. In the tree, partial branches should be set-upbiefore the “main
branch” which goes to the root of the tree. This is done todhtleé source
NI starting to transmit before the entire multicast tree basn set up. In the
example in Figure 6.9, the partial path RO1-R11-NI11 shdagdset up first
and the path NI00-R00-R01-NI01 should be set up second.

All multicast destination shells will receive the same atreof messages and
will translate them into the same write commands on the nfgtstin buses. In
fact, depending on the IP/bus protocol, any kind of trarisaair message can
be transported to all destinations.

One potential problem when using multicast is that the deféaw-control

mechanism cannot be used (the source NI only has one creniitaesdor each
communication channel). The least expensive solution ifodtoblem is to
guarantee that the destination bus can process the reca@madry transaction
at the same rate that they are transmitted. In our schemargeaing this is
made easier by the fact that the connection bandwidth caettte s desired
value (with a certain granularity) by allocating more or &W DM slots to it.

6.4 Performance and hardware cost

Comparing NoCs is not straightforward as the services geaiby two dif-
ferent NoCs may be different. Furthermore many of the smhstipresented in
the literature only give details of the network routers whimakes it difficult
to asses the cost of an entire network able to deliver théceelavel demanded
by an application.

The obvious target for comparison is represented by the rEahaetwork,
with which dAElite shares the contention-free-routing dshsSTDM model.
Several implementations of the Athereal network existgsohthem support-
ing best-effort (BE) services in addition to the guaranteedices. Supporting
BE services was found to be much more expensive [GH10]. ea¢lisG09]
inherits the GS-only model from Athereal, and introducespbssibility of
using asynchronous and mesochronous links. From here dawae will
refer to the GS-only version of Athereal as aelite, withowt inplications
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to a particular asynchronous or mesochronous link impléatiem scheme.
We dedicate the largest part of the cost and performanceiadia to the
comparison with aelite.

We have verified our design using Microblaze processorseatPthin Figure
6.1, both by running in FPGA and visually inspecting the waxms in sim-
ulation. We have specifically verified the proper functiagnof the following
operations:

e Network configuration, link set-up and tear-down, settitagus flags,
setting and reading credit information

Normal reads and writes from the Host IP to the remote memorie

Broadcast writes from the Host to both remote memories

Configuration of a remote bus
Read and write from secondary IP after its bus has been coafigu

6.4.1 Hardware cost

The hardware cost of dAElite compared aelite is presentethbie 6.1 and
Figure 6.10. Both implementations consist of 2x2 mesh nedsyavith 4 Nlis

and 4 connections. The sizes of the FIFOs implementing thaepiinside NIs
have been set to 16 words except for the aelite configuratianreels which
use the minimum required size of 3 words on the forward path ®&iwords
on the return paths. dAElite uses the dedicated configuratifsastructure.
We believe the FPGA implementation can be further improvgdaking

advantage of FPGA specific structures to implement sloetabhd FIFOs.

For the FPGA implementation using the Xilinx tools, we pemied runs
with both area and speed optimizations. For the ASIC imphaation we
did not perform time-constrained synthesis as timing is emideely to be
dictated by floorplaning which we did not address. We peréanmstead two
synthesis runs, one with preserving the individual comptand one with
design flattening and high optimization settings. The céstach hardware
component is presented in Figure 6.11. The bulk of the cdattise network
interfaces due to the relatively large FIFOs.

For the routers, the gain of our implementation is on accoflitie reduction
in flit size to 2 which eliminates one register per router et@nA multiplexer
per channel per router is also eliminated as we do not neetiftorguting
information in packet headers. We add instead more compafiguration
logic and a slot table.
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Xilinx ISE Xilinx ISE Synopsys Synopsys
Virtex 6 - Virtex 6 TSMC 65nm TSMC 65nm
Area Constrained 200MHz flatten, high effort
5,500 slices 5,393 slices 182,419 um? total 171,820 um? total
aelite 7,665 LUTs 9,403 LUTs 44,419 combinational | 39,563 combinational
(8 slots) 15,444 registers 15,840 registers 137,992 noncomb. 132,261 noncomb.
8.379 ns 4.986 ns 1.44 ns 1.13 ns
3,098 slices 3,655 slices 155,509 um? total 141,233 um? total
dAElite 10,026 LUTs 12,470 LUTs 39,185 combinational | 29,541 combinational
(8 slots) 12,323 registers 12,973 registers 116,317 noncomb. | 111,693 noncomb.
8.19 ns 4.968 ns 1.36 ns 1.08 ns
3,483 slices 4,425 slices 171,476 um? total 156,639 um? total
dAElite 10,903 LUTs 14,335 LUTs 43,611 combinational | 33,410 combinational
(32 slots) 13,533 registers 14,191 registers 127,858 noncomb. 123,230 noncomb.
8.84 ns 4.85ns 1.36 ns 1.08 ns

Table 6.1: Hardware cost comparison.
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Figure 6.10: Hardware cost comparison.

Compared to aelite, our NIs benefit from a simpler configarathechanism
which uses a state machine connected directly to the coafigarinfras-

tructure, instead of interpreting requests on a DTL bustéakes a regular
network channel for configuration, followed by a shell tiating the configu-

ration messages into DTL bus transactions.) Further aiiea gaginate from

the removal of the table of paths inside the NI, and some ottmdiguration

buses.

The cost of dAElite is more sensitive to the size of the TDM alhd& he slot
tables inside the Nls need to contain entries for both depestand arrivals
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Figure 6.11: Hardware cost breakdown.

whereas in aelite they only contain entries for departudelslitionally, slot ta-
bles are present in each router. We expect, and we confirnmimqreally that
the cost increases linearly with the number of slots. It jgeexed therefore that
as the number of slots is increased the hardware cost of tAill increase
relatively to aelite. We performed additional synthesissrto determine the
point where the cost of dAElite becomes higher than that liteaéVe found
that point to correspond to a TDM table size of 70 (Figure $.12 practice
we do not expect to use TDM table sizes larger than 32 slots.

On the other hand, the cost of dAElite increases less thaotla&lite with the
number of connections, because a path per connection isaretisnside the
NIs (the path is stored in a distributed manner inside theerosiot tables).
Our setup, which uses a relatively low number of connectipravides a
conservative estimate of the hardware area benefit of dAElit

dAElite has one disadvantage, namely a 20.8% increase mutinder of link
wires, in part due to the configuration network, and in pacdabse of the
separate wires for end-to-end credit communication. Tiseaeslight variation
in overhead across topologies and sizes, because the gatifigunetwork is
only a subtree of the original topology. For example, on a dwesh the wire
overhead stands at 19.1%. The relative overhead wouldateeitwider links
were to be considered.
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Figure 6.12: Dependence of the hardware cost on the numlsiotef

6.4.2 Configuration time

In our proposal, the path set-up time is only dependent om leaigth as all
slots reserved for a connection are configured at once, fdr eae of the
routers on the path.

We present the results of experiments in Table 6.2. All tesale expressed
in cycles. In both cases the configuration code is written ian@ compiled

with maximum optimization. The ideal value reported foritagk taken from

[HGO7] and represents the configuration delay without @kimo account

processor execution time of the configuration code, but th@yactual read and
writes. In aelite, the path set-up time has a small deperdencdhe distance
from the host to the source and destination of the path, aaddoger extent
to the number of slots reserved on that path, as the slotseisdhrce and
destination Nls are reserved separately.

The ideal value for our proposal is computed analyticalgnfrthe number of
configuration words that are being written in each case tehvtiie cooldown
latency was added.

The improvement in set-up time compared with aelite is dubedollowing:

e overheads are reduced: the original implementation usddtizhsac-
tions encoded into packets;

e we avoid transmitting redundant information, the slot éabht the in-
termediate nodes are generated by rotating the slot talleséihation;
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aelite dAElite
ideal measured ideal measured
6 hops 60 81
8 hops 68 94
10 hops 246 822-1555 76 119
12 hops 84 133

Table 6.2: Configuration times

and

o the configuration bandwidth is not dependent on the sloetalzie and

the number of slots allocated to configuration. A dedicatdchstruc-
ture is less expensive than implementing the same fundiiprever a
generic network.

