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in Time-Division-Multiplexed Networks
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Radu STEFAN

Abstract

O
ne of the challenges of engineering is to make the best possibleuse
of the available resources, or in other words allocating theresources
in such a way as to maximize the overall profit. In the context of

networks on chip the resources are represented by the communication band-
width and the final profit is the performance of an applicationsupported by the
network on chip.

In this thesis we focus on networks on chip providing guaranteed performance,
i.e. guaranteeing for each application the delivery of a requested bandwidth.
In these networks, hardware resources are allocated and assigned to each
application for its entire lifetime. We discuss several solutions for delivering
the allocated bandwidth, and we propose models which allow us to evaluate
the performance of these solutions. Starting from a general, rate-based allo-
cation model we gradually add more architectural restrictions that lower the
implementation cost, but at the same time sacrifice some performance.

NoCs with allocation based on discrete rates are very commonand include
priority-based, TDM, SDM, FDM, and other NoCs. They all partition the
bandwidth available on the network links into discrete units. In the case of
TDM NoCs these units are called time slots. The problem of resource alloca-
tion in TDM NoCs consists of finding paths through the networkbetween the
nodes that wish to communicate, and selecting along these paths a set of free
time slots that is sufficiently large to fulfill the application requirements. After
allocation the bandwidth is guaranteed.

In this thesis, we propose, implement and evaluate allocation algorithms for all
the proposed performance models. Particular effort is dedicated to allocation
algorithms for the contention-free routing model, a restrictive, but low-cost
form of TDM where allocation is particularly challenging. Our allocation
algorithms deal both with spatial allocation, i.e., the selection of a specific
path out of the available paths through the network, and temporal allocation,
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i.e., along the time axis. The latter is used for optimizing bandwidth usage
and latency which we will both discuss in depth. We propose two algorithms
for the allocation of slots in the time domain, both of which we show to be
optimal.

We also demonstrate how the TDM schedule can be computed at run time,
with low computational requirements. We demonstrate a system performing
run-time allocation in FPGA and we implement hardware acceleration for the
more expensive operations used by the allocation algorithm.

We propose a synthesizable NoC implementation based on the contention-free-
routing model, called dAElite. Our proposal uses existing design flows but has
better performance and reduced hardware cost. The network supports some of
the less restrictive models that we have previously introduced thus allowing a
better allocation of resources.

Finally, we present how the communication requests of the IPs are handled
by the interconnect. We propose optimizations such as writecoalescing and
latency hiding techniques at the interface between IPs and the NoC and we
demonstrate the performance benefits of the proposed approach in real appli-
cations.

The main conclusions of this thesis are that, compared to an ideal rate-based
NoC offering guaranteed bandwidth, introducing fixed discrete allocation units
causes a performance loss of 18% while using headers loses another 15%,
under the considered, realistic scenarios. Other factors,such as topology, in-
order delivery, etc. cause only a minor performance loss. Wefind Æthereal to
lose 46% compared to an ideal rate-based network, while the dAElite network
introduced here loses less than 26% and is at the same time less expensive to
implement.
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Chapter 1

Introduction

For more than five decades, the microelectronics industry has sustained an
evolution unmatched in any other field. The underlying phenomenon that has
allowed this evolution is the miniaturization of silicon devices. This minia-
turization enabled two secondary phenomena: integration and an increase in
architectural complexity.

Integration meant that individual transistors were grouped together into logic
gates, logic gates into circuits with more complex function, eventually leading
to the birth of the microprocessor and today the system on chip. As a result,
functions that were previously performed by separate electronic components
were merged into single chips. At the same time the total number of transistors
per system has increased many orders of magnitude, allowingmore and more
functionality to be added and increasing performance.

While miniaturization decreased the manufacturing cost per transistor, it was
also necessary to decrease the design cost per transistor. This is why the
evolution of design tools and methodologies played a crucial role in allowing
system evolution and integration. Although there is now a strong emphasis
on reusing intellectual property (IP) that has been designed, deployed in other
products and verified in the past, interconnecting these already existing designs
remains today’s challenge.

1.1 Design trends

As the trend of device miniaturization continues the numberof transistors
per chip doubles every couple of years. The increasing density can be used
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2 CHAPTER 1. INTRODUCTION

in several ways: the size of the chips can be reduced, individual processing
blocks can become more complex thus providing higher processing power,
more functional blocks can be integrated on the same chip. Reducing the
size of chips, although beneficial from the cost point of view, cannot be done
indefinitely because at a certain point the cost of packagingand terminals
would become dominant. The direction that is left and is still promising is
the integration functions that were traditionally performed by different devices
into a single device.

Integration has several benefits: the cost of several packages is eliminated
and the need for connections that would normally go to the outside of the
chip is removed. Integration improves performance becausecommunication
bandwidth available on chip is significantly higher than offchip. It decreases
power consumption as driving external pins uses much more energy than on-
chip communication. Another important benefit is the reduced physical size of
devices which is more appealing to customers.

Traditionally IP blocks were connected using a single bus ora hierarchy
of buses. The parameters of these components could be manually chosen
by a skilled engineer and the components themselves could beinstantiated
from a library to obtain a working system. However, this approach will not
scale to designs having tens to hundreds of cores, because companies cannot
afford increasing the engineering effort per device. Timing constraints become
increasingly difficult to meet and verification becomes difficult to perform.

Analyzing the system from the performance point of view alsobecomes in-
creasingly difficult. While the computation requirements for individual proces-
sors can be generally analyzed and verified for many real-life applications, the
communication performance requirements are less straightforward since the
interactions between different IPs need to be taken into account. If the system
fails to meet the performance requirements, redesigning the interconnect (or
entire SoC) may be a time-consuming and costly operation. Itis therefore
desirable to have automated tools to dimension and verify the interconnect.

These tools start with a high level system or application requirements and auto-
matically generate an interconnect that the system components are attached to.
This interconnect may also be verifiable by construction from the correctness
and performance points of view. One such type of automatically generated
interconnects are networks on chip [GDR05, MM04] which we will discuss in
this thesis. They represent a promising solution for the interconnect of future
designs having an increasing number of IPs.

In this thesis we study the algorithms and methods behind theinterconnect
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design tools. The rest of this chapter is organized as follows. Section 1.2
presents an overview of traditional and modern interconnect solutions. Section
1.3 presents an overview on networks on chip. Section 1.4.2 summarizes the
thesis contributions and Section 1.5 presents the structure of this thesis.

1.2 Overview of chip interconnect solutions

A typical system consists of a collection of master and slaveIP blocks. Master
IP blocks, e.g. microprocessors, make requests, like for example modifying
the contents of a memory location or of a status register inside a peripheral.
Slave IP blocks, e.g. memories, receive, process and confirmthe execution of
these requests.

In the following paragraphs we present traditional and modern interconnect
solutions. These interconnects are also represented in Figure 1.1.

A trivial solution, theback-to-back connection(Figure 1.1a), can be em-
ployed when a single master IP needs to be connected to a single slave IP.
Ideally only wires are required for this connection, but this holds true only as-
suming the two IPs agree on the language used to perform the communication.
A protocol defines the conventions regarding the communication between IPs:
the set of physical signals, their allowed values and timing.

The requests usually have memory access semantics, i.e., memory read and
memory write operations. Here the request and its response will be referred to
as transactions. Several signals are characteristic to a protocol supporting these
transactions. Command signals are used to perform a handshake between the
two IPs. Using these signals, a master IP specifies when it presents a request
and a slave IP responds when it can accept or serve the request. Address signals
(usually part of the command signal group) indicate a specific memory location
where the data should be stored or where it has to be read from.The actual
data may be transfered either from the master to the slave IP,in which case we
call the transaction a write transaction or it can be read back from the slave IP.

A more complex interconnect is needed when multiple master and/or multiple
slave IPs are present. Various approaches are possible, with the main tradeoff
being between performance, e.g. latency and throughput, and cost, e.g. chip
area and power.

The shared busapproach [SLKH02] is one of the least expensive intercon-
nects in terms of area. From a logical point of view it can be seen as a mul-
tiplexer of requests coming from the master IPs followed by ademultiplexer
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Figure 1.1: Interconnect solutions.

with outputs connected to the slave IPs (Figure 1.1b). In practice however, a
“wired and” or a “wired or” was used instead of the multiplexer and the signal
was distributed to all the slave IPs which decided independently whether to
respond to the request or not. The slave IP block is selected based on the value
of the address lines. An arbiter controls which master IP block has access to
the shared bus at each moment in time. Typical example of suchbuses are
APB [Lim08] for ARM based system or OPB [Cor01] from IBM.

The disadvantages of this approach are poor performance, low operating fre-
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quency (at least in the “wired and/or” implementation), high power consump-
tion as switching occurs on longer wires than would be neededto transmit the
information between source and destination, and the fact that multiple masters
cannot make requests at the same time. Another disadvantageis that slow
IP blocks can block the shared portion of the interconnect for a long time
preventing other IPs from performing their own operations over the bus.

Two possible improvements are thesegmented bus[CJW+99, PSL03] (Figure
1.1c) and thebus hierarchy [WM88, SKL+07] (Figure 1.1d). Both these
approaches attempt to mitigate the performance and power loss of the bus
approach. The gain in power efficiency comes from the fact that signals are not
required to propagate to all slave IP blocks, but only in the relevant segments.
Multiple requests can be served in parallel in the differentsegments and slow
IP blocks no longer slow down the entire system. It is customary to isolate
slow IP blocks in slower sections of the hierarchy for example.

The design of such systems is however less straightforward.Requests may
be initiated in different segments at the same time and independently of each
other. When these requests need to be served outside their own segment
and they furthermore require access to resources that they mutually block, a
deadlock situation may occur. Special hardware may need to be introduced
to avoid or resolve deadlock situations. The topology of thebus hierarchy is
typically constrained to a tree to limit the possibility of such deadlocks. A
typical example for this type of interconnect is IBM CoreConnect [Cor99].

The centralcrossbar (Figure 1.1e) is a high-performance interconnect solu-
tion. It also comes at a very high cost, withO(mn) hardware complexity,
wherem is the number of masters andn the number of slaves. However, the
regularity of the circuit and careful floorplanning can makeeven large designs
feasible [PKP10]. The crossbar does not exploit locality ofcommunication as
all data has to travel to a central location. The cost of wiresthat connect IPs
that are spread across the surface of the chip to the central location is also high.
The performance benefit comes from the fact that the number ofrequests being
served at the same time is maximized and the latency is very low as arbitration
needs to be performed only once for a request to travel from a master to a slave
IP block.

Direct connections(Figure 1.1f), which may be all-to-all connections or only
the required subset, can be regarded as the opposite of the bus. From the logical
point of view they are similar to the crossbar as they allow transactions to
occur simultaneously as long as they occur between different master and slave
devices. They differ though in that the data does not have to travel to a central
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location, but is sent over dedicated wires to its destination. This solution
requires abundant wiring resources. On the other hand, the data only needs
to travel the physical distance between source and destination so the switching
energy is reduced. A typical implementation of this type of interconnect is
ML-AHB [Lim01] from ARM. At the logic level, this type of interconnect can
be seen as the opposite of the shared bus approach: a request from a master
IP is demultiplexed and sent to the proper slave IP block where an arbiter and
multiplexer combine the requests from multiple masters.

Networks on chip [DT01, BDM02, SSM+01, IHCE07, Art05] (Figure 1.1g)
borrow concepts from the large-scale communication networks to create a
scalable on-chip interconnect. They typically consist of network interfaces
which transform the transaction requests and responses into data packets which
are then transmitted over a network of routers to the destination, where they
are transformed back into transactions understood by the corresponding IP.
The data packets usually travel over links with lower bit-width thus reducing
the needed wiring resources. The routers can be connected inan arbitrary
topology. This is an advantage compared to bus hierarchies which typically
support only tree topologies.

Table 1.1 gives an overview of the advantages and disadvantages of the
interconnect solutions earlier presented. The biggest strength of networks
on chip is scalability, NoCs can scale essentially to any number of on-chip
connected components. The cost of the solutions has alreadybeen discussed
in the previous paragraphs. Regarding the throughput measure we differentiate
between two usage scenarios. Simple interconnects offer good performance
when a single pair of IPs is communicating at any time, the more expensive
interconnects are able to serve multiple communicating pairs simultaneously.
What we defined as energy efficiency is the length of wire subjected to switch-
ing activity to support the communication compared to an ideal situation where
data follows the shortest distance between source and destination. Finally, the
number of arbitration levels indicates how many times a request is subject to
arbitration before reaching the destination. A higher number of arbitration
levels may indicate a higher latency, but also less complex individual arbiters.

In the next section we will have a look into the characteristics of NoCs.

1.3 Networks on Chip

Some of the first NoC studies [DT01, BDM02, SSM+01] pointed out that
traditional interconnects are reaching their limits and a different approach
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Table 1.1: Interconnect advantages and disadvantages

is needed to achieve scalability in designs with potentially hundreds of IPs.
Networks on Chip leverage on the experience gathered in large-scale networks
and in particular in high-performance multiprocessor computers.

The typical characteristics of a NoC interconnect are:

1. Packetization and serialization. A network on chip translates and
encodes into fixed-size words the requests and responses coming from
IPs [SdWG10, RDP+05, HJK04, BM03, SBB+06]. This allows the
network links to use a lower number of physical wires. In addition this
encoding introduces a level of abstraction in that individual bits lose
their meaning during network traversal. This means that thenetwork
logic does not need to be concerned with the semantics of the data
traveling through the network, and at the same time it allowsthe network
to act as a bridge between IPs using different bus protocols.The link
width can also be arbitrarily reduced to conserve resourceswhen the
communication requirements are low.

2. Link sharing mechanisms are typically provided by NoCs. These
allow the multiplexing of several streams of data over the same physical
medium. Common schemes are space division multiplexing (SDM)
[MSAA09, BWM+09, LL11, LMS+05], time division multiplexing
(TDM) [GDR05, LZT04, WZLY08, ZFK+09], either in the conven-
tional slot allocation approach or in an arbitrated (e.g. round-robin,
priority) link time sharing scheme. Wavelength division multiplexing
was also proposed in the context of optical NoCs [SBC07, JBK+09,
KC11, CA11].

3. Topology [BC06, BCG+07, LGM+09] in networks on chip is typically
less constrained than in bus-based interconnects. In particular, unlike a
bus hierarchy, a network on chip is not required to be a tree topology.
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The NoC topology can be adapted to the chip floorplan and can be
optimized to take into account the communication requirements between
IPs [BJM+05, OM05, Ben06, CP08, SCK06, SMBDM10].

4. Switching model. Networks on chip can be split in two large cate-
gories: circuit-switching and packet-switching networks[CSC06]. Cir-
cuit switching networks [GDR05, BWM+09, LST00, LWS+02] allocate
relatively long-lived connections between source and destination, and
provide high bandwidth and low latency over these connections. In con-
trast, packet switching networks [SLB07, ACG+03, BB04, BCGK04,
BB04, MMV09, Bje05] use arbitration at each network node andfor
each data packet. Under low network load, packet switching networks
provide good latency. One concern for packet switching networks is the
“saturation point,” where an increase in traffic causes a disproportionate
increase in latency. In this thesis we focus on circuit-switching NoCs,
although some of the performance models we introduce in Chapter 2 are
also applicable to packet-switching NoCs.

5. Routing is the process that decides the path the data takes between
source and destination. Networks on chip, unlike bus hierarchies, typ-
ically offer more than one path between source and destination. This
characteristic can be used to balance load [LZJ06, ACPP06, LLP05].
A large research effort was focused on finding deadlock-freerouting
strategies that are nevertheless able to balance traffic or deal with faults
[DA93, Dua91, PHKC06, KS93, CQSD99].

6. Flow control is the process of managing the rate of data transmis-
sion in an interconnect, to avoid buffer overflow. Flow control in
NoCs tends to be more elaborate than in bus-based systems [CMR+06,
PABB05, OM06, ANM+05] because NoCs allow pipelining of transac-
tions. Pipelining is necessary to achieve high frequency ofoperation and
thus high communication bandwidth.

7. Distributed operation. A network on chip is composed of modules that
operate autonomously and in parallel. This is important as it avoids a
single centralized control unit such as a bus arbiter, that may represent
bottleneck. However, it is not uncommon to have a single central circuit
for less frequent functions, like network configuration [HG07].

8. Quality of service (QoS) is often defined as the ability of an ar-
chitecture to guarantee performance requirements like bandwidth and
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latency. Some NoC implementations offer higher priority, and thus
higher performance to a subset of applications by defining traffic classes
[BCGK04, BCV+05]. Others offer bandwidth and latency guarantees
through resource reservation [GDR05, MNTJ04a, LST00]. Applications
or communication channels are in this situation isolated from each mak-
ing their performance more easily analyzable.

These characteristics also represent degrees of freedom inNoC design. Several
of these parameters are explored in Chapter 2 through the proposal of network
models implementing specific parameter choices. We will also return to
discuss them in later chapters in the context of allocation algorithms target-
ing routing and link sharing or in the context of hardware implementation.
Table 1.2 presents a map of the chapters that will take into discussion these
parameters.

Table 1.2: Chapter-parameter relation

1.4 NoC design

Consider the generic design flow, illustrated in Figure 1.2,which is used for
the design of an on-chip interconnect, in particular a network-on-chip.

The design flow starts from a set of application domain (qualitative) require-
ments, e.g. optimization of average throughput in general purpose applica-
tions, worst-case guarantees for embedded real time or low-latency for control
applications. These requirements specify whether QoS guarantees need to be
provided [GH10], whether applications need to be isolated from each other
[HGBH09, HG10, BGK+11] or how resources need to be shared. Based
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Figure 1.2: An interconnect generation flow and the components of this flow
addressed in this thesis

on these requirements, the type of NoC or, as presented in Section 1.3, the
parameters of the NoC can be chosen. In Chapter 2 we provide ananalysis of
several network models that may be used in determining some of the network
parameters.

In Chapters 6 and 7 we present our proposed NoC implementation, targeted
at embedded systems for real-time multimedia. Our proposalis based on
parameter choices we found to be desirable for an interconnect providing
QoS guarantees in the analysis in Chapter 2. We have developed a library
of hardware models, that can be dimensioned and instantiated using already
existing tools from the Æthereal tool-flow [RDP+05, HCG07b].

Even with a fixed hardware instance, there may be additional degrees of
freedom in the functioning of the network. In the case of our proposed
network, these degrees of freedom are represented by the selection of routes
and the link sharing schedules for each of the network connections. We call the
computation of these routes and schedulesresource allocationand we dedicate
a large part of the thesis to algorithms used for this computation. Chapters 3
and 4 will discuss design-time resource allocation while Chapter 5 will discuss
allocation at run time.



1.4. NOC DESIGN 11

In the following section we present the contention-free routing model, which
is the implemented by our proposed network. This model is a characteristic
our network shares with the Æthereal network [HG10].

1.4.1 The contention-free routing model

The contention-free routing model is a model for circuit-switching networks
that make use of time division multiplexing for sharing the links between
multiple connections. In a circuit-switching network, long-lived connections
(or circuits) are established between IPs and while established they reserve
network resources on a path through the network between the IPs thus making
sure that data can flow at a certain rate between source and destination. To
avoid excessive blocking and possible under-utilization it is necessary that
links could be shared between multiple connections (i.e., only a fraction of
the link bandwidth is reserved by one connection instead of the whole link).

Figure 1.3: End-to-end connections between IPs are sharingnetwork links.

A convenient mechanism for link sharing is time division multiplexing or
TDM. TDM specifies that connections can take turns in using a link, according
to a strict schedule. When a connection is established, one or more entries
(or slots) in this schedule are marked as belonging to that connection. The
number of slots allocated to one connection determines the bandwidth of that
connection.

The contention-free routing model (as proposed in [GDR05])however goes
further than simple TDM slot reservation. It specifies that,when switching
from one link to another on the path from source to destination, data is not
allowed to wait. That is, when arriving at a router in one time-slot, the data
must depart on the next link in the immediately next time-slot (Figure 1.4). It
follows from this that connections never wait for each other, hence the name
“contention-free routing.”
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Figure 1.4: Contention free routing.

This is a very restrictive requirement, but it has significant benefits. Firstly,
the network traversal latency is very low, because data doesnot need to wait at
each router, and secondly, the buffer requirements at the router level are also
very low.

The contention-free routing model unfortunately also has an unpleasant effect.
The relative position of slots on all links that are used by one connection
becomes “locked” and finding a schedule that avoids collisions between any
connections at any point in their path becomes a very difficult problem. In this
thesis, we will analyze the impact of this restriction on performance and cost
and we will provide algorithms for solving the allocation problem.

1.4.2 Thesis contribution

This thesis has several contributions: (1) a performance analysis of network
parameters through the use of several models, (2) allocation algorithms target-
ing (contention-free) routing and (3) an efficient hardwareimplementation of
the dAElite network on chip that supports contention-free routing and hence
offers bandwidth and latency guarantees. We detail these contributions in the
following paragraphs.

To explore the effects of variousnetwork parameters, we have developed a
range ofnetwork modelsto analyze the (guaranteed) performance. These
range from generic models, applicable to any type of interconnect to special-
ized models that match the hardware implementation of a network based on
contention-free routing. For each of the models we provide ways of measuring
performance which allows us to determine tradeoffs of various interconnect
choices. We evaluate the impact (on performance) of packetization, the impact
of link division granularity, the impact of having aligned slots, the impact of
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requiring or not requiring in-order delivery and several network topologies.

We develop and implementalgorithmsfor the computation of TDM schedules
(resource allocation) both at design time and at run time. We demonstrate
several of the allocation algorithms to be optimal. For run-time allocation,
we optimize our algorithms for execution on embedded processors with little
memory and low processing power. We accelerate the algorithm by imple-
menting part of its functionality in hardware and we also estimate the speed of
a fully hardware-accelerated solution.

We propose a NoChardware implementationsupporting contention-free rout-
ing which compares favorably in terms of cost and performance to the state
of the art. Our proposal features multicast and multipath routing and has a
low connection set-up time. Our approach also avoids the header overhead.
We design the hardware required to interface IPs to the network on chip. We
propose improvements at the level of this interface that reduce the running
time of applications by making better use of the network bandwidth and hiding
latency.

1.5 Thesis Overview

In the following we detail the organization of this thesis, which is also repre-
sented in Figure 1.5. The thesis is structured around a set ofnetwork models,
ranging from ideal interconnects existing only as a mathematical formulation
to realistic models that allow a physical implementation.

In Chapter 2 we analyze the performance impacts of various network pa-
rameter choices. The performance variations are determined by comparing
different network models that differ in these choices. We provide mathematical
formulations based on linear programming for the performance of the first five
models, while for the rest the performance is measured by applying allocation
algorithms that will be described in the later chapters.

In Chapter 3 we discuss in depth the algorithms that are used to perform path
allocation in the more restrictive models introduced in Chapter 2. Where
possible we employ optimal algorithms and we demonstrate their optimality.
We also give an overview of the complexity of these algorithms.

In Chapter 4 we present algorithms for slot selection which are used in con-
junction with the path selection algorithms to guarantee a certain latency bound
for each communication channel. We prove these algorithms to be optimal
which allows us to use them as a bound in evaluating the performance of
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Figure 1.5: Thesis Overview.

the algorithms previously proposed in the literature. These algorithms are
applicable only to the single path models. We also look into the effects of slot
selection on actual application performance and we providemore elaborate
definition of latency constraints.
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Whereas most of the algorithms presented so far are only meant to be used at
design time, in Chapter 5 we present algorithms for path and slot selection that
can be executed at run time. We evaluate the speed of the algorithm versus
the connection requirements and background traffic, and present different
tradeoffs between the quality of the allocation, hardware resources and speed.
We also evaluate the various overheads involved with keeping track of used
resources and the interaction with the design-time allocation flow. We present
ways to accelerate the allocation in hardware.

In Chapter 6 we propose a network on chip implementation called dAElite that
supports several of our proposed network models, offers multicast services and
has very low configuration time. We implement our proposal inhardware and
we show it to perform favorably in terms of hardware area and speed to other
networks reported in the literature.

Chapter 7 focuses on how the raw communication services provided by the
network can be translated into transaction-level servicesoffered to the IPs.
We present here optimizations regarding bandwidth use and latency hiding
techniques and we analyze the overall effect on the execution time of real
applications.

Finally, Chapter 8 concludes the dissertation by summarizing our contributions
and presents future possible directions of research.





Chapter 2

Theoretical bounds on allocatable
capacity

T
o arrive at a NoC template, we analyze in this chapter several net-
work characteristics (Section 1.3) that affect implementation cost and
guaranteed performance. Starting with a most general network, we

specialize the NoC until we arrive at the contention-free routing model which
can be implemented in hardware at a low cost. At the same time we design a
range of resource allocation methods adapted to each network’s requirements.

For this task we propose a range of interconnect models, offering different
levels of abstraction. These models address the network characteristics and
degrees of freedom discussed in Section 1.3. We evaluate different topology
choices, different routing strategies, different granularities of link bandwidth
division and a generic switching model versus the contention-free routing
mechanism.

The models representing interconnects with different architectural restrictions
require different algorithms for network resource allocation. For the more
general models we use linear-programming-based algorithms to perform the
allocation. These algorithms are able to guarantee an optimal solution globally
for the entire set of communication channels. Linear programming is however
too expensive to perform for the more detailed models. In particular, under
the contention-free routing model, the problem of finding a globally optimal
allocation was shown to be NP-complete [SBG+08]. For these cases we
use algorithms that optimize the allocation of each individual channel but
are not able to guarantee a global optimal solution (across the entire set of
channels). We evaluate the performance of these algorithmsby comparing to

17
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the performance of the more general models.

The list of models is found in Figure 2.1. At the top of the figure stands the
most generic model (Model 1), as close as possible to an idealinterconnect.
Each model successively introduces architectural restrictions or uses a less ef-
ficient, but also less computationally intensive, allocation algorithm compared
to the models above it.

Figure 2.1: Network models, with their corresponding architectural character-
istics and allocation algorithms.

The earlier models are generic, i.e. the interconnect characteristics/design
choices have not yet been fixed, and they provide bounds for the performance
of any type of interconnect. Later models represent particular NoC templates
that can be physically instantiated in hardware (Figure 2.2). In Chapter 6 we
will provide a hardware implementation of a NoC (dAElite), which supports
all models starting with Models 8 without a header overhead.The same models
could in theory be supported by the distributed routing version of Æthereal but
at a much higher cost. aelite which is closer to our proposalssupports Models
10 and 12 with header overhead. Model 12 is useful in the context of online
allocation which is discussed in Chapter 5.

A distinction must be made in what the performance of these models rep-



19

Network Performance

bound for any rate-based intercon-
nect

bound for any rate-based intercon-
nect with a given topology

bound for networks with fixed
1/n rate-based arbitration includ-
ing frame-based arbitration, TDM
[WZLY08], SDM [WSRS05]

dAElite (Chapter 6)
Æthereal [GDR05]

aelite [HG10]

Figure 2.2: Network implementations corresponding to the different models.

resents. Models 8 and 12 represent the performance thatis obtained (and
guaranteed) by dAElite and Æthereal respectively. Models 1-4 represent a
bound on the performance thatcould be achieved by the specified networks,
assuming no other technical restrictions exist, e.g. routing restrictions or
limited buffering at the intermediate nodes. Furthermore,for networks using
frame-based arbitration the performance guarantee represents bandwidth that
is delivered in each and every frame whereas in a generic rate-based arbitration
scheme the performance that can be guaranteed only concernsthe average
delivered bandwidth.

The rest of this chapter is organized as follows. In Section 2.1 we discuss
the assumptions we make regarding the interconnect that arecommon to all
models. Section 2.2 then details the restrictions each model successively
introduces. In Section 2.3 we describe the allocation methods employed. The
allocation methods based on linear programming are described here as they are
the result of directly applying a linear programming optimization tool to the
formal description of the problem. For the other methods we only give a brief
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overview as we will provide a detailed description in the following chapter.
Section 2.4 presents a performance comparison of the various models. Note
that some of the models are purely theoretical and their onlypurpose is to
provide a theoretical bound to the achievable performance regardless of the
network characteristics. Section 2.5 presents related work and Section 2.6
states our conclusions.

2.1 General assumptions

Some of the assumptions we make are common to all models. In all our ex-
periments IPs are assumed to communicate over connections having constant
bandwidth. Bursty traffic can be dealt with by using buffers to level out the
load, overallocating bandwidth or by setting up and tearingdown connections
to correspond with the bursts. In the latter case we only consider the time
interval between any set-up or tear-down operations, i.e. the time interval when
the networks is in a stable state.

Each of the models is evaluated as follows:

The network has to support a set of bidirectional connections, each of which
has a required bandwidth. We emphasize the fact that the requested bandwidth
representsguaranteed bandwidththat the network should be able to deliver.
Each connection consists of two unidirectional channels, arequest channel
and a response channel. Latency requirements are not taken into account in
this chapter as most models do not support them. Latency is considered in
Chapter 4.

The NoC consists of network interfaces (NIs), routers and network links
(Figure 2.3). IPs are tightly connected to a network interface and we assume
there is no restriction in the speed of communication between the two. Each
network interface has a single link to a router. Between routers multiple links
exist, as defined by the network topology.

Figure 2.3: Network on chip.
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The general assumptions, which are unchanged throughout the thesis, are as
follows:

GA-1 The network consists of point-to-point unidirectional communication
links; bidirectional or full-duplex links are modeled as two separate
unidirectional links.

GA-2 We assume all links to have equal capacity; the models not using slots
(Models 1-4 and 6) are trivial to extend to handle different-bandwidth
links if desired.

GA-3 The network does not drop or re-transmit data, for a network that uses
dropping or retransmission we only model the useful throughput and
ignore the dropped packets; this provides a conservative performance
bound (a network using dropping cannot perform better than the net-
work without dropping which uses the same model).

GA-4 Our allocation algorithms assume IPs that are already mapped to net-
work nodes; in our experiments we will use two mappings: an (essen-
tially arbitrary) mapping with the first IP mapped to the firstNI, the
second IP to the second NI and so on, and the mapping produced by the
UMARS algorithm [HGR07].

GA-5 It is allowed to have multiple IPs mapped to the same NI, and it is
allowed to have multiple NIs connected to the same router; both these
features are used in some of our experiments.

To compare the quality of our allocation algorithms againstthe state of the art
[Han09] we use the same conventions for bandwidth computation, link width
and header overhead. Our tools also use the same input format(XML files) as
the Æthereal toolchain [HG10] leading to potential synergies between the two
flows.

2.2 Architectural restrictions

An ideal interconnect provides infinite bandwidth and has zero latency. The
laws of physics obviously prevent us from achieving that andso do cost
concerns. There are many choices in the interconnect designthat balance cost
against performance. We start with an idealized network model which ignores
cost, though it still abides by the laws of physics. We then gradually introduce
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models with more restrictions, lowering cost at the expenseof performance
and we evaluate the impact of each of these restrictions.

The most general model starts with the following assumptions which will then
be invalidated by the more restrictive models:

A-1 The network topology is ideal. Models 1 and 2 assume that contention
only happens on the NI-router links and not on the router-router links
inside the network.

A-2 The data arrives and departs from a router in (arbitrary)infinitely divisible
quantities (from a continuous range as opposed to a discreteset of values).
The link bandwidth can also be divided between the connections that use
it in arbitrary (continuous domain) proportions; startingwith Models 2
and 4 the link bandwidth can only be divided into discrete amounts.

A-3 No assumptions are made regarding the switching mechanism; the
bounds provided by this model can be applied to any type of intercon-
nect, including bus hierarchies; the contention-free routing model will be
introduced starting with Models 5 and 7.

A-4 In-order arrival of messages at the destination is not enforced; we will
take into account the order of arrival at the destination in models starting
with Model 8.