Our FPGA experiments indicate that dAElite configuratiorraaghly one
order of magnitude faster than aelite.

6.4.3 Performance

dAElite has several advantages in terms of performance amdpo aelite.
The primary sources of performance increase are the onesilmhs in the
beginning of this chapter:

A)

B)

C)

Bandwidth division granularity can be improved withoucieasing the
slot wheel revolution time. In the current implementatiarslot size of 2)
the ratio between the granularities of the two solutions/$ thus a slot
table of 24 slots in dAElite will have the same period as agail16 slots
in aelite. Itis also possible to decrease the slot size tgulting in a factor
of 3 improvement.

The header overhead is eliminated. Sending headers waith packet
when the schedule was in fact static is indeed wasteful botierims of
bandwidth and energy. The header overhead in aelite is batd#®.1%
and 33.3% depending on whether consecutive slots are ustt:l®ame
communication channel or not.

dAElite allows multi-path routing without any additidnaardware over-
head on any number of paths. Multi-path offers more freedonthé
routing computation and may allow a more efficient alloaatio
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The total improvement, and the improvement due to each dhitee sources
is quantified in Table 6.3. The experiments setup used héhe isame as the
one presented in Chapter 2. The traffic type is random trdfie slot table

sizes are 16 and 24, the number of connections is 1.5 per |Bhantumber

of IPs matches the number of network interfaces which in taatches the

number of routers.

The three sources of improvement may interact with eachr.oive analyze
all combinations of the three sources and report the miniranchmaximum
(from all combinations, average value per topology). Moxelieitly, the
improvement of A is measured in the presence and absence atiBraC
and we report the minimum and maximum out of all combinatiofiid and C.

Total
Bandwidth ) ®) (©)
. Granularity Header Overhead Multipath
Gain
4x4 mesh 28.8% 5.8% - 7.6% 17.1% - 19.2% 1.1% - 3.1%
6x6 mesh 44.6% 5.7% - 13.8% 20.7% - 29.9% 5.3% - 7.4%
8x8 mesh 53.3% 7.0% - 17.4% 20.7% - 30.6% 71% - 13.1%

Table 6.3: Performance improvement in dAElite comparedetivea

The proposed implementation presents other performanefiteeas well.

D) In aelite the configuration takes place over the normaliogt connections
and a certain bandwidth over these connections is “consuimgdhe
configuration channels. At least one slot over each NI-totBoand
Router-to-NI link needs to be dedicated to configurationclwhiesults in
an overhead of 6.25% assuming a slot table size of 16. BeahElite
uses a dedicated configuration network, this overhead dmesist in our
case.

E) Router traversal time is decreased in dAElite, as the d&Ebuter has
only two pipeline stages (one after the link traversal and after the
crossbar traversal). Performance is not degraded as hpadgng is also
eliminated from the router, eliminating the need for theraxipeline
stage.

F) Our proposal also provides a mechanism to synchroniz& ¢ wheel
clock across Routers and Nis based on our broadcast confayuraech-
anism. This can be used for example to wake up from sleesstate

All these improvements stack up, making dAElite a more etitra solution.



196 CHAPTER 6. DAELITE NOC HARDWARE IMPLEMENTATION

6.4.4 dAElite compared to other NoCs

We compare here the cost of the dAElite to the cost of otheworés on
chip reported in the literature. A conclusive comparisodificult to perform
because the different NoCs support different features artidfrmore most
publications only report the cost of the routers while owpasal consists of
an entire NoC, including the interface to IPs. dAElite conggafavorably in
terms of router hardware area cost but the bulk of the costrisentrated in
the NIs. Nevertheless we present here a comparison usirayd#ilable data.

We have synthesized our design in TSMC 65 nm, 90 nm and 130 ns. W
report the area after synthesis in Table 6.4, compared tr otilues of the
router area reported in the literature. We do not reportitinais we expect it to

be more affected by other factors like length of the links. axjeect dAElite to
perform well in terms of operating frequency as it allowsitagoy pipelining

of links and it lacks complex decision logic like arbiters.

A solution similar in concepts and functionality to dAElitethe one proposed

in [BWM*09]. Same as dAElite, it makes use of a separate configuration
network but it is based on a SDM scheme instead of TDM. Thétrissoughly

6.7 times more expensive but it offers more routing flextail{in SDM any of

the 4 lanes of an input port can be forwarded to any of the 4lahan output
port, but in our TDM scheme, one TDM time slot can be forwardely to the
immediate next time slot).

6.5 Related work

Many NoC implementations, either connectionless or cotimeoriented,
have been proposed in the literature. These networks may bdfth Best-
Effort (BE) and Guaranteed Services (GS). Networks on clEipS&IN
[ACGT03], xPipes [BB04], qNoC [BCGKO04], SoCIN [ZS03], artNoC
[SLBO7], Quarc [MMV09] and [SHG10], implement a connectiess packet
switching approach. QNoC implements quality-of-servismtigh the means
of prioritized traffic classes, but the guarantees offenedad best statistical.
ArtNoC has support for multicast but only from one node ateti Support
for multicast is also provided in [MMV09, MNTJ04b] and [SHQ1 Another
approach is BENoC [WCKO08], which uses a bus to complemensdéineices
of the NoC. While the NoC would provide high data throughjpiu, bus would
provide low latency messaging, multicast and broadcastp2oed to BENoC
the advantage of our approach is that we can provide higlginout multicast
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Table 6.4: Cost of a dAElite router compared to other impletagons

16-bit 5-port router, 130 nm technology:
artnoc [SLBO7] 2-flit buffers, 4 Virtual Channels 0.060 mri

Wolkotte [WSRSO05] circuit switched 0.050 mri

Wolkotte [WSRSO05] packet switched 0.180 mri

dAElite router 0.016 mm
16-bit 4-port router:

Mango [BS05] 120 nm, 8 Virtual Channels 0.188 mri

dAElite router 130 nm 0.020 mm
32-bit 8-port router, 130 nm technology:

Quarc [MMV09] (not full 8x8 crossbar) 0.063 mri

dAElite router 0.053 mm
36-bit 8-port router, 130 nm technology:

SPIN [AGO03] (not full 8x8 crossbar) 0.240 mri

dAElite router 0.057 mm

5-port router, 90 nm technology:
Banerjee and Wolkotte [BWNO09], 4 SDM lanes 0.108 mm
16 bit/lane

dAElite router 64 bit links, 4 TDM slots 0.016 mm
32-bit 4-port router, 130 nm technology:

xpipes lite [SAC"05], 4 stages output buffer 0.091 mri

dAElite router 0.020 mm

and more multicast connections operating in parallel.

Connectionless packet switching NoCs typically do not roftgency and
bandwidth guarantees, thus we do not discuss them furthdahelfollowing
we comment on the connection-oriented, circuit-switchiaCs, as they are
similar to dAElite. Among these we give special attentiofiG®R05], as it is
the closest approach to ours.

/Athereal [GDRO5] is a hybrid network offering both Bestetffand Guaran-
teed Services. Athereal supports three routing modetsbdigd routing with
BE configuration, source routing with BE configuration andrrse routing
with GS configuration. More recent studies [GH10] suggest the BE
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Network Link sharing Routing Connection Setup End-to-End Flow Cont  Connection types
dAElite TDM distributed dedicated separate wire,TDM 1-1,multicast
aelite [HSGO09] contention-free TDM source GS headers 1-1,channel trees
TTNoC [PKO08] contention-free, pulsed  source GS,over data network  none 1-1,multicast
TTNoC [Sch07] contention-free, pulsed  distributed unspecified none 1-1,broadcast
/Athereal w/BE [GDRO0O5] contention-free TDM source/distributed  GS/BE,guaranteed headers 1-1,multicastx
Kavaldjiev [KSIJWO06] VCs source packet,BEt none 1-1

Wolkotte [WSRSO05] SDM distributed separate BE separate wire 1-1

Nostrum [MNTJ04a] TDM,looped unspecifiedi container none 1-1,multicast
SoCBUS [LWST02] none distributed packet,BE none 1-1

Table 6.5: Comparison with network implementations usingjlar concepts

x The distributed version of Athereal could in theory suppuutticast at network level, although a solution for configgr

the nework for this scenario was not proposed; multicastpwagosed using separate connections for each target

1 Guaranteed connections have preallocated VCs and setasgpusiad to always succeed

1 The paper only mentions that routes are decided at run tiossilgy they are stored in a distributed fashion inside the
routers

§ No explicit connection setup is required, containers caadoked and removed at will at runtime by any of the nodes on
the route but lack of conflicts must be ensured
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versions are not very cost-effective. For guaranteed cesyiEthereal makes
use of a routing model called contention-free routing incktéach connection
may use a link in a given timeslot. Channel trees [HCGO7ajeoé the
performance of this basic scheme, by allowing sharing oéslats between
channels, i.e., connections. This sharing may renderithtaé service guar-
antees per connection, thus are not discussed further.