A-5 Routing of a single communication channel over multiplepaths is al-
lowed, our only concern is that all data must eventually reach its desti-
nation; a restriction consisting of routing each channel over a single path
will be introduced starting with Models 10 and 12.

A-6 Non-minimal routing with respect to distance is allowed. The models we
use optimize the path length either globally or per connection, however
the successful allocation criterion takes precedence; a restriction on path
length will be introduced in Models 11 and 12.

A-7 No network header overhead is considered. Header overhead is optional
starting with Model 8.

We present these assumptions in more detail in the followingsections.
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2.2.1 Ideal versus real topologies

A major factor impacting the cost of a network implementation is the network
topology, as it directly affects the length and number of wires, the number
of routers and the router degree. We wish to determine whether the network
topologies used in practice incur a loss in terms of network performance when
compared to an ideal topology.

For the ideal topology we use a model that only restricts the bandwidth of
the links that connect the NIs to the core of the network (we assume all-to-all
connections without a limit on bandwidth inside the network). This model is
represented in Figure 2.4.

Figure 2.4: Ideal, all-to-all topology, a bandwidth limit only considered for the
links between NIs and Routers.

With an ideal topology assumption, the overall performanceof the network is
limited by the IP or group of IPs having the largest inbound oroutbound traffic.
In our tests we found that in many cases the NI to router links still saturate first
which means that the evaluated topology behaves like the ideal topology.

In practice the all-to-all topology is not used because of its high wiring cost.
Topologies commonly used instead are the mesh and concentrated mesh, ring,
torus, spidergon, and fat tree.

The mesh (Figure 2.5a) topology has the advantage of mappingvery well on
the 2D surface of the chip, especially in the case of homogeneous multi-cores
which are composed of fixed size IPs replicated in a matrix structure. For each
topology it is possible to connect multiple NIs to each router (Figure 2.5b vs.
Figure 2.5a). Using multiple NIs per router decreases the size of the topology
and the hop count, but increases the pressure on the router torouter links.

Other commonly used topologies include: ring (Figure 2.6a), torus (Figure
2.6b), spidergon [MSVO07] (Figure 2.6c), fat tree [Lei85, GG00] (Fig 2.6d).
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Figure 2.5: Mesh with one NI and multiple NIs per router.

For all topologies, each of the links is assumed to be bidirectional (thus
modeled as two separate links in opposing directions) and the capacities of
all links are assumed to be equal.

2.2.2 Continuous versus discrete bandwidth division

As mentioned previously, in a NoC links are typically shared. Multiple com-
munication channels are allowed to make use of each link, anda mechanism
has to be provided to divide the link bandwidth between channels.

In the more general models we assumed this division can be performed into
arbitrarily fine-grained quantities (which can be represented by real numbers).
In practice, this division can only be performed into discrete units dictated by
the link sharing mechanism employed. In Models 2 and 4-12 we allow the
link bandwidth to be split inton units, each of them equal to1/n of the total
bandwidth (for simplicity, when constructing the performance models we will
assume the unit of allocation to be1 and the total link bandwidth to ben). The
value ofn is constant throughout the network. Note that often, but notalways,
nmay be made very large at low cost, so that these models approximate models
1 and 3 closely.

The use of a fixed allocation unit may be for example due to the physical link
division mechanism employed, as it is the case for space-division multiplexing
(SDM), or a limitation of the arbitration scheme, as it is thecase with frame-
based arbiters. Even when the arbitration scheme does not inherently suffer
from this limitation, its practical implementation may. For example, in the
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Figure 2.6: a) Ring, b) Torus, c) Spidergon, d) Fat tree topologies.

general case of rate-based arbiters, the credit counters used by the arbiter are
still expressed as a binary number with finite precision. This model is valid for
networks where allocation is constrained to fixed units of1/n bandwidth.

In an SDM scheme, anm-bit wide link can be divided inton k-bit independent
lanes, wherenk = m. This imposes a restriction on the maximum value of
n, sincen has to be a divisor ofm. The cost of routers is also affected by the
choice ofn as we will see shortly.

In a network using frame-based arbiters, connections are allocated a certain
(integer) number of slots in a frame of sizen. A particular form of frame-
based arbitration is time-division multiplexing (TDM) where connections are
assigned fixed slots inside the frame. The frame is called a TDM wheel to
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emphasize the periodic nature of the schedule.

The size of the TDM wheel or frame has an effect on how long a connection
may have to wait for its turn as well as how much buffering willbe needed.
The higher then the longer the waiting period and the larger the buffers. On
the other hand, a lown will result in a coarser division when allocating the link
bandwidth to different connections.

A coarser division, i.e. smallern, may cause a channel to receive more than its
required bandwidth because the allocation is rounded up to the next available
value (Figure 2.7). A finer division has lower overhead but higher latency and
buffering cost.

Figure 2.7: Requested bandwidth being allocated over linkssupporting differ-
ent link division granularities.

Models starting with Model 4 and below, which enforce a certain link division
granularity, are reasonably easy to implement in a classical SDM or TDM
scheme. These particular implementations also guarantee that the performance
bound offered by the model can be achieved, although the factthat connections
can be routed over multiple paths of different lengths may introduce additional
complications regarding the reassembly of data at the destination.

A router used in an SDM scheme is depicted in Figure 2.8. Each of the input
and output links of the router is split inton SDM lanes. A router allowing
maximum flexibility would allow routing any of the input lanes to any of the
output lanes. The hardware complexity of the router isO(np2) wherep is the
number of ports and a port is considered to ben-lanes wide.

A TDM router (Figure 2.9) that offers the same routing flexibility as the SDM
router, would have to provide buffering space forn TDM slots for each input,
for example in a circular buffer. Data from each of the input buffers may
have to be forwarded to multiple output ports during one cycle, thus a multi-
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Figure 2.8: Space Division Multiplexing in one router.

port memory is required. The complexity of the hardware, ignoring physical
floorplanning issues is againO(np2).

Figure 2.9: Time Division Multiplexing in one router.

2.2.3 A generic link-sharing mechanism versus contention-free
routing

In the previous section we pointed out that providing maximum flexibility in
link bandwidth allocation in a TDM scheme withn slots requires an expensive
crossbar and buffering space for the data transmitted in then slots.

It is possible to reduce the required buffer capacity and crossbar size by
sacrificing some of the flexibility in choosing the slots allocated to a connection
on the incoming and outgoing links. Under the contention-free routing model,
the routers employ a buffer for a single data flit (the size of aTDM slot) for
each link (Figure 2.10). This implies that data needs to be forwarded by each
router in the next slot immediately after its arrival to makespace for the next
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incoming packet. The hardware complexity of the router is now O(p2) and
does not depend on the length of the TDM period, or in other words the number
of lanes the link is partitioned into.

Figure 2.10: Router in a TDM scheme using the contention-free routing model.

Having the data dispatched immediately in the next slot is also beneficial in
terms of reducing the worst-case network traversal latency. This very strict
limitation however makes the allocation process more difficult because the
position of the allocated slots is “locked” on all links on a path belonging
to a communication channel.

All models starting with Model 7 use the contention-free routing model.

2.2.4 Multiple paths versus a single path

Networks on chip typically provide path diversity, i.e. multiple possible paths
for data to reach its destination. The method of choosing thepath in a network
is called routing.

Depending on the network implementation, for a single source-destination
pair, data may be allowed to travel over a single path or over multiple paths.
Conventionally, the first type of routing is called deterministic and the second
is called non-deterministic. In [SG09] we describe nevertheless a multi-path
routing method which cannot be classified as non-deterministic in the true
sense of the word (the route selection is performed in a deterministic manner
according to a TDM schedule). We prefer to use therefore in our terminology
the notion of multi-path instead of non-deterministic.

All models except Model 10 and Model 12 impose no restrictions on the
number of paths used by each communication channel. Channels may even
be arbitrarily split over multiple paths, can recombine, and can take arbitrary
detours (Figure 2.11).
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Figure 2.11: Communication channel split over multiple paths.

2.2.5 In-order versus out-of-order delivery

One concern when routing over multiple paths is that packetsmight arrive in
another order than they were sent. As the data usually needs to be processed
in its original sequence, expensive reordering buffers need to be employed to
reorder incoming packets.

In a generic network out-of-order deliveries can be dealt with by using buffers
at the destination to hold the packets that arrived too earlyuntil the packets
that should have arrived before them but did not are also received. In addition
to the cost of the buffers this scheme has a bandwidth overhead, because the
packets need to carry ordering information.

In contrast, under the contention-free routing model, the network traversal time
is known from the allocation phase, and it is possible to knowin advance
whether packets belonging to the same connection will overtake each other
when using different paths. Because the delay per hop is fixed, paths with the
same length will always deliver the packets in order, and even for paths with
slightly different lengths out-of-order delivery can be avoided by not letting
packets be sent on a longer path immediately before sending other packets on
a shorter path (Figure 2.12). This introduces neverthelessmore restrictions on
the allocation process and may result in a loss in performance.

Algorithms that insure in-order delivery are discussed in more detail in Chapter
3.
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Figure 2.12: Enforcing in-order delivery in the contention-free routing model.

2.2.6 Minimal versus non-minimal routing

While architecturally some NoCs support routing over pathslonger than the
shortest distance between source and destination, it may not be desirable to
allow such a routing for reasons of latency or power efficiency.

Allowing non-minimal routing also enlarges the solution space but makes the
allocation process more computationally expensive, especially when exhaus-
tive search is used. For design-time allocation we generally assume that non-
minimal routing is allowed, but the online allocation algorithm that we will
discuss in Chapter 5 only performs a search of minimal routesin order to
minimize the allocation time.

2.2.7 Header overhead

Data traveling through a network often has to carry additional information like
route to destination or internal link or network status which does not represent
useful bandwidth. Such data is typically placed ahead of theuseful payload
and bears the name of header.

While this calculation is specific to Æthereal, a certain header overhead can be
expected in other network implementations as well. In Chapter 6 we present a
network implementation that avoids the header overhead.

Models 8-12 can either take headers into account or ignore the header over-
head. When the header overhead is considered, we use the Æthereal header
size model [Han09]. In Æthereal, a network packet occupies between one and
spkt slots, each slot havingsflit words. Using the default values ofspkt = 3
andsflit = 3 and given that the network header size is one word, the efficiency
(useful data versus the total size of the packets) is between66.6% in the worst
case (one-slot packets, 1 header word and 2 payload words) and 88.8% in the
best case (with a packet size of three slots, the packet consists of 1 header word
and 8 payload words).
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Models 8 to 12 can either include or ignore the header overhead.

2.3 Allocation methods

Networks on chip offer freedom regarding the path data uses to travel to
destination. This freedom can be used to balance the networkload in such a
way that the link capacity is not exceeded for any of the links. The contention-
free routing model imposes additional restrictions regarding the arrival and
departure times of packets at each hop which also need to be taken into account
when computing the routing.

The allocation step assigns paths to each communication channel and under
some models allocates specific TDM slots. It has an importantrole in the
overall network performance. This section describes the allocation algorithms
we have used for the different models.

L-1 For the general models, not taking into account all network implementa-
tion details, we uselinear programming(LP) which globally computes
an optimal solution across all communication channels. In this case, the
solution to the problem results directly from using a standard optimization
tool on the problem formulation. LP problems can be solved efficiently in
polynomial time. We will discuss the LP-formulation for Models 1 and 2
in Section 2.3.1.

L-2 When the link bandwidth has to be allocated in discrete quantities (the
invalidation of assumption A-2) the LP method has to be replaced by
an integer linear programming(ILP) method. The problem formulation
given in Section 2.3.1 still applies, but the variables are forced to integer
values.

L-3 In Section 2.3.3 we show how ILP optimization can be used to compute
globally optimal slot allocation in a model using contention-free routing
(Model 5). This is however extremely expensive and we could only apply
it to very small topologies. Unlike LP, ILP problems cannot be solved in
polynomial time (the general ILP problem is known to be NP-complete).

For detailed models where using ILP optimization is not feasible, we choose
a less computationally-intensive approach. This approachconsists of finding a
route and schedule for one channel at the time, and marking the used resources
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so that they are not used by the other channels. We call this the iterative
approach.

This approach is not guaranteed to be globally optimal, despite the fact that
some of our algorithms produce individual one-channel allocations that are
optimal. The resulting performance is sensitive to the order in which the indi-
vidual channels are allocated. We have found that allocating higher bandwidth
channels first provides better performance, and therefore we have used this
strategy in our experiments. The same iterative approach was used by the
UMARS algorithm [HGR07] as well as tools used in the routing of physical
wires [HS01].

For the models supporting multi-path routing the allocation of individual chan-
nels is performed using minimum-cost maximum-flow algorithms or iterative
exhaustive search. For the single-path routing we use exhaustive search per
communication channel.

L-4 An iterative method where theindividual channels are allocated by the
flow algorithm is used for the Model 6. Iterative search using the flow
algorithm is discussed in Section 2.3.2.

L-5 The flow method can be extended to take into account the slot alignment
of the contention free routing model, in the same way the Method L-3
extends L-2. The same formulation from section 2.3.3 applies here. The
algorithm thus modified is applied to Model 7.

L-6 The flow method is also used for producing multi-path solutions when
in-order delivery is required. In order to cope with in-order delivery and
optimize header overhead, additional heuristics, described in Chapter 3,
are used. We also fall-back to single-path allocation if it produces a better
result than the flow algorithm. This allocation method is used for Models
9 and 11.

L-7 An iterative method where theindividual channels are allocated using
single-path exhaustive searchis used for the models which support only
single-path routing (Models 10 and 12).

L-8 In Section 2.3.5, we present an alternative method for producing multi-
path solutions by applying the single-path search several times for a single
channel. Model 8 uses this method in addition to the standardsingle-path
and flow methods.

In the following we discuss each allocation method in more detail.
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2.3.1 Linear Programming

This section covers the allocation Methods L-1 and L-2.

Network communication formulated as a multi-commodity flowproblem

The multi-commodity flow problem [Hu63, Sai68] is an optimization problem
dealing with the transport of goods, orcommodities, inside a network. Com-
modities can represent material goods or abstract, quantifiable entities like data
flowing through a communication network. The network is expressed in the
form of a multigraph (typically a graph) having a capacity attached to each of
its edges. Each of the commodities has a source, a sink and a demand. The
capacity of each edge is divided between the commodities using this link. This
formulation applies very well to the case of a network carrying information.

We use a variation of this problem calledthe maximum concurrent flow prob-
lem [SM90]. Under this formulation, the optimization target isa factorr that
all demands should be scaled by in order to make the delivery possible for all
commodities. That is, the requirements are scaled while keeping their relative
ratios constant, to the level where we can provide the maximum delivery.
Equivalently we can keep the requirements constant, while scaling the capacity
available on all links. This can be seen as an attempt to determine what is the
minimum frequency the network needs to run at in order to simultaneously
satisfy the bandwidth requirements of a set of applications.

The multi-commodity flow formulation makes use of a conservation law simi-
lar to Kirchhoff’s current law, which states that, at each node, except the sinks
and the sources, the commodity coming in must be equal to the one going out
over time. In terms of networks, this is equivalent with the assumption that
packets are not dropped.

We present a mathematical formulation of the transport of data through the
network. This formulation represents the multi-commodityflow problem as a
linear programming problem which is solved using an off-the-shelf LP solver
tool, glpsol [Fou]. The LP method produces a solution for therouting problem
for Models 3-4. All models using LP allocation assume multi-path routing
where out-of-order delivery is allowed (see Figure 2.1).

LP formulation of the multicommodity flow problem

Consider the following sets used in our formulation:

• V the set of network nodes (NIs and Routers)

• E the set of network links
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• J the set of communication channels

• R the set of routersR ⊂ V

• Pr ⊂ E the set of links arriving at routerr
Pr = {pr ∈ E|pr arrives at routerr}

• Qr ⊂ E the set of links departing from routerr
Qr = {qr ∈ E|qr departs from routerr}

Each network communication channel has a source network interface pro-
ducing data, a destination network interface consuming data, and may use
bandwidth on any of the network links. Technically speaking, the data is
produced and consumed by IPs that are mapped to the NIs, but weconsider
that the connection between IPs and NI never represents a bottleneck. We
denote byyj the bandwidth of data being inserted into the network by the
source of channelj ∈ J (which is also equal to the data consumed by the
destination). Theyj values are normalized to the bandwidth provided by 1
slot. The link bandwidth is the product of the link operatingfrequency and
link width, divided by the number of slots. We always assume alink width of
one word and the number of slots is only important for the ILP method.

We denote byzej with e ∈ E, j ∈ J the bandwidth used on each linke by
each communication channelj, again normalized to the slot bandwidth. The
paths used by each communication channelj can be extracted from the values
zej.

The following equations and inequalities constrain the solution. They are both
necessary and sufficient to guarantee the assumptions of Models 1-4.

Negative bandwidth values are not allowed (Equation 2.1). Some formulations
use the sign to represent the direction of movement through an edge but we
do not use this approach. As discussed in Section 2.1 we consider links to be
unidirectional.

The bandwidth used by each communication channel on each link is always a
positive amount. The transport in the opposite direction has to be represented
over the return link rather than a negative value.

zej ≥ 0 ,∀e ∈ E, ∀j ∈ J (2.1)

The total bandwidth used on one link by all communication channels taken
together must be at most equal to the link bandwidth (Equation 2.2). s is the
number of slots.
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∑

j∈J

zej ≤ s ,∀e ∈ E, (2.2)

Models 1 and 2 omit the constraint 2.2 for edges not having an NI as one of
their endpoints.

The total amount of data belonging to a communication channel arriving at
one router must also depart from the same router, either through router-to-
router links or through the links to the source and destination NIs (Equation
2.3).

∑

e∈Pr

zej =
∑

e∈Qr

zej ,∀r ∈ R ,∀j ∈ J (2.3)

if e is a link originating at an NI then

zej =

{

yj when the NI is the source ofe

0 otherwise
(2.4)

if e is a link arriving at the NI then

zej =

{

yj when the NI is the destination ofe

0 otherwise
(2.5)

Equations 2.4 and 2.5 ensure that all data originates from the proper source
and is delivered to the proper destination.

An allocation consists of finding allzej values or, in other words, the band-
width used by each communication channel on each of the network links.

The number of equations increases with the product of the number of channels
and the number of links, more precisely it is|J |(2|E| + |V |). In practice
the flow problem for an 8x8 mesh network with 200 communication channels
could be solved in reasonable time (in the order of minutes) with off-the-shelf
LP software glpsol.

When the result is constrained to use only integer numbers (Models 2 and 4)
the problem becomes an ILP problem which is much more difficult to solve
than its LP counterpart (ILP problems with bounded variables are known to
be NP-hard). For our largest tests (8X8 mesh and torus, and fat-tree with 64



36 CHAPTER 2. THEORETICAL BOUNDS ON ALLOCATABLE CAPACITY

nodes), the running times of the glpsol tool (which is also able to solve ILP
problems) were in the order of hours and even days.

In Appendix A, we present example code that describes the multi-commodity
flow problem in the GNU MathProg modeling language.

2.3.2 Iterative, single-channel allocation using the flow algorithm

This section describes Method L-4.

Global optimization methods are generally too expensive for the computation
of a channel allocation when we need to take into account all the details of the
more complex models, i.e. Models 6-12. A more practical approach consists in
allocating channels one by one, each channel allocation blocking its network
resources from being used by subsequent allocations (Figure 2.13).

Figure 2.13: Iterative channel allocation flowchart.

Individual channels may be allocated with the flow algorithm, as we will
explain in this section, or with other path-finding methods,as we will present
in Section 2.3.4 and Section 2.3.5.
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The iterative method starts with an empty network, in which all links have
their full capacity (Figure 2.14a, for simplicity only links in one direction are
represented). As channels are allocated one-by-one (Figure 2.14 b, c, d), part
of the available link capacity is consumed. Each new channelallocation can
only make use of the link capacity that was not yet consumed bythe previous
iterations. For example, the 4th channel allocation can make use only of the
link capacities in Figure 2.14e.

Figure 2.14: Steps in the iterative flow allocation algorithm.

We formalize the method as follows: LetV,E, J,R, Pr , Qr have the same
meaning as in section 2.3.1. Letcen be the remaining capacity on linke ∈ E
after then-th allocation,ce0 = s.

The flow problem can be seen as a restriction of the multi-commodity problem
in the particular case when the number of commodities equals1. We can use
the same formulation of the flow, except that Equation 2.2 is replaced by 2.6
(we assume channelsj ∈ J are numbered1..n and allocated in that order).

zej ≤ cej (2.6)

We computece(j+1) = cej − zej . The allocation of channelj consists of
finding thezej values∀e ∈ E. Although it is possible to use the LP solver this
“single-commodity” flow allocation, it is more efficient to find a solution using
flow algorithms [EK72]. Flow algorithms can perform real number as well as
integer optimization in polynomial time.

Whereas in the global allocation method the distance criterion was unimportant
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in deciding the success or failure of the allocation, in the iterative method it is
important to select shorter paths, because in this way more resources are left
available for the following allocations.

The algorithm we employ is the minimum-cost maximum flow algorithm
[EK72], which is optimal in terms of both provided bandwidthand path length.
The algorithm is described in more detail in Section 3.2.

The flow algorithm by its nature produces multi-path allocations.

2.3.3 Allocation using graph splitting in the ILP and flow methods

This section describes Methods L-3 and L-5 as extensions of the Methods L-2
and L-4.

As mentioned in section 2.2.3, the contention-free routingmodel imposes
aditional restrictions with regard to the alignment (in time) of the incoming
and outgoing slots. More precisely, a packet arriving at onerouter has to be
forwarded to its output in the immediately next time slot. This is a highly
limiting restriction since it locks down the timing of all slots used by one
communication channel on the path between source and destination. On
the positive side, contention-free routing is very inexpensive to implement in
hardware [GH10].

We attempt to determine the penalty this restriction introduces by comparing
the performance models that have the restriction with models that do not.
Because performance is affected by the allocation algorithm employed, we
make use of equally powerful algorithms in the comparison. Model 4 can be
compared to Model 5 since both guarantee globally optimal allocations. Model
6 can be compared to Model 7 as both make use of iterative channel allocation
using the flow algorithm.

To model contention-free routing link sharing constrains,we use a graph
splitting approach. The network is represented by a graph. Using this approach
each network node is represented bys nodes in the graph (issplit into s
nodes), wheres is the number of slots in the TDM table. Each network link is
represented bys edges in the graph (Figure 2.15). Each graph node represents
the possibility of reaching its associated network node in acertain time slot
and each graph edge represents one time slot on a network link. Graph edges
are connected between nodes in taking into account the hop delay of one time
slot.

We model the problem of allocating all communication channels for the
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Figure 2.15: Network nodes (a) and graph nodes after split (b).

contention-free routing model using the following set of equations. These
equations are similar to the ones used in Section 2.3.1 except for the intro-
duction of third dimensionk ∈ 1..s to the arrayz representing the allocation.

The bandwidth used by each communication channel on each (split) link is
either 0 or 1, 1 representing the bandwidth of 1 slot (Equation 2.7.)

zejk ∈ {0, 1} ,∀e ∈ E,∀j ∈ J,∀k ∈ {1..s} (2.7)

The sum of bandwidths used by all channels on the same slot of alink is as
well 1 (Equation 2.8.)

∑

j∈J

zejk ≤ 1 ,∀e ∈ E,∀k ∈ {1..s} (2.8)

At each router the amount of data (belonging to a particular connection) that
is incoming during one slot will leave in the consecutive slot (Equation 2.9.)

∑

e∈Pr

zejk =
∑

e∈Qr

zej((k+1) mod s) ∀k ∈ 1..s, ∀j ∈ J (2.9)

At the links connecting the NIs to the routers, a communication channel can
make use of any of the available slots (Equations 2.10 and 2.11).

if e is a link originating at an NI then

∑

k∈{1..s}

zejk =

{

yj when the NI is the source ofe

0 otherwise
(2.10)
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if e is a link arriving at the NI then

∑

k∈{1..s}

zejk =

{

yj when the NI is the destination ofe

0 otherwise
(2.11)

Performing an allocation consists of finding allzejk values. These values
indicated exactly which slots on which links should be allocated to each of
the communication channels. The solution generated in thisway though may
use multiple paths and may result in out-of-order deliveries.

The set of equations and inequalities can be solved directlyby an ILP solver
(Model 5), but because the number of equations is very large,and ILP prob-
lems in general cannot be solved in polynomial time, we are only able to run
such tests for very small topologies (2x2 or 3x3 meshes withs = 8 and a small
number of connections).

A more feasible approach consists in using the iterative approach described
previously. In the iterative approach we need to definecejk, the remaining
capacity on slotk of edgee after allocating channelj. By extension the initial
capacity isce0k = 1.

Equation 2.8 is replaced by Equation 2.12:

∑

j∈J

zejk ≤ cejk ,∀e ∈ E,∀k ∈ {1..s} (2.12)

And ce(j+1)k is computed asce(j+1)k = cejk − zejk.

Channel allocations are performed one-by-one, according to the flow-chart in
Figure 2.13. One allocation consists of computing the set ofvalueszejk,∀e ∈
E,∀k ∈ {1..s} for a fixedj which is the channel being allocated.

As the flow algorithm produces multi-path allocations, further steps must be
taken in order to insure in-order delivery. These steps, consisting in verifying
path lengths and discarding inappropriate paths will be described in detail in
Chapter 3. When minimal routing is used (Model 11), deliveryis always in-
order (since data has a fixed propagation delay.)

2.3.4 Single-path exhaustive search

This section describes Method L-7.
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The single-path exhaustive search method is also an iterative method, allocat-
ing connections one by one. Starting with an empty network (Figure 2.16a),
it finds paths between source and destinations for each connection in turn and
every time a path is found it marks the slots used on that path so that they
can not be used by subsequent connections (Figure 2.16b,c,d). Single path
exhaustive search is only used for the slot-based models (Models 10 and 12
use single-path search exclusively, models 9 and 11 use it asa fall-back option,
and model 8 uses it as part of repeated single-path search.)

Figure 2.16: Steps in the iterative single-path allocationalgorithm.

We can formalize the single path method using the same notation used in
the previous section. LetV,E, J,R, Pr , Qr have the meaning defined in the
previous sections.

Let zejk be the bandwidth used on slotk of link e by channelj andcejk the
remaining capacity on the same slot-link after the allocation of channelj, with
ce0k = 1 being the initial capacity.

The problem consists in finding a pathP = (e1, e2...en) with ex ∈ E, ∀x ∈
{1..n}, ex being adjacent edges, the first one departing from the sourcenode
and the last one arriving at the destination:e1 = (sourcej , v1), e2 = (v1, v2)
... en = (vn−1,destinationj), and a set of slotsS = {sa1 , sa2 ...say}, y > 0
that satisfies the bandwidth requirementbw(S) ≥ yj. S represents the set of
slots used by the communication channel on the ingress edge.The bandwidth
provided by the set of slotsS, bw(S) is a function of the set of slots. When
no header overhead is assumed, the value of the provided bandwidth is propor-
tional to |S|. If header overhead is assumed the computation of this valueis
more complex and it is discussed in Chapter 4.
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All the slots used by the pathP must be available:

c(ex)j((aw+x−1) mod s) = 1 ∀x ∈ {1..n}, ∀w ∈ {1..y} (2.13)

The value ofc after the allocation ofj is computed as follows:

ce(j+1)k =

{

0 if ∃x ∈ {1..n} s.t. e = ex ands((k+x−1) mod s) ∈ S

cejk otherwise
(2.14)

The strategy we use to find paths is exhaustive search. Paths of minimal
length are enumerated first and for each path we verify if the maximum set of
available slots is sufficient to satisfy the bandwidth requirement. If none of the
paths can provide sufficient bandwidth because of the previous allocations (for
example if in Figure 2.16e, a channel from B to F requires 3 slots whereas only
two are available), we attempt to find all paths of minimal length plus 1, then
minimal length plus 2, until a solution is found or the algorithm can determine
that no solution is possible. To avoid excessively long running times, the search
is abandoned without completely exploring the solution space when107 paths
were examined or the path length exceeds the distance between source and
destination plus 16, i.e., we allow a detour of 16 hops. The complete details
of the single-path allocation algorithm are presented in Section 3.1, while the
different options to computeS are covered in Chapter 4.

In all our algorithm implementations we use the same data structure to keep
track of the available slots between allocations (thecejk array) and as a result
it is possible to allocate some of the connections using the flow algorithm and
others using the single-path approach.

2.3.5 Multi-path using repeated single-path exhaustive search

This section described Method L-8.

Allocating channels over multiple paths conceptually offers more freedom to
routing, but the flow algorithm which produces multi-path allocations might
produce in some instances worse results than the single pathsolution because
it produces paths that are too fragmented and use more headers or it produces
paths of different lengths that need to be discarded for in-order delivery. For
this reason we introduce an additional method,repeated single-path exhaustive
search, to compute multi-path solutions for Model 8.

This method computes a multi-path solution, by calling the single-path exhaus-
tive search algorithm repeatedly for a single channel. Thismethod, illustrated
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in Figure 2.17, takes advantage of the single-path exhaustive search algorithm
to minimize the header overhead.

Figure 2.17: Multi-path using iterative exhaustive search(for a single channel).

The multi-path iterative exhaustive search will be described in depth in Section
3.5. Model 8 in our experiments uses both the (repeated) single-path and the
flow methods for computing an allocation.

2.4 Performance comparison of the proposed models

In this section, we use a set of benchmarks to evaluate the performance of the
various network models and of the allocation algorithms.

The basic unit of benchmarking in our evaluation is ausecase. By usecase
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we mean a set of connections between specific sources and destinations, each
of them having a given bandwidth requirement. Latency constraints are not
included in this evaluation as they are not supported by mostmodels. For a
successful allocation the interconnect described by each model must be able to
support all connections in one usecase simultaneously. Thenetwork frequency
needed to support the bandwidth of all connections simultaneously is used as
a figure of merit for each of the models.

As a matter of convention we use a default link width of 32-bits plus side-
band information which is not available as part of the allocatable bandwidth.
This matches the default parameters of the Æthereal networkwhich can be
used to implement Models 10 and 12, as well as our proposed hardware
implementation which we will present in Chapter 6. The bandwidth specified
in the models is the product of the frequency and the link width.

Note that the frequency and link width do not have meaning as absolute values.
The same bandwidth can be delivered by a network with half thefrequency and
links twice as wide. In these experiments we are only interested in the relative
performance of the models and we ensured that link widths areconsistent
across the models.

For the LP methods, the frequency is obtained directly by selecting the link
bandwidth as the optimization target and dividing the result reported by the LP
solver by the link width. For the iterative methods, it is found using binary
search.

We employ three sets of benchmarks:

• random benchmarks: The IP pairs are chosen randomly with uniform
probability, with one additional constraint that each IP must be at the
end of at least one communication channel. The bandwidth requirement
for each communication channel is also chosen randomly, with uniform
probability in the interval [10..400 MByte/s].

• permutation traffic: IPs communicate in pairs, according towell defined
patterns [DT03]. The required bandwidth is the same for all connections.

• task graphs of real applications reported in the literature: a multimedia
system [HM05], a digital TV system [HG11], MPEG-2 [LCOM08],
VOPD and MWD [VdTJ02].

Two types of mapping are used in the experiments. We call the first onedirect
mappingas it statically assigns the first IP to the first NI, second IP to the
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second NI and so on. The second one is the mapping produced by the UMARS
algorithm [HGR07] which also targets the contention-free routing model. The
UMARS algorithm tries to reduce the distance between communicating nodes,
sometimes having the adverse effect of mapping multiple IPsto the same NI
when that is not required (the direct mapping will result in IPs being mapped
to different NIs as long as the number of NIs is at least as large). We found
that the UMARS mapping behaves worse in many cases under random traffic.

In the graphs that indicate performance, by performance we mean the in-
verse of the frequency of the network needed in order to support the usecase
(supporting the usecase means guaranteeing the required bandwidth). High
performance thus corresponds to a low required operating frequency. For
each combination of topology and allocation method we compute the average
frequency over 20 usecases.
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2.4.1 Small networks with random traffic

Experiments 2.1-2.5 present the performance of different models under ran-
dom traffic on five topologies: mesh, torus, fat tree, spidergon and ring. For
clarity, we selected a subset of the available models, representing a walk
through the model graph, from the most to the least general ofthe models.
Each step in this walk represents a particular NoC design choice in Figure 2.1.

In all the following experiments, the model numbers are indicated in parenthe-
ses. Model numbers suffixed with the letter “h” indicate models which include
the header overhead computation. In each graph the values are normalized to
the performance of Model 1, which is the most general and least restrictive.
Since this model is topology agnostic the normalized valuesare consistent
between the graphs representing different topologies, i.e. Experiments 2.1-2.5.
The values represent averages over 20 randomly generated usecases.
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Experiment 2.1: 4x4 mesh network, random traffic, 16 IPs, 40 connections, 16
slots.
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Experiment 2.2: 4x4 torus network, random traffic, 16 IPs, 40connections, 16
slots.

In general, the less restrictive the model, the better the performance, but that
does not necessarily hold true when the allocation method isnot guaranteed to
be optimal (LP Models 1-5 are optimal, but the iterative methods are not). The
drop in performance of each model, compared to the model before it (using the
same mapping) is annotated in each experiment.

The difference between Models 1 and 3 (in each graph) shows how much
the network topology restricts performance compared to an ideal topology,
assuming ideal switching, buffering and link sharing model. We find that
topologies in general are not a large factor constraining performance, at least
under random traffic, a notable exception being the ring topology. In the ring
topology, mapping the communicating IPs as close as possible to each other is
particularly important and the mapping produced by UMARS results this time
in better performance.

This is easily explained if we compare the average usage of NI-to-router links
(we will call them peripheral links) to the average usage of router-to-router
links (we will call themcore links). In a mesh, all the data transmitted through
peripheral linkswill be divided after the first router over severalcore links(4
such links if the source node is located at the center of the mesh, 3 links when
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Experiment 2.3: Quaternary fat tree network (2 levels), random traffic, 16 IPs,
40 connections, 16 slots.

located on the edges and 2 links when located in the corners).The load being
spread over multiplecore linksit is less likely that thecore linkswill constitute
a bottleneck. On the other hand,core linksare shared between communication
channels between different source-destination pairs. A simple estimation of
the relative occupation ofperipheral linksversuscore linkscan be performed
in the following way. Each communication channel uses exactly 2 peripheral
linksand a variable number ofcore links, dependent on topology. In the case of
the mesh and torus, the number ofcore linksused by a communication channel
is in the order ofO(

√
n), in the case of the fat treeO(log n) and in the case of

the ring and spidergonO(n). At the same time the mesh has slightly less than
2 core linksfor eachperipheral link, the torus exactly 2, the fat treeO(log n),
the spidergon 1.5 and the ring only 1. It is easy to see that contention on the
core linksof the ring and spidergon networks will quickly increase with the
value ofn.

One way to mitigate the saturation ofperipheral linkswould be to use multiple
links to connect each NI to one or more routers. One solution in this direction
is proposed in [CFD+11]. This would increase the pressure oncore linksand
thus making better use of the network topology.
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Experiment 2.4: 16 node spidergon network, random traffic, 16 IPs, 40 con-
nections, 16 slots.

A large drop in performance is observed from Model 3 to Model 4. This
corresponds to the effect of discrete link division, as explained in Section
2.2.2. We use TDM tables with 16 slots, which is in the middle of the usual
range (more generally, this is the performance of any network using frame-
based arbitration with a frame size of 16 or a rate-based network that enforces
allocation in units of 1/16 of the link bandwidth). We make anexception for
the ring network where 16 slots were insufficient for a successful allocation
and a TDM table of size 32 was used instead.

The difference between Models 4 and 6 marks the switch from anoptimal al-
location algorithm to the iterative algorithms. The iterative algorithms exhibit
very good behavior providing results almost as good as the optimal algorithm.

The effect of the contention-free routing constraints can be seen in the differ-
ence between Models 6 and 7. We find this to be most surprising and a strong
argument in favor of the contention-free routing model, since the hardware
cost to support this model is much lower. While Model 6 assumes optimal
buffering Model 7 uses virtually no buffers inside the routers.

The effect of guaranteeing or not guaranteeing in-order delivery can be seen
in the performance difference between Models 7 and Model 9. Under Model
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Experiment 2.5: 16 node ring network, random traffic, 16 IPs,40 connections,
32 slots.

9, in-order delivery is achieved by dropping paths that would cause out-of-
order delivery due to difference in path length. The algorithm is analyzed
in-depth in Section 3.4. From the results it would seem that there is very
little to be discarded, although the difference in performance between the two
models is not necessarily equal to the bandwidth discarded (this bandwidth can
be allocated over other paths). In-order delivery does not incur a significant
performance penalty.

The impact of header overhead can be observed in the drop in performance
between Model 9 and Model 9h. The difference in performance falls in the
expected range of 11.1% to 33.3% as discussed in Section 2.2.7.

The difference between the models (and allocation algorithms) supporting
multi-path routing and those supporting single path routing only, can be seen
in the variation in performance from Model 9h and Model 10h. Multi-path
routing offers a modest performance benefit.

The difference in performance between Models 10h and 12h is due to enforc-
ing a minimal routing strategy. This difference is also verylow.

We also compare our allocation algorithms against the allocation produced
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by the UMARS approach [HGR07] which is used by the Æthereal design
flow. We are able to perform this comparison because we used the same
conventions regarding the link width and bandwidth computation. Note that
the Æthereal mapping that is used in the experiments is also computed by
UMARS. From the hardware point of view Æthereal supports Model 10 with
header overhead so the difference in performance is a resultof differences
in the allocation algorithms employed. These differences are discussed in
more detail in Chapter 3 and Chapter 4. Our algorithms compare favorably
to UMARS.
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Random traffic with different numbers of connections

We analyze the effect of varying the number of connections for a network of
fixed size (Experiments 2.6 and 2.7). We present here the results for the mesh
topology only, as the results for the other topologies follow the same trend.

We observe that the performance penalty related to the link division granularity
(Model 3 versus Model 4) and header overhead (Model 9 versus Model 9h)
increases with the number of connections, which is not unexpected given
that a higher number of connections will require a finer division of the link
bandwidth with fewer allocated slots per connection. When only one slot is
allocated per connection, the theoretical value of header overhead is 33.3%,
which is very near to the value found experimentally. An interesting observa-
tion is that the benefit of the multi-path solutions over the single-path is higher
for a higher number of connections.
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Experiment 2.6: 4x4 mesh network, random traffic, 16 IPs, different number
of connections, direct mapping, 16 slots.
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Experiment 2.7: 4x4 mesh network, random traffic, 16 IPs, different number
of connections, UMARS mapping, 16 slots.
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2.4.2 Uniform (random) traffic

Despite choosing connection destinations and requested bandwidths in a uni-
form manner, the random traffic used in the previous experiments is not
uniform because connections are persistent and through random assignments
some destinations and sources statistically receive higher bandwidths than
others. If the connections were not persistent the load would be averaged over
time; this is the situation described in the literature as uniform random traffic.
We perform another set of experiments where we enforce equalinbound and
outbound traffic from all IPs. We achieve this by requesting an equal number
of incoming and outgoing connections for each IP and settingthe connection
bandwidth requirements (and the channel bandwidth requirements) to be equal.
The results are presented in Experiments 2.8 and 2.9.
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Experiment 2.8: 4x4 mesh network, uniform (random) traffic,16 IPs, 2
connections/IP, 16 slots.

We observe that, compared to the plain random traffic scenario for the mesh
network there is consistently a larger gap between the models. There is
an unusually large gap between Model 1 and Model 3 (this only happened
previously in the case of the ring network, Experiment 2.5) which means
that one of thecore links is saturated first, even with ideal routing and load
balancing (Model 3 uses a globally optimal allocation algorithm). This is not
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Experiment 2.9: 4x4 torus network, uniform (random) traffic, 16 IPs, 2 con-
nections/IP, 16 slots.

entirely unexpected because no individualperipheral linkwill saturate before
another (the usage on allperipheral linksis the same), but the load ofcore
links is not balanced in the same way.

The traffic however poses no challenges to the torus network which offers
better path diversity and better chances at balancing load.Because in these
experiments the channels had equal bandwidth and the numberof slots was
divisible by the number of channels (16 slots and 2 channels)it is possible
for the bandwidth division granularity to not incur any cost(Model 4 versus
Model 3 in Experiment 2.9). Iterative allocation methods are also helped by the
increased path diversity with little difference between the iterative and globally
optimal allocation methods that operate on the same hardware architecture
(Model 6 versus Model 4).

This time, the mapping produced by the UMARS algorithm behaves worse in
all models. When UMARS itself is also used for the allocationthe Æthereal
mapping is still worse, but by a lower margin. The fact that the Æthereal
mapping is worse under Model 1, indicates that UMARS attempted to map
multiple IPs to the same NI, possibly trying to shorten the distance from source
to destination, but this proved to be a suboptimal choice.
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2.4.3 Permutation traffic in small networks

Another type of traffic commonly used in testing network performance is the
permutation traffic [DT03]. In permutation traffic each nodehas a connection
to only one other node. The pattern of connection is generated in a way such
as to stress a particular network topology or to simulate a step in a parallel
algorithm (for example the parallel fast Fourier transform). Because permuta-
tion traffic targets combinations of specific positions in the topology only the
direct mappingis used. All connections have equal bandwidth requirements.
The number of slots was set to 16.

Experiments 2.10-2.14 show the performance of the proposedmodels under
permutation traffic.
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Experiment 2.10: 4x4 Mesh network, permutation traffic, 16 IPs, 16 slots.

The different permutation patterns are defined as follows (it is assumed that the
source and destination are encoded as integers between 0 andn− 1, n usually
being a power of 2 and a square number):

1. for bit complement traffic, the destination is obtained by inverting the
bits of the source. This is equivalent to saying that nodei communicates
with noden− 1− i.
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Experiment 2.11: 4x4 Torus network, permutation traffic, 16IPs, 16 slots.

2. for bit reverse traffic the destination is obtained by inverting the bit
positions in the encoding of the source. For example if the source node
is s = 000110(2) then the destination isd = 011000(2).

3. for transpose trafficsources and destinations are assumed to be located
in a square matrix (as it is the case with the mesh and torus). Each node
communicates to its symmetric over the main diagonal.

4. for tornado traffic , with nodes arranged in a square matrix the destina-
tion d is at a constant distancek =

√
n/2 from the source on both the

horizontal and vertical axes.

The definitions for transpose and tornado traffic types were adapted for 2-
dimensional mesh and torus networks. The 2-d versions of thecommunication
pattern are also used for the ring network.

Permutation tests are more demanding in terms ofcore link usage. The
matrix transpose and bit complement are especially difficult cases for the mesh
network. The tornado traffic was specifically designed to stress the torus and
ring topologies. On the other hand, they use a lower number ofconnections
than our random traffic tests: only one connection per IP. Consequently there
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Experiment 2.12: Quaternary fat tree network (2 levels), permutation traffic,
16 IPs, 16 slots.

is a smaller drop in performance due to link division granularity (Model 3
versus Model 4). The header overhead is also reduced, this isbecause fewer
connections (and as a result fewer communication channels)result in more
slots allocated per communication channel and consecutiveslots form larger
packets with lower relative header overhead (see Chapter 4).

There is a larger difference in performance between the networks and alloca-
tion algorithms supporting multi-path and the ones allowing only single-path
allocation (Model 9h versus Model 10h). Iterative methods (Model 6 versus
Model 4) also display a loss that is more significant than the case of random
traffic.

Although the fat tree network has ideal behavior under Models 1-4 and 6, when
using the contention-free routing the performance degrades more than in the
case of the torus network which provided excellent performance in all models.
In general, the fat tree is considered a better topology, butapparently this is not
so when using the contention-free routing. We attribute this to a mismatch in
slot alignment for paths that traverse a different number oflevels in the fat-tree.
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Experiment 2.13: 16-node Spidergon network, permutation traffic, 16 IPs, 16
slots.
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Experiment 2.14: 16-node ring network, permutation traffic, 16 IPs, 16 slots.
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2.4.4 Permutation traffic in large networks

A set of tests over larger topologies (Experiments 2.15-2.18) shows the scaling
properties of different topologies. The number of slots wasincreased to 32 to
allow finer granularity in sharingcore links. The ring topology did not allow
successful allocation in the majority of cases and was omitted. The UMARS
allocator could not deal with networks of this size.

The worst scaling properties belong to the Spidergon topology. The perfor-
mance of the torus network drops now below that of the fat treewhich remains
at levels similar to the experiments using 16 nodes. Notableobservations are
that the topology itself is the main cause of performance loss for the mesh and
Spidergon (Model 1 versus Model 3), but the other constraints less so. The
iterative allocation method performs much worse than the global optimization
on the torus topology (Model 6 versus Model 3) which is something we did
not find in the other experiments. Finally multi-path routing performs much
better than single-path on the fat tree network (Model 9h versus Model 10h).
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Experiment 2.15: 8x8 mesh network, permutation traffic, 64 IPs, 32 slots.
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Experiment 2.16: 8x8 torus network, permutation traffic, 64IPs, 32 slots.
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Experiment 2.17: Quaternary fat tree (3 levels), permutation traffic, 64 IPs, 32
slots.
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Experiment 2.18: 64-node Spidergon network, permutation traffic, 64 IPs, 32
slots.



64 CHAPTER 2. THEORETICAL BOUNDS ON ALLOCATABLE CAPACITY

2.4.5 Real applications

In the following we present the performance of the proposed network models
under communication patterns extracted from real applications reported in the
literature. The number of TDM slots has been set to 16 for all applications
except [HG11] which used a large number of connections and required a larger
number of slots. In all cases, a mesh network of the appropriate size was
instantiated.

The task graphs for these applications are represented in Figure 2.18. For the
MPEG-2 application [LCOM08], as the bandwidth of each connection was not
specified, we assumed equal bandwidths.
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Experiment 2.19: 4x4 mesh network, MultiMedia System [HM05] traffic, 16
IPs, 16 slots.

Experiment 2.19 presents the performance of the proposed models on the
MultiMedia System described in [HM05] and Experiment 2.20 using the
application in [HG11].

Experiment 2.21 presents the performance of the models for the MPEG-
2 application described in [LCOM08]. For this investigation the necessary
bandwidths were set to a constant value as they were not specified in the
literature and the input and output were modeled as separatenodes.
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Experiment 2.20: 2x4 mesh network, digital TV [HG11] traffic, 8 IPs, 60 slots.

Experiments 2.22 and 2.23 present the performance of the models for the
VOPD and MWD task graphs presented in [VdTJ02].

The applications presented very little problems, even for the simple mesh
topology. The main sources of inefficiency were the discretelink division
(Model 3 versus Model 4) and the header overhead (Model 9 versus Model
9h). We consider that the reason for this is that these applications involved
a small number of IPs with simple communication patterns. Weexpect that
with the emergence of many-core systems applications will exploit parallelism
more than in the past and communication requirements will become more
demanding.
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Experiment 2.21: 3x3 mesh network, MPEG-2 [LCOM08] traffic,9 IPs, 16
slots.
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Experiment 2.22: 4x3 mesh network, VOPD [VdTJ02], 12 IPs, 16slots.
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Figure 2.18: Traffic types reported in the literature: a) multimedia system
[HM05], b) VOPD [VdTJ02], c) MWD [VdTJ02], d) MPEG-2 [LCOM08],
e) digital TV [HG11].
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Experiment 2.23: 4x3 mesh network, MWD [VdTJ02], 12 IPs, 16 slots.
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2.4.6 Performance of different topology sizes under randomtraf-
fic

We return to the random traffic model to perform a study of mapping the same
communication pattern over topologies of different sizes.This time we use
a system with 64 IPs and 100 connections. For the 8x8 mesh topology this
corresponds to one IP for every NI, but for the smaller topologies several IPs
will have to be mapped to the same NI. Thedirect mappingis used. When the
number of NIs is lower than the number of IPs, more IPs are connected to the
same NI by wrapping around the list of NIs. The number of slotswas set to
32.

We also study topologies with up to 4 NIs connected to each router. A larger
number of NIs means thatperipheral linkswill be slower to saturate.

In this graph, instead of normalized performance, we present the frequency of
the network that is needed to support a usecase. The result for each model
and each topology is computed as an average over 20 usecases.To avoid
encumbering the graphic we represent only some of the models. Models 8
and 10h are of particular interest, because Model 8 is supported by the dAElite
network that we will propose in Chapter 6 and Model 10h is supported by the
Æthereal network.

The results are presented in Experiment 2.24.

There are larger performance gaps between the ideal networkand the phys-
ically realizable multi-path enabled network and between the multi-path and
single path when larger topologies or topologies having more NIs per router
are considered. In general, the gain of multi-path is higherwhencore linksare
more congested.

2.4.7 Summary of experiments

Two behaviors are seen in the presented experiments. As a convention we will
call these scenarioslight andheavy load. Whether the load is light or heavy is
dependent on topology and the type of traffic.

• Under light load, topology is not a limiting factor and Model 1 and
Model 3 exhibit the same performance. Underheavy load, not only do
we see a drop in performance between Model 1 and Model 3, but each
of the subsequent models behaves worse than the previous onedoes.
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Experiment 2.24: Network frequency versus topology size for the same use-
cases (random traffic) allocated on all topologies (lower isbetter).

There are topologies that cope well with any kind of traffic, or in other words,
any type of traffic islight load for that topology. As a convention we call these
strong topologies. We call topologies that deal badly with most kinds of traffic
weak topologies. Thering topology is a weak topology, strong topologies are
thefat treeand thetorus, with themeshandspidergonbeing somewhere in the
middle.

• Small networks deal better than larger networks with most types of
traffic when the traffic is scaled proportionally with the size of the
network. When the amount of traffic is fixed a larger network provides
a better solution.

• Bandwidth division granularity produces a sizable overhead, regardless
of whether the load islight or heavy. The difference between Models
3 and 4 reaches 38% in some cases. An exception is the uniform
traffic tests, when channels of equal bandwidth can match precisely the
division granularity.

• Performing the allocation iteratively presents little to no performance
drop underlight load, compared to global optimization. This can be
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seen in the comparison between Models 4 and 6.

• The contention-free link sharing model does not incur a large perfor-
mance penalty compared to a generic link sharing model underlight
load and even underheavy loadthe drop in performance is hardly ever
larger than 10%. This is an important find as the contention-free routing
model is much less expensive to implement.

• In-order delivery restrictions (Model 7 versus Model 9) have hardly any
effect, in some cases the model using in-order delivery evenproduces
improvements due to the additional heuristics employed in that alloca-
tion algorithm.

• The multi-path allocation model provides improvements compared to
the single-path approach, most visibly underheavy traffic.

• The usage of headers produces a large drop in performance under both
light andheavyload, but especially when the number of connections is
high.

The most restrictive model usually performs at between 40% and 60% of
performance of the ideal model. We consider this performance to be quite
good, considering all the restrictions that were introduced from the ideal model
to the physical hardware implementation. Most of the performance loss is not
due to the allocation algorithm.

2.5 Related Work

Ring, spidergon and mesh networks have been evaluated in [BC06] using hot-
spot and random uniform traffic. In [BCG+07] an MPEG-4 task graph is used.
The switching model used by the network was wormhole which isvery popular
among network on chip implementations because of the low cost of buffers,
and the method of evaluation was simulation.

We evaluate or model using analytical methods instead of simulation. The
contention-free switching model has a deterministic behavior which is easily
analyzable.

A circuit-switched interconnect (crossroad interconnection architecture) is
evaluated in [CSC08] using the task graphs for the VOPD and MWD ap-
plications presented in [VdTJ02]. The paper presents topology optimization
techniques.
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A framework for the modeling and simulation of networks on chip is presented
in [CCG+04]. The proposal relies mainly on SystemC simulation.

Mesh, concentrated mesh and hypercube NoCs with 16-nodes are evaluated
in [GMB+08] using RTL equivalent SystemC simulation. The authors use a
manually-created high-contention traffic pattern.

Mesh and point-to-point interconnects are evaluated in [HG11]. Several
interconnect options are discussed, with a focus on scalability. Buffering
requirements are evaluated, the paper presents a comparison of high-level
estimations of the resulting network cost to synthesis results.

Fat tree and irregular (custom generated) topologies are evaluated in [KD10]
using MWD and MPEG 4 task graphs. The study also discusses traffic bursts
and temporal access patterns which are not covered by our study.

A contention-free optical NoC with Spidergon topology is evaluated in
[KH09]. The type of traffic used is random uniform and the evaluation method
is simulation.

Energy and latency driven mapping onto a NoC are evaluated in[KMC+05]
on a collection of mesh, torus and fat tree topologies. The study uses FFT,
Romberg integration and Image processing applications as benchmarks for the
network.

Point-to-Point, NoC and bus interconnects are evaluated in[LCOM08]. The
study presents an analytic performance comparison, validated in FPGA.
MPEG-2 is used as a benchmark.

Mesh, fat tree and reduced unidirectional fat tree topologies are benchmarked
in [LGM+09] using uniform random traffic. The study addresses physical
layout concerns for the fat tree.

An analytical model for the performance of the Spidergon network is provided
in [MSVO07]. The paper presents results for network latencywhen using
uniform random traffic.

In [MPCJ08] the authors show how NoC models can be used in the evaluation
of MPSoC designs. As a proof of concept MJPEG and h264 are demonstrated
in SoCs supported by 2d mesh and torus networks.

A model is introduced in [OMM+08] to evaluate NoC latency. The study
proposes a technique to avoid simulating the movement of thebody of packets,
instead focusing on the movement of the header and trailer flits. The study
uses mesh and torus networks with random uniform, normal andpareto on-off
traffic.
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Mesh, torus, fat tree and octagon wormhole networks are evaluated in
[PGJ+05] using uniform, Poisson and self-similar random traffic.

Lossy on-chip interconnects with mesh, Spidergon and WK-recursive topolo-
gies are studied in [SBE08].

Mesh and BMIN (binary fat tree) networks were evaluated in [TM09] using
simulation and analytic measures. Uniform traffic and localtraffic were used.

Analytical performance models were proposed for the torus network in
[SKFO08b, LO09], for mesh in [SKFO08a] and hypercube in [SKFO05,
PS06].

The relation between mapping and routing is studied in [TOM+11]. While
in our experiments we consider only two mappings, it would beinteresting to
extend this study to include different mapping strategies.

The multicommodity flow formulation is very suitable for routing problems
and has been employed before both in the routing of wires in physical circuits
[CILC96] and in network routing [TDB03].

Multicommodity flow is specifically applied to circuit-switching networks in
[LR95].

The benefits of allowing non-minimal routing for load balancing are presented
in [MKY +05].

We believe that in this chapter we offer a thorough investigation of a wide
range of network models against several variables: topology, network size and
traffic type.

2.6 Conclusions and Future Work

In this chapter we have proposed and evaluated several network models. These
models allow us to determine the performance implications of various design
choices, for example topology, routing and switching mechanism. The perfor-
mance analysis in this chapter leads to some interesting conclusions which are
useful in the context of NoC design.

We illustrate the performance difference between network models in Figure
2.19. The numbers here are based on an average over Experiments 2.1-2.23.
The individual data points in each experiments were first averaged individually
and each experiment contributed with equal weight in the final average.

One of the first conclusions is that topology in general is nota significant



74 CHAPTER 2. THEORETICAL BOUNDS ON ALLOCATABLE CAPACITY

Figure 2.19: Model performance summary.

limiting factor. This means that very simple topologies like the mesh and
torus are a good choice, especially as they map very well to the physical
chip floorplan. The performance drop of 8% is in large part dueto the low
performance of the ring and spidergon topologies which contributed negatively
to the average (without these experiments, the average is 2%).

Some performance loss is attributed to fixing the allocationgranularity to a
discrete value. This is a limitation of many network implementations and
link sharing schemes, but most notably SDM, TDM, FDM and frame-based
arbiters. Under some circumstances it can be a limitation for rate-based
arbiters (depending on how the rate is expressed) which means this overhead
applies to a large class of networks.

Another important finding is that allocating connections one by one does not
generally incur a large performance loss. This is importantbecause it allows us
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to use computationally less expensive allocation algorithms. Such algorithms
will be presented in the next chapter.

Finally, one of our goals was to determine if the contention-free routing model
proposed by Æthereal incurs or not a large overhead (the Æthereal network
supports models 10h and 12h from our evaluation and guarantees achieving
the performance indicated by these models). We found the performance loss
to be modest when considering the hardware cost advantage (afactor of 10-20
times is claimed in [GH10]) of contention-free routing. Note that of the 43%
drop in performance, roughly 15% are due to header overhead and 18% due to
bandwidth division granularity. Other network implementations are likely to
suffer from these overheads as well.

In Chapter 6 we propose a network implementation called dAElite that sup-
ports a broader range of models (Models 8-12, which are all the models based
on in-order-delivery contention-free routing). It also does not suffer from
header overhead, thus losing on average less than 26% from the ideal NoC
performance. Our proposal is also cheaper to implement thanÆthereal.

Regarding future research, we already envision extensionsto the range of
network models. It would be interesting to see for example what is the effect of
restrictions like single-path routing or even X-Y routing on the more general
models, e.g. Model 3. It would also be interesting to comparethe actual
performance of classic store-and-forward, virtual-cut-through or wormhole
networks to the performance bounds provided by our current models. Finally,
the models presented here should be put to use in tools or toolflows for the
automated design of networks on chip.





Chapter 3

Single and multi-path allocation
algorithms

I
n this chapter, we describe in detail the path-finding algorithms used in the
experiments in Chapter 2 for Models 6-12. We also present slot-allocation
algorithms that ensure in-order delivery in Models 8-9.

The problem of finding a path and slot allocation for a set of connections is
similar to the problem of routing physical wires in integrated circuits. Com-
pared to the wire routing problem, the number of connectionsour algorithm
has to handle is several orders of magnitude lower, in the range of hundreds,
but the problem formulation itself is more complex because connections do
not have equal bandwidth requirements and this is reflected in the amount of
resources that are allocated to each connection.

All the path-finding algorithms here are used in conjunctionwith the iterative
method presented in Section 2.3. Instead of looking for a globally optimal
solution (by global we mean a solution that optimizes all communication
channel allocations simultaneously), channels are allocated one by one, earlier
allocations blocking resources to the detriment of later allocations. This is
similar to how physical wire routing tools operate, as well as the previous
Æthereal tools [HGR07].

The algorithms can be split in two categories: algorithms that use slot masks
and algorithms that use graph-splitting. In addition, we present the generic
flow algorithm used in Model 6, which only produces path allocation and
does not produce a slot allocation. This algorithm forms a base for the more
complex algorithm that do perform slot allocation.

Algorithms based on the slot mask approach use a representation of the

77
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network topology as a directed graph, each node representing onerouter or
onenetwork interfaceand each directed edge representing oneunidirectional
network link. Each directed edge has an associated table indicating which slots
are available on the link it represents (Figure 3.1).

Figure 3.1: One-to-one graph representation of the networktopology with slot
masks attached to edges. Grayed slots are occupied.

The graph splitting algorithms use a different representation of the network
topology. Each network node, i.e.network interfaceor router, is represented
by s nodes in the graph, wheres is the number of time slots (each network
node is thus “split” intos different graph nodes). Each graph node represents
the ability to reach its corresponding network node during acertain time slot
(Figure 3.2). Each unidirectional network link is also represented bys directed
graph edges. Each graph edge represents one slot on one network link.

Figure 3.2: Network topology represented through a graph with split nodes.

Graph edges are connected to graph nodes in such a way as to represent the
link traversal delay. NodeA0 is connected toB1 andAn−1 back again toB0
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due to wrap-around at the end of the slot table. Note that on the reverse link
B0 is connected toA1 andBn−1 to A0 so the new graph is directed and the
links do not form pairs between the same graph nodes.

The structure of the remainder of this chapter is presented in Figure 3.3.

Figure 3.3: Algorithms discussed in Chapter 3 and the modelsthey correspond
to.

The allocation methods for the Models 1-5 were already discussed in Chapter
2. Because they are based on Linear Programming, they consist of simply
applying an off-the-shelf LP optimization tool to the formal problem definition.
In Section 3.1 we provide a description of the single-path exhaustive search
algorithm which is the simplest and at the same time the one closest to the
algorithm used by state-of-the-art allocator (UMARS) [HGR07]. The generic
flow algorithm, used to perform allocation in Model 6 is presented in Section
3.2. The adaptation of the flow algorithm to include time slots is presented
in Section 3.3. The optimal algorithm to select paths which result in in-order
delivery is presented in Section 3.4. A method for iteratively computing multi-
path allocations is presented in Section 3.5. Related worksare presented in
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Section 3.6. Section 3.7 presents our conclusions.

3.1 Exhaustive search Single Path

Path finding under the contention-free routing model is complicated by the fact
that it needs to take into account not only the bandwidth available on each link
but also the slot alignment. Consider the example in Figure 3.4.

Figure 3.4: Example graph for the path finding problem, used slots are grayed
out.

Assume that we want to find a path from A to E offering the bandwidth
equivalent of 2 TDM slots. There are two possible routes: A-B-C-E and A-B-
D-E. At first look, the A-B-C-E appears to be a better option because the links
BC and DE have a lower slot occupation ratio. If we look at the slot alignment
though, we observe this is not the case since link BC blocks one of the only
two available follow-up slots after the traversal of link AB, and as a result the
route A-B-C-E does not meet the minimum bandwidth requirement. The A-
B-D-E route on the other hand does provide the needed bandwidth because,
when the delay of one slot per hop is considered, the two available slots on the
each of the links AB, BD, DE align perfectly.

Simple path finding algorithms like Dijkstra’s algorithm [Dij59] operate by
successively building partial solutions starting from nodes neighboring the
initial node and working their way to more distant nodes. They use the
computed path to the near nodes to find the path to more distantnodes. When
multiple paths may be used to reach a certain network node, classical path-
finding algorithms store only one path leading to that node, the one having
minimum cost. Based on this one stored path the algorithms try to reach nodes
which are further away. As it can be observed in Figure 3.5 this approach does
not work when slot alignment needs to be taken into account.

Assume again a path needs to be found between node A and node E with a
bandwidth corresponding to 2 TDM slots. The first portion of the path, from
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Figure 3.5: Classic path finding algorithms fail to find a solution.

node A to node B can be traversed in two ways: using the direct link A-B
or through the longer route A-F-B. Each of these paths allowsa different slot
alignment. A classic path finding algorithm will prefer of course the shorter
path and will not concern itself with the alternatives. But apath starting with
slots 1-2 on link A-B does not allow any follow-up alternatives, either through
B-C-E or B-D-E. The path A-F-B-D-E however provides a correct solution.

The fault of the algorithm consists in the fact that when nodeB is reached it
is impossible to tell which way of getting there is better, asthis depends on
the slot alignment on future links (i.e. links that were not explored yet). The
way to work around this problem is to store all possible pathsto intermediate
nodes.

The Æthereal tools employ a branch-and-bound solution [HGR07], choosing
to construct and store all intermediate paths in the order oflength, starting from
the source node. The problem with this approach is that the number of paths
explodes exponentially with the path length and memory is needed to store all
paths (Figure 3.6). The problem is to some extent avoided by eliminating early
the paths that do not provide sufficient bandwidth.