[RDP*05] proposed the implementation of multicast in Atherealgisepa-
rate connections. dAElite uses instead a broadcast/rasiticee to achieve the
same result. Our solution is more efficient since it avoidb husing separate
channels inside the NI and using the link bandwidttimes, one for each of
n destinations. Compared to Athereal, we also use a moreeaffitbw-cost
connection set-up mechanism. The connection state igistwigle all network
elements in a distributed manner and the network configuratiechanism
is centralized. Moreover, aelite requires a separate dataection over the
network to configure the buses around the NoC. dAElite progrthese buses
through a broadcast mechanism, leading to faster configarat

A network very similar to aelite is TTNoC [PKO08] which alsoasscontention-
free routing but claims to offer more freedom than a fixediquiic TDM table.
The network supports multicast but because source rowgingad we expect a
significant overhead in encoding the multicast trees in ket headers. An
earlier version of TTNoC [Sch07] used distributed routibgt was tied to a
ring topology. This implementation supported a broadcpstation.

Another network that uses a TDM scheme to provide guararitaedwidth
is Nostrum [MNTJ04a]. Nostrum does not have a fixed TDM whéezd,out
instead, the TDM period is linked to the length of looping ections. Mul-
ticast is supported by adding more receiver nodes to a cllosgd Nostrum
also offers BE communication using deflection routing. Oisadvantage of
Nostrum is that routing paths, and consequently multicadersets, must be
decided at design time.

The network proposed in [KSJWO06] uses per-connection alirthannels
(VCs) and round-robin arbitration to provide communicatguarantees. VCs
are in general expensive as they require buffers, muligpexdemultiplexers
and separate flow control. The number of VCs per router stedds/ the
authors due to cost concerns is of only 4 which may limit thenber of
simultaneously supported connections.

aSOC [LSTO00, LLTBO03] implements the same type of static TDilezlule
found in Athereal, but it does not implement the actual erelrd connec-
tions, leaving this task to the IPs.
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MANGO [Bje05] is an asynchronous network implementatioattbhses, as
[KSJWO06], per-connection virtual channels. Since the pétws clockless,
there is no actual TDM table. Like Athereal, connectionsétyprovided by
using a Best-Effort network.

Another possibility for link sharing is SDM, used by [WSR$0%.ike our
implementation, it makes use of an external network foreaanfiguration,
but it does not explicitly specify how this network is implented. Reported
configuration times are higher than those of dAElite.

Some implementations like SoCBUS [LW82] do not share the link between
connections. This approach has a very low cost but it maytresexcessive
blocking.

Table 6.5 summarizes the related approaches to severaltasgehe NoC

implementation. One key differentiator is the type of ragtemployed which
also has implications on the location where the connecttate §s stored.
Source routing encodes the packet path in the header of thetpahile dis-

tributed routing relies on separate routing decisions el ép. We consider
source routing to be too expensive for multicast and bragtdespecially if

small packets are considered, thus dAElite utilizes diisted routing.

Our proposal provides a unique set of features, namely casltti multi-path
routing, a low cost contention-free routing model and disted routing, along
with an improved performance/cost ration compared to thie sif the art.

6.6 Conclusions

In this chapter we have proposed a network implementatioichwéupports
some of the less restrictive models that we have propose@iapi€r 2, in this
way allowing better performance.

Our proposal improves upon the state of the art in terms df aod perfor-
mance. In particular, compared to aelite, which is the cdbseodel we have
the advantage that our proposal supports multi-path rgwtimd multicast, it
does not have a header overhead and it allows a finer-grametdndwidth
division without increasing the scheduling latency. We ehachieved this
by storing the slot tables in a distributed manner insidedersuas well as
network interfaces and by employing a lightweight and effiticonfiguration
mechanism which also significantly improves connectiorugetime.



Chapter 7

Bandwidth efficiency and Latency
hiding

While in the previous chapters we have focused on maximittiegaw band-
width provided by the network, in this chapter we analyze tiog bandwidth
is translated into services offered to the the end-user oempecisely to the
IPs connected to the network.

The services provided to the IPs are built on top of the nékvgervices in a
layered approach similar to the one of the OSI Protocol Sid&09, HG10].
We llustrate this in Figure 7.1. The network provides pur@nsport of
data between different locations on the chip, but it is natceoned with the
meaning of this data. On the other hand IPs expect servicts mémory
operation semantics, i.e., memory read and write opematidn-between is
found a layer which translates the memory operations intesages.

The modules performing this translation are called (Nekwoterface) shells.
This is a common feature of aelite and our network propose@hapter 6,
dAElite. Connections are set up between a pair of Networlrfate shells,
one translating the memory request to a network messagethtetranslating
the message back into a memory request. Connections haxg éf@ime, a
connection is used to perform many memory operations béfisréorn down.

Optionally, in-between NI-shells and IPs, a demultipldxes sends the request
to the NI shell corresponding to the desired destinationis Bhs exists if an
IP can communicate to multiple destinations over the ndtwdit the other
side of the network, an optional multiplexer bus arbitrdiesveen incoming
request from different sources.

In this chapter we focus on the translation layer betweeratfeisthe network.

201
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Figure 7.1: Correspondence of OSI layers to the Atheredemmgmntation.

We propose three optimizations that target the translagioness taking place
inside the NI shells. Two of the optimizations are transpafi@m the point of
view of the IP while another one requires the explicit chanigethe software.

The first optimization consists of performing automatictevdoalescing. Au-
tomatic write coalescing improves network bandwidth zaition, as it will be
shown in Section 7.1. The second optimization, which weidat&ection 7.2,
consists of a mechanism to perform posted writes while pvege memory
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consistency. The third provides a hardware mechanism tpostigoftware
prefetch in an IP where this functionality was absent. Thefgich operation
is also supported at the level of NI shells and it is preseint&kction 7.3.

We also demonstrate interoperability between differestdtandards at the dif-
ferent ends of the network. Network interface shells tr@esinemory requests
received from a master IP into an internal common messagaator After
traversing the network, the messages are translated bynreimterface shells
into the specific format (bus protocol) understood by theesI®, regardless of
whether this protocol is the same one used by the master I1Btor n

All our proposals were implemented in VHDL and tested in FR@AIr
prototype used an instance of the Athereal network with @ur custom
designed network shells a Microblaze processor as a m&std a memory
as a slave IP. Interfacing was performed on the busses usigrocessor
Local Bus (PLB) and Fast Simplex Link (FSL) protocols. Saeatr.4 presents
the experimental results showing the performance imprevemf each of our
proposed techniques.

7.1 Write coalescing

Memory transactions, encoded as messages, traverse terkél a serial-

ized fashion, with headers, addresses and data sharinghe lsandwidth.
Longer messages, with multiple words of data for a singlelegaddress pair
would thus have better payload efficiency.

Burst transactions on the bus side correspond to such nesssegide the net-
work, however, not all IPs have the capability of generabuoggst transactions.
The instruction set of the MicroBlaze soft-core does novig® an instruction
to write to memory more than one word at a time, and this is touenany
other simple IPs also.

We automatically identify sequences of write operationsdasecutive ad-
dresses and combine them into a single message for the pusptrsversing
the network. At the destination NI shell these messagesheamtie split again
into individual write operations or optionally they can leeed directly to the
destination bus if burst transactions are supported.

We perform this write coalescing as long as the addresseasecutive, the
burst length has not reached the maximum value, 32 for thesagesformat
we are currently using, and there is data in the outgoing orétqueue. This
last condition is to ensure that we are not unnecessaribyaa messages and
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to avoid deadlock.