Figure 3.6: The number of possible paths grows exponentially with length.
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3.1.1 Proposed exhaustive path search

We propose instead an exhaustive search based on the backtracking method
that while still having exponential running time requires an amount of memory
which only grows linearly with the number of nodes and links.

Our solution has two steps: a fast, breadth-first search to determine the distance
from all nodes to destination, and then the actual exhaustive search.

The breadth-first search is a particular case of the Dijkstraalgorithm where
all links have equal cost. The search starts at the destination node because this
provides estimate of the distance from each of the other nodes to the destination
node. The estimate is optimistic because it takes into account only available
bandwidth on each link and not the slot alignment.

This step allows us to quickly determine during the exhaustive search which
edges are leading towards the destination and which are not.It also provides a
bound on the distance from source to destination.

The algorithm, which is straightforward, is described in Algorithm 3.1.1. All
distances, stored in the vectordist, are expressed in terms of the number of
hops to destination.

We will use the following notation:

• V the set of network nodes

• E the set of network links (graph edges)e = (u, v), u, v ∈ V

• S the set of slotss1, s2...sn

• Su,v the set of available slots on link(u, v) ∈ E

The exhaustive search of a single path is performed by a recursive algorithm
which constructs one-by-one all possible paths leading to the destination. In
order to explore first shorter paths, the algorithm limits the detour, i.e., the
difference between the length of the path and the minimum length produced
by the breadth-first search. The detour is computed during the search by
adding the level (the number of edges already part of the current path) to the
known (bound on) distance to destination and comparing it tomaxLengththe
sum of the minimum distance and the alloweddetour. The value ofdetour
is varied between 0 and 16. It is prohibitive to increase thisvalue even
further because the number of generated paths increases exponentially with
their allowed length.
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Algorithm 3.1.1: Breadth-first search
input : V,E, Sq,w according to the previously defined notation

Destination∈ V the destination node
bwr required bandwidth

output: dist[..] a list of distances from each node toDestination

// Q IS A QUEUE

enqueueDestinationon Q;
visited[V ]← false;
visited[Destination]← true;
dist[V ]←∞;
dist[Destination]← 0;
while Q 6= ∅ do

q ← headOf(Q);
dequeueq from Q;
for w ∈ V with (w, q) ∈ E do

if bandwidth(Sw,q) < bwr ∧ ¬visited[w] then
visited[w]← true;
dist[w]← dist[q] + 1;
enqueuew on Q;

end
end

end

We provide a formal description of the recursive algorithm in Algorithm 3.1.2.
The rotate function shifts the contents of a slot table by one position so as to
take into account the delay of one slot per link.

For explaining the functioning of the algorithm, consider the following ex-
ample illustrated in Figure 3.7. The network illustrated here has a mesh
topology with a size of 4x4. Several communication channelshave already
been allocated and therefore some of the slots are already used. For clarity we
only represent the slot tables of interest.

Consider the problem of finding a path from the local NI of Router 20 to
the local NI of Router 03. Furthermore consider that links R01-R02 and
R21-R22 are already loaded to the extent that the bandwidth of the current
communication channel cannot be satisfied regardless of theslot alignment.
This fact will be taken into account by the breadth-first search and will result in
assigning a larger distance value to Router R01 for example.The distances to
the destination NI, found by the breadth-first search are shown on the bottom-
left side of each router in Figure 3.7.
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Figure 3.7: Search example.
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Algorithm 3.1.2: Recursive backtracking exhaustive search
input : V,E, Sq,w according to the previously defined notation

Destination,Source∈ V the source and destination nodes
dist[..] a list of distances from each node toDestination
bwr required bandwidth
maxLengththe maximum length of a path to destination

output: A pathP = (p1, p2...pn) with n ≤ maxLength, pi ∈ E which satisfies the
and a set of slotsSpath which meet the bandwidth requirements and do not
conflict with any of the reserved slots on the pathP (when properly rotated to
take into account the propagation delays).

used[E]← false;
recursive(Source, S, 0, ∅);
function recursive(node, crtS, level, path) begin

if node= Destinationthen
// SOLUTION FOUND, UPDATE IF CURRENT SOLUTION

// IS BETTER THAN THE ONE STORED

P ← path;
Spath← crtS;
return true;

end
found← false;

1 for w ∈ V with (node, w) ∈ E do
nxtS← rotate(crtS) ∩ S(node),w;

2 if bandwidth(nxtS) < bwr then
// WE MEASURE THE BANDWIDTH OFnxtS WHICH ALREADY

// TAKES INTO ACCOUNT SLOT ALIGNMENT

continue;
end

3 if level+ dist[w] + 1 > maxLengththen
// WE LIMIT THE DETOUR

continue;
end

4 if used[(node, w)] then
// WE DO NOT ALLOW REVISITING EDGES

continue;
end
used[(node, w)]← true;
found← found∨ recursive(w, nxtS, level+ 1, append(path, (node, w)));
used[(node, w)]← false;

end
return found;

end
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The backtracking search starts at the source NI with amaxLengthlimit of
7, corresponding to 0detour. We represent values at the top of the stack
corresponding tonode, crtS(slots), level,dist[node] in Figure 3.8. The behavior
is similar to that of a depth-first search, except nodes are revisited for each
possible path.

Figure 3.8: Sequence of values found at the top of the stack during algorithm
execution.

The search follows the links that lead to nodes with a lower distance to the
destination, i.e.,dist[node] value. If the initial search withmaxLength=
dist[Source] does not produce results, the search will be repeated using an
increased value ofmaxLengthwhich will allow visiting nodes with higher
dist[..] values.

During the search thecrtSvariable stores the list of slots available (with proper
alignment) on all links from the source to the current node. The set of slots
available at the next node to be visitednxtS is built equal to the intersection
of thecrtSset, rotated by one position as to take into account the delayof one
slot for the next hop, with the set of slots available on the link that is being
traversed.

It can happen that the new slot setnxtSdoes not meet the necessary bandwidth
requirement (for example the 7th row in Figure 3.8 the delivered bandwidth is
0 as no slots are available). In the given example, when the recursive function
is called withnode=R13, the R13-R03 link is discarded by theif instruction
in line 2, while the other links leaving from R13 will be discarded by theif
instruction in line 3 because they lead to more distant nodes.

This causes thefor statement in line 1 to finish without a recursive call and thus
the algorithm will return (or backtrack) to the previous level in the program



3.1. EXHAUSTIVE SEARCH SINGLE PATH 87

stack where thefor loop continues iterating through the neighbors of R12.

In our example the next link from R12 already leads to a solution, but the
algorithm does not stop when the first solution is found and instead looks for
other paths that may have better header overhead. As the setcrtSmay contain
more slots than there are actually needed, when the destination is reached
another algorithm is used to select the slots which are to be allocated to the
given channel. The algorithms used for this purpose are presented in Chapter
4.

The search is abandoned if107 paths have been analyzed for a single channel
allocation without finding a solution. This is however a veryrare occurrence in
our experiments (occurred twice in a set of tens of thousandsof experiments).

When the length of the allowed path is above the minimal value, it is possible
for the path finding algorithm to return to a previously visited node. For
example, in Figure 3.7 ifmaxLengthis set to 9 instead of 7, when reaching
node R13 it would be allowed to select node R12 as follow-up. This may be
supported by the hardware, in fact both Æthereal and the dAElite network we
propose in Chapter 6 support this feature. It should howevernot be allowed
to reuse the R12-R13 once Router R12 is reached for a second time. This is
not a hardware limitation but a limitation of the path-finding algorithm which
cannot take into account the fact that slots on link R12-R13 may need to be
used twice. To avoid this situation we have introduced a third check in line 4.
The arrayused[] keeps track of which links are part of the current solution (the
links which are found on the stack).

The algorithm is flexible and supports further adaptations,for example if
desired we could deny returning to an already visited node like in the previous
example, we could deny turns or introduce additional cost functions or path
selection criteria.

The algorithm has a time complexity which is exponential in the distance
between source and destination. The exact function dependson the arity of
the network routers. For a mesh network, consideringl being the distance
between nodes andd thedetoura rough estimate of the complexity would be
O(2l+d

(l+d−1
⌊d/2⌋

)

). This can be interpreted as: misroutes can take place in any

of the l + d steps except for the last, hence the factor
(l+d−1
⌊d/2⌋

)

and at each
hop, once we decided whether it is going to be a misroute or not, we have on
average 2 choices.
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3.2 Bandwidth allocation using Network Flow

The concept of flow is used to model the movement of goods through a
transportation network. It can be intuitively visualized like the flow of water
through series of pipes joined at nodes, or electricity through an electrical
distribution network. Pipes or electrical wires have a certain capacity which
can be seen for example as the physical diameter or section ofthe pipe or the
maximum electrical current a wire supports without overheating. The same
model applies well to communication networks as we will present shortly.

The network is modeled as a directed graphG = (V,E) whereV is the
set of vertices andE the set of links and graph-based algorithms exist that
can provide an answer to whether it is possible to move a certain quantity
of “goods” between given points in the network or optimize the cost of such
movement from the point of view of distance traveled.

Each edge in the graphe ∈ E has a given capacity which we callce. The actual
amount of goods transported through that edge we callfe andfe ≤ ce, ∀e ∈
E. Goods are moved from aSourceto aDestinationnode in the graph and are
not lost along the way, therefore a conservation law must apply:

(i,q)∈E
∑

i

f(i,q) =

(q,j)∈E
∑

j

f(q,j), ∀q ∈ E \ {Source,Destination}

Figure 3.9: Example flow.

The flow algorithm however does not impose restrictions on how the move-
ment of goods is distributed among the available graph edges(Figure 3.9), it
may split and then recombine in arbitrary manner at intermediate nodes.

Flow networks are thus suitable for modeling network communication as long
as routing over multiple paths is allowed. Graph nodes in this case would
represent routers, edges network links, the goods may represent data and the
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edge capacity the link bandwidth. The result of the flow algorithm will be the
path or paths that data needs to be routed over in order to reach the destination.

The allocation is performed on a channel-by-channel basis,thus the iterative
methods presented in Chapter 2. The initial capacities are equal to the link
capacity, but as connections are allocated, their flow values fe are subtracted
from the capacities available to the following connectionsce.

The allocation of one connection starts with an “empty” flow,fe = 0, ∀e ∈
E (Figure 3.10a). Remember that the previously allocated connections are
already taken into account in the modifiedc values. The flow algorithm that
we used is based on finding so called “augmenting paths” (Figure 3.10b), paths
between source and destination whose links are not yet saturatedfe < ce.

Figure 3.10: Computing flow using augmenting paths.

Because we wish to minimize the cost of communication (in terms of path
length) we make use of a minimal-cost path-finding algorithmto find the
augmenting paths. This approach guarantees that the overall cost of the flow
(
∑

e∈E fe ∗ edgeCost[e]) is also minimal [EK72]. Although it would be
possible to assign different costs to edges in our implementation we assume
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all edges have a cost equal to 1.

One advantage of the flow algorithm compared to simply applying a path-
finding algorithm several times is that it is able to displacea previous unfavor-
able allocation to increase the flow, as shown in Figure 3.10c. In this example
the first allocation (Figure 3.10b) blocked all direct ways of reaching F from A.
The augmenting path finding algorithm is allowed to traversean already used
link (the C-D link) in the reverse direction, pushing back the flow on that link.

This operation introduces an additional complication as the cost of removing
an unit of flow is negative and the path finding algorithm has tobe able to
cope with negative edge costs. We use an optimization by Edmonds and Karp
[EK72] which avoids the problem of negative edges without modifying the
functionality of the algorithm. This optimization consists of modifying the
way the distance to a node is calculated by the path finding algorithm.

A formal description of the algorithm is given in Algorithms3.2.1 and 3.2.2.
Using the approach of Edmonds and Karp, the distance from thesource node
to any other node is split in two components: aknown distance and an
incrementaldistance. Theknowndistance is stored in the (theek[V ] array)
and is known because it was determined in a previous execution of the path-
finding algorithm. Theincrementaldistance is the increase in the distance to
one node from one execution of the path-finding algorithm to another due to
the fact that some of the network resources have already beenutilized.

The path-finding algorithm only computes theincrementaldistance which is
accumulated into theek[V ] array after each augmenting path is found. The
known component of the distance is subtracted from the edge cost that is
visible to the path-finding algorithm. Figure 3.11 presentsthe contents of the
ek[V ] array after the first allocation in the previous example (Figure 3.10). The
path-finding algorithm determines the incremental cost of an edge according
to Equation 3.1.

iCostsrc,dest =

{

ek[src]− ek[dest] + 1 for forward edges

ek[dest]− ek[src]− 1 for push-backedges
(3.1)

From the point of view of the path-finding algorithm, the incremental cost (the
only cost seen by the algorithm) offorward edges A-B, B-D, C-E, E-F is 0,
and so is the cost ofpushing backflow through edge C-D. The incremental
cost of reaching the destination is also 0, which means that the actual cost of
the new path found will be the same as that of the previous path.
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Algorithm 3.2.1: Flow algorithm
input : V,E, c[E] according to the defined notation

Destination, Source∈ V the source and destination nodes
bwr required flow (bandwidth)

output: f [E] capacity used on each edge
ek[V ]← 0;
f [E]← 0;
while bwr > 0 do

dist[V ]←∞;
maxf[V ]← 0;
dist[Source]← 0;
Q← {Source};
⊲ find augmenting path (Algorithm 3.2.2);

if maxf[Destination] = 0 then
fail ;

end
j ← Destination;
fincrement← min(maxf[Destination], bwr);
while j 6= Sourcedo

if pushback[j] then
f [(j, predecessor[j])]← f [(j, predecessor[j])]− fincrement;

else
f [(predecessor[j], j)]← f [(predecessor[j], j)] + fincrement;

end
j ← predecessor[j];

end
for j ∈ E do

ek[j]← ek[j] + cost[j];
end
bwr ← bwr − fincrement;

end
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Algorithm 3.2.2: Flow algorithm - Main loop of augmenting path find
input : all variables of Algorithm 3.2.1
output: updatescost[..],maxf[..], predecessor[..], pushback[..]
while Q 6= ∅ do

q ← argminq∈Qdist[q];
Q← Q \ {q};
for j ∈ V with (q, j) ∈ E do

cap← min(maxf[q], c[(q, j)]− f [(q, j)]);
if cap= 0 ∨ dist[j] ≤ dist[q] then

continue;
end
dd← dist[q] + 1− ek[j] + ek[q];
if dd> dist[j] then

continue;
end
dist[j]← dd;
maxf[j]← cap;
predecessor[j]← q;
pushback[j]← false;
Q← Q ∪ {j};

end
for j ∈ V with (j, q) ∈ E do

cap← min(maxf[q], f [(j, q)]);
if cap= 0 ∨ dist[j] ≤ dist[q] then

continue;
end
dd← dist[q]− 1− ek[j] + ek[q];
if dd> dist[j] then

continue;
end
dist[j]← dd;
maxf[j]← cap;
predecessor[j]← q;
pushback[j]← true;
Q← Q ∪ {j};

end
end
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Figure 3.11:ek[V ] costs associated to the nodes of the graph.

After a path if found by the path-finding algorithm, for example path A-B-D-
C-E-F, the flow value is increased on theforward edges and decreased by the
same amount on thepush-backedges. This amount is limited by the leftover
capacity of anyforwardedge along the way or the existing flow in apush-back
edge.

When both the capacities and the requirements are integer values it follows
that the result of the flow algorithm only uses integer values, thus unlike the LP
formulation presented in the Chapter 2 can efficiently solveinteger problems.
The algorithm has polynomial running time [EK72]. Because edges have unit
cost, an augmenting path can be computed with time complexity O(|E|). The
maximum number of augmenting paths is bound byO(|E| · |V |) [CSRL01],
but in practice, in our problem it may be bound by the granularity of network
link division. The maximum number of augmenting paths is thuss, the number
of TDM slots or SDM lanes, and the complexity of the algorithmisO(|E| · s).

3.3 Flow algorithm for the contention-free slot model

The flow algorithm can be applied to a graph in which each node represents a
network router and each graph edge a network link, but it can also be applied
to the “split” graph introduced in Chapter 2. In the former case, it will produce
a routing function (a way of distributing connections’ loadon the physical
links) suitable for Model 6 of Chapter 2. In the second case itproduces an
contention-free slot allocation with proper alignment foreach communication
channel.

The produced solution nevertheless has some disadvantages. The flow algo-
rithm does not take into account how many different physicalpaths are used to
allocate the communication channel. We mitigate the effects of this problem
by the introduction of one heuristic: for each augmenting path found by the
flow algorithm, we attempt to allocate more slots, preferably consecutive to the
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one just allocated, on the same physical path. This is also expected to reduce
the header overhead, because consecutive slots over the same path may skip
the routing header. While this heuristic may reduce the number of different
paths generated for one communication channel by the flow algorithm it does
not completely eliminate the problem. The result of the flow may be using
multiple paths. The dAElite network that we present in Chapter 6, supports
multi-path routing.

We can further reduce the total number of paths used for routing by falling
back to the single-path allocation algorithm if the multi-path solution does not
have an advantage in terms of either path length or number of utilized slots.
Models 8 and 9 in Chapter 2 fall back to the single-path solution, while Model
7 uses a pure-flow approach.

Routing over multiple paths may result in another unwanted effect, namely
out-of-order delivery. Out-of-order delivery can arise when some packets take
longer paths than others (Figure 3.12a). Solutions to this problem consist of
the reordering of packets at some point of convergence within the network or at
destination. This approach however can result in reassembly deadlock [MS80]
(Figure 3.12b) or in the case of reordering at the point of convergence may
introduce circular dependencies also causing deadlock (Figure 3.12c).

Figure 3.12: Different delays causing out-of-order delivery (a) and deadlock
situations (b, c).

Using the contention-free routing model it is possible to perform multi-path
routing while completely avoiding out-of-order delivery and without the threat
of deadlock. The network traversal time is proportional to the number of hops
on the path taken by packets and is not influenced by other factors. This allows
us to determine at design time for a given set of paths and their starting slots
whether they arrive in order or not. A verification step is performed in-between
calls to the augmenting path finding function and paths that would produce out-
of-order deliveries are discarded from the solution. Theirreservation is still
maintained so that the flow algorithm does not attempt to allocate the same
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paths again. Although this is suboptimal it is necessary.

The flow algorithm applied to the split graph has a complexityof O(|E||S|2)
whereE is the set of edges of the original (non-split) graph andS the set of
slots. A single search for an augmenting path is performed with complexity
O(|E||S|) because each edge has been split into|S| slots, and at most|S|
searches are performed because each path will use one slot onthe (non-split)
link from the source node and that link only has|S| slots.

The algorithm selecting the paths that should be discarded is presented in the
following section. The algorithm is optimal in that it minimizes the bandwidth
of the discarded paths (and thus it maximizes the combined bandwidth of the
remaining paths).

3.4 Path selection for in-order delivery

When a conflict exists between paths generated by the flow algorithm in the
sense that they would produce out-of-order arrivals, we choose to discard as
many of the paths as necessary, until the remaining ones produce only in-order
deliveries. We use a deterministic algorithm based on dynamic programming
to select which paths need to be discarded.

The problem can be formulated as a Monotonic Subsequence Problem
[Sch61], for which optimal solutions exist with polynomialtime complexity.
The paths are ordered by slot departure time and the solutionmust comprise a
subsequence with only increasing arrival times.

Further complications arise from particularities of our problem. Because
consecutive slots have a different payload efficiency (consecutive slots do
not need to repeat the packet header), the items in the sequence need to be
weighted, and, the algorithm needs to take into account the wrap-around that
occurs at the end of the slot table.

The associated weight for each path does not introduce significant changes to
the algorithm, but in order to cope with the wrap-around, thealgorithm will
have to be applied repeatedly in a window which slides over the list of paths.
A similar problem taking into account wrap-around problem is described in
[AAN +07].

A formal description of the algorithm is given in Algorithm 3.4.1. The algo-
rithm is optimal in the sense that it provides the highest possible bandwidth for
the given set of paths.
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Algorithm 3.4.1: In-order path selection
input : set of paths with given departure time slot, count of allocated slots and length
output: reduced set of paths with in-order delivery

s← number of time slots;
Duplicate pathsp1...pn aspn+1...p2n with delays;
solution← ∅;
for ∀i ∈ {1, 2, ...n} do

consider setQ={pi...pi+n−1};
Q← Q \ {pj ∈ Q |pj arrives later thanpi+n−1};
Q is the working window;
initialize t1...t2n, t∅ = 0;
for all flowspj ∈ Q do

best← ∅;
for all flowspq ∈ Q, q < j do

if pq arrives beforepj andtq > tbest then
best← i;
predecessorj ← q;

end
end
tj ← tbest+ bandwidth ofpj ;
if tj is best solution so farthen

solution←solution reconstructed by following the chain of
predecessors ofj;

end
end

end

The complexity of the path selection algorithm isO(n3) wheren is the number
of paths to the destination and is given by the three nested loops in the
algorithm. In practice the value ofn is very smalln < |S| and this algorithm
does not contribute significantly to the running time of the allocation.

3.4.1 Proof of optimality for in-order path selection

In the following, by path we will refer to a path from source todestination and
an associated set of contiguous available slots on that path.

Let A be the set of all pathsA = {pi|pi is a path}. In the following we will
assume thatA has at least one element.

Let us assume, without any loss of generality, that within a frame of the size



3.4. PATH SELECTION FOR IN-ORDER DELIVERY 97

of the slot tablem, pi departs no later thanpi+1,∀i ∈ {1, 2..n − 1}. We say
without loss of generality because the indicesi of pi can be chosen in such a
way that the departure times of pathsp1...pn are chronologically ordered. Let
bi > 0 be the bandwidth delivered by pathpi andri the arrival time of pathpi
when considering a particular slot table revolution starting atp1 (Figure 3.13).
The bandwidth takes into account the header overhead.

Figure 3.13: Slot table wrap-around.

Definition 1. A solution to the problem is a non-empty setX ⊆ A which
ensures in-order delivery.

We formalize the requirement for in-order delivery as:

∀pi, pj ∈ X with i < j → ri < rj, rj < ri + s

wheres is the duration of one slot table revolution. Note that all sets containing
a single path, that is, all sets of the formX = {pq} are solutions because
a single path cannot produce out-of-order deliveries. Using the previous
formalization we observe that the implication is always true since there is no
i < j among the valid indices.

Let ξX be the set of all solutions.

Let us denoteB(X) =

pi∈X
∑

∀i∈{1..n}

bi

Definition 2. We call an optimal solutionA ∈ ξX , a solution that maximizes
B(A)

B(A) = max
X∈ξX

B(X)

Let ξA be the set of all optimal solutions.

LetXi ∈ ξX be a solution with the property thatpi ∈ Xi, let ξXi
be the set of

all solutions containingpi, andAi an optimum over the setξXi
.
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Lemma 1.
B(A) = max

i∈{1..n}
B(Ai)

Proof. We use the following property of the maximum:

max
x∈A∪B

f(x) = max(max
x∈A

f(x),max
y∈B

f(y))

We show thatξX =
⋃

i∈{1..n}

ξXi
. ObviouslyξXi

⊆ ξX ,∀i sinceξX is the set

of all solutions, and also
⋃

i∈{1..n}

ξXi
⊆ ξX . For the reverse implication, if

X ∈ ξX , according to Definition 1, there is at least one elementpj ∈ X, but
thenX ∈ ξXj

becauseξXj
is the set of all solutions that containpj.

This implies that by finding the maximum in each setξXi
and selecting the

highest value found, we obtain the global maximum. It also implies that the
element inξXi

for which this maximum is achieved is a global optimum.

Explanation: In algorithm 3.4.1, the outer loop iterates over the local optima
Ai.

We show how the optimum can be found over the setξX1. The solution can
be easily generalized since the table of slots is periodic and a period with the
length of one slot table revolution can be chosen so that it starts with a slot
associated with any of the pathspj.

Explanation: In the implementation of the algorithm, this is achieved by
duplicating the list of paths with the proper increment in arrival time and
selectingn paths starting at positioni. As an optimization, paths that are
already known to conflict with pathpi in terms of order of arrival are already
discarded at this point.

LetQ1,j be a subsets ofA so thatQ1,j = {pi ∈ A | 1 ≤ i ≤ j}.
LetX1,j with j ∈ {1..n} be a solution with the property thatX1,j ⊆ Q1,j and
p1 ∈ X1,j andpj ∈ X1,j . Let ξX1,j be the set of all such solutions.

Note that anX1,j does not necessarily always exist, asp1 andpj may produce
out-of-order deliveries thusξX1,j may be the empty set, but a solution exists at
least forj = 1 which isX1,1 = {p1}.
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We defineA1,j as an optimal solution within the subsetξX1,j , thus

B(A1,j) = max
Y ∈ξX1,j

B(Y )

SinceξX1,1 has only one element, which is{p1},A1,1 = {p1}.

Lemma 2. For anyk > 1, if A1,k exists, we can computeA1,k = A1,j ∪ {pk}
by selectingj < k which maximizesBA1,j with the restriction thatpj andpk
produce in-order delivery.

Proof. We first prove that the in-order delivery condition forpj and pk is
sufficient to ensure in-order delivery for the entire setA1,k. If A1,j is a
solution, rj > ri, ∀i < j ⇒ rk > rj > ri,∀i with the property
that pi ∈ A1,j. Since we are only interested in the case whereA1,k exists,
rk < r1+ s, butr1 < ri, ∀i with the property thatpi ∈ A1,j ⇒ rk < ri+ s,
for the same values ofi, which is the second property required by definition 1.

We prove by mathematical induction that this method of constructing A1,k

ensures the optimality criterion.A1,1 = {p1} is obviously optimal, since
when a single path is available no more bandwidth can be delivered than that
provided by the path itself.

We prove the induction step by contradiction. AssumeA1,1..A1,k−1 are
optimal sub-problem solutions as earlier described. IfA1,k were not an optimal
solution, there existsA′

1,k so thatB(A′
1,k) > B(A1,k).

A′
1,k contains at least one elementpj wherej < k. Let pj be the element with

the highest indexj < k. LetA′
1,j = A′

1,k \ {pk}. A′
1,j is a set containing only

elements fromQ1,j and provides in-order delivery because its supersetA1,k

provides in-order delivery.

{pj , pk} provides in-order delivery for the same reason, which implies that
A1,j ∪ {pk} respects the requirements for in-order delivery. It follows that
A1,k is at least as good a solution asA1,j ∪ {pk} and as a resultB(A1,k) ≥
B(A1,j) + bk , but B(A′

1,k) > B(A1,k) ⇒ B(A′
1,j) + bk > B(A1,k) ≥

B(A1,k) + bk ⇒ B(A′
1,j) > B(A1,j) which is impossible, becauseA1,j

was already assumed to be an optimal solution to theξX1,j subproblem (from
a previous induction step, asj < k).

Lemma 3.
B(A1) = max

i∈{1..n}
(B(A1,i))
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Proof. We again use the property that: max
x∈A∪B

f(x) =

max(max
x∈A

f(x),max
y∈B

f(y)). We show thatξX1 =
⋃

i=1..n

ξX1,i . It is first

of all obvious thatξX1,i ⊆ ξX1 as any element ofξX1,i is a solution and

it containsp1, therefore
⋃

i=1..n

ξX1,i ⊆ ξX1. For the proving the reverse

implication ξX1 ⊆
⋃

i=1..n

ξX1,i , consider an elementX1 ∈ ξX1. Sincen is a

finite value, we can findj <= n so thatj is the highest index of an element
pj ∈ X1, that is∄k > j, pk ∈ X1. It results thatX1 ⊆ Q1,j, but at the same
time we also know thatp1 ∈ X1, pj ∈ X1 andX1 is a solution, therefore
X1 ∈ ξX1,j .

This implies that by finding the maximum in each setξX1,j and selecting the
highest value found, we obtain the maximum overξX1 . It also implies that the
element inξX1,j for which this maximum is achieved is optimum overξX1 ,
which based on Lemma 1 also a global optimum.

3.5 Iterative maximum-bandwidth-search multi-path

As mentioned in Section 3.3 the flow algorithm may generate solutions with
a less than optimal header overhead. In addition some of the paths may need
to be discarded due to out-of-order deliveries. On the otherhand the single-
path approach is more restrictive in terms of routing and maynot always
find a solution, but it does optimize slot arrangement for maximum useful
throughput.

We study another method of computing multi-path allocations based on the
single path algorithm. This method is used in Model 8 in addition to the
other methods presented in this chapter. Compared to the flowapproach, the
advantage is that this method makes use of the header overhead optimization
and the number of different paths can be limited to a given value. The
disadvantage is that unlike the flow algorithm it cannot displace unfavorable
paths once they are allocated.

A formal description of the algorithm is given in Algorithm 3.5.1. Theallocate
function implements the functionality of Algorithm 3.1.2 with the difference
that crtS is initialized toS \ slotMasksuch as to deny the usage of slots in
slotMask. The function is assumed to return a list of the allocated slots.



3.5. ITERATIVE MAXIMUM -BANDWIDTH -SEARCH MULTI-PATH 101

Algorithm 3.5.1: Iterative Maximum Bandwidth search algorithm

allowedPathLength← length of shortest path fromSourceto Destination;
pathLengthLimit← allowedPathLength+ 16;
bwneeded← bwr;
slotMask← ∅;
paths← 0;
while bwneeded> 0 do

bwrequest← bwneeded;
S ← allocate(Source,Destination, bwrequest, allowedPathLength, slotMask);
if successthen

finish;
else ifpaths6= maxPathsthen

bwrequest← any;
S ←
allocate(Source,Destination, bwrequest, allowedPathLength, slotMask);
if successthen

bwneeded← bwneeded− BS;
1 slotMask← slotMask∪ S;

paths← paths+ 1;
continue;

end
allowedPathLength← allowedPathLength+ 1;
if allowedPathLength> pathLengthLimitthen

fail ;
end

2 for i wheresi ∈ slotMaskdo
slotMask← slotMask∪ {si+n−1 mod n};

end
end

The algorithm executes up tomaxPathsiteration. In every iteration it first
attempts to allocate all remaining bandwidth using one pathof minimal length.
If the allocation is unsuccessful, the algorithm has two options: to increase the
allowed path length or to allocate part of the bandwidth using a minimal length
path. The second option is preferred unless the maximum number of paths
has already been reached. When no bandwidth at all can be allocated for the
given path length the algorithm increases the allowed path length. The same
pathLengthLimitof length of the minimum path plus 16 is used as in the case
of the single-path search as well as the limit of107 explored paths.

To avoid out-of-order deliveries, the algorithm uses a slot-masking technique
(Figure 3.14). A slot mask is updated with all slots that wereallocated
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(Algorithm 3.5.1, Line 1) but in addition, every time the allowed path length
is increased one guard slot is added before a previously allocated slot or a
previously marked guard slot. If a path of lengthn is allocated, before a path
of lengthn +m is allocatedm guard slots will have been inserted in front of
the slots used by the path of lengthn. This ensures that packets traveling over
the path of lengthn + m will have enough time to reach the destination and
will not be overtaken by packets traveling over the shorter path.

Figure 3.14: In-order delivery is ensured through the use ofguard slots.

The complexity of the algorithm is linear in the number of allowed paths, but
the single path allocation which is a sub-step of the algorithm has exponential
complexity in the length of the paths.

3.6 Related Work

A solution which performs mapping, single path routing and slot allocation
in the Æthereal network is presented in [HGR07]. While we do not perform
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mapping, our solution is sufficiently similar to be applicable in a combined
mapping-routing flow.

Enhancements to the solution in [HGR07] were proposed in [HCG07b] to
deal with multiple use-cases and in [HCG07a] to share allocated timeslots
between multiple connections. These enhancements do not directly concern
the algorithm allocating individual channels but rather the relation between
the different allocations.

A graph-splitting approach was employed in [MBD+05] and [MMB07] to
provide online allocation. The algorithms based on graph splitting have the
advantage of running in polynomial time, but they can only produce one-slot
allocations.

A solution for path and slot allocation in the Nostrum [MNTJ04b] network but
also applicable to Æthereal is presented in [LJ08]. The solution is a technique
equivalent to the graph splitting approach entitled “logical networks.” The
algorithm is also part of an iterative approach.

A rip-up strategy to deal with multiple channel allocationsis used in
[SBG+08]. Individual allocations are still performed by enumerating all
feasible paths and selecting the best path found. The paper implies that storage
memory for all paths is required, which we avoid in our backtracking solution.
A detour of maximum 2 is allowed, which is much lower than the value we
allow in our experiments. The rip-up approach could also be employed in
conjunction with our algorithms.

We have previously proposed a multi-path allocation algorithm producing
disjoint paths for security applications in [SG11]. Multi-path routing with
disjoint paths has been previously studied in [Kol05, LG01]. Applications of
multi-path routing for security, load balancing and fault tolerance are discussed
in [Rab89].

Multi-path routing in NoCs has been previously proposed in [MABDM07],
the method presented there requires a complex mechanism to ensure in-order
delivery but it does not require complex calculations to findthe paths like our
solution does. In-order delivery in larger (system-level)networks was studied
in [KMF+05].

The problem of multi-path routing in networks with resourcereservation
i.e. asynchronous transfer mode or ATM was studied by Cidon et al.
[CRS99, CRS97], and was shown to provide a benefit in terms of connection
establishing time, while having mixed results from the bandwidth point of
view.
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A close equivalent to our proposed multi-path routing scheme in large scale
networks is non-redundant dispersity routing [Max07].

An overview of routing algorithms for QoS NoCs is presented in [CN98].
The algorithms referenced here however do not need to take into account
the complexity of performing the allocation in the time domain as well (slot
allocation).

Our exhaustive search algorithms improve upon the state of the art in terms
of size of the network they are able to deal with and the maximum allowed
detour. To our knowledge we are the first to propose multi-path routing in the
context of networks based on the contention-free routing model.

3.7 Conclusions and future work

In this chapter we have presented in detail the allocation algorithms used for
the experiments in Chapter 2. In general we strive to achieveoptimality in our
solutions, either by performing an exhaustive search of thesolution space or
by designing algorithms that find an optimum in more efficientways.

We accomplish this to a large extent, but even though the results of independent
steps in the allocation process are known to be optimal the overall result of the
allocation is not necessarily so. With the addition of heuristics we produce
results very close to the theoretical bounds, as attested bythe experimental
results in Chapter 2.

While our methods compare favorably to the state of the art interms of quality
of the results we do not yet support all the features of the state of the art.
The ability to perform mapping, simultaneously deal with multiple usecases
[HG07] and support for channel trees [HCG07a] are subjects for future work.



Chapter 4

Latency and slot selection

I
n the previous chapters we have focused entirely on allocating paths
through the network that can supply a given bandwidth. In this chapter
we shift our attention to the latency of network communication. In Æthe-

real the network latency has two components: the network traversal latency,
which depends only on the path length, and the scheduling latency, the time
a connection has to wait for its turn in the TDM table. While interms of
network traversal latency not much can be done assuming a minimum length
route is already selected, we explore how latency is affected by the selection of
different patterns of slots in the TDM schedule. We also determine the effect
of network latency on the execution time of actual applications under different
optimization scenarios.

The operation of slot selection is performed after a path between source and
destination has been found, and consists of selecting a subset of the slots
available on that path, subset which preferably has a minimal number of
elements and necessarily meets the bandwidth and latency requirements. Slot
selection is performed for each of the candidate paths foundby the path-finding
algorithm described in Chapter 3.

The problem can be formulated as follows: along a given candidate path, a set
of slots with proper alignment (available slots) is found. Aminimal subset of
this set should be selected, which provides a required bandwidth and latency.

A greedy algorithm to solve this problem was proposed in [Han09]. This
algorithm was however not optimal, in that it did not minimize the resources
that were allocated to satisfy the constraints. We propose an algorithm based
on dynamic programming that we show to be optimal. The new algorithm
presents savings in terms of used resources averaging 6% at given utilization

105
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ratios while at certain design points (particular combinations of latency and
bandwidth requirements) it can provide an improvement as high as 33%.

The algorithms we present here are applicable both the Æthereal network, and
the dAElite network that we propose in Chapter 6. Some of the optimizations
in these algorithms specifically target the header overheadof Æthereal while
our network does not have a header overhead. We will indicateat the proper
time what changes need to be introduced in the algorithm to support the
different models. When comparing to the algorithm in [Han09], we use the
model with headers, as this is the one targeted by the competing algorithm.

We also develop a more powerful model to express latency constraints which
allows setting bounds on the latency of longer messages. We provide an
algorithm for optimally solving problems that use this formulation as well.

This chapter is organized as follows: Section 4.1 presents the effect of slot
selection on communication and application performance. In Section 4.2, we
formalize the problem definition. Section 4.3 presents the previously used
algorithm for the problem of slot selection. Our proposed algorithm and a
proof of its optimality is presented in Section 4.4. An enhanced problem
formulation and its solution are presented in Section 4.5. The complexity of
the proposed algorithms is analyzed in Section 4.6. Experimental results are
presented in Section 4.7. Related works are presented in Section 4.8. Section
4.9 presents our conclusions.

4.1 The effect of slot selection on communication and
application performance

In this section we study the effect of slot selection on communication param-
eters and the performance of applications that are using theNoC to commu-
nicate with a remote memory. For the communication performance we will
use analytical measures, while application performance will be evaluated on
an FPGA system based on the Æthereal NoC and Microblaze processors. The
analytical model will assume the presence of headers.

Under the contention-free routing model link bandwidth is divided into a
discrete number of TDM slots. Each communication channel isalloted a
number of slots that determine the delivered bandwidth in analmost linear
fashion. The distribution in time of these slots has an impact on the time a
connection has to wait for its turn during a TDM wheel revolution and hence
is important when considering latency restrictions.
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Even when latency is not critical from the point of view of theapplications,
due perhaps to latency hiding techniques, lower latencies may have a beneficial
effect on the size of the buffers used in communication as foroptimal operation
buffer sizes are proportional to the round trip delay.

Particularities of the Æthereal implementation regardingthe header overhead
make slot selection a more difficult problem. Æthereal employs a header
carrying routing information in the first slot out of a sequence of consecutive
slots belonging to the same connection and also repeats the header every three
slots in longer such sequences to allow transmitting credits.

The result of this is that a sparse distribution of slots provides a better latency
but has a worse header overhead while a dense (grouped) distribution has
worse latency but better payload efficiency (Figure 4.1).

Figure 4.1: Header overhead varies with the distribution ofslots.

Many combinations, regular and irregular are possible. In the experiments we
present here we will use the patterns in Figure 4.2 which offer various latency
- header overhead trade-offs. The header overhead is alwaysbetween 1 word
in 3 (the size of a slot is 3 words) and 1 word in 9, thus between 11.1% and
33.3%. The reported latency represents the average waitingtime of a two-
word message (thus a message that only requires one slot) before it can be
transmitted. The efficiency is the ratio of useful payload tothe total amount of
data transmitted on a link.

The data present in all these figures was computed using an analytical model,
which, due to the predictable nature of the network is completely accurate.

The average latency is not necessarily the only concern, in particular for
applications with real-time requirements the highest latency may be of more
importance. Figure 4.3 presents a histogram of the latencies for 2 word
messages of the allocation schemes in Figure 4.2 that use 8 slots. As can
be expected though, the result is very much in line with the average latency
value, and the distribution of latency values is flat.

For messages up to two words in length a single slot is sufficient to transmit
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Figure 4.2: The average latency and bandwidth delivered by allocations using
different patterns of 32, 8 and 4 slots out of 32.

the entire payload. The maximum latency is thus the longest delay between
two allocated slots. When we consider larger message sizes,computing the
latency becomes more difficult. Figure 4.4 shows a histogramof latencies for
3-words messages.

It can be easily seen in this case that the sparse distribution of slots (a) is no
longer the most efficient one, being surpassed by (b) and on average also by
(d). A 3-word messages size is typical for a single word writetransactions:
one word represents transaction qualifiers, one is the address and one the data
to be written.

When the message size is even further increased, for examplea 10-word
message which would correspond to a 8-word write transaction for example the
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Figure 4.3: Histogram of message latency (2 data words) for various slot
distributions.

update of a line of cache, the balance is shifted even furtherto the advantage of
grouped slot patterns and the disadvantage of sparse patterns. This can be seen
in Figure 4.5. Slot distributions that for short message sizes were surpassed
in terms of both bandwidth and latency: (c) and (f), now provide the best and
second-best average latency.

In Section 4.4 we propose an algorithm for slot allocation that considers only
the maximum 2-words latency problem, while in Section 4.5 wewill introduce
an algorithm that optimizes the slot allocation for the latencies of longer
messages.

Measurements of the effect of latency in a real system

We would like to determine if the previous analytical measures of latency
have a corresponding effect on the preformance of real-lifeapplications. We
use an FPGA prototype supported by the Æthereal network on chip in which
a MicroBlaze processor running various applications performs accesses to
a remote memory, i.e., a memory to which it only has access through the
network. The test setup will be presented in detail in Chapter 7.
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Figure 4.4: Histogram of message latency (3 data words) for various slot
distributions.

As benchmark applications we use from the most to the least demanding in
terms of memory bandwidth: remote memory read and write loops, a small
subset of the Livermore Loops kernels [McM86], and a JPEG decoding appli-
cation. For each of these applications, each of the slot patterns in Figure 4.2 is
employed on both the request and response path (always with the same number
of slots both in both directions), and with all possible alignments between the
request and response slots. We evaluate both the cases wherelatency hiding
techniques were used and where they were not.

In Figures 4.6-4.8, we present histogram of the relative increase in application
running time compared to the case where the entire link bandwidth was dedi-
cated to the communication channel. A slot table of 32 slots was used in the
experiments, thus1/4 of the link bandwidth corresponds to 8 allocated slots
and1/8 of the link bandwidth to 4 allocated slots.

Figure 4.6 represents experiments where no latency hiding techniques were
used. As the system is most sensitive to increases in latency, it displays the
highest variations in application running time.

It is important to note that there is significant overlap between the scenarios
using 4 and 8 slots, that is, for some patterns of allocated slots, same or better
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Figure 4.5: Histogram of message latency (10 data words) forvarious slot
distributions.

performance can be obtained by a 4 slot allocation compared to an 8 slot
allocation which essentially uses double the network resources. Also some
of the 8 slot allocation perform (almost) same as well as the full bandwidth
allocation. The gap in performance between the most and least efficient
allocation is significant, the performance in the syntheticbenchmarks varying
by a factor of almost 3x. The JPEG application is computationally intensive
and only uses the remote memory to read the input data and produce the output
result. Some variation in performance is observed nevertheless, but not to the
same extent as in the case of the synthetic benchmarks.

The second round of experiments involves a latency hiding technique for the
write transactions, that is posted writes (with a bandwidthoptimization to
group consecutive write operations into bursts when the addresses are con-
secutive). The same type of histograms as in the previous case are presented
in Figure 4.7. There is now a more clear separation between the allocations
using 4 and 8 slots. The spread of results is also diminished (note the different
X axis.)

With latency hiding techniques for both the read and write operations (Figure
4.8) there is a clear separation based on delivered bandwidth, visible especially
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in the cases of the read and write loops. There is still some spread between the
best and worst case for the same number of slots, but much reduced when
compared to the previous scenarios. The JPEG application, with its very low
average bandwidth requirement is virtually unaffected by both the pattern and
the number of allocated slots.

Our conclusion is that, if latency hiding techniques are notused, the distribu-
tion of slots has a very important effect on application performance.
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Figure 4.6: Histogram of slowdowns generated by different slot selection when
no latency hiding techniques are used.
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Figure 4.7: Histogram of slowdowns generated by different slot selections,
when using posted writes, write coalescing and no read prefetch.
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Figure 4.8: Histogram of slowdowns generated by different slot selections,
when using posted writes, write coalescing and read prefetch.
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4.2 Problem formulation

It is relatively easy to verify whether a given set of slots provides the desired
bandwidth and latency. It is sufficient to determine the maximum distance (in
time) between two slots the number of slots and which slots present a header
overhead. Comparatively, given a set of slots which provides more than the
necessary bandwidth and/or better latency, it is much more difficult to deter-
mine a minimal subset of slots which provides the minimum requirements.
Finding this subset is the problem that we would like to solve.

To simplify the implementation, the bandwidthbw is always expressed in
terms of words per slot table revolution. The number of wordsper slot table
is derived from the bandwidth of a link, the size of the slot table, required
bandwidth, and by rounding up to the nearest integer value.

The worst-case scheduling latency for a communication channel l is equal to
the maximum distance in time between two allocated slots. Itis expressed in
slots. The latency for the transmission of one word of data over the network
is equal to the scheduling latency plus the network traversal latency which is
trivial to compute since it is equal to the path length.

Figure 4.9: Problem formulation.

4.3 The previously used algorithm

The algorithm previously used to solve this problem was proposed in [Han09].
It is a greedy algorithm which does not guarantee an optimal solution. The
steps of the algorithm are illustrated in Figure 4.10 and a formal description is
given in Algorithm 4.3.1.

The algorithm always allocates the first available slot, andthen attempts to find
available slots situated at the maximum distance imposed bythe latency limit.
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Algorithm 4.3.1: Slot selection algorithm presented in [Han09]
input : set of available slotsA ⊆ S = {s1..sn}

l maximum allowed latency measured in slot periods
Br required bandwidth

output: A ⊆ A which satisfies the bandwidth and latency constraints

firstFreeSlot← 1;
while firstFreeSlot≤ n ∧ sfirstFreeSlot 6∈ A do

firstFreeSlot← firstFreeSlot+ 1;
end
if firstFreeSlot> l then

fail ;
end
A ← {sfirstFreeSlot};
lastAllocatedSlot← firstFreeSlot;
while firstFreeSlot+ n− lastAllocatedSlot> l do

slot← min(lastAllocatedSlot+ l, n);
while slot> lastAllocatedSlot∧ sslot 6∈ A do

slot← slot− 1;
end
if lastAllocatedSlot= slot then

fail ;
end
lastAllocatedSlot← slot;
A ← A∪ {sslot};

end
slot← firstFreeSlot;
while BA < Br do

if slot> n then
fail ;

end
if sslot ∈ A then
A ← A∪ {sslot};

end
slot← slot+ 1;

end

If these slots are occupied, the algorithm retreats to an available slot farthest
from the current slot but within the latency limit.

Slots found in this way are repeatedly added to the solution until the wrap-
around latency is satisfied or the algorithm fails to find a slot that can be
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Figure 4.10: Steps of the original algorithm.

allocated.

In the end, the algorithm adds available slots as necessary until bandwidth
requirement is satisfied.

As illustrated in Figure 4.10 the algorithm does not always produce an optimal
result. Some of the causes may be:

• The original slot choice leads to an suboptimal solution. This could be
avoided by running the algorithmn times starting at each slot.

• Successive allocations do not take into account the fact that multiple
consecutive slots have to be allocated anyway because of thebandwidth
requirement.

• The final allocation for bandwidth does not guarantee a maximum effi-
ciency in terms of headers.



4.4. PROPOSED ALGORITHM FOR THE SLOT SELECTION PROBLEM 119

4.4 Proposed algorithm for the slot selection problem

We propose an algorithm for slot selection based on dynamic programming.
We show this algorithm to be optimal in that it uses a minimal number of slots
to meet the latency and bandwidth constraints.

A formal description of our algorithm is given in Algorithms4.4.1 and 4.4.2.
We denoter as the number of slots after which a header needs to be repeated,
slotSize the size of a slot in words, headerSize the size of the header in words.
If the network does not make use of headers the value of headerSize can be set
to 0 andr has a value of 1.n is the number of slots in the TDM table. We
assume aLatency(A) function is defined which computes the latency provided
by a set of slotsA.

Our algorithm first restricts solutions to a list of slots starting with one non-
selected slot followed by one selected slot (Figure 4.11). By iterating over all
rotations of the slot table, with wrap-around, we ensure thecoverage of the
entire solution space, one exception being a table with all slots selected, which
is treated as a separate case.

Figure 4.11: Solutions start with one non-selected, followed by one selected
slot.

We then build a set of optimal partial solutionsAk,i,j. Partial solutions are
constructed by adding slots to other partial solutions until the set of partial
solutions is sufficient to guarantee it contains an optimum over the entire
solution space.

In the following we give a formal description and in-depth explanation of our
algorithm. We will assume, without reducing generality that all solutions and
partial solutions start with a non-selected slot followed by one selected slot.

LetS be the set of all slots{s1, s2, ..sn}, and letA ⊆ S be the set of available
slotsA = {si ∈ S|si is not occupied}.
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Algorithm 4.4.1: Optimal slot selection
input : set of available slotsA ⊂ S = {s1..sn}

l maximum allowed latency measured in slot units
Br required bandwidth

output: A which minimizes|A| while satisfying bandwidth and latency constraints

if Br > BA ∨ Latency(A) > l then
fail;

end
hdrSlotSize← slotSize− headerSize;
solutionA ← A;
BA ← BA;
for ∀i ∈ {1, 2, ...n} do

reorder originalA,S to start with slotsi, si becomess1;
if s2 ∈ A then
A2,1,1 ← {s2};
BA2,1,1

← short;
for ∀k ∈ {3, 4, ...n} do

for ∀i ∈ {0, 1..r− 1}, ∀j ∈ {1..k − 1} do
Ak,i,j ← ∅;
BAk,i,j

← 0;
end
i=1;

1 for ∀j ∈ {2..k − 1} do
for ∀x ∈ {0, 1..r − 1}, ∀y ∈ {max(2, k − l)..k − 2} do

if BAk,i,j
< BAy,x,j−1

+ hdrSlotSizethen
BAk,i,j

← BAy,x,j−1
+ hdrSlotSize;

Ak,i,j ← Ay,x,j−1 ∪ sk;
end

end
end

2 for ∀i ∈ {0, 1..r − 1}, ∀j ∈ {2..k − 1} do
x = (i− 1) mod r;
gain← slotSize;
if i = 1 then

gain← hdrSlotSize;
end
if BAk,i,j

< BAk−1,x,j−1
+ gain then

BAk,i,j
← BAk−1,x,j−1

+ gain;
Ak,i,j ← Ak−1,x,j−1 ∪ sk;

end
end

end

⊲ search for best solution (Algorithm 4.4.2);
end

end
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Algorithm 4.4.2: Search for optimal selection
input : all local data structures in Algorithm 4.4.1
output: A which minimizes|A| while satisfying bandwidth and latency constraints

for ∀k ∈ {n− l+ 1, ...n} do
// LIMITING THE SEARCH TO n− l + 1 ENSURES THAT THE LATENCY LIMIT

// IS OBEYED AT WRAP-AROUND

for ∀i ∈ {0, 1..r − 1}, ∀j ∈ {1..k − 1} do
if Br ≤ BAk,i,j

then
if j < |A| ∨ (j = |A| ∧ BA < BAk,i,j

) then
// NOTE THAT |Ak,i,j | = j
A ← Ak,i,j ;
BA ← BAk,i,j

;
end

end
end

end
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Let Ak,i,j be a subset of{s2, s3..., sk} ∩ A with sk ∈ Ak,i,j, having exactly
j elements, i.e.,|Ak,i,j| = j, and ending withq selected slots, whereq is
any natural number so thatq modr = i or in other wordssk−q 6∈ Ak,i,j and
{sk−q+1, sk−q+2..., sk} ⊂ Ak,i,j. Obviouslyj ≤ k − 1.

Furthermore, partial solutions are required to obey the latency limit on the
interval2..k, i.e., there should be no gap larger thanl in the set of slots. They
are however not required to obey the latency limit at the wrap-around of the
TDM table. Whether they obey or not the latency limit at wrap-around is only
a function ofk because we know thatsk is the last slot belonging to the set and
the first slot iss2.

Figure 4.12: Building partial solutions by adding a slot at the end of an existing
partial solution.

The reason behind the classification of partial solutions bytheir modulor
number of ending slots is that it enables us to compute the bandwidth obtained
by attaching one additional slot at the end of the partial solution (Figure 4.12),
that is, if the bandwidth delivered byAk−1,i,j−1 is BAk−1,i,j−1

, the bandwidth
delivered byAk−1,i,j−1 ∪ sk is:

BAk,(i+1) mod r,j
=

{

BAk−1,i,j−1∪sk + slotSize-headerSizewheni = 0

BAk−1,i,j−1∪sk + slotSize otherwise
(4.1)

When attaching one slot to a solution in which the last slot isnot selected (a
non-consecutive slot, line 2 in Algorithm 4.4.1), we alwayspay the header
penalty and the number of slots at the end of solution becomes1 .

BAk,1 mod r,j
= BAk−m,i,j−1∪sk + slotSize-headerSize

wherem > 1
(4.2)
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It is easy to see that any solution having at least two slotsAk,i,j; j ≥ 2 can be
built from a solutionAx,y,j−1 by adding a new slot on the positionk, and the
delivered bandwidth can be computed using one of the Equations 4.1 and 4.2.
To obey the latency limit it is mandatory thatk − x ≤ l.

The global optimum is found by enumerating all the generatedAk,i,j sets and
selecting the one which:

1. Provides the necessary bandwidth
2. Obeys wrap-around latency requirement
3. Has the lowestj value (number of used slots)
4. For the lowestj value has the highestBAk,i,j

Proof of optimality

Let us denoteAk,i,j a setAk,i,j that is optimal in that for the givenk, i, j it
provides the largest bandwidth. We argue thatAk,i,j, if it exists can only be
obtained by adding a slotk to one optimal setAx,y,j−1. Indeed, if that was
not the case, thenAk,i,j would be obtained from a non-optimalAx,y,j−1 as
Ax,y,j−1 ∪ {sk} andBAk,i,j

= BAx,y,j−1 + q whereq is a constant dependent
only onx andk, derived from Equations 4.1, 4.2. Note thatk − x < latency
to obey the latency requirement.

But sinceAx,y,j−1 is not optimal∃Ax,y,j−1 so thatBAx,y,j−1 > BAx,y,j−1 ⇒
BAx,y,j−1∪{sk}+ q > BAk,i,j

andAk,i,j is not optimal, which would contradict
the hypothesis.

It results from here that if we generate all feasibleAx,y,j−1 sets (or at least one
set for each(x, y, j − 1) ) we can generate, if it exists, anyAk,i,j set.

An optimum to our original problem, that is, a subset ofS which satisfies the
latency boundl, and has a minimum required bandwidthbw, can always be
expressed as a setAk,i,j, by properly selecting values fork, i andj, but since
Ak,i,j uses the same number of slots,j and it provides bandwidth as high as
any of theAk,i,j sets,Ak,i,j is also an optimal solution, with the added benefit
that among the solutions that usej slots it also provides the highest possible
bandwidth, which goes beyond the original problem requirements.
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4.5 Enhanced formulation of the latency problem

The previous formulation only guarantees a bound on the timea connection
has to wait for its next allocated slot. This translates directly into the latency
of sending one slot’s worth of data. Some network messages though are longer
than one slot. A single write operation for example has 3 words: a command
word, an address word and a data word. Messages encoding reador write
bursts may be even longer.

Obviously an implicit guarantee exists that a 4-word transaction will take at
most twice as long as the 2-word transaction, a 6-words transaction 3 times as
long and so on, all because once a connection got access to oneslot the latency
bound applies to the arrival of the next slot. A straightforward way to impose
a maximum latencyl for the duration of ann-word transaction is to impose a
latency of l

⌈n/2⌉ to the 2-word transaction and use the previous algorithm.

This approach however may result in over-constraining the solution, as we
will show in section 4.7. As an alternative we present a second slot allocation
algorithm that can produce an optimal allocation with the constraint that within
any window ofw slots,n words of data can always be delivered (Figure 4.13).
By optimal allocation we mean here that a minimal number of slots is used.

Figure 4.13: Enhanced formulation.

4.5.1 Slot allocation algorithm for the enhanced formulation

The algorithm we propose in Algorithm 4.5.1-4.5.2 is based on dynamic
programming. Its complexity is polynomial in the size of thetable of slots,
but exponential in the size of the considered window.
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Let w be the size of the window. The algorithm starts rotating the slot table

Figure 4.14: Algorithm for the enhanced formulation.

such that the first slot is an occupied slot. In the case that all slots are available,
either the solution consists of all slots, which is trivial,or one slot can be
arbitrarily excluded from the solution and marked as occupied.

In a top-level loop, the algorithm iterates through all possible sets of the slots
s2..sw−1 provided these slots are available and separately runs a search for a
solution constrained to using these starting sets.

Each iteration of the top loop consists of exhaustive searches in a window of
sizew − 1 which slides over the entire slot table.

We introduce here a formal notation and describe the algorithm steps, after
which we will provide a full formal description in Algorithms 4.5.1, 4.5.2.

LetS be the set of all slots{s1, s2, ..sn}, and letA ⊆ S be the set of available
slotsA = {si ∈ S|si is not occupied}.
Let Aw−1,START⊂ A ∩ {s2..sw−1} be the starting set. The top loop of the
algorithm iterates over allAw−1,START.

We consider the propertyP(A, i) to be true ifA provides the necessary
bandwidth over the window{si..si+w−1} or {si..sn, s1..sw+i−n−1} when the
window wraps-around.

We use the notation ofAk,ck−w+2,ck−w+3,...,ck ⊂ {s1..sk} or Ak,Ck
for sets

having the following relation between the values ofci and the member slots:

sq ∈ Ak,ck−w+2,ck−w+3,...,ck ⇔ cq = 1, ∀q ∈ {{k − w + 2..k}}

Notice thatAk,ck−w+2,ck−w+3,...,ck may still contain elementssi for i < k −
w + 2 as only the membership of elementssk−w+2..sk is enforced by thec-
values.Ak,Ck

sets divide the solution space in regions with a certain property.
For different values ofk these sets may overlap.
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We nameAk,Ck
a valid partial solution if:

Ak,Ck
∩ {s1..sw−1} = Aw−1,START

and
Ak,Ck

hasP(Ak,Ck
, i))∀i ∈ {1..k − w + 1}

A set Ak+1,Ck+1
= Ak+1,ck−w+3,...ck,1 can be obtained from ei-

ther Ak,0,ck−w+3..ck or Ak,0,ck−w+3..ck by adding elementsk+1. A set
Ak+1,ck−w+3,...ck,0 is equal to a setAk,Ck

with the proper correspond-
ing c values. In order to verify the validity ofAk+1,Ck+1

as a solu-
tion as long as it was obtained from a setAk,Ck

it is enough to verify
P(Ak+1,Ck+1

, k−w+2). Conversely, ifAk+1,Ck+1
is a valid partial solution,

Ak+1,Ck+1
/{sk+1} = Ak,Ck

is also a valid partial solution asAk,Ck
only needs

to verifyP(Ak+1,Ck+1
, 1)..P(Ak+1,Ck+1

, k−w+1) whichAk+1,Ck+1
already

does and the absence of slotsk+1 has no influence since it does not belong to
any of the windows.

We define an optimal valid partial solutionAk+1,Ck+1
a valid partial solution

Ak+1,Ck+1
which minimizes|Ak+1,Ck+1

| (the number of used slots). We
computeAk+1,Ck+1

from eitherAk,0,ck−w+3..ck or Ak,1,ck−w+3..ck, selecting
theAk,Ck

with a minimal|Ak,Ck
| and ensuringP(Ak+1,Ck+1

, k − w + 2). A
proof the optimality of this method is presented in section 4.5.2.

We use the following numeric example to illustrate the functioning of the
algorithm (Figure 4.15). In a TDM schedule with 6 slots, the slots s3 and
s5 have already been reserved by other connections. We wish to provide a
communication channel that can deliver 4 words of data with amaximum
waiting delay of 4 time slots.

Figure 4.15: Numeric example for the enhanced problem formulation

The algorithm begins by rotating the slot table with an occupied slot in the
positions1 (Figure 4.16). Since the TDM schedule is periodic this operation
has no effect on the communication parameters.

The algorithm will then iterate through all combinations ofthe slotss2-s3
(actually we are interested in the windows1-s3 which is needed by the wrap
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around windows, but we already know the slots1 cannot be selected). Because
slot s3 is also not available, we have only two choices for the starting set
Aw−1,START, using the previous notation we will denote them
Aw−1,START= A3,000 = ∅ and
Aw−1,START= A3,010 = {s2}.

Figure 4.16: Steps of the algorithm for the enhanced formulation, all slot
possibilities for the window [2-3] are considered

The rest of the algorithm will be run once for each of these sets, with the
solution constrained to start with the given selection of slots. It is observed
though that the starting setA3,000 (Figure 4.16a) does not produce viable
solutions even for the first windows1-s4, so we focus on solutions with
Aw−1,START= A3,010.

The algorithm successively generatesAk sets for values ofk increasing from
w to n. The algorithm does not alloww > n which in fact would not even
be very useful as we could request a desired bandwidth for an entire slot table
revolution instead. There are twoA4,C4 sets that can be generated with the
starting restrictionsA4,(0)100 andA4,(0)101 (Figure 4.16b) (we represented in
brackets thec1 value which is known during set generation).A4,(0)100 does not
haveP(A4,C41,) and therefore it is not a valid solution and will not be used in
constructingA5,C5 sets.

A4,101 will be used to construct twoA5,C5 sets (Figure 4.17),A5,(1)010 and
A5,(1)011, both of which provide the necessary bandwidth. Whenever we
build these sets we keep track of their cost. In general eachAk,Ck

set can
be used to build twoAk+1,Ck+1

sets assuming such sets are valid solutions
and correspondingly, eachAk+1,Ck+1

set can be obtained from either of two
Ak,Ck

sets. For exampleA5,010 could also have been obtained fromA4,001

if such a solution were valid. When two possibilities exist to construct a
set we prefer of course the least expensive one. For convenience, in our
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algorithm implementation we use a cost of∞ (actually a very high integer
value in C) to denote an invalid solution. When building theAk+1,Ck+1

sets
we verify P(Ak+1,Ck+1

, k − w + 2). Ak+1,Ck+1
is guaranteed to also verify

P(Ak+1,Ck+1
, i), ∀i < k − w + 2 becauseAk,Ck

already does

Figure 4.17: Steps of the algorithm for the enhanced formulation, A-sets are
generated

The number ofAk combinations as presented in Figure 4.17 is increasing
exponential and limited by2w−1, wherew is the size of the window. When
the An,Cn sets are built, in addition to verifyingP(An,Cn , n − w + 1) we
verify P(An,Cn , q) wrap-around windowsq ∈ {n − w + 2..n}. The wrap-
around bandwidth can be verified just by using the value ofAw−1,STARTand
cn−w+2..cn and is thus independent of the other elements inAn,Cn (the ele-
ments not specified by thec-values orAw−1,START).

A global optimum to the slot selection problem is also a set ofthe form
An,Cn for particular values ofAw−1,STARTandcn−w+2..cn. By iterating over
all possible combinations ofAw−1,STARTandcn−w+2..cn and finding optimal
solutions inside the partial solution spacesAn,Cn we find the global optimum
solution to the problem.