A diagram of the NI shell we implemented is found in Figure.7.Zhe
shell uses several independent queues to store the datagddhess and the
headers. Data is copied from the PLB bus to the send queueswérea write
transaction is accepted, new headers and address are tmfiedheader queue
whenever a transaction cannot be merged with the previansdction or the
network is idle and the current transaction can be procaesse@diately.

Data WR
Data RD PLB
Addr bus
Cmd
Q>
read data \O7 | Addr
response queue s
Add burst | t
= quelrje urst| typ
[0 headers
= queue
[ B e IR e IS I
P4

pending
write I I I packet
counter \ / control

from
NI kernel

I to NI kernel

Figure 7.2: NI shell supporting burst write.

It would also be possible to implement the same function&dit read transac-
tions, however the Microblaze processor always stalld antad transaction
is complete thus making this feature useless.

For comparison, the NI shell without burst or posted writprt (Figure
7.3) consists of a simple serializer shifter. The entireuesty message is
generated in a single cycle when accepting a request froubi@nd is sent
to the network word-by-word in the following cycles. Becauwsdl requests are
blocking, additional queues would not provide any benefit.

7.2 Posted writes and memory consistency

Memory consistency is a term used to describe the expecstdms\behavior
with regard to the order in which memory writes are visibl¢h® different IPs
in the system. In general a stricter memory model providesergaarantees
regarding the order of memory operations thus making thgraromer’s job
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Figure 7.3: NI shell without burst or posted write support.

easier, but makes the hardware implementation more difficul less efficient.

The strictest consistency model in use is the sequentiaistemcy [Lam79],
which requires that the memory operations of each indivigwacessor, as
seen by the other processors in the system appear to exactte order of
specified by the processor’s program. Any particular ietarng between the
instructions of different programs is allowed, but the santerleaving shall
be seen by all processors or processes. This is essentiallgame result
that can be expected from multiple threads running on aesipgcessor, and
studies indicate that this is the behavior programmersaxpman the machine
[AG96, Hil9g].

We first present a basic hardware implementation that wouddigle sequen-
tial consistency, then show how the requirements can beeaglto allow

performance optimizations. We assume from the beginningrahitecture

where memory requests, both read and writes can be pipebnéethe ordering
of requests, even between reads and writes is preservei Withpipeline. It

must be mentioned that allowing reads to bypass writes ig8oras accepted
as an optimization [Goo89], reads being considered moretlitapt, as the
reader process was likely stalled waiting for data. AltHouge do not accept
reordering of normal read operations with respect to wiikerations, we allow
it for prefetch reads as it will be explained in the followisgction.

Despite the fact that our architecture does not employ caérel the system
seems to maintain ordering of requests, consistency prabiaay still arise.
Consider the following scenario involving a transfer bedwe producer and a
consumer of data, represented in Figure 7.4. The produode(A) generates
data items and places them in some memory location, for eleaimexternal
memory. Upon completion, it signals to node B that the dat@asly to be
processed.
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Figure 7.4: Consistency issues raised by signals arrivirtifferent destina-
tions with different delays.

Because the NoC allows messages with different destiratiotravel inde-
pendent of each other, it may be possible for the confirmatiessage from
A to arrive while the data is still queued waiting to be writt® the memory
[LVG10]. An attempt by B to read the data through its own cartioe to the
memory would return stale values. Not only it is easy to saetthis produces
an erroneous program behavior, but it does that by breakie@$sumptions
of sequentiality, which required that the confirmation nages for example a
write operation to a specific flag in memory, would be seen byriBtly after
the write operation to main memory was completed.

One possible solution would be that all write operationsdrieebe confirmed
(non-posted writes), preventing A from sending a messade before the
previous operation has been completed. Unfortunatelyvibbuld completely
prevent pipelining, resulting in a severe performance ipena

Our solution consists of performing posted writes (writeigions which are
acknowledged at the source without waiting for confirmafimm the target),
but keeping track in the NI shell of which write operationsdaeen confirmed
and which have not been. Future writes to different destinatwill be stalled
until all pending writes have been confirmed, in other worctssecutive
writes to the same destination are pipelined like postedewibut writes to
different destinations behave like non-posted ones.

Let us analyze why this ensures sequentiality. The selertnsistency
model required that from each process’s point of view, alimogy accesses in
the system seem to take place in the same order, with anaahititerleaving

of accesses belonging to different processes, but maimggtine program order
for accesses of each individual process. This order is regtssarily the order
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given by the physical time of issue of each access, but in ase @ can be
chosen as the order of physical time of completion of eachsscfthe physical
read or write to each memory). Because we did not allow thedeging of
write operations in each pipeline and all messages betweemades travel
on the same path, writes to one memaory from one specific ppocesll occur
in program order. Because our system waits for completiofiroation when
switching between different targets, writes to memory Bt thecur in the
program after writes to memory A will also take place phydyciater in time.
It is necessary for the same to happen for read requests soamiranism also
enforces this.

It is possible to further relax these restrictions to allagher system perfor-
mance. For example when one memory is not read by any otheegsplike
it might be the case of a video frame-buffer, it is not necgsta order the
accesses to that memory with respect to accesses to othesriaenit is also
possible to emulate the behavior of other consistency rsdmebnly partially
connecting the command signals used to block some memoesses until
accesses to other modules have completed and mapping sgizetion vari-
ables to specific memories, Figure 7.5. We can for exampléeimgnt the
weak consistency model [DSB98] by mapping synchronizatianables in
one memory and enforcing sequentiality between that memnwyeach of the
data memories, but not among data memories. A consistendglnsonilar
to the Release/Acquire model [GI90] could be implementing by splitting
the synchronization memory in two separate memories ara@n§ only one
way ordering between accesses to these memories and theelaiaries, for
example an access to Acquire must complete before an accBsdd, but not
the other way around.

BUS
'’ l
hold v ] Y
hold hold
pending
pending pending

I
| ]

[orec]

Figure 7.5: Emulation of a weak consistency model.
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7.3 Software prefetch

The previous proposals are transparent from the point of vigthe software
developer. Except for the variation in performance, thdesysbehaves no
differently from a system with only local memory, even theaaduction of the
NoC between an IP and its memory is completely transparemd. fallowing
proposal however introduces a feature that needs to becilyplised by the
programmer, and in some cases requires a significant resfrite software.

Networks on chip and large scale interconnects in geneval daigher latency
than back-to-back connections. Given that, it is natural tie look for ways
to cope with that latency. While posted writes provide arcigffit method of
dealing with write transactions, for read transactions w&ot have a similar
solution. Processors providing out-of-order executiotigaie the problem
to some extent by allowing other instructions to continuelevbata is being
fetched from memory. This type of approach though is experand not often
predictable.

In our system we opt for introducing an explicit command timdpidata from
memory some time in advance before actually being needede(ph). Note
that, unlike other prefetch implementations, the data isused to update a
local cache from which it can be later read using a normal mestcuiction, but
instead is deposited in a queue from where it needs to becikpliead by
the program. The technigue can be seen as a software spiatitéon, where
the request for data is decoupled from the receiving of daxample code is
provided in Figure 7.6.

// original loop
for (i=0; i<n; i++)
{

v=alil;

// use value v

U WN =

}

// modified loop
6 prefetch(al0]);
7 for (i=0; i<n; i++)

8 {

9 if (i<n-1) prefetch(al[i+l]);
10 v=read prefetch fifo();

11 // use value v

12 }

Figure 7.6: Example prefetch loop compared to original code

In the modified code, one or more data items are requested@eatering the
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main processing loop (line 6). In each loop iteration, maatads requested
in advance (line 9) with care being taken to not exceed thitdiaf the actual
input. Data from the previous requests which should haweadir arrived in
the buffers is then retrieved in line 10.

The hardware necessary to support the prefetch mechanissistof an NI
shell connected to the FSL bus of the MicroBlaze processgu(€ 7.8).

The shell behaves as a processing FIFO, accepting at thepgopumemory
read requests and delivering at the output port the rettielsta. The shell
accepts additional commands to configure the size of buadsre

All prefetch operations are under explicit control of thegnam, which may
also have to ensure ordering with respect to the normal neddvaite opera-
tions. Currently the code must be manually edited by thenswé developer,
which is also what we did in our experiments. Although in pijite it might

be possible to offload this task to the compiler for exampiés task is far
from trivial and is complicated by consistency issues egfigan multi-core

systems [SKKCO09].