In Algorithm 4.5.1 we give a formal description of the algorithm.
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Algorithm 4.5.1: Outer loop of the algorithm for the enhanced formulation
input : set of available slotsV ⊂ S = {s1..sn}

w < n size of a window
bwr required bandwidth within each window of sizew

output: A which minimizes|A| while satisfying bandwidth constraint

W ← rotate(V ) so thats1 /∈ W ;
best← ∅;
bestCost←∞;
for d2d3..dw−1 ∈ {0, 1} × {0, 1} × ...{0, 1} do

if ∃i, di = 1, si /∈W then
continue;

end
cost[w..n, {0, 1}w]←∞;
if bandwidth(0d2d3..dw−11) < bwr then

continue;
end
cost[w, 0d2d3..dw−11]← 1 +

∑w−1
i=2 di;

if bandwidth(0d2d3..dw−10) ≥ bwr then
cost[w, 0d2d3..dw−10]←

∑w−1
i=2 di;

end

⊲ build partial solutions (Algorithm 4.5.2);

for c1c2..cw ∈ {0, 1}w do
if cost[n, c1c2..cw] < bestCostthen

bestCost← cost[n, c1c2..cw];
// FOLLOW PREDECESSORS AND ADD INITIAL SLOTS

best← ∅;
en−w+1..en ← c1..cw;
for j ← n− w to w do

ej = pre[j + 1, ej+1ej+2...ej+w ];
end
e2..ew−1 ← d2..dw−1;
for j ← 2 to n do

if ej = 1 then
best← best ∪ {sj};

end
end

end
end

end
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Algorithm 4.5.2: Build partial solutions in the algorithm for the enhanced
formulation
for q ← w + 1 to n do

for c1c2..cw ∈ {0, 1}w−1 do
if bandwidth(c1c2..cw) < bwr then

continue;
end
if cw = 1 ∧ sq /∈W then

continue;
end
wrapOk ← true;
if q = n then

for j ← 2 to w do
if bandwidth(cjcj+1..cw0d2d3..dj−1) < bwr then

wrapOk← false;
end

end
end
if ¬wrapOkthen

continue;
end
if cost[q − 1, 0c1c2..cw−1] < cost[q − 1, 1c1c2..cw−1] then

cost[q, c1c2..cw]← cw + cost[q − 1, 0c1c2..cw−1];
pre[q, c1c2..cw]← 0;

else
cost[q, c1c2..cw]← cw + cost[q − 1, 1c1c2..cw−1];
pre[q, c1c2..cw]← 1;

end
end

end
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4.5.2 Proof of optimality of the algorithm for the enhanced formu-
lation

We prove by mathematical induction that the setsAk,Ck
generated using

the algorithm previously described are optimal solutions to the sub-problem
|Ak,Ck

| = minimum,Ak,Ck
, k ≥ w − 1 is a valid partial solution.

The base for the induction is atk = w−1 (Ak,Ck
is not defined fork < w−1).

Fork = w− 1 a single valid partial solution existsAk,Ck
= Aw−1,START(from

the definition of a valid partial solution), therefore this solution is optimal.

For k > w − 1 we prove thatAk+1,Ck+1
can only be obtained fromAk,Ck

sets using the method described in the algorithm. We demonstrate this using a
proof by contradiction.

Consider a setAk+1,ck−w+3..ck,1 which is an optimal valid partial solution. If
this set could be written asAk,Ck

∪ {sk + 1} whereAk,Ck
is not an optimal

solution, then∃Ak,Ck
with |Ak,Ck

| < |Ak,Ck
| (the existence ofAk,Ck

implies
the existence of aAk,Ck

). If Ak,Ck
∪ {sk + 1} verifiesP(Ak,Ck

∪ {sk +
1}, k − w + 2) thenAk,Ck

verifiesP(Ak,Ck
∪ {sk + 1}, k − w + 2) because

in the window that needs to verify the bandwidth requirementproperty the
slots in the two sets are completely determined by the valuesck−w+2..ck+1. if
Bk+1,ck−w+3..ck,1 = Ak,Ck

∪ {sk + 1},

|Bk+1,Ck+1
| = 1+|Ak,Ck

| < 1+|Ak,Ck
| ⇒ |Bk+1,Ck+1

| < |Ak+1,ck−w+3..ck,1|

which is a contradiction, because we assumed thatAk+1,ck−w+3..ck,1 was an
optimal valid partial solution.

Furthermore, using the same reasoning, if one optimal setA(1)
k,Ck

leads to a

optimal partial solutionA(1)
k+1,ck−w+3..ck,1

, and multipleA(i)
k,Ck

exist, they all

lead to optimal partial solutionsA(i)
k+1,ck−w+3..ck,1

. It is therefore sufficient to
store oneAk,Ck

for each value ofk and the vectorCk like our algorithm does.

Analogously we can prove thatAk+1,ck−w+3..ck,0 can only be obtained from a
Ak,Ck

set.

Consider an optimal global solutionA. For one iteration of the top-level loop
of the algorithm,Aw−1,START= A∩s1..sw−1. During this iteration,Amatches
the definition ofAn,Cn for a certain value of the vectorCn and furthermore,
because it minimizes|A| is also an optimal partial solution of the typeAn,Cn .
Because the algorithm iterates over all possible values of vectorCn it will also
find an optimal solutionAn,Cn with theCn vector ofA the same as theCn

vector ofAn,Cn and|An,Cn | = |A| . Because the verification of the bandwidth
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requirement in wrap-around windowsP(An,Cn , q), q ∈ {n − w + 2..n} only
depends on theCn vector andAw−1,START, sinceA is a valid solutionAn,Cn is
also a valid solution and thus a global optimum.

4.6 Algorithm complexity

Consider the following notation for the calculation of complexity:

• n is the number of slots in the slot table

• m is the number of free slotsm ≤ n, worst caset = n

• l is the maximum distance between slots

• r is the maximum number of consecutive slots after which the header
needs to be repeated

• w is the size of the window for the enhanced algorithm

The original algorithm performs a linear search for the first available slot,
in complexityO(n). This is followed by a search for free slots at intervals
of length l, which imply testing of at mostn − 1 slots, which is againO(n)
complexity. Another linearO(n) complexity search is sufficient to determine
the additional slots necessary to satisfy the bandwidth constraint, therefore
the total complexity of the original algorithm isO(n). No special memory
structures are used except fot the list of slots which has a memory complexity
of O(n).

The dynamic programming algorithm is runt times for each rotation of the
slot table in which the second slot is available (as explained in Section 4.4).
Each of these runs involves building a table of partial solutions (Ak,i,j) of size
n2 ∗ r. When slotk is available (which happens form of the slots)Ak,1,j is
computed based onl ∗ r other values, andAk,i,j with i 6= 0 is computed based
on one other value. The complexity to compute the table isO(m2 ∗ l ∗ r)
and the total algorithm complexityO(m3 ∗ l ∗ r) which is in the worst case
O(n3 ∗ l ∗ r). The memory complexity is dominated by the size of the tables
mentioned and isO(n2 ∗ r).
An exhaustive searchwhich we used to verify our solutions can be performed
by testing all2m combinations of the free slots, for each combination havingto
determine whether it satisfies the latency and bandwidth requirements which
is typically done in complexityO(n). This can be easily achieved with
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O(n ∗ 2m) complexity, but it can also be optimized making the latency and
bandwidth computation incremental (readjusting bandwidth and latency values
with the decision of including or excluding each independent slot), resulting
in a complexity ofO(2m). In the worst case, the complexity isO(2n), but it
should be noticed that the exhaustive search is practical even for large slot table
sizes if the occupancy ratio is high. For example, on a completely empty table
of size 32, the exhaustive search would have to iterate through approximately 4
billion solutions, however, if the table is 50% full, it would only have to iterate
through 65536 solutions. The memory complexity isO(n).

The enhanced algorithmiterates in its outer loop through up to2w−2 condi-
tions for the initial slots. For each of these a table of size(n−w)∗2w needs to
be constructed, each element in the table being computed based on two other
elements. Removing the constant factors, the complexity isO((n − w) ∗ 4w).
The number of actual valid states is also affected by them/n ratio, but in a
relatively complex manner, therefore we only provide a worst-case complexity
measure. The advantage compared with the exhaustive searchis that the
complexity does not increase exponentially with the size ofthe slot table. The
memory complexity isO((n − w)2w).

4.7 Experimental results

In this section we compare our proposed algorithm with the original greedy
algorithm. For performing the comparison we use slot tableswith a certain
percentage of slots marked as occupied (background traffic)and we request
both algorithms to provide an allocation for every feasiblecombination of la-
tency and bandwidth. For slot table sizes up to 16 we use as background traffic
all the combinations of occupied and unoccupied slots (65536 combinations
in total). For the larger slot table sizes, as this method becomes unfeasible we
produce 1000 samples at each background traffic ratio (the number of occupied
slots divided by the total number of slots).

We additionally verify the dynamic programming against an exhaustive search
algorithm for slot table sizes up to 24. It is generally not possible to run the
exhaustive search on the larger tests because of its exponential running time.

Our proposed algorithm produces in many cases a better solution than the
greedy algorithm. We represent the improvement for slot table sizes of 16,
24, 32, 40 in Figures 4.18-4.21. The improvement can take twoforms: in
some cases, the required bandwidth and latency can be delivered using fewer
slots. In the graphs, this is called “slot improvement.” When not producing slot
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improvement, there is still a chance that the dynamic programming algorithm
delivers more bandwidth than is required due to the granularity of slots and
that bandwidth is higher than the one of the greedy algorithm. In the graphs
this is called “bandwidth improvement.”
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Figure 4.18: Improvement in slot utilization vs backgroundutilization, 16
slots.

The plots represent an average over all requested combinations of latency and
bandwidth versus the amount of background traffic.

Obviously little gain can be obtained when the slot table is essentially empty or
when it is completely full. Some improvement exists though for a completely
empty table because the original algorithm does not properly take into account
bandwidth gain at wrap-around. The largest gains are in the middle section
of the interval, corresponding to average background utilization. In practice,
when allocating a usecase, the first channel allocation willbe performed on an
empty slot table, thus zero background utilization while further allocations will
encounter some background utilization. If high utilization is never reached it
means the network was probably over-provisioned; if it is reached too early
there is a good chance the allocation will not succeed at all.

Focusing the region of the data with average background utilization (25% and
50%), we analyze the improvement with respect to the requested latency and
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Figure 4.19: Improvement in slot utilization vs backgroundutilization, 24
slots.

bandwidth. We can see that for very tight latency constraints there is hardly any
gain since there is very little flexibility in choosing the needed slots. This effect
is more pronounced with a small slot table. Also very little gain is made when
the required bandwidth is very low or very high. For the first case it means
that for latency-only constraints the initial greedy algorithm is performing very
well, for the latter obviously when the entire bandwidth needs to be allocated
only one solution exists and that consists of allocating allthe available slots.

There is also some periodicity visible in the graphs along the required latency
axis. This is influenced by the modulo of the slot table size (minus the number
of additional slots due to the bandwidth requirement) to therequired latency.
The optimal algorithm works better when this modulo is closer to zero which
means there is little slack in satisfying the requirement.

It is also noticeable that for the lower bandwidths the graphcurve is inde-
pendent of bandwidth. This is because even with just the latency constraint a
certain bandwidth is provided anyway.
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Figure 4.20: Improvement in slot utilization vs backgroundutilization, 32
slots.
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Figure 4.21: Improvement in slot utilization vs backgroundutilization, 40
slots.
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Figure 4.22: Improvement in slot utilization vs requested latency and band-
width, background traffic 8/16 slots.
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Figure 4.23: Improvement in slot utilization vs requested latency and band-
width, background traffic 8/32 slots.
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Figure 4.24: Improvement in slot utilization vs requested latency and band-
width, background traffic 16/32 slots.
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Performance results for the enhanced formulation

The enhanced formulation allows us to provide latency guarantees for longer
messages without over-constraining the solution. Consider the following ex-
ample:

We wish to provide a bound on the latency of a 4-word message toa maximum
of 12 slots. With the original algorithm, the only way to achieve this is to set
the one-slot (2 words) latency to half the value of the bound,as represented in
Figure 4.25.

Figure 4.25: A bound on latency of 1 selected slot every 6 slots guarantees that
4 words can be delivered every 12 slots.

This method of reducing the problem to a more simple formulation however
will fail to find solutions in some instances. For example, with the same
requirements used above, if 6 consecutive slots are occupied and cannot be
used a solution with latency 6 does not exist but it is possible to find a solution
that provides 4 words within any window of 12 slots (Figure 4.26).

Figure 4.26: In some situations it is not possible to allocate 2 words every 6
slots, but it is possible to allocate 4 words every 12 slots.

The enhanced algorithm in Section 4.5 can provide an optimalslot selection
whenever one exists directly for the words/window problem formulation. The
algorithm nevertheless has some practical limitations in that its complexity
is exponential in the size of the window. While this is a limitation of the
algorithm, the same method that is used for extending the scope of the basic
algorithm to messages of longer size can be applied here at a loss in terms
of solution quality (although we did not investigate this here.) In our experi-
ments we used a window size of 12 and a slot table size of 32, which allow
computation times in the order of 1 second.
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We perform a series of tests to determine the success rate of the enhanced
(optimal) algorithm against the method of reducing the problem to the original
formulation. We plot the success rate against the number of occupied slots
(background traffic). For each value of the background traffic we have gen-
erated 1000 random sets of occupied slots. The results are shown in Figures
4.27-4.30.

We perform the tests for words/window requirements that have a direct equiv-
alent in the original formulation: 4 words/12 slots is equivalent to 1 slot out of
6 (due to header overhead), 6 words/12 slots to 1 slot out of 4,8 words/12 slots
to 1 slot out of 3 and 12 words/12 slots to 1 slot out of 2. Using values that
are not divisors of 12 would only exaggerate the disadvantages of the original
algorithm which would need to round the value to the nearest integer latency.
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Figure 4.27: Probability of successful allocation when 4 words are required in
a window of 12 slots.

With an empty slot table obviously both algorithms have no trouble finding
a solution but as the number of available slots decreases finding a solution
becomes more difficult. The optimal algorithm is of course more efficient than
the original algorithm which may miss some solutions. For low bandwidth
(words/window) requirements the optimal algorithm can provide a solution
under roughly 10% higher load. Under higher bandwidth requirements, the
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Figure 4.28: Probability of successful allocation when 6 words are required in
a window of 12 slots.

gap increases to 30% .

In addition to being able to provide the requested bandwidthin more situations,
the enhanced algorithm can provide a more efficient solution, in that it requires
fewer slots to satisfy the requirement. The original algorithm always produces
sparse slot allocations which have a disadvantage in terms of header overhead.
In contrast, the enhanced algorithm always produces an optimal sequence of
slots, taking into account the header overhead.

The average number of slots used in the allocations that weresuccessful using
both methods is represented in Figure 4.31. The average is performed across
all loads. It is apparent that for low bandwidth requirements the difference is
minimal however the situation changes for the high bandwidth requirements
which have solutions with more densely packet slot tables.
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Figure 4.29: Probability of successful allocation when 8 words are required in
a window of 12 slots.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

  0   5  10  15  20  25  30  35

S
uc

ce
ss

 r
at

e

Occupied slots out of 32

Enhanced algorithm - 12/12
Classic algorithm - distance 2

Figure 4.30: Probability of successful allocation when 12 words are required
in a window of 12 slots.
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4.8 Related Work

The problem or routing in NoCs has been widely studied [ACPP06, DA93,
HM03, HM04]. Our algorithm is related to the routing problembut instead of
spatial allocation it deals with allocation along the time axis. It is expected to
be used in conjunction with an algorithm for route selectionin a TDM network
for latency optimization.

Our technique applies in general to NoCs using TDM, like Nostrum
[MNTJ04b], aSoC [LST00] and the TDM network in [WZLY08]. Although
some implementation details like the computation of headeroverhead are spe-
cific to the Æthereal implementation we believe that similarproblems arising
in other implementations could be solved by the same algorithm.

A related algorithm achieving both path and slot allocationis presented in
[TLZ09]. Different slot assignments schemes are evaluated, namely dis-
tributed, random and consecutive. However the method does not provide
latency bounds and does not target complex header overhead scheme found
in Æthereal.

The algorithm previously used to solve this problem is presented in [Han09],
we use this to compare the performance of our algorithm. An algorithm
improvement involving path rip-up and reallocation on top of the normal
Æthereal algorithms is presented in [SBG+08]. While we do not directly
investigate this technique we consider our algorithm to be compatible with
it.

An analysis of communication latency after the slots have been selected is
provided in [NHCG10], while [HWM+09] details the relation between com-
munication performance and the overall application behavior.

In a similar network implementation with more relaxed constraints on slot
alignment, a graph coloring algorithm is proposed by [LZT04] to solve a
slot allocation problem. Our algorithm is to a large extent motivated by the
restriction that in Æthereal slots need to be forwarded on the next link without
delay. However other TDM networks may choose to do this even when it is
not mandatory, in order to improve latency.

4.9 Conclusions and future directions of research

In this chapter we have analyzed the effect of slot selectionon communication
and application performance and we have proposed optimal algorithms for the
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problem of slot selection. Because our algorithms are optimal they can be used
as an absolute measure for the performance of previously proposed algorithms.

Our algorithms offer gains in terms of allocation efficiencyand thus network
performance at negligible cost (the only cost is an increased computational
load at design time.) If allocation is performed at run time,the previous
algorithm may still be preferable.

The slot selection algorithm is currently only targeting the single-path search.
In the iterative multi-path search it can be used without modifications to pro-
vide optimal slot selection with regard to bandwidth. If anyof the multi-path
algorithms is used, but restricted to only use same-length paths, it is possible
to use the same algorithm with only one modification in Equation 4.1 to take
into account the fact that consecutive slots on different paths need to repeat
the header. It might however be possible to integrate latency-based decisions
deeper into the path search algorithm, leading to further improvements.





Chapter 5

Online allocation

As the computation of the slot allocation in networks using the contention-free
routing model is fairly complex, it is customary to perform this computation
at design time. Connections can be set up dynamically at run time as needed
based on pre-computed tables. All usage scenarios consisting need to be taken
into account at design time when computing the allocation. This is suitable
for streaming applications, applications that have well-defined communication
behavior or applications that require guarantees for the communication perfor-
mance.

There are however classes of problems that do not have such a predefined
behavior, where communication is dynamic or dependent on the input data,
or do not require bandwidth and latency guarantees. These applications may
receive then network resources on demand, in the form of best-effort services.
However, supporting best-effort services in the form of a packet-switching
network implementation was shown to be very expensive [GH10], and packet-
switching in general is known to be less power efficient than circuit-switching
[KSWJ06, BWM+09].

We propose the implementation of Best-Effort like servicesover the existing
Guaranteed Throughput Circuit Switching network by performing the alloca-
tion of channels online, at run time. Channels allocated in this way do not have
the advantage of receiving guarantees from design time but they can make use
of whatever network resources happen to be available when they are requested
at run time. The allocation may also fail and the connection will have to wait
until more network resources become available.

In this chapter we present algorithms and a system setup for online channel
allocation. We demonstrate our method in an FPGA prototype based on

147
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the Æthereal network. The allocation algorithm is implemented in software
written in the C language. We measure its performance when run in FPGA on a
Microblaze embedded processor. We also demonstrate a hardware accelerator
that implements some of the more time-consuming computations and we offer
a blueprint for a fully hardware accelerated allocator.

This chapter is organized as follows: Section 5.1 presents general consid-
erations regarding channel allocation in Circuit Switching networks. The
data structures required by the allocation algorithm are presented in Section
5.2. The pathfinding algorithm is presented in Section 5.3. Various options
for bandwidth computation are presented in Section 5.4. A blueprint for a
fully hardware accelerated allocator is presented in Section 5.5. Experimental
results detailing the speed of the allocator are presented in Section 5.6. Related
works are presented in Section 5.7. Section 5.8 presents ourconclusions.

5.1 Channel allocation in Circuit switching networks

In a typical circuit switching network resources are allocated in a distributed
manner, using probes or setup packets. Each router has knowledge of the state
of the links it is connected to. A set-up packet travels through the network
incrementally, allocating the required bandwidth on each link it visits (Figure
5.1). The disadvantage of this method is that it is not possible to know
beforehand if the entire path to the destination is available, the path currently
being set up blocks the already allocated links until failure is discovered and a
mechanism to tear down the path must be provided. Measures also need to be
taken to avoid deadlock situations, which may result in routing restrictions.

Figure 5.1: Path reservation in a classic Circuit-Switching network.

By comparison, in our solution, the entire allocation is first simulated in a
processing node which has knowledge of the entire state of the network and
only then the path is reserved (hence clients must contact the central node
to request a connection). When a path is not found by the first attempt, the
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algorithm searches alternatives using a backtracking method until a path is
found or all options are exhausted. The algorithm running onthe central node
keeps track of the network state, including all connectionsallocated using
the design-time allocation method as well as the ones allocated using online
allocation.

5.2 Data structures

A routing algorithm requires knowledge of the underlying network topology
and available network resources. In this section we describe the data structures
used to represent this information. In all situations we opted for simple data
structures with minimal memory footprint and we selected data types with the
minimum bit-width that allows storing the necessary values.

The developed algorithms can be applied to any network topology by only
changing the static arrays that describe the topology. Although topology
specific optimizations would be possible we preferred usingtopology agnostic
algorithms at some cost in execution speed. We have chosen this option
because it does not affect actual algorithm complexity, butit only adds a small
overhead to computation due to unnecessary look-up operations (Figure 5.2).

Figure 5.2: All outgoing links of a node are enumerated by thepath finding
algorithm but the ones leading away from the solution are immediately dis-
carded.

We provide complete integration between the on-line allocation mode and the
classic design-time allocation flow used by Æthereal. We usethe same files
and file-formats at design time to generate the C code of the online allocator
and a compatible scheme of identifiers for the network interfaces and ports.

Both links and network nodes are identified by numeric IDs. Network nodes
are sorted by type, first network interfaces then routers. Links are considered to
be unidirectional (bidirectional links are stored as two separate unidirectional
links). Links are sorted by their source node. One table (dest in Figure 5.3)
stores the destination of each link. Another table (start) stores the first link
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in the table of links that belongs to each IP. The last entry inthis table marks
the end of the links table. This corresponds to the Compressed Row Format
[Pis84] for sparse matrix representation.

Figure 5.3: An example network and tables used to describe its topology, the
algorithms accept an arbitrary directed graph, although inpractice unidirec-
tional links appear in pairs with opposite directions.

The same numeric link ID used as an index in thedest table is also used as
index in theslotstable (Figure 5.3). Depending on the usage scenario, we can
have multiple slot tables, for example for offline (guaranteed) allocated slots
and for best-effort channels.

We also store a symbolic list of identifiers for debugging purposes. In our
FPGA prototype we can obtain debug information about the state of the
network and the allocation process, directly over a serial link connected to
a PC.

5.3 The path finding algorithm

The path finding algorithm we use is essentially the same as the Single Path
allocation described in Chapter 3 with several modifications meant to improve
performance:

• the recursive backtracking implementation has been replaced by a finite-
state-machine like implementation which does not make use of recursive
calls and thus avoids function calling overhead.

• for now, latency restrictions are ignored.

• the first solution found is accepted, without looking for better solutions.
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• the final stage of the algorithm, the slot selection is performed using a
simple greedy algorithm which selects the first available slots instead of
the more complex algorithms described in Chapter 4.

A formal description of the algorithm is given in Algorithm 5.3.1. A stack
is simulated by thelevel variable. The algorithm makes use of the following
tables: the list of link destinationsdest[linkId]; a table indicating the index
of the first link departing from a nodefirstLink[node] and the last link
lastLink[node] (in fact the two are implemented by a single table,start[] =
firstLink[], because in the list of links nodes receive consecutive ranges so
lastLink[n] = firstLink[n+1]−1; the two separate names were kept for clarity);
an array of distances from each node todestination, dist[nodeId]; a table of
available slots on each linkslots[linkId];

Exiting the search once a solution has been found or the search is to be
abandoned is also less costly using non-recursive approach. Overall we found
the non-recursive implementation to perform better than the recursive one.

5.4 Computation of the available bandwidth

Within the path finding, the most time-consuming operation is checking
whether enough words of data can be delivered by the available slots. This
is complicated by the Æthereal header usage scheme (Figure 5.4).

Figure 5.4: Header overhead in Æthereal.

In the following sections we propose and evaluate several methods of com-
puting the bandwidth delivered by a set of slots. The first method performs
an exact computation using a loop executed in software, the second method
is based on look-up tables and when headers are involved provides only an
approximation.
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Algorithm 5.3.1: Non-recursive exhaustive pathfinding
input : source anddestination nodes

requiredBw the required Bandwidth
output: Path fromsource to destination which satisfies the bandwidth constraints

will be found stored insolLink[1..level]

1 level← 1;
2 crtNode← source;
3 crtSlots← S;
4 crtLink← start[crtNode];
5 while level> 0 do
6 if crtNode= destinationthen
7 process solution;
8 break;
9 end

10 nxtSlots← shift(crtSlots) and notslots[crtLink];
11 crtDest← dest[crtLink];
12 slotsOK← bw(nxtSlots) ≥ requiredBw;
13 if dist[crtDest] ≤ allowedDistance− level∧ slotsOKthen
14 solution[level]← crtNode;
15 solLink[level]← crtLink;
16 avSlots[level]← crtSlots;
17 level← level+ 1;
18 crtSlots← nxtSlots;
19 crtNode← crtDest;
20 crtLink← firstLink[crtDest];
21 continue;
22 end
23 crtLink← crtLink+ 1;
24 if crtLink≥ lastLink[crtNode] then
25 level← level− 1;
26 crtNode← solution[level];
27 crtLink← solLink[level] + 1;
28 crtSlots← avSlots[level];
29 end
30 end

5.4.1 Exact bandwidth computation in a software loop

The exact computation requires sequentially testing the slot table twice. On
the first pass we determine the number of usable slots at the end of the slot
table. We need this in order to determine the position of headers in the first
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Algorithm 5.4.1: Exact computation of the available bandwidth
input : n size of slot table

s[0..n− 1] list of available slots,
a value of1 represents an available slot

output: Bandwidth in terms of number of data words per slot table revolution result

result← 0;
count← 0;
for i← n− 1 to 0 do

if s[i] 6= 1 then
break;

end
count← count+ 1;

end
if count= n then

// WHEN ALL SLOTS ARE AVAILABLE WE CONSIDER THE FIRST ONE TO HAVE

A HEADER

count← 0;
end
count← countmod3;
for i← 0 to n− 1 do

if s[i] = 1 then
result← result+ slotSize;
if count= 0 then

result← result− hdrOverhead;
end
count← (count+ 1) mod3;

else
count← 0;

end
end

Figure 5.5: Exact computation of available words.

group of slots (Figure 5.5). The method is described in Algorithm 5.4.1.

On the second pass, the groups of consecutive available slots are identified and
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the deliverable bandwidth is calculated. Because decisionlogic is necessary in
both passes the program is slow.

5.4.2 Bandwidth approximation using lookup tables

If the size of the slot table was very small it would be feasible to use a look-up
table to immediately determine the number of available words. The size of the
lookup table increases exponentially with the number of slots 2n. This is a
much less computationally intensive solution as it can provide the result with
a single memory access, but its disadvantage is a higher memory requirement.
For a realistic size of the slot table of 16 slots, the cost of the table would be
prohibitive.

A less memory intensive solution would be to split the slot table into groups of
slots of reasonably small size and perform a lookup operation for each group.
The difficulty is that in the networks that employ headers (Æthereal) we cannot
know for certain which of the slots have headers and which do not.

It is possible to assume conservatively that the all slots have headers. The
allocation algorithm would produce correct results, but itmay fail to find some
solutions which were feasible. We have computed that as an average over all
combinations of used and unused slots in a table of size 16, assuming that all
slots have a header underestimates the bandwidth provided by one slot table
by 15.5%. A more accurate solution is to assume that the first slot in a group
always has a header (Figure 5.6). This never causes overestimating the total
bandwidth provided by the set of slots and the difference to the real value is
only 3.3% on average when the size of a group is 6. A group size of 6 requires
a lookup table of only 64 entries.

Figure 5.6: Approximate computation of the available words.

In networks which do not have a header overhead, like the one we propose in
Chapter 6 the group-based lookup produces the exact result.
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5.4.3 A hardware accelerator for bandwidth computation

Most of the computations performed by Algorithm 5.4.1 are performed with
very small operands, for examplecountcan be represented with only 2 bits,
while for the variableresultup to 6 bits may be necessary. These computations
can be efficiently performed in a dedicated hardware unit having very low cost.

We propose and implement a module which performs the bandwidth compu-
tation in hardware. The module is described in Figure 5.7. Itfollows the same
logic as the software implementation, but it replaces most of the computations
with look-up operations.

For example the following strategy is used to compute the value ofcountat the
end of the first loop in Algorithm 5.4.1. Slots are organized in groups of three.
A block calledphaseindicates how many slots are available at the end of a
group and whether or not all slots are available. When all slots are available
the value ofcountmodulo 3 is taken from the previous block, if that block also
happens to have all slots available from the one before it andso on, using a
ripple type of logic.

Figure 5.7: Hardware module to directly compute the exact number of avail-
able bandwidth.

The bandwidth offered by each group of three slots is also computed using
look-up tables, but unlike the approximate computation previously described
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we also take into account thecountof slots module 3 before each block, thus
performing an exact computation. At the end, the looked up values are added
together.

FPGA synthesis in the Xilinx Virtex-6 technology of a moduleperforming the
computation on a table of 16 slots indicates a working frequency of 288 MHz
and an area utilization of 108 LUTs and 59 registers. The design is interfaced
with the Microblaze processor using the low-latency FSL links. The design
is pipelined, with 2 pipeline stages for the actual computation in addition the
ones necessary to interface it with the microprocessor.

5.5 A blueprint for a hardware allocator

In this section we provide a blueprint for a circuit implementing the entire
allocation algorithm described in Algorithm 5.3.1. While we do not offer a
synthesizable hardware description we model this circuit in enough detail to
allow us to estimate its speed. Being a circuit with a specialized function its
cost will be lower than the cost of a general purpose processor and its program
memory running the same algorithm in software.

We start with the following observations:

1. The state of the program is stored in 4 variableslevel, crtNode, crtSlots,
crtLink and a stack.

2. The algorithm has one loop in which the entire processing is performed.

3. Inside the loop, the program may branch on 4 possible paths, of which
one is only take once, when a solution is found.

The first way in which the hardware accelerated implementation can improve
on the performance of its software counterpart is by executing several opera-
tions in parallel.

In Figure 5.8 we represent in vertical columns the operations that can be
executed in parallel grouped by the branch they belong to, and from left to right
the scheduling of these operations based on their dependencies on previous
operations.

There are several operations that can be parallelized:

1. arithmetic operations: increment and decrement and comparison are all
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Figure 5.8: Operations in the algorithm that can be executedin parallel; code
references point to Algorithm 5.3.1.

performed on low bit-width operands, therefore having a dedicated unit
for each instruction would not represent a large cost

2. we use of course for the bandwidth computation the accelerated module
presented in section 5.4 which is pipelined and has a throughput of one
computation per cycle

3. arrays are independent and we assume they can be accessed in parallel;
no array is written in more than one place and we assume the stack is
implemented as a dual-ported memory which allows simultaneous read
and write access.

To further improve performance we make use of speculation. Speculation is
in general expensive, if it is used inside microprocessors,but in our case it
has almost no cost. We observe that the two longer branches rewrite the for
variable states anyway, so we could speculatively proceed with the shorter
branch and, if it turns out the decision was wrong, override the state variables
with the ones from the longer paths. The stack is only updatedby the longest
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path and it updates a stack element that is above the ones employed by the
other paths.

Figure 5.9: Operations in the algorithm that can be speculatively executed.

Figure 5.9 presents the operations that can be executed in parallel if speculation
is used. The number of instructions executing in parallel increases to roughly
20, although some of them will have to be discarded because ofwrong specu-
lations. It can be observed that none of the operations appears twice within the
same column.

The most convenient way to implement a circuit to achieve this parallelism is
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by having a separate pipeline for each execution path, as illustrated in Figure
5.10. Each level of speculation will occupy a different stage in each of the
pipelines.

Figure 5.10: Hardware module for accelerated path computation.

The decision logic at the end of each execution path controlshow the state
variables are to be updated. We did not represent here the pipeline stage
invalidation logic nor the initialization logic. The performance of the hardware
allocator will be estimated in Section 5.6.2 by running traces of the software
algorithm execution on a model of the pipeline.

5.6 Experimental results

In this section we evaluate the performance and memory requirements of our
online allocation algorithms. We evaluate both the software-only and the
software combined with the hardware computation of bandwidth proposed in
Section 5.4.3 by executing the program on an embedded Microblaze processor
in an FPGA prototype. The hardware accelerator for bandwidth computation
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was connected to the Microblaze processor through an FSL link. For the
high-level model of the fully hardware accelerated algorithm we perform a
performance estimation by simulating the delays of the internal pipeline on a
trace obtained from the software implementation.

We have evaluate the performance of the allocation algorithm on mesh network
topologies of size 4x4, 6x6 and 8x8. The number of slots we usein the
experiments is 16, the maximum number of requested words perslot table
revolution thus being 40. When the bandwidth computation isperformed in
hardware, the speed of the algorithm does not depend on the number of slots,
but the number of slots is limited to 32 because this is the width of the FSL
link.

Our performance measure consists in the number of cycles thealgorithm
needs before it can either find a solution or determine that anallocation is
not possible. We perform exhaustive search of minimal pathsas described in
Algorithm 5.3.1. It is possible to perform a search of longerpaths by increasing
theallowedDistancevariable but that may lead to an unacceptable increase in
the running time. It would also be possible to bound the computation time
by requiring the algorithm to give up after a certain number of attempted
paths. This can be achieved by forcing an exit out of the loop 5-30 in the
same algorithm.

The main factor affecting the duration of path computation is the distance
between the source and destination. When the network load iszero or close to
zero it is expected that the first path found gives a successful allocation. The
algorithm running time will then increase linearly with thepath length. This
behavior is confirmed by the experimental results in Figure 5.11.

One interesting fact is that the running time levels off or even decreases for
the larger path lengths. This is because the only nodes with such a high
distance are in the corners of the mesh. The path finding algorithm, not
encountering any obstructions chooses a path along the edgeof the network
where routers have a lower number of ports. Since the algorithm enumerates
all ports regardless of whether they are useful or not (Figure 5.2), fewer router
ports means a reduced running time.

It is expected that under network load, the running time of the algorithm
would increase. We generate network load (named here background traffic)
by allocating random connections until a certain average load is achieved. The
average behavior of the three methods with 10% background load is presented
in Figure 5.12. This represents an an average over all requested bandwidths.

It can be seen that the running time has significantly increased and furthermore
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Figure 5.11: Allocation time vs. path length, 8x8 mesh, 0% background traffic.

it is exponentially rather than linearly dependent on the distance. It may be
desirable in this case to limit the number of considered paths. If the algorithm
considers only one path instead of exhaustive search, the running time is
expected to return to the values in the previous graph, but the success ratio
will be severely impacted.

The combination of background traffic and requested bandwidth also has an
important effect on the running time. When the requested bandwidth is very
low and the background traffic is not extremely high, a path can be easily
found, almost as easily as in the case with no background traffic. If the
requested bandwidth is much higher than the one that could beaccommodated
by the network, the algorithm will determine quickly that noroute is possible.
The longest running times are obtained when the nearest the maximum allowed
for a successful allocation.

This relation between success rate and running time is confirmed by the ex-
periments in Figures 5.13-5.20 which present the running time and the success
rate as a function of requested bandwidth and distance for different values of
background traffic.
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Figure 5.12: Allocation time vs. path length, 8x8 mesh, 10% background
traffic.
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Figure 5.13: Allocation time vs. path length and requested bandwidth, 4x4
mesh, 10% background traffic.
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Figure 5.14: Success Rate vs. path length and requested bandwidth, 4x4 mesh,
10% background traffic.
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Figure 5.15: Allocation time vs. path length and requested bandwidth, 4x4
mesh, 20% background traffic.
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Figure 5.16: Success Rate vs. path length and requested bandwidth, 4x4 mesh,
20% background traffic.
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Figure 5.17: Allocation time vs. path length and requested bandwidth, 8x8
mesh, 5% background traffic.
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Figure 5.18: Success Rate vs. path length and requested bandwidth, 8x8 mesh,
5% background traffic.
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Figure 5.19: Allocation time vs. path length and requested bandwidth, 8x8
mesh, 10% background traffic.
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Figure 5.20: Success Rate vs. path length and requested bandwidth, 8x8 mesh,
10% background traffic.
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It can be observed how the peak of the running time graph is shifted from the
requested bandwidth of 34 words per slot table revolution inFigure 5.13 to 18
words per slot table revolution in Figure 5.15. This is caused by the increase
in background traffic which decreases the chances of successful allocation.

For the 4x4 network, path-finding computation remains in theorder of hun-
dreds up to thousands of cycles. To that is added the time needed for book-
keeping (keeping track of which slots are in use and which arenot), which is
also in the order of 100 cycles. As the time needed by Ætherealto set up paths
is also in the order of hundreds of cycles [HG07], the overhead of performing
allocation at run time is not particularly high.

For the 8x8 network the number of explored paths may need to belimited
in order to allow reasonable running times, especially whencommunicating
nodes are distant.

5.6.1 Memory requirements

The compact representation presented in Section 5.2 allowsus to provide a
complete description of the network topology with memory complexityO(n+
m) wheren is the number of nodes andm the number of links.

For a 4x4 mesh network the memory size used by the topology description is:

80 links× 1 byte/link
+ 32 IPs× 1 byte/IP
+ 13bytes (scalar data)
= 125bytes

For an 8x8 mesh network the size of the tables is:

352 links × 1 byte/link
+ 128IPs× 2 bytes/IP
+ 14bytes (scalar data)
= 622bytes

An array of distances (Figure 5.3) is used by the path-findingalgorithm. This
array is particularly problematic as its size isO(nm) (n rows andm columns)
wheren is the number of network interfaces andm is the number of network
nodes. Each rowi in this array represents the distance from all nodes to
network interfacei. Only one row at a time is necessary during the path-
finding process and this row could be recomputed as needed in order to save
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memory. When the topology of the network is regular, for example mesh, it is
also straightforward to compute these values on-the-fly instead of storing the
table. For a 4x4 mesh network the size of this table is 512 bytes while for 8x8
it is 8 Kbytes.

The set of available slots is stored in a packed format with one integer for
each link, one bit of that integer representing one slot on the link. This
provides a straightforward representation for up to 64 slots (the largest integer
size allowed by the MicroBlaze compiler). The advantage, inaddition to the
low memory requirements is that up to 32 slots can be manipulated at once
(the microblaze is a 32-bit processor, although the compiler allows 64 bit
arithmetic, operations will be split into multiple 32-bit instructions). Finding
a common subset of slots between two links can be done using an“and”
operation while advancing time by one slot can be performed with a shift
operation.

The size of a slot table in the 8x8 mesh scenario with 32 slots is 1408 bytes.

5.6.2 The speed of the algorithm completely implemented in hard-
ware

We estimate here the speed of the fully hardware acceleratedimplementation
of the algorithm presented in Section 5.5. For this purpose we extract traces
from the algorithm running in software, traces indicating all taken branches,
and we use the model in Figure 5.10 to compute the number of cycles required
by the computation.

There is an almost linear dependence between the speed of thesoftware
implementation and the estimated speed of hardware, affected only by the ratio
of execution of different branches and initialization times. Individual channel
allocation times using the hardware implementation (estimated) and the mea-
sured software implementation with bandwidth computationaccelerated one
are represented in Figure 5.21.

On average, the fully accelerated algorithm performes 19 times faster than the
one with accelerated bandwidth computation and 42.4 times faster than the one
without any acceleration (Figure 5.22).
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Figure 5.21: Speed of the hardware implementation vs. software implementa-
tion with accelerated bandwidth computation, 4x4 mesh, 20%utilization.

Figure 5.22: Average speed of all methods, 4x4 mesh 20% utilization.

5.7 Related Work

Dynamic time slot allocation in a TDM NoC has been studied before in
[MBD+05]. The paper reports allocation times in the order of 1000 cycles per
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hop on an ARM processor. This is deemed sufficient for an augmented reality
3d rendering application. The path-finding algorithms use agraph-splitting
approach like the one described in Chapter 3 and are only ableto deal with a
bandwidth requirement of one slot. The reported size of the network is a few
tens of routers.

In [MMB07], the authors propose runtime mapping of applications on a multi-
core design also supported by the Æthereal NoC. The path finding algorithm
employs as well a graph-splitting method. The algorithm running time is not
presented.

A hardware accelerated NoCManager to perform path-finding and allocation
is presented in [WF08]. The network architecture employed in that case is
simpler, not making use of TDM (the equivalent Æthereal configured with
only 1 TDM slot). The NoCManager was found to require 10 to 15 cycles for
the allocation of one channel.

In [tBHK+10], the authors discuss routing in the context of run-time appli-
cation mapping. Their experiments show that the failure in assigning tasks
to specific locations in the system has a high probability of resulting from a
failure in computing proper routing.

The assignment of virtual channels (or VCs) at run time in a NoC is discussed
in [KSWJ06]. Although the platform is different, the approach is similar: a
central authority assigns network resources (this time virtual channels instead
of time slots) to connections requiring service guarantees. The problem is
solved using a simple path-finding algorithm as it does not have to deal with
the more complex time-domain allocation we encounter in Æthereal.

The hardware acceleration of graph algorithms including the problem of the
shortest path is discussed in [Hue00]. The graph representation allows chang-
ing the graph connections at run time which can be used to account for the
reservation and the release of links. While the shortest path problem formu-
lation cannot be applied directly to produce allocations that require multiple
slots for the same connection, it can be used for single-slotallocations.

A hardware accelerated solution for the routing wires in FPGA designs is
presented in [DHW02] with reported speed-ups of 10x-1000x.This approach
could be used as well to compute single-slot allocations.

An FPGA acceleration of the reachability and shortest path problems is also
presented in [MHH02].
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5.8 Conclusions and future directions of research

In this chapter we have presented an online implementation of the allocation
algorithm which can be used at run time to dynamically compute the com-
munication channel allocations. Our implementation is optimized for low
resource usage and is able to properly take into account and avoid collision
with previoysly allocated communication channels.

We also present methods to accelerate in hardware one of the more expensive
operations of the allocation algorithm and we present a blueprint for a full
hardware allocator. We have found hardware acceleration toprovide a signifi-
cant advantage in terms of speed.

Our method currently targets only the single-path allocation algorithm. We
regard multi-path allocation as a promising direction for future research as the
allocation algorithm is capable of executing in polynomialtime.





Chapter 6

dAElite NoC Hardware
implementation

In this chapter, we propose a network on chip implementationbased on the
contention-free routing model. Based on the models introduced in Chapter 2
our network can implement Models 8-12 without a header overhead. The clos-
est implementation to our proposal is aelite [HSG09] (a light-weight version
of Æthereal) which supports Models 10 and 12 with a header overhead. We
call our proposal dAElite, as it uses distributed routing instead of the source
routing used by aelite.

The study of various network models in Chapter 2 indicates that less re-
strictive models offer potentially better performance. Our network improves
performance compared to aelite in three significant ways: itallows a finer
granularity of bandwidth division without increasing latency, it removes the
header overhead, and it allows multi-path routing at no additional cost. In
addition it supports multicast, which aelite does not.

The first performance gain comes from a finer granularity of the link bandwidth
division. In a TDM network, the granularity of allocation isgiven by the size
of the TDM table. A large TDM table results in more efficient allocation, but
it may increase the scheduling latencies as connections have to wait longer for
their allocated slot(s) in the TDM table. It would be possible to reduce the
scheduling latency by reducing the slot size, but in aelite this would increase
the header overhead. dAElite does not suffer from header overhead and as a
result can reduce the slot size, offering a better link division granularity for the
same absolute duration of a slot table revolution.

The second gain comes from the removal of the header overhead. aelite uses

173
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source routing for packets, which means the path taken by each packet has to
be encoded into the header of that packet. This results in a header overhead
between 11.1% and 33.3% as explained in Chapter 4. Not only that, but to
support long paths the header size or the link width may need to be increased.
dAElite uses a distributed routing model which does not require the presence
of headers.

The third performance gain is related to routing flexibility. The experiments in
Chapter 2 and Section 6.4 show that the allocation can be performed better if
communication channels are allowed to be routed over multiple paths. This is
somewhat analogous to adaptive routing in packet switchingnetworks which
may provide better load balancing by dynamically switchingpaths to use less
congested links.

In this chapter we will present the proposed NoC hardware architecture and we
will evaluate its performance. The rest of this chapter is organized as follows.
Section 6.1 presents the hardware implementation details the dAElite network.
The network configuration process is presented in Section 6.2. Section 6.3
presents how multicast is achieved in dAElite. The hardwarecost of and
performance of the proposed solution is evaluated in Section 6.4. Related
works are presented in Section 6.5. Section 6.6 presents ourconclusions.

6.1 Hardware implementation

In this section we present the hardware implementation of our proposed NoC.
We start by presenting an overview of a typical system based on dAElite, after
which we will give the details of the configuration infrastructure, the router and
NI architecture. All these elements were implemented and tested in FPGA.

6.1.1 System overview

A typical SoC platform based on dAElite is exemplified in Figure 6.1. dAElite
is a connection based network. For a master IP to communicateto a slave
IP over the network, a connection is set up between two network interface
shells, one connected to the master, the other connected to the slave. The
network interface shells have the role of translating the request between the bus
protocol spoken by the IPs and the packet format used by data while traversing
the network. This setup is similar to that of aelite (Figure 2.1 of [HG10]).

IPs are connected to the NI shells by lightweight local buseswhich have the
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Figure 6.1: Example dAElite platform instance.

role of either demultiplexing requests to different network connections at the
master side, or multiplexing requests from different network shells (and thus
network connections) at the slave side. This is because the network connec-
tions are long-lived and an IP can have several connections simultaneously
open to multiple other IPs.

The buses may be configurable, on the master side to select address ranges cor-
responding to each connection, on the slave side to select arbitration schemes
and priorities.

A typical usage scenario is that the required connections are set up before
starting an application or an execution phase of an application. The application
can use the configured connections during that execution phase without further
intervention to the network configuration. The connectionsare torn down once
they are no longer needed. Setting up and tearing down connection can be
done dynamically without affecting the normal operation ofthe system, i.e.,
an application can use existing open connections while others are being set up
and torn down.

6.1.2 Configuration infrastructure

The configuration infrastructure is used to set-up and tear-down network con-
nections by updating the contents of the slot tables inside routers and NIs, to
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set and read back flow control information for each connection, to perform the
synchronization of the slot counters inside NIs and routersand to configure
buses adjacent to the network.

We implement the configuration logic as a dedicated broadcast network with
a tree topology, with links running in parallel to a subset ofthe normal data
network links. This subset is chosen in such a way as to minimize the distance
from the configuration node to any of the network nodes.

One IP, by convention calledhost, has exclusive access to the configuration
logic. The host performs write operations to a configurationmodule. These
writes typically have a wide data width, e.g., 32-bit, compared to the width
of the configuration links. The configuration module thus serializes the data
words received from the host into several, smaller bit-width configuration
wordswhich are inserted at the root of the broadcast tree.

If the host does not need to send at one time as many configuration words as
are contained in a data word, it can perform “0-padding.” Theconfiguration
module will also send “0” values into the configuration broadcast tree when it
has no data to send.

The configuration tree provides of forward and a reverse paths. The forward
configuration path is of broadcast type. Each non-leaf node (always a router),
forwards all the configuration data it receives to all its downstream neighbors.
The NIs, being leaves in the tree, do no forward the incoming configuration
messages. They do however produce messages for the configuration of buses
using a different type of link. The configuration payload is deserialized into
wider 37-bit words which are then translated by an NI shell into the proper bus
standard transactions (DTL in our case) used by the configuration ports of the
buses.

On the reverse path in the configuration tree, messages converge toward the
configuration module. To avoid arbitration on the response path, the host only
issues one message requiring response at a time. In our case,the requests
requiring a response are read operations directed at the state tables of the NIs.

The requests and responses traveling through the configuration network take
the form of packets, the format of which will be presented in Section 6.2.1.

6.1.3 Routers

The structure of network routers is presented in Figure 6.2.Because we are
using a distributed routing mechanism each router containsa slot table to
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store the TDM schedule. Incoming packets are “blindly” routed (switched)
based on this schedule. A high operating frequency can be achieved because
no arbitration is required and the router does not need to examine the packet
contents.

The schedule for packet destinations, or more precisely thesource of each of
the outputs during each slot, is contained in a slot table. A counter iterates
circularly through this slot table and the selected row is used to control the
router crossbar. A configuration submodule, implemented asa state machine
is used for setting the initial value of the counter, as we will discuss in Section
6.2.4 and to update the contents of the slot table.

Figure 6.2: dAElite Router

On the configuration connections, the router simply copies the input value to
all of the outputs on the forward path and performs an “or” operation between
all inputs writing the result to the output on the reverse path.

Data is thus buffered twice inside the router: once after link traversal, and
once after crossbar traversal. The latency per hop is thus fixed to two cycles.
To simplify the network design, configuration data is also buffered twice at
each hop in the configuration tree. This allows the configuration links to be
treated in the same way as the data links when dealing with timing constraints.

6.1.4 Network Interfaces

Network interfaces have the role of providing connections over the network.
A network interface (NI) is connected using a network data link to a network
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router, and one or more links to network interface shells. Each link to an
NI shell supports a connection to another NI shell at the other side of the
network. NIs thus multiplex several communication channels having NI shells
as endpoints to a single network data link.

As specified by the contention-free routing model, the packets belonging to
different connections are inserted into the network only atspecific times. The
arriving packets are also forwarded to the proper NI shell based on their arrival
time, according to a strict schedule. The departure and arrivals schedule is
stored inside a slot table which is part of the NI. The slot table controls the
multiplexer and demultiplexer in the same way the router slot table controls
the router crossbar.

Figure 6.3 presents a diagram of the network interfaces. Thenetwork slot
table, same as the one of the router, is indexed with the valueof a circular
counter and is programmed by a configuration submodule. For each of the
data connections there are input and output FIFOs, credit counters for end-to-
end flow control and decision logic for enabling or disablingthe sending of
data from an input FIFO to the network.

Figure 6.3: dAElite Network Interface

Credit-based flow control is provided by the NI for each of theone-to-one
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connections going over the network (optionally flow controlcan also be
disabled on a per-connection basis). Two credit counters are used for each
connection. One credit counter keeps track of how many wordsof storage
space are available in the output FIFO at the other end of the network. An input
FIFO is only allowed to send data into the network if the valueof this credit
counter is different than 0 and the slot table indicates it isthe connections’
turn to send data. A second credit counter accumulates the number of words
that were delivered to the destination from the output FIFO.The value of this
counter is sent back to the other end of the connection in every slot allocated
on the return path and the counter is reset.

As connections are bidirectional, credits for one direction are sent on separate
bit-lines alongside data in the opposite direction. The separate credit lines and
data obey the same TDM scheme and there is actually no distinction between
the two at the router level. Other networks, like aelite [HSG09] send the
credits inside packet headers, but that approach is not viable here as dAElite
does not employ packet headers. The number of bit-lines transporting credit
information is configurable. To make better use of these lines, the value of the
credit counters is sent serialized, over the 2 cycles of a TDMslot. In our test
design, 3 wires dedicated to sending credit data are sufficient for sending the
value of a 6-bit credit counter during each slot cycle.

The configuration submodule is responsible for updating other network state
information like enabling or disabling connections, enabling or disabling flow
control for each connection, and reading or writing flow control information
to credit counters. It also identifies special messages which are destined to the
buses and deserializes them to the bus configuration shell.

6.2 Network configuration procedure

This section describes in detail the network configuration tasks. Special atten-
tion is given to the connection set-up and tear-down which isthe most complex
operation. We describe as well as packet format for the otheroperations and
we present our proposed method for synchronizing the slot counters inside
routers and network interfaces.

6.2.1 Configuration packet format

The configuration is performed using configuration packets,consisting of one
or more words, transmitted one per cycle over the configuration links.
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The configuration links have small bit-width that is equal tothe size of the
configuration words. To optimize the logic of the state machines governing
the configuration process, this width is selected in such a way that each of
the parameters listed below can be encoded in a single configuration word in
addition to one bit marking the command headers.

• a value uniquely identifying a specific router or NI, of size(log2N)
whereN is the number of network elements;

• two values identifying one input and one output port of a router or a null
entry, of size(2× log2(p+1)) wherep is the maximum number of ports
on any router;

• an NI port (connection) number or null value, and an additional bit to
indicate whether the input or the output slot table is to be updated, of
size (1 + log2(c + 1)) wherec is the largest number of connections
supported by an NI; and

• the value of a credit counter plus one indicator bit (which marks valid
response data), of size(1+ log2(b+1)) whereb is the size of the largest
buffer the counter must keep track of.

A configuration word size (including a one-bit marker for packet type flits) of
7 bits is sufficient for a network with 64 network elements (routers and NIs),
routers with an arity of 7, network interfaces supporting upto 31 channels and
buffer sizes of up to 31. From here onwards, we denote asconfiguration word
a 7-bit word transmitted on a configuration link.

The format of the configuration packet is illustrated in Figure 6.4. An end-of-
packet is implicitly marked by the beginning of a new packet,but can also be
marked explicitly. The configuration mechanism supports the writing of slot
tables, reading and writing credit information, writing status flags governing
NI behavior, and resetting internal TDM counters.

The first word in each packet indicates the type of configuration command.
The first bit is always zero for a command word. The packet formats for the
various operations are as follows (Figure 6.4):

For set-up and tear-down operations, the command word is followed by a list of
slots used at the destination NI, represented as a bit-mask with one bit per slot.
A list of the traversed Routers and NIs follows, each with a corresponding input
and output descriptor. Each affected NI/Router recognizesits own identifier (a
constant parameter defined at circuit design time) from the list and modifies its
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Figure 6.4: Format of the configuration packets.

internal slot table. The path set-up procedure will be described in detail in the
following sections.

Comparatively, the other configuration operations are simpler. For the reading
of credits, a header, the NI identifier (ID), the port (connection) number
are broadcast into the network and the addressed NI will recognize its own
identifier from the packet and will reply with the counter value over the reverse
configuration link. The response consists of the credit counter value and a bit
(an MSB of 1) that marks the presence of data.
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Writing of credits is similar, except after the port selector the new value of
the counter is sent. The addressed NI, once selected will keep watching for
port/value pairs. In this way, writing multiple credit counters of a single NI
can be done in a single configuration packet.

Writing to a bus programming port is again performed with a packet marked
by a distinctive header. The addressed NI will deserialize the received data to
the shell connected to the configuration port of the bus. We used this approach
for compatibility reasons with existing configurable bus implementations.

6.2.2 Setting up and tearing down connections

For setting up or tearing down a network connection, severaloperations have
to be performed:

1. setting up network paths;

2. initializing credit counters; and

3. initializing bus address decoders.

Steps (1) and (2) have to be performed for the both the requestand response
channels. Step (3) is the last one performed as it signals to the bus that it can
start using the connection for transferring data.

Connection tear-down can be performed in the following way:

1. the bus address decoders are reset;

2. the credit values are read back from the credit counters tocheck if all
data items have reached their destination; and

3. the request and response paths are torn down.

Step (1) ensures that no more requests will be pushed over theconnection
which is torn down. Step (2) is necessary to make sure that no packets
belonging to the connection that is being torn down are stillin-flight through
the network. Step (3) performs the actual path tear-down. Asan additional
safety measure to prevent packets being sent over half-torn-down paths, the
connection can be disabled using by setting a (per-connection) configuration
bit inside the NI.
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6.2.3 A path set-up example

We illustrate in this section step-by-step how a path set-upis performed.
Consider the system in Figure 6.5. We analyze the operation of setting up
a path from port 0 of NI10 to port 0 of NI11. The IP which has access to
the network configuration, which we call thehost IP, writes data words to the
configuration module. As the bit width of the dedicated configuration links is
typically lower than the data width of the bus, a single writefrom the host may
contain multiple configuration words (for this system 4), which are sent over
the configuration link by the configuration module.

Figure 6.5: Path set-up example.

The first configuration word is a header that informs all the network elements
that a path setup sequence will follow. It is uniquely identified by a most
significant bit with a value of 0 and the decimal value of 4 in the last 4 bit
positions. The next two configuration words contain a table of slots affected
by this path set-up operation. We assume here a slot table size of 8. The two
bits set to one in this example identify slots 7 and 4.
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Three cycles after starting the path set-up process (Figure6.6a), allowance
being made for whatever pipeline stages the configuration logic may contain,
the complete slot table has been registered at router R00, while routers R01 and
R10 have just recognized the path set-up header and entered set-up mode. This
is because each router has two pipeline stages on the configuration path, thus
delaying the configuration by two cycles for the next routersin the broadcast
tree. The configuration module, having emptied its serialization register is able
to accept one more data word.

The configuration words after this point are organized in pairs. The first word
in a pair identifies a network element while the second describes modifications
to the slot table of the identified element. The MSB of each word is set to
identify a valid configuration word. For the first word, a value of 1 in the
MSB-1 position identifies an NI while a value of 0 identifies a router. The ID
is stored in the least significant bits. For NIs the least significant bits identify
the port (connection) number and the following bit identifies the input or output
slot table. For routers, the least significant bits identifythe input port and the
immediately higher bits the output port.

The meaning of the configuration words in Figure 6.6a is the following: for
the defined slots, the input of the Network Interface NI11 should be forwarded
to channel 0. On the previous path segment, but one time slot earlier, router
R11 should forward data from input port 1 to output port 2.

After two more clock cycles (Figure 6.6b), the path set-up header reaches R11
and NI10, the slot table is registered in R10 and R01, and the first network
element identifier pair reaches R00. Because R00 does not recognize its own
ID in this pair, it ignores the pair but at the same time it rotates (bitwise) its
table of affected slots by 1 position.

Four cycles later (Figure 6.6b), after another 4 configuration words have been
transmitted, the table table of affected slots is finally stored by all network
elements, rotated by a different number of positions. So far, the network
element IDs in the configuration packets never matched the element IDs of
the traversed routers. The number of rotations in the slot table seems to
depend so far on the distance from the root of the configuration tree, but this is
misleading. The number of rotations actually depends on thenumber of path
elements in the received list that did not match the local network element ID.

Eventually a configuration word carrying the proper ID reaches the network
elements that need to be configured. In our case that happens simultaneously
for R10, R11, NI11, as shown in Figure 6.7.

In order to avoid configuring upstream nodes before downstream nodes, we
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Figure 6.6: Path set-up, slot table registered at the first router.

had to take an additional precaution: we need to verify that no path for data
exists that is shorter than the difference in configuration path length from the
root of the configuration tree. Optionally the enable-disable mechanism per
connection can be employed for the same purpose.

The update of the slot table is not performed instantaneously but through the
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Figure 6.7: Path set-up, slot table update takes place in R10, R11, NI11.

use of a counter, one slot table element is initialized each cycle. We preferred
this approach to reduce the cost of FPGA implementation. This implies that a
cool down period is necessary before another path set-up or teardown may
take place. A hardware cool down timer inside the configuration module
enforces this policy by delaying channel set-up packet headers as long as it
is different from 0. Other configuration packets are allowedduring this time
so the initialization of credit counters of bus address decoders can overlap with
the initialization of slot tables.

The list of traversed routers/NIs begins at destination to ensure that down-
stream routers are initialized before the upstream NI and routers start sending
packets. For each item in the list, the slot table which was sent in the beginning
of the packet is rotated by one slot so that all routers along the path, when they
recognize their ID in the list, already have the properly aligned table. It is not
mandatory that a packet contains a complete source-to-destination NI path,
independent path segments can be initialized as well. This can be used to set
up broadcast trees, for example.

Appendix B provides an example configuration program.

6.2.4 Slot counter synchronization

The dAElite network is at the logical level a synchronous network implementa-
tion, which furthermore relies on a notion of global time. This may in practice
be difficult to achieve [LSGB11] due to clock skew issues in large designs.
Nevertheless, studies have shown [BKVW03] that clock skew values in the
order of tens of picoseconds are achievable. Other approaches exist [HSG09]
that avoid the problem by offering synchronous behavior at the logical level
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while relying on a mesochronous or asynchronous implementation at the
physical level.

In this section, making abstraction of how the synchronization issue is solved
at the physical level, we show how to solve the issue of synchronizing the
slot counters at the logical level. To illustrate the synchronization problem,
consider the following scenario, illustrated in Figure 6.8. We use the following
simplification which allows us to explain the synchronization mechanism: as-
sume that the clock skew between neighboring nodes (nodes that are connected
by a network link) is sufficiently small to allow correct datatransmission
between the nodes and allow the node to agree on a common valueof the
current time slot when they exchange data. Over large distances between nodes
that are not connected using a link that is not required.

Figure 6.8: dAElite relaxed synchronous model.

This may be a reasonable assumption for a mesh network where links are short
and connect only physically neighboring nodes. The important aspect here is
that each router agrees on the value of the slot counter and isable to transfer
data to its neighbors. It is sufficient if this happens only from the logical point
of view, regardless of the physical implementation.

If the slot counter values were reset using a global reset signal, and that reset
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signal did not follow the same skew pattern as the clock, the reset signal will
inevitably be sampled on the wrong clock edge in one of the various clock
skew domains. (Figure 6.8 shows how an instantaneous reset signal which
does not follow the pattern of clock skews causes R02 and R03 to disagree on
the current slot number).

To solve this problem we provide a reset mechanism which follows the logical
view of network time. The reset signal is transmitted as a special packet
through the configuration network. This packet will arrive at the different
nodes in different clock cycles, but the logical delay is known (two cycles
per hop) and the nodes compensate for it by initializing their slot counters to
the distance to the root of the configuration tree. This solution also allows for
pipelined links which can be useful in achieving high frequency of operation.

Another advantage of this approach is that it allows resynchronizing the NoC
slot counters after a partial power down.

6.3 Multicast

dAElite offers a mechanism to achieve multicast that is bothsimple and
efficient. The TDM schedule in a dAElite router is implemented as a table
that specifies for each output port which input port should the data be taken
from during each cycle. Two (or more) output ports are allowed to use the
same input port as a source (Figure 6.9).

Figure 6.9: Multicast in dAElite

The multiple paths to the different destinations form a tree, rooted at the source
NI. This is more efficient and offers higher performance thanhaving separate
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connections from the source NI to all destinations because in the latter case the
bandwidth on output link of the source NI would need to be divided between
all the connections.

The initialization of multicast trees is made possible by allowing a configura-
tion packet to set up partial paths; i.e., paths that start ata router instead of a
source NI. In the tree, partial branches should be set-up first, before the “main
branch” which goes to the root of the tree. This is done to avoid the source
NI starting to transmit before the entire multicast tree hasbeen set up. In the
example in Figure 6.9, the partial path R01-R11-NI11 shouldbe set up first
and the path NI00-R00-R01-NI01 should be set up second.

All multicast destination shells will receive the same stream of messages and
will translate them into the same write commands on the destination buses. In
fact, depending on the IP/bus protocol, any kind of transaction or message can
be transported to all destinations.

One potential problem when using multicast is that the default flow-control
mechanism cannot be used (the source NI only has one credit counter for each
communication channel). The least expensive solution to this problem is to
guarantee that the destination bus can process the receivedmemory transaction
at the same rate that they are transmitted. In our scheme guaranteeing this is
made easier by the fact that the connection bandwidth can be set to a desired
value (with a certain granularity) by allocating more or fewer TDM slots to it.