All our proposals were implemented and tested in FPGA. Thdwere cost
of the implemented shells relative to the size of the eniistesn is presented
in Figure 7.7. In our test system, the prefetch module wasiected to a
dedicated NI kernel, thus doubling the size of the intereatynhowever in
practice this would not be necessary. The optimized shglldments both the
burst and posted writes.

7.4 Experimental Results

We have performed our tests on three similar systems, athtydkie structure
presented in Figure 7.8. For the main PLB target we have itufiest three

different NI shells, one performing only non-posted operst, one capable
of performing posted writes with the described safety meidma, and one
performing both burst coalescing and posted writes. The iRftface was
always present, but since its use is always explicit, we i§p#itrough the

MicroBlaze program whether it should be used or not.

Our tests involved only one processor, however we simulaeeffects of
having multiple processors by allocating only a fractiorihaf link bandwidth
inside the network. For a fair comparison, in the tests wiwath the FSL
and PLB link are used, we restrict the total bandwidth forhbatks to the
bandwidth offered to the PLB alone in the non-prefetch sidenaAnother
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Figure 7.7: Hardware cost of the shells in FPGA implemeaoitaéis a percent-
age of the cost of the entire network.

approach would have been to use a combined PLB and FSL shelivtuld
multiplex prefetch reads and standard memory transactiwes the same
network connection thus sharing the bandwidth of that cotime.

The most efficient way of distributing the bandwidth betwdla PLB and
FSL connection was found using exhaustive search with imergs of 25%.
We also perform an additional test, where two separatebfuiidwidth links
are provided, one for each link (marked B in the result grapligures 7.9 -
7.14).

For the software we have chosen several benchmarks, rafigingsynthetic
to real applications. In short, these are: read and writpdpeeveral kernels
with a relatively high amount on memory activity chosen frtima Livermore
Loops [McM86], and a JPEG decoding application.

Our first set of tests consists of a read and a write loop forreay aof 16
K words. Due to their intensive use of memory transactiory tthow the
highest performance variations among our tests. The seatdt presented in
Figure 7.9. As the number of processors in the system isaser there
are two factors causing performance degradation: an iseri#alatency and
a reduction in the available bandwidth. The posted write tnedprefetch
read tests, which are largely immune to the increase indgtprovide a good
indication of the point when bandwidth becomes the limifiagtor. The use of
burst read and write operations alleviates the effect obemewidth reduction.
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Figure 7.8: Test setup: one MicroBlaze core is connectealigir two separate
channels, one on the PLB bus and one on an FSL link to a remateomge

Not using posted write and prefetch read incurs a large peeatn for the one
processor configuration.

The results show that the largest performance gain is adadily simultane-
ously using prefetch reads and posted writes regardlesgeavailable band-
width. This follows directly from the fact that the networkténcy is added
to every memory operation. Using the burst facility of bo#fad and write
operations shows a benefit mainly when the bandwidth is egviimited.

Some result artifacts in the tests dominated by the readdgtare produced
by the read loop locking onto the pattern of allocated tinmdsslpreventing
the use of some of the slots, even when they are allocated. résilts in an
above trend deterioration in performance of the 8 processst case, which
produces the same result as the 16 processors case.

The Livermore Loops are small kernels that were used to atalihe perfor-
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Figure 7.9: Performance of Read and Write tests under diifesetups.

mance of supercomputers. They are representative fortdicieapplications

but we have chosen to use them as they provide a variety of nyemcoess
patterns. The versions we employed were translated in C &ne set to use
only integer operands. The loops had to be manually modifegetform

software prefetch, and thus we only used four of them in oststemore
specifically kernels 1 (hydro), 6 (linear recurrence), 18s(fiifference), and
21 (matrix multiplication).

The results of the Livermore Loops tests are shown in Figiré®-7.13.
While the latency hiding techniques provide a significantaauiage, the burst
optimization does not always produce an improvement aspémni@s on the
patterns of memory access. The numerical results for @ tem be found in
Table 7.1.

The JPEG application is a complex program with a high contjoutdo-

communication ratio. It requests data from an external mgnmerforms
calculations on the retrieved data and writes back the trésuhe external
memory in small bursts which are essentially memory copyaijmns on the
already decoded data. The read operations are almost abggyential with
the exception of a few initial headers, while the write opiers follow an
access pattern characteristic for accessing a sub-maitriof @ larger matrix.

The results are presented in Figure 7.14. The differenceoi® pronounced
when the available bandwidth is severely limited as it is¢hse with the 8
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Figure 7.11: LL kernel 6.

processors scenario. The improvement in the case of the dipgi@&ation is
a modest 6 to 12%, however this represents an increase iretf@mpance of
the entire application, while the optimization targetedrgle component of
the system.

Figure 7.15 shows the average performance increase ovédraatiwidths



214 QHAPTER 7. BANDWIDTH EFFICIENCY AND LATENCY HIDING

4500 T
blocking read, non-posted write —+—
blocking read, posted write (burst/non-burst) ---x---
4000 - prefetch read, non-posted write ------
prefetch read, posted write &
3500 | prefetch read, burst write —-m—
% 3000 4
=]
c
8 2500 .
o
s
w2000 i
2
S -
O 1500 f-------mmmm R . 4
1000 g . -
. o —— L
500 | — e e i
0 L I
1 2 4 8
# processors
Figure 7.12: LL kernel 12.
30000 T .
blocking read, non-posted write —+—
blocking read, posted write (burst/non-burst) ---x---
prefetch read, non-posted write ------
25000 [~ prefetch read, posted write (b/nb) &
% 20000 g
©
c
3
[%]
3
£ 15000 4
Y
Q
o
>
© 10000 -
— &
5000 ) 8 -
0 L L
1 2 4 8

# processors

Figure 7.13: LL kernel 21.

obtained in all applications. The performance increasetdysarticular op-

timizations is represented separately. The performanoease provided by
the posted writes is presented in two separate scenari@s) priefetch read is
not used and when itis. The performance of burst postedsistgresented in
comparison to normal posted writes. The overall speedingisgeedup for the
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entire system with all optimizations enabled. Numericautts are presented
in Table 7.1.
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Figure 7.15: Average speedup across all bandwidths olotavith the different
techniques in all applications.
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prefetch posted wr. | pfetch & burst all

read no prefetch| posted in addit. to | techniques
test

over over over prefetch& | over

baseline baseline pfetch only | posted baseline
write-1p - 5.511 - 1.369 7.542
write-2p - 6.007 - 1.412 8.484
write-4p - 3.505 - 2.820 9.883
write-8p - 2.003 - 2.824 5.655
read-1p 5.297 - - - 5.297
read-2p 5.379 - - - 5.379
read-4p 6.885 - - - 6.885
read-8p 5.817 - - - 5.817
LL1-1p 2.590 1.231 2.081 - 5.388
LL1-2p 2.498 1.250 2.359 - 5.892
LL1-4p 2.001 1.200 2.005 1.762 7.068
LL1-8p 2.000 - 1.338 1.494 3.996
LL6-1p 1.174 1.217 1.319 - 1.550
LL6-2p 1.217 1.249 1.331 - 1.620
LL6-4p 1.309 1.285 1.303 - 1.704
LL6-8p 1.298 1.016 1.021 - 1.325
LL12-1p 2.284 1.371 2.560 - 5.846
LL12-2p 2.330 1.375 2.683 - 6.252
LL12-4p 1.998 - 1.999 1.707 6.817
LL12-8p 1.997 - 1.501 1.499 4.494
LL21-1p 1.750 1.258 1.559 - 2.728
LL21-2p 1.735 1.267 1.590 - 2.758
LL21-4p 1.865 1.286 1.593 - 2.971
LL21-8p 1.971 - 1.010 - 1.990
jpeg-1p 1.003 1.055 1.058 - 1.061
ipeg-2p 1.006 1.060 1.060 - 1.066
jpeg-4p 1.012 1.076 1.075 - 1.089
ipeg-8p 1.011 1.073 1.074 1.032 1.122

Table 7.1: Speedup obtained using the different technitprate considered
applications and bandwidths

7.5 Related Work

Many network on chip implementations already exist, sono&iging mature
flows with the possibility of generating a hardware des@ipbf the entire in-
frastructure [GDRO05, BCGKO04, BB04, PAM7]. The authors often provide
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complete solutions covering all aspects of interconnestgieincluding the
interface to the IPs.

Many studies also exist covering the optimization of difaraspects of the
interconnect, like routing [HM04, FMLDOQ7] and network tdpgy [SCKO05,
OMO05], however we have found that little effort was dedidate optimizing
the interfaces between traditional IPs, unaware of thaenge of the NoC and
the NoC itself.

Of the literature dedicated specifically to network inteela we mention

[RDP*05] which is a precursor of the architecture we use in oureurr
research proposed separating the networking functioredfitirom the actual

interface to the IP. The implied benefit is the possibilityeakily reusing part
of the design when developing interfaces to other types &f The same idea
is also present in [HIK04].

Options for connecting IPs to NoC are explored by [BM03]. Twerk
considers solutions based on both software and hardwatie,aniapproach
focused on modifying the IP building wrappers around it. Bynparison we
choose to leave the IP unaltered and only interface withsgéfan its existing
connections to standard buses.

Wrappers are also used by [SBB6], with the advantage of both hiding the
implementation details of the interconnect from the IP aralding modifica-
tions of the IPs and the network internals.

None of the works previously mentioned suggests performaptimizations
at the level of the NI.

In the domain of high-performance cache-enabled procgsaoite coalescing
is a function commonly performed by write buffers [SC97] grthe cache
itself, as in the case of write-back caches. Prefetchingalasbeen studied
extensively [fCB94]. Our work is focused on less costly siolus which do
not assume the presence of caches and integrate the fualityiaf the write
buffer into the communication infrastructure.

Despite the fact that the optimizations presented in thigpare generally well
known, we believe to be the first to propose and analyze thaheinontext of
networks on chip.
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7.6 Conclusions

In this chapter we have studied optimizations that targeptiocess of translat-
ing the requests coming from IPs into network packets. Thisslation layer
allows the IPs to perform requests using memory transasgomantics while
being unaware how these requests travel to their destmatid how responses
return.

We have found that while the latency introduced by the ndtvaor-chip and
the bandwidth limitations due to sharing resources betweeltiple proces-
sors can reduce performance, using simple optimizationgestore the lost
performance. The optimizations that we studied here cboklatency hiding
techniques, namely read prefetch and posted write and auidthdoptimiza-
tion technique: write coalescing. We have found that pobfe¢ad and posted
write are especially important for applications with a h@ggmmunication-to-
computation ratio while burst transfers can offer an adddal performance
benefit when the available link bandwidth is severely caiised.



Chapter 8

Conclusions

In this chapter we explain the position this thesis occupethe context
of NoC research. Section 8.1 explains the main objectivesuofresearch
and summarizes our findings, Section 8.2 indicates our ibotitins, Section
8.3 summarizes the contents of each chapter and Sectiorrésdnps future
directions of research.

8.1 Objectives of research

In the electronics industry of the last several decadesiatirization has an
exponential decrease in the manufacturing cost per ttansihis has allowed
an increase in the complexity and computational power éalbein the case of
digital circuits. To deal with this complexity it was alsoaessary to decrease
the design cost per transistor. This was achieved thordwgbge of automated
design tools and improved design methodologies.

One of the areas these automated tools target is the gemecdtan on-chip
interconnect. This is becoming more and more importantesatimber of on-
chip components that need to be connected to each otheaseseThe work
presented in this thesis allows us to evaluate differenicelsan the design of
NoCs which may be useful in the context of automated desigis.t&Ve also
develop and implement a series of algorithms to allocaterorit resources
and we provide a template for the NoC hardware.

In our analysis of NoC choices we found that topology is nogémeral a
limiting factor (a performance loss of only 8%, as shown igure 2.19), with
the simple mesh and torus topologies presenting very goddrpeance. The

219



220 CHAPTER 8. CONCLUSIONS

ring and Spidergon topologies have lower performance. We fiaund the

discretization of bandwidth division for link sharing poges to introduce a
non-negligible performance loss (18%). On the other hantiave found the
performance loss introduced by the contention-free rgutiodel to be small
(5%) especially when considering the cost benefit which &ctof of 10 to 20

[GH10]. In terms of allocation efficiency, the differencetlween using global
optimization algorithms and heuristics is small, as is thpact of enforcing

in-order delivery.

Based on these findings, we have designed a NoC templateffiiet @ good
performance-cost ratio. This network template can be usedeiate network
instances with any desired topology and connecting a cuzatie number
of IPs. We have also developed improved hardware for the legenecting
IPs to the NoC. We have shown these improvements to mitihateffect of
latency and bandwidth limitations on the performance ofiagfions running
on the IPs connected to the network.

The largest part of the thesis though is dedicated to algustfor the alloca-
tion of network resources to the applications requestiegnthOur algorithms
improve upon the state of the art in terms of the efficiency lfcating
resources. For several algorithms we have offered a protfenf optimality.
We have shown that allocation can be performed at run-tinte minimal
computation and memory requirements. We have also proploamstivare
accelerators that allow an even faster computation of tbeation.

8.2 Contributions

In this section we discuss the major contributions of thésit

e We propose network modelsthat allow us to determine achievable
network performance both in an ideal scenario and underahst@ints
of real hardware. We evaluate these models for a wide rangetafrk
topologies and under several types of traffic. We deterntieeeffect
of various design choices including the contention-fregting model
which is supported by low-cost network implementationsm8mf the
models are supported by optimal, linear-programming badledators
that allow establishing bounds on the performance of ang tffinter-
connect.

e We design allocation algorithms some for generic networks and some
targeting specifically the contention-free routing modalr algorithms
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perform spatial as well as temporal allocation. Spatialcation con-
sists of selecting a specific path, or in the case of multirpdibcation
several paths, that a specific connection should use thrivegtetwork.
Temporal allocation selects the slots in the TDM schedulbeaised
by each connection. We provide algorithms both for desigretand
run-time allocation. Our algorithms improve upon the st#t¢he art in
terms of performance and features.

e We provide hardware implementationsof the network on chip and the
interfaces between the network on chip and IPs. Our NoC palfe
circuit-switched and uses the contention-free routing ehdtlcompares
favorably to other proposals presented in the literatungr. iGterface to
the IPs presents several optimizations: write coalesgogted writes
and read prefetch. We also present hardware acceleratiauleso
that are useful for increasing the performance of the ordit@cation
algorithm.

8.3 Thesis Summary

We began this thesis by introducing the problems relatedealesign of on-
chip interconnects and presenting traditional as well ademosolutions.

In Chapter 2 we proposed a series of network models which e tised to
evaluate the performance implications of several intemechdesign choices.
We have also offered a mathematical solution based on |pregramming to
the allocation problem in some of these models.

In Chapter 3 we proposed path allocation algorithms for tleemmestrictive
models introduced in Chapter 2. Where possible we made uspthal
algorithms and we have demonstrated their optimality.

In Chapter 4 we proposed algorithms for slot selection. &tegorithms are
used to improve or guarantee a certain latency bound for @amimunication
channel. We have proven these algorithms to be optimal afdhweecompared
their performance to the performance of previously progadgorithms. We
have also looked into the effect of slot selection on actpalieation perfor-
mance.

In Chapter 5 we demonstrated route and slot selection peeiat run time.
We have provided a memory and computationally efficient @nm@ntation of
the allocation algorithm and we have implemented hardwacelaration of
the algorithm.
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In Chapter 6 we proposed a hardware implementation of a mktam chip
based on the contention-free routing model. Our networkrsffnulti-path
routing and multicast, avoids header overhead, and hadargonfiguration
time. We evaluated our proposal in FPGA and ASIC synthedisvwanfound
it to compare favorably in terms of hardware area and speethtr networks
reported in the literature.

In Chapter 7 we looked at how the raw communication servicesiged by
the network can be translated into transaction-level sesvioffered to the
IPs. We presented optimizations regarding bandwidth uddaancy hiding
techniques and we analyzed the overall effect on the exactitne of real
applications.

8.4 Future Directions of Research

We present here new potential avenues for exploration bawiis work as
a starting point. In this thesis we have discussed many esspécan on-
chip interconnect. It would be possible to combine some eftdthniques
described here to achieve further improvements.

For example it may be possible to combine multi-path routifiidp run-time
allocation. The multi-path allocation algorithms have ymamial running
time which is an advantage, although they may be slower olll sopalogies
and have slightly higher memory requirements. It would ddeqgossible to
evaluate the more complex slot allocation algorithms irctivext of run-time
allocation.

It would be possible to further improve the allocation altfons, for example
using a rip-reroute technique which was not one of the targéthis study.
It would also be possible to explore different path ordesimtyring offline
allocation.

It would be possible to combine our NoC hardware implemeéntegupporting
fast connection set-up with a hardware accelerated altocatgorithm to cre-
ate a network which provides on-demand connections with v latency.
This would allow networks based on the contention-freeinguinodel with a
centralized allocator to support a wider range of applocei

Most importantly, the network and algorithms should be puattual use,
because through actual use we discover the limitations mectidns in which
we need to improve.



Appendix A

Sample LP model for a 2x2 mesh
network

set [;
/* R-R links */

set R;
/* routers */

set O;
/* Nl io */

set J;
/* connections */

param a{jin J, rin R};
/* comm incidence at routers */

param b{jin J, oin O};
/* comm incidence at NI */

param c{jin J};
/* comm weight */

param d{iin I, rin R};
/* link incidence at routers */

var X >=0;
var y{jin J} integer;
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var z{iin I, jin J} integer;
maximize tput: Xx;

s.t.wt{jin J}: y[]j] >=x*c[]];

s.t.pv{iinl, jinJd}: z[i,j] >=0;

s.t. bwl{iin I}: sum{jin J} z[ i, ]] <=16.0;

s.t. nbw{oin O}: sum{jin J} y[jl * b[], 0] <= 16.0;
s.t.esv{rinR,jinJ}: alj,r] » y[jl+ sum{iin 1} d[i, r] * z[i,jl= O;
/* conservation of each flow at each router */

data;
# *** this begins the data section

set | := ROtol ROto2 R1to0 R1to3 R2to0 R2to3 R3tol R3to2;
set R:= ROR1R2R3;
set O := NIO NI1 NI2 NI3 NI4 NI5 NI6 NI7 NOO NO1 NO2 NO3 NO4 NO5
NO6 NO7;
setJ:= COC1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16
C17

C18 C19 C20 C21 C22 C23;

parama: RO R1 R2 R3 :=
co 1 -10
C1 0
C2 -1
C3
C4
C5
C6
C7
C8
C9
C10
Cl1
C12
C13
Cl4
C15
Cl6
C17
C18
C19
C20
c21
Cc22

'
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-11

c23 0 O

param b: NIO NI1 NI2 NI3 NI4 NI5 NI6 NI7 NOO NO1 NO2 NO3
NO4 NO5 NO6 NO7 :

Co

C1

c2

C3

C4

C5

C6

c7

Cc8

C9

0
1
0
0
0
0
0
0
0
0
0
0
0
0

Cl0 O

Cl1 o

0
0
0

Ciz2 0

Ci3 0

Ci4 O

Cil5 O

Cle O

0

Cl7 1

1
0

Ci8 0

Ci19 0

C20 O

Cc21 O

C22 0

0

c23 0

param C:

0.686

Co

0.001

C1

1.681
0.001

Cc2

C3

0.625

C4

0.001

C5

1.008
0.001

C6

c7

1.549
0.001

Cc8

C9

C10 0.620
Cl1 0.001
Cl2 1.553
C13 0.001
C14 1.012
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C15 0.001
Cl16 0.915
C17 0.001
C18 0.752
C19 0.001
C20 1.016
C21 0.001
C22 1.333
C23 0.001

param d : RO R1 R2 R3 :=
ROtol -11 0 O

ROto2 -
R1to0 1
R1to3 0
R2to0 1
R2to3 0
R3tol 0
R3to2 0

end



Appendix B

Example configuration of the
proposed model

[* the mapped address of the configuration shell */
volatile int * cfg=( volatile int =) 0x80000000;
volatile int * memO=( volatile int *) 0x90000000;

const int SETUP=4;

const int 10= MSG | 0;
constint 11= MSG | 4;
const int 12= MSG | 8;

const int O0= MSG | 0;
constint O1=MSG| 1;
const int 02=MSG | 2;

const int ROO= MSG | 0;
const int RO1= MSG | 1;
const int R10= MSG | 2;
const int R11= MSG | 3;

const int NIOO= NI_LBASE | 0;
const int NIO1= NI_LBASE | 1;
const int NI10= NI_LBASE | 2;
const int NI11= NI_.BASE | 3;

const int CMD_SETUPCHANNEL=4;

const int CMD_READCREDITS=6;
const int CMD_WRITECONFIG=10;
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const int CMD_WRITECREDITS=14;
const int ENDOFPACKET=S;

inline int conf(int a, int b, int c, int d)

{
}

/* this function is declared inline,

* it will translate into 3 writes to

* the configuration port consisting

* preferably of constant values */

inline void writecfg( int ni, unsigned int adr, unsigned int val)

{

return a+( b<<7)+( c<<14)+( d<<21);

/* each configuration word consists of 37/6=7 parts

* a packet consists of header=0, address, data

*

* a write transaction consists of 3 words

* a header with a value of 0, the address and data
*

* it takes 24 cycles to serialize a write operation

* to a remote configuration port, 2 such writes

* are required for configuring one channel

*

cfg[ 0]= conf( CMD_WRITECONFIG, ni, MSG, MSG);
cfg[ 0]= conf( MSG, MSG, MSG, MSG);

cfg[ 0]= conf( MSG,
/* address, start with MSB*/
MSG,
MSG | (( adr>>29) & 0x3f),
MSG | (( adr>>23) & 0x3f)

);

cfg[ 0]= conf(
MSG | (( adr>>17) & 0x3f),
MSG | (( adr>>11) & 0x3f),
MSG | (( adr>> 5) & 0x3f),
MSG | (( adr<< 1) & 0x3f)

);

cfg[ 0]= conf(
/* data, start with MSB */
MSG | (( val>>31) & 0x1),
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MSG | (( val>>25) & 0x3f),
MSG | (( val>>19) & 0x3f),
MSG | (( val>>13) & 0x3f)
);

cfg[ 0]= conf(
MSG | (( val>> 7) & 0x3f),
MSG | (( val>> 1) & 0x3f),
MSG | ((( val<< 5)+ 31) & 0x3f),
ENDOFPACKET
);
}

void setup_connection_1()

/* the channel setup command, followed by the slot table

* as two-6-bit words (the slot table has 8 entries),

* followed by one padding (0) 6-bit word

* this identifies a path using slot 6 at destination

*

cfg[ 0]= conf( CMD_SETUPCHANNEL, MSG+1, MSG, 0);

/* the path starting with the destination NI and going
* packwards to the source NI

* two hops can be configured per 32-bit word

* (4 6-bit configuration words)

* the route used is NI0O - ROO - R10 - R11 - NI11

*

cfg[ 0]= conf( NI11, MSG | 4, 0, 0);

cfg[ 0]= conf( R11, 11| O2, R10, 10| O1);

cfg[ 0]= conf( ROO, 12| O1, NIOO, MSG | 0);

/* the response channel

* a hardware cooldown timer inside the

* configuration shell will make sure that

* routers have enough time to process

* one configuration request before

* the second one begins

*

cfg[ 0]= conf( CMD_SETUPCHANNEL, MSG+1, MSG, 0);
cfg[ 0]= conf( NIOO, MSG | 4, 0, 0);

cfg[ 0]= conf( ROO, 11| O2, R10, 11| OO0);
cfg[ 0]= conf( R11, 12| O1, NI11, MSG| 0);
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/* provide credits to the channel to allow it to send data

* we need to identify the NI which has the channel

* the number of the channel and the number of credits

*

* for simplicity, each of these pieces of information

* is contained in one configuration word

* both the request and response channel need to be

* initialized

*

cfg[ 0]= conf( CMD_WRITECREDITS, NI00, MSG , MSG | 15);
cfg[ 0]= conf( CMD_WRITECREDITS, NI11, MSG, MSG | 15);
/* the same command can be used to write status flags

* for example we could disable a channel using the

* following command

*

//cfg[0]=conf(CMD_WRITECREDITS, NI00, MSG — 4,MSG — 2); disable

channel

[* credits can also be read back, for example when we
* intend to tear-down a connection we should first make
* sure that all packets have drained from the given channel
*
cfg[ 0]= conf( CMD_READCREDITS, NIO0, MSG , ENDOFPACKET);
u=cfg[ 0];
}

void setup_connection_2()

/* forward path:

* NIOO(slot 3)

*-> R0OO(slot 4)

*-> R10(slot 5)

*-> NI10(slot 6)

*

cfg[ 0]= conf( CMD_SETUPCHANNEL, MSG| 1, MSG, 0);
cfg[ 0]= conf( NI10, MSG | 4, R10, 10| 0O2);

cfg[ 0]= conf( ROO, 12| O1, NIOO, MSG| 1);

[* reverse path:

* NI10(slot 2)
*-> R10(slot 3)
*-> ROO(slot 4)
*-> NIOO(slot 5)
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*

cfg[ 0]= conf( CMD_SETUPCHANNEL, MSG, MSG| 32, 0);
cfg[ 0]= conf( NIOO, MSG | 5, R0OO, 11| 0O2);

cfg[ 0]= conf( R10, 12| OO0, NI10, MSG| 0);

[* credits

* NIOO - channel 1 given 15 credits

* NI10 - channel 0 given 15 credits

*

cfg[ 0]= conf( CMD_WRITECREDITS, NI00, MSG| 1, MSG | 15);
cfg[ 0]= conf( CMD_WRITECREDITS, NI10, MSG , MSG | 15);

}

void config_programmable_bus()
{

/* configuration of a remote bus,

* as performed by AEthereal

* we identify the NI that the bus

* configuration port is connected to

* and we write the address mask and value

* to specific configuration addresses

*

writecfg( N101, 0x00000d00, 0xf0000000);

writecfg( N101, 0x00000c00, 0x80000001);

/* for a second channel */
writecfg( NI101, 0x00004504, 0xf0000000);
writecfg( NI01, 0x00004404, 0x90000001);

}

int main( void)

(S
int i;
/* configure a remote bus */
config_secbus();
[* setup connections */
setup_connection_1();
setup_connection_2();
[* perform write and read operations
* to remote meories to verify proper
* gperation
*
for (i=0; i<256; i++) memO[ i]= i+256;
printf( "%d”, memO[ 10]);
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return O;



Appendix C

C source of the online allocation
algorithm

Some function names and variables were renamed to bettegspond with the
algorithm in chapter 5. The main loop body has been reorgdrtiz achieve faster
execution.

void norec( int source)
{
int crtLink, crtDest, level, allowedDistance;
level=0;
allowedDistance=dist[ source];
slotmask tmp;
solution[ 0]= source;
solLink[ O]= crtLink=firstLink[ source];
avSlots[ 0]= ALLSLOTS;

goto nrl2;
while (1) // main non-recursive loop
{

sl=avSlots[ level];

nril:

crtLink=solLink] level]+ 1;

nri2:

solLink] level]= crtLink;
node=solution[ level];
if (crtLink>=lastLink[ node])

if (! level) break;

level--;
continue;
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crtDest=dest][ crtLink];
tmp=sl & slots[ crtLink];
if (crtDest==dest)

{

if (compute_bw( tmp) <requiredBw)
goto nrl1;

}
solution[ level+1]= dest;
avSlots[ level+1]= tmp;
solution_found( level);
break;

}

if (dist[ crtDest] > ( allowedDistance- level))
goto nrl1;

}

if (compute_bw( tmp) <requiredBw)
goto nrl1;

}

level++;

solution[ level]= crtDest;
avSlots[ level]= sl=shift( tmp);
crtLink=firstLink[ crtDest];
goto nrl2;



Appendix D

Notations
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Table D.1: Table of Notations

Vv the set of network nodes, can be interpreted as verticesriapng
R the set of routersk C V/

r oneroutery € R

J the set of communication channels

j one communication channel,e J

E the set of network links, can be interpreted as edges in dgraph
e one edge € £

P, the set of links arriving at router

Q- the set of links departing from router

Yj the bandwidth requirement of channel

Zej the bandwidth used on linkby channel;

Zejk the bandwidth used in sldton link e by channelj

Zejk the remaining capacity of sldton link e after thejth allocation
P a path in the network (a list of network links or edges)

S the set of all slots

S; the slot with numbei, numbering starts from 1

Sqw the set slots available on the edgew)

Spath the set slots available@ath, considering proper alignment
Source the source node during a path-finding operation
Destination | the destination node during a path-finding operation

bw. the requested bandwidth

Ce the capacity of an edge (flow algorighm)

B(S,) or Bg,

the bandwidth offered by a set of slifs




Table D.2: Table of Notations for the in-order path seletttgorithm

Di a path (represented by path length and set of slots)
T the arrival time of pathp;
A set of all paths
X a solution to the in-order slot selection problem
Ex the set of all solutions
A an optimal solution
X; a solution with the property that € X;
£x; the set of all solutions of the fornY;
A; an optimum over the seti x;
Q1 | asubsetof A{pi,p2,...p;}
X1 ; | asolution which is a subset ¢f; ;
{x,, | the set of all solutions of the forn¥, ;
A1; | anoptimum over the sefiy, .
| ; | an optimal solution like4; ; used for proof by contradiction

Table D.3: Table of Notations for the slot selection aldoris

A the set of available slots
Apij subset of{ sy...s1. } With s, € Ay i 5, [Ak,ij| = J
and ending withy selected slots whekemod3 = 4
P(A, 1) the property that set obeys the bandwidth requirement
over the window{s;..s; w1}
A a minimal subset ofi which satisfiesP (A4, i), Vi
Ab.ij a minimal set of the form{; ; ; that satisfies
P(A,x), Ve e {1.k —w+1}
w the size of the window for the enhanced slot selection algori
Ch a list of valuescy, 1 2..c € {0,1}
Ar.c, a subset of A with the property that

Sq € Akack—u7+27ck—zu+3 ,,,,, Ck = Cqg = 1, \V/q € {{k —w + 2k}}

Ay—1,s7ART| @ particular case ofl;, ¢, wherek =w — 1

Ao,

a valid, optimal partial solution of the form,, ¢,
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Samenvatting

N DIT proefschrift behandelen wij het probleem van de verdeliag wetwerk-
bronnen in het kader van op connectie-gebaseerde netwegkaen chip die
gegarandeerde prestaties moeten leveren.

Deze verdeling moet aan de bandbreedte- en doorlooptégdten van alle connecties
voldoen, en ook aan de beperkingen van het netwerkmodel ategkiing tot de
mogelijke verdeling van tijdsloten.

We bieden een theoretisch model van de prestaties die b&reiken worden door
het meest algemene netwerk, en we analyseren de vermigderindie prestatie
als gevolg van specifieke implementatiekeuzes, zoals agpm! discrete allocatie-
eenheden, enzovoort.

Verder behandelen we verdelingsalgoritmen die kenmerkeijdl voor het
contentievrije-routerings model, en we stellen verbeteigoritmen voor om paden
en tijdssloten te vinden. Voor sommige van deze algoritneavijpen we optimaliteit.

We tonen aan hoe het vinden van paden en tijdsloten plaatsikden terwijl het
systeem actief is, in plaats van dat tijdens het ontwerp easysteem te doen.

De resultaten laten zien dat ten opzicht van een ideaal nietpractische netwerkim-
plementaties die gebruik maken van zogenaamde time-alivisultiplexing, gemid-
deld tot 43% van hun prestaties verliezen, waarvan de dgeogsdeelten door
discrete allocatie-eenheden en zogenaamde pakketheadérsstellen een nieuw
netwerk voor, dAElite genaamd, dat geen pakketheadersigiglen een verbetering
in prestatie tegen lagere implementatiekosten laat zieropeichte bestaande van
netwerken.
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