6.4 Performance and hardware cost

Comparing NoCs is not straightforward as the services provided by two dif-
ferent NoCs may be different. Furthermore many of the solutions presented in
the literature only give details of the network routers which makes it difficult
to asses the cost of an entire network able to deliver the service level demanded
by an application.

The obvious target for comparison is represented by the Æthereal network,
with which dAElite shares the contention-free-routing based TDM model.
Several implementations of the Æthereal network exist, some of them support-
ing best-effort (BE) services in addition to the guaranteedservices. Supporting
BE services was found to be much more expensive [GH10]. aelite [HSG09]
inherits the GS-only model from Æthereal, and introduces the possibility of
using asynchronous and mesochronous links. From here onwards, we will
refer to the GS-only version of Æthereal as aelite, without any implications
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to a particular asynchronous or mesochronous link implementation scheme.
We dedicate the largest part of the cost and performance evaluation to the
comparison with aelite.

We have verified our design using Microblaze processors as the IPs in Figure
6.1, both by running in FPGA and visually inspecting the waveforms in sim-
ulation. We have specifically verified the proper functioning of the following
operations:

• Network configuration, link set-up and tear-down, setting status flags,
setting and reading credit information

• Normal reads and writes from the Host IP to the remote memories

• Broadcast writes from the Host to both remote memories

• Configuration of a remote bus

• Read and write from secondary IP after its bus has been configured

6.4.1 Hardware cost

The hardware cost of dAElite compared aelite is presented inTable 6.1 and
Figure 6.10. Both implementations consist of 2x2 mesh networks, with 4 NIs
and 4 connections. The sizes of the FIFOs implementing the queues inside NIs
have been set to 16 words except for the aelite configuration channels which
use the minimum required size of 3 words on the forward path with 8 words
on the return paths. dAElite uses the dedicated configuration infrastructure.
We believe the FPGA implementation can be further improved by taking
advantage of FPGA specific structures to implement slot tables and FIFOs.

For the FPGA implementation using the Xilinx tools, we performed runs
with both area and speed optimizations. For the ASIC implementation we
did not perform time-constrained synthesis as timing is more likely to be
dictated by floorplaning which we did not address. We performed instead two
synthesis runs, one with preserving the individual components and one with
design flattening and high optimization settings. The cost of each hardware
component is presented in Figure 6.11. The bulk of the cost isin the network
interfaces due to the relatively large FIFOs.

For the routers, the gain of our implementation is on accountof the reduction
in flit size to 2 which eliminates one register per router channel. A multiplexer
per channel per router is also eliminated as we do not need to shift routing
information in packet headers. We add instead more complex configuration
logic and a slot table.
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Table 6.1: Hardware cost comparison.

Figure 6.10: Hardware cost comparison.

Compared to aelite, our NIs benefit from a simpler configuration mechanism
which uses a state machine connected directly to the configuration infras-
tructure, instead of interpreting requests on a DTL bus (aelite uses a regular
network channel for configuration, followed by a shell translating the configu-
ration messages into DTL bus transactions.) Further area gains originate from
the removal of the table of paths inside the NI, and some of theconfiguration
buses.

The cost of dAElite is more sensitive to the size of the TDM wheel. The slot
tables inside the NIs need to contain entries for both departures and arrivals
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Figure 6.11: Hardware cost breakdown.

whereas in aelite they only contain entries for departures.Additionally, slot ta-
bles are present in each router. We expect, and we confirm experimentally that
the cost increases linearly with the number of slots. It is expected therefore that
as the number of slots is increased the hardware cost of dAElite will increase
relatively to aelite. We performed additional synthesis runs to determine the
point where the cost of dAElite becomes higher than that of aelite. We found
that point to correspond to a TDM table size of 70 (Figure 6.12). In practice
we do not expect to use TDM table sizes larger than 32 slots.

On the other hand, the cost of dAElite increases less than that of aelite with the
number of connections, because a path per connection is not stored inside the
NIs (the path is stored in a distributed manner inside the router slot tables).
Our setup, which uses a relatively low number of connectionsprovides a
conservative estimate of the hardware area benefit of dAElite.

dAElite has one disadvantage, namely a 20.8% increase in thenumber of link
wires, in part due to the configuration network, and in part because of the
separate wires for end-to-end credit communication. Thereis a slight variation
in overhead across topologies and sizes, because the configuration network is
only a subtree of the original topology. For example, on a 4x4mesh the wire
overhead stands at 19.1%. The relative overhead would decrease if wider links
were to be considered.
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Figure 6.12: Dependence of the hardware cost on the number ofslots

6.4.2 Configuration time

In our proposal, the path set-up time is only dependent on path length as all
slots reserved for a connection are configured at once, for each one of the
routers on the path.

We present the results of experiments in Table 6.2. All results are expressed
in cycles. In both cases the configuration code is written in Cand compiled
with maximum optimization. The ideal value reported for aelite is taken from
[HG07] and represents the configuration delay without taking into account
processor execution time of the configuration code, but onlythe actual read and
writes. In aelite, the path set-up time has a small dependence on the distance
from the host to the source and destination of the path, and toa larger extent
to the number of slots reserved on that path, as the slots in the source and
destination NIs are reserved separately.

The ideal value for our proposal is computed analytically from the number of
configuration words that are being written in each case to which the cooldown
latency was added.

The improvement in set-up time compared with aelite is due tothe following:

• overheads are reduced: the original implementation used DTL transac-
tions encoded into packets;

• we avoid transmitting redundant information, the slot tables at the in-
termediate nodes are generated by rotating the slot table atdestination;
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Table 6.2: Configuration times

and

• the configuration bandwidth is not dependent on the slot table size and
the number of slots allocated to configuration. A dedicated infrastruc-
ture is less expensive than implementing the same functionality over a
generic network.

Our FPGA experiments indicate that dAElite configuration isroughly one
order of magnitude faster than aelite.

6.4.3 Performance

dAElite has several advantages in terms of performance compared to aelite.
The primary sources of performance increase are the ones described in the
beginning of this chapter:

A) Bandwidth division granularity can be improved without increasing the
slot wheel revolution time. In the current implementation (a slot size of 2)
the ratio between the granularities of the two solutions is 2/3, thus a slot
table of 24 slots in dAElite will have the same period as a table of 16 slots
in aelite. It is also possible to decrease the slot size to 1 resulting in a factor
of 3 improvement.

B) The header overhead is eliminated. Sending headers with each packet
when the schedule was in fact static is indeed wasteful both in terms of
bandwidth and energy. The header overhead in aelite is between 11.1%
and 33.3% depending on whether consecutive slots are used bythe same
communication channel or not.

C) dAElite allows multi-path routing without any additional hardware over-
head on any number of paths. Multi-path offers more freedom to the
routing computation and may allow a more efficient allocation.
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The total improvement, and the improvement due to each of thethree sources
is quantified in Table 6.3. The experiments setup used here isthe same as the
one presented in Chapter 2. The traffic type is random traffic,the slot table
sizes are 16 and 24, the number of connections is 1.5 per IP andthe number
of IPs matches the number of network interfaces which in turnmatches the
number of routers.

The three sources of improvement may interact with each other. We analyze
all combinations of the three sources and report the minimumand maximum
(from all combinations, average value per topology). More explicitly, the
improvement of A is measured in the presence and absence of B and/or C
and we report the minimum and maximum out of all combinationsof B and C.

Table 6.3: Performance improvement in dAElite compared to aelite

The proposed implementation presents other performance benefits as well.

D) In aelite the configuration takes place over the normal network connections
and a certain bandwidth over these connections is “consumed” by the
configuration channels. At least one slot over each NI-to-Router and
Router-to-NI link needs to be dedicated to configuration which results in
an overhead of 6.25% assuming a slot table size of 16. BecausedAElite
uses a dedicated configuration network, this overhead does not exist in our
case.

E) Router traversal time is decreased in dAElite, as the dAElite router has
only two pipeline stages (one after the link traversal and one after the
crossbar traversal). Performance is not degraded as headerparsing is also
eliminated from the router, eliminating the need for the extra pipeline
stage.

F) Our proposal also provides a mechanism to synchronize theTDM wheel
clock across Routers and NIs based on our broadcast configuration mech-
anism. This can be used for example to wake up from sleep states.

All these improvements stack up, making dAElite a more attractive solution.
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6.4.4 dAElite compared to other NoCs

We compare here the cost of the dAElite to the cost of other networks on
chip reported in the literature. A conclusive comparison isdifficult to perform
because the different NoCs support different features and furthermore most
publications only report the cost of the routers while our proposal consists of
an entire NoC, including the interface to IPs. dAElite compares favorably in
terms of router hardware area cost but the bulk of the cost is concentrated in
the NIs. Nevertheless we present here a comparison using theavailable data.

We have synthesized our design in TSMC 65 nm, 90 nm and 130 nm. We
report the area after synthesis in Table 6.4, compared to other values of the
router area reported in the literature. We do not report timing as we expect it to
be more affected by other factors like length of the links. Weexpect dAElite to
perform well in terms of operating frequency as it allows arbitrary pipelining
of links and it lacks complex decision logic like arbiters.

A solution similar in concepts and functionality to dAEliteis the one proposed
in [BWM+09]. Same as dAElite, it makes use of a separate configuration
network but it is based on a SDM scheme instead of TDM. The result is roughly
6.7 times more expensive but it offers more routing flexibility. (in SDM any of
the 4 lanes of an input port can be forwarded to any of the 4 lanes of an output
port, but in our TDM scheme, one TDM time slot can be forwardedonly to the
immediate next time slot).

6.5 Related work

Many NoC implementations, either connectionless or connection-oriented,
have been proposed in the literature. These networks may offer both Best-
Effort (BE) and Guaranteed Services (GS). Networks on chip as SPIN
[ACG+03], xPipes [BB04], qNoC [BCGK04], SoCIN [ZS03], artNoC
[SLB07], Quarc [MMV09] and [SHG10], implement a connectionless packet
switching approach. QNoC implements quality-of-service through the means
of prioritized traffic classes, but the guarantees offered are at best statistical.
ArtNoC has support for multicast but only from one node at a time. Support
for multicast is also provided in [MMV09, MNTJ04b] and [SHG10]. Another
approach is BENoC [WCK08], which uses a bus to complement theservices
of the NoC. While the NoC would provide high data throughput,the bus would
provide low latency messaging, multicast and broadcast. Compared to BENoC
the advantage of our approach is that we can provide high-troughput multicast
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Table 6.4: Cost of a dAElite router compared to other implementations

16-bit 5-port router, 130 nm technology:
artnoc [SLB07] 2-flit buffers, 4 Virtual Channels 0.060 mm2

Wolkotte [WSRS05] circuit switched 0.050 mm2

Wolkotte [WSRS05] packet switched 0.180 mm2

dAElite router 0.016 mm2

16-bit 4-port router:
Mango [BS05] 120 nm, 8 Virtual Channels 0.188 mm2

dAElite router 130 nm 0.020 mm2

32-bit 8-port router, 130 nm technology:
Quarc [MMV09] (not full 8x8 crossbar) 0.063 mm2

dAElite router 0.053 mm2

36-bit 8-port router, 130 nm technology:
SPIN [AG03] (not full 8x8 crossbar) 0.240 mm2

dAElite router 0.057 mm2

5-port router, 90 nm technology:
Banerjee and Wolkotte [BWM+09], 4 SDM lanes
16 bit/lane

0.108 mm2

dAElite router 64 bit links, 4 TDM slots 0.016 mm2

32-bit 4-port router, 130 nm technology:
xpipes lite [SAC+05], 4 stages output buffer 0.091 mm2

dAElite router 0.020 mm2

and more multicast connections operating in parallel.

Connectionless packet switching NoCs typically do not offer latency and
bandwidth guarantees, thus we do not discuss them further. In the following
we comment on the connection-oriented, circuit-switchingNoCs, as they are
similar to dAElite. Among these we give special attention to[GDR05], as it is
the closest approach to ours.

Æthereal [GDR05] is a hybrid network offering both Best-Effort and Guaran-
teed Services. Æthereal supports three routing models, distributed routing with
BE configuration, source routing with BE configuration and source routing
with GS configuration. More recent studies [GH10] suggest that the BE
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versions are not very cost-effective. For guaranteed services, Æthereal makes
use of a routing model called contention-free routing in which each connection
may use a link in a given timeslot. Channel trees [HCG07a] enhance the
performance of this basic scheme, by allowing sharing of timeslots between
channels, i.e., connections. This sharing may render invalid the service guar-
antees per connection, thus are not discussed further.

[RDP+05] proposed the implementation of multicast in Æthereal using sepa-
rate connections. dAElite uses instead a broadcast/multicast tree to achieve the
same result. Our solution is more efficient since it avoids both using separate
channels inside the NI and using the link bandwidthn times, one for each of
n destinations. Compared to Æthereal, we also use a more efficient, low-cost
connection set-up mechanism. The connection state is stored inside all network
elements in a distributed manner and the network configuration mechanism
is centralized. Moreover, aelite requires a separate data connection over the
network to configure the buses around the NoC. dAElite programs these buses
through a broadcast mechanism, leading to faster configuration.

A network very similar to aelite is TTNoC [PK08] which also uses contention-
free routing but claims to offer more freedom than a fixed, periodic TDM table.
The network supports multicast but because source routing is used we expect a
significant overhead in encoding the multicast trees in the packet headers. An
earlier version of TTNoC [Sch07] used distributed routing,but was tied to a
ring topology. This implementation supported a broadcast operation.

Another network that uses a TDM scheme to provide guaranteedbandwidth
is Nostrum [MNTJ04a]. Nostrum does not have a fixed TDM wheel size, but
instead, the TDM period is linked to the length of looping connections. Mul-
ticast is supported by adding more receiver nodes to a closedloop. Nostrum
also offers BE communication using deflection routing. One disadvantage of
Nostrum is that routing paths, and consequently multicast node sets, must be
decided at design time.

The network proposed in [KSJW06] uses per-connection virtual channels
(VCs) and round-robin arbitration to provide communication guarantees. VCs
are in general expensive as they require buffers, multiplexers, demultiplexers
and separate flow control. The number of VCs per router suggested by the
authors due to cost concerns is of only 4 which may limit the number of
simultaneously supported connections.

aSOC [LST00, LLTB03] implements the same type of static TDM schedule
found in Æthereal, but it does not implement the actual end-to-end connec-
tions, leaving this task to the IPs.
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MANGO [Bje05] is an asynchronous network implementation that uses, as
[KSJW06], per-connection virtual channels. Since the network is clockless,
there is no actual TDM table. Like Æthereal, connection setup is provided by
using a Best-Effort network.

Another possibility for link sharing is SDM, used by [WSRS05]. Like our
implementation, it makes use of an external network for route configuration,
but it does not explicitly specify how this network is implemented. Reported
configuration times are higher than those of dAElite.

Some implementations like SoCBUS [LWS+02] do not share the link between
connections. This approach has a very low cost but it may result in excessive
blocking.

Table 6.5 summarizes the related approaches to several aspects of the NoC
implementation. One key differentiator is the type of routing employed which
also has implications on the location where the connection state is stored.
Source routing encodes the packet path in the header of the packet while dis-
tributed routing relies on separate routing decisions at each hop. We consider
source routing to be too expensive for multicast and broadcast especially if
small packets are considered, thus dAElite utilizes distributed routing.

Our proposal provides a unique set of features, namely multicast, multi-path
routing, a low cost contention-free routing model and distributed routing, along
with an improved performance/cost ration compared to the state of the art.

6.6 Conclusions

In this chapter we have proposed a network implementation which supports
some of the less restrictive models that we have proposed in Chapter 2, in this
way allowing better performance.

Our proposal improves upon the state of the art in terms of cost and perfor-
mance. In particular, compared to aelite, which is the closest model we have
the advantage that our proposal supports multi-path routing and multicast, it
does not have a header overhead and it allows a finer-grained link bandwidth
division without increasing the scheduling latency. We have achieved this
by storing the slot tables in a distributed manner inside routers as well as
network interfaces and by employing a lightweight and efficient configuration
mechanism which also significantly improves connection set-up time.



Chapter 7

Bandwidth efficiency and Latency
hiding

While in the previous chapters we have focused on maximizingthe raw band-
width provided by the network, in this chapter we analyze howthis bandwidth
is translated into services offered to the the end-user or more precisely to the
IPs connected to the network.

The services provided to the IPs are built on top of the network services in a
layered approach similar to the one of the OSI Protocol Stack[HG09, HG10].
We illustrate this in Figure 7.1. The network provides pure transport of
data between different locations on the chip, but it is not concerned with the
meaning of this data. On the other hand IPs expect services with memory
operation semantics, i.e., memory read and write operations. In-between is
found a layer which translates the memory operations into messages.

The modules performing this translation are called (Network Interface) shells.
This is a common feature of aelite and our network proposed inChapter 6,
dAElite. Connections are set up between a pair of Network Interface shells,
one translating the memory request to a network message, theother translating
the message back into a memory request. Connections have a long lifetime, a
connection is used to perform many memory operations beforeit is torn down.

Optionally, in-between NI-shells and IPs, a demultiplexerbus sends the request
to the NI shell corresponding to the desired destination. This bus exists if an
IP can communicate to multiple destinations over the network. At the other
side of the network, an optional multiplexer bus arbitratesbetween incoming
request from different sources.

In this chapter we focus on the translation layer between IPsand the network.

201
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Figure 7.1: Correspondence of OSI layers to the Æthereal implementation.

We propose three optimizations that target the translationprocess taking place
inside the NI shells. Two of the optimizations are transparent from the point of
view of the IP while another one requires the explicit changes to the software.

The first optimization consists of performing automatic write coalescing. Au-
tomatic write coalescing improves network bandwidth utilization, as it will be
shown in Section 7.1. The second optimization, which we detail in Section 7.2,
consists of a mechanism to perform posted writes while preserving memory
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consistency. The third provides a hardware mechanism to support software
prefetch in an IP where this functionality was absent. The prefetch operation
is also supported at the level of NI shells and it is presentedin Section 7.3.

We also demonstrate interoperability between different bus standards at the dif-
ferent ends of the network. Network interface shells translate memory requests
received from a master IP into an internal common message format. After
traversing the network, the messages are translated by network interface shells
into the specific format (bus protocol) understood by the slave IP, regardless of
whether this protocol is the same one used by the master IP or not.

All our proposals were implemented in VHDL and tested in FPGA. Our
prototype used an instance of the Æthereal network with our own custom
designed network shells a Microblaze processor as a master IP and a memory
as a slave IP. Interfacing was performed on the busses using the Processor
Local Bus (PLB) and Fast Simplex Link (FSL) protocols. Section 7.4 presents
the experimental results showing the performance improvement of each of our
proposed techniques.

7.1 Write coalescing

Memory transactions, encoded as messages, traverse the network in a serial-
ized fashion, with headers, addresses and data sharing the same bandwidth.
Longer messages, with multiple words of data for a single header/address pair
would thus have better payload efficiency.

Burst transactions on the bus side correspond to such messages inside the net-
work, however, not all IPs have the capability of generatingburst transactions.
The instruction set of the MicroBlaze soft-core does not provide an instruction
to write to memory more than one word at a time, and this is truefor many
other simple IPs also.

We automatically identify sequences of write operations toconsecutive ad-
dresses and combine them into a single message for the purpose of traversing
the network. At the destination NI shell these messages can then be split again
into individual write operations or optionally they can be served directly to the
destination bus if burst transactions are supported.

We perform this write coalescing as long as the addresses areconsecutive, the
burst length has not reached the maximum value, 32 for the message format
we are currently using, and there is data in the outgoing network queue. This
last condition is to ensure that we are not unnecessarily delaying messages and
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to avoid deadlock.

A diagram of the NI shell we implemented is found in Figure 7.2. The
shell uses several independent queues to store the data, theaddress and the
headers. Data is copied from the PLB bus to the send queue whenever a write
transaction is accepted, new headers and address are copiedto the header queue
whenever a transaction cannot be merged with the previous transaction or the
network is idle and the current transaction can be processedimmediately.

Figure 7.2: NI shell supporting burst write.

It would also be possible to implement the same functionality for read transac-
tions, however the Microblaze processor always stalls until a read transaction
is complete thus making this feature useless.

For comparison, the NI shell without burst or posted write support (Figure
7.3) consists of a simple serializer shifter. The entire request message is
generated in a single cycle when accepting a request from thebus and is sent
to the network word-by-word in the following cycles. Because all requests are
blocking, additional queues would not provide any benefit.

7.2 Posted writes and memory consistency

Memory consistency is a term used to describe the expected system behavior
with regard to the order in which memory writes are visible tothe different IPs
in the system. In general a stricter memory model provides more guarantees
regarding the order of memory operations thus making the programmer’s job
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Figure 7.3: NI shell without burst or posted write support.

easier, but makes the hardware implementation more difficult and less efficient.

The strictest consistency model in use is the sequential consistency [Lam79],
which requires that the memory operations of each individual processor, as
seen by the other processors in the system appear to execute in the order of
specified by the processor’s program. Any particular interleaving between the
instructions of different programs is allowed, but the sameinterleaving shall
be seen by all processors or processes. This is essentially the same result
that can be expected from multiple threads running on a single processor, and
studies indicate that this is the behavior programmers expect from the machine
[AG96, Hil98].

We first present a basic hardware implementation that would provide sequen-
tial consistency, then show how the requirements can be relaxed to allow
performance optimizations. We assume from the beginning anarchitecture
where memory requests, both read and writes can be pipelined, but the ordering
of requests, even between reads and writes is preserved within the pipeline. It
must be mentioned that allowing reads to bypass writes is sometimes accepted
as an optimization [Goo89], reads being considered more important, as the
reader process was likely stalled waiting for data. Although we do not accept
reordering of normal read operations with respect to write operations, we allow
it for prefetch reads as it will be explained in the followingsection.

Despite the fact that our architecture does not employ caches, and the system
seems to maintain ordering of requests, consistency problems may still arise.
Consider the following scenario involving a transfer between a producer and a
consumer of data, represented in Figure 7.4. The producer (node A) generates
data items and places them in some memory location, for example in external
memory. Upon completion, it signals to node B that the data isready to be
processed.
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Figure 7.4: Consistency issues raised by signals arriving at different destina-
tions with different delays.

Because the NoC allows messages with different destinations to travel inde-
pendent of each other, it may be possible for the confirmationmessage from
A to arrive while the data is still queued waiting to be written to the memory
[LVG10]. An attempt by B to read the data through its own connection to the
memory would return stale values. Not only it is easy to see that this produces
an erroneous program behavior, but it does that by breaking the assumptions
of sequentiality, which required that the confirmation message, for example a
write operation to a specific flag in memory, would be seen by B strictly after
the write operation to main memory was completed.

One possible solution would be that all write operations need to be confirmed
(non-posted writes), preventing A from sending a message toB before the
previous operation has been completed. Unfortunately, this would completely
prevent pipelining, resulting in a severe performance penalty.

Our solution consists of performing posted writes (write operations which are
acknowledged at the source without waiting for confirmationfrom the target),
but keeping track in the NI shell of which write operations have been confirmed
and which have not been. Future writes to different destinations will be stalled
until all pending writes have been confirmed, in other words,consecutive
writes to the same destination are pipelined like posted writes but writes to
different destinations behave like non-posted ones.

Let us analyze why this ensures sequentiality. The sequential consistency
model required that from each process’s point of view, all memory accesses in
the system seem to take place in the same order, with an arbitrary interleaving
of accesses belonging to different processes, but maintaining the program order
for accesses of each individual process. This order is not necessarily the order
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given by the physical time of issue of each access, but in our case it can be
chosen as the order of physical time of completion of each access (the physical
read or write to each memory). Because we did not allow the reordering of
write operations in each pipeline and all messages between two nodes travel
on the same path, writes to one memory from one specific processor will occur
in program order. Because our system waits for completion confirmation when
switching between different targets, writes to memory B that occur in the
program after writes to memory A will also take place physically later in time.
It is necessary for the same to happen for read requests so ourmechanism also
enforces this.

It is possible to further relax these restrictions to allow higher system perfor-
mance. For example when one memory is not read by any other process, like
it might be the case of a video frame-buffer, it is not necessary to order the
accesses to that memory with respect to accesses to other memories. It is also
possible to emulate the behavior of other consistency models by only partially
connecting the command signals used to block some memory accesses until
accesses to other modules have completed and mapping synchronization vari-
ables to specific memories, Figure 7.5. We can for example implement the
weak consistency model [DSB98] by mapping synchronizationvariables in
one memory and enforcing sequentiality between that memoryand each of the
data memories, but not among data memories. A consistency model similar
to the Release/Acquire model [GLL+90] could be implementing by splitting
the synchronization memory in two separate memories and enforcing only one
way ordering between accesses to these memories and the datamemories, for
example an access to Acquire must complete before an access to Data, but not
the other way around.

Figure 7.5: Emulation of a weak consistency model.
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7.3 Software prefetch

The previous proposals are transparent from the point of view of the software
developer. Except for the variation in performance, the system behaves no
differently from a system with only local memory, even the introduction of the
NoC between an IP and its memory is completely transparent. The following
proposal however introduces a feature that needs to be explicitly used by the
programmer, and in some cases requires a significant rewriteof the software.

Networks on chip and large scale interconnects in general have a higher latency
than back-to-back connections. Given that, it is natural that we look for ways
to cope with that latency. While posted writes provide an efficient method of
dealing with write transactions, for read transactions we do not have a similar
solution. Processors providing out-of-order execution mitigate the problem
to some extent by allowing other instructions to continue while data is being
fetched from memory. This type of approach though is expensive and not often
predictable.

In our system we opt for introducing an explicit command to bring data from
memory some time in advance before actually being needed (prefetch). Note
that, unlike other prefetch implementations, the data is not used to update a
local cache from which it can be later read using a normal readinstruction, but
instead is deposited in a queue from where it needs to be explicitly read by
the program. The technique can be seen as a software split transaction, where
the request for data is decoupled from the receiving of data.Example code is
provided in Figure 7.6.

Figure 7.6: Example prefetch loop compared to original code.

In the modified code, one or more data items are requested prior to entering the
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main processing loop (line 6). In each loop iteration, more data is requested
in advance (line 9) with care being taken to not exceed the limits of the actual
input. Data from the previous requests which should have already arrived in
the buffers is then retrieved in line 10.

The hardware necessary to support the prefetch mechanism consists of an NI
shell connected to the FSL bus of the MicroBlaze processor (Figure 7.8).

The shell behaves as a processing FIFO, accepting at the input port memory
read requests and delivering at the output port the retrieved data. The shell
accepts additional commands to configure the size of burst reads.

All prefetch operations are under explicit control of the program, which may
also have to ensure ordering with respect to the normal read and write opera-
tions. Currently the code must be manually edited by the software developer,
which is also what we did in our experiments. Although in principle it might
be possible to offload this task to the compiler for example, this task is far
from trivial and is complicated by consistency issues especially in multi-core
systems [SKKC09].

All our proposals were implemented and tested in FPGA. The hardware cost
of the implemented shells relative to the size of the entire system is presented
in Figure 7.7. In our test system, the prefetch module was connected to a
dedicated NI kernel, thus doubling the size of the interconnect, however in
practice this would not be necessary. The optimized shell implements both the
burst and posted writes.

7.4 Experimental Results

We have performed our tests on three similar systems, all having the structure
presented in Figure 7.8. For the main PLB target we have substituted three
different NI shells, one performing only non-posted operations, one capable
of performing posted writes with the described safety mechanism, and one
performing both burst coalescing and posted writes. The FSLinterface was
always present, but since its use is always explicit, we specify through the
MicroBlaze program whether it should be used or not.

Our tests involved only one processor, however we simulate the effects of
having multiple processors by allocating only a fraction ofthe link bandwidth
inside the network. For a fair comparison, in the tests whereboth the FSL
and PLB link are used, we restrict the total bandwidth for both links to the
bandwidth offered to the PLB alone in the non-prefetch scenario. Another



210 CHAPTER 7. BANDWIDTH EFFICIENCY AND LATENCY HIDING

Figure 7.7: Hardware cost of the shells in FPGA implementation as a percent-
age of the cost of the entire network.

approach would have been to use a combined PLB and FSL shell that would
multiplex prefetch reads and standard memory transactionsover the same
network connection thus sharing the bandwidth of that connection.

The most efficient way of distributing the bandwidth betweenthe PLB and
FSL connection was found using exhaustive search with increments of 25%.
We also perform an additional test, where two separate full-bandwidth links
are provided, one for each link (marked B in the result graphs, Figures 7.9 -
7.14).

For the software we have chosen several benchmarks, rangingfrom synthetic
to real applications. In short, these are: read and write loops, several kernels
with a relatively high amount on memory activity chosen fromthe Livermore
Loops [McM86], and a JPEG decoding application.

Our first set of tests consists of a read and a write loop for an array of 16
K words. Due to their intensive use of memory transactions they show the
highest performance variations among our tests. The results are presented in
Figure 7.9. As the number of processors in the system is increased, there
are two factors causing performance degradation: an increase in latency and
a reduction in the available bandwidth. The posted write andthe prefetch
read tests, which are largely immune to the increase in latency provide a good
indication of the point when bandwidth becomes the limitingfactor. The use of
burst read and write operations alleviates the effect of thebandwidth reduction.
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Figure 7.8: Test setup: one MicroBlaze core is connected through two separate
channels, one on the PLB bus and one on an FSL link to a remote memory.

Not using posted write and prefetch read incurs a large penalty even for the one
processor configuration.

The results show that the largest performance gain is obtained by simultane-
ously using prefetch reads and posted writes regardless of the available band-
width. This follows directly from the fact that the network latency is added
to every memory operation. Using the burst facility of both read and write
operations shows a benefit mainly when the bandwidth is severely limited.

Some result artifacts in the tests dominated by the read latency are produced
by the read loop locking onto the pattern of allocated time slots, preventing
the use of some of the slots, even when they are allocated. This results in an
above trend deterioration in performance of the 8 processors test case, which
produces the same result as the 16 processors case.

The Livermore Loops are small kernels that were used to evaluate the perfor-
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Figure 7.9: Performance of Read and Write tests under different setups.

mance of supercomputers. They are representative for scientific applications
but we have chosen to use them as they provide a variety of memory access
patterns. The versions we employed were translated in C and were set to use
only integer operands. The loops had to be manually modified to perform
software prefetch, and thus we only used four of them in our tests, more
specifically kernels 1 (hydro), 6 (linear recurrence), 12 (first difference), and
21 (matrix multiplication).

The results of the Livermore Loops tests are shown in Figures7.10-7.13.
While the latency hiding techniques provide a significant advantage, the burst
optimization does not always produce an improvement as it depends on the
patterns of memory access. The numerical results for all tests can be found in
Table 7.1.

The JPEG application is a complex program with a high computation-to-
communication ratio. It requests data from an external memory, performs
calculations on the retrieved data and writes back the result to the external
memory in small bursts which are essentially memory copy operations on the
already decoded data. The read operations are almost alwayssequential with
the exception of a few initial headers, while the write operations follow an
access pattern characteristic for accessing a sub-matrix out of a larger matrix.

The results are presented in Figure 7.14. The difference is more pronounced
when the available bandwidth is severely limited as it is thecase with the 8
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Figure 7.11: LL kernel 6.

processors scenario. The improvement in the case of the JPEGapplication is
a modest 6 to 12%, however this represents an increase in the performance of
the entire application, while the optimization targeted a single component of
the system.

Figure 7.15 shows the average performance increase over allbandwidths
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obtained in all applications. The performance increase dueto particular op-
timizations is represented separately. The performance increase provided by
the posted writes is presented in two separate scenarios, when prefetch read is
not used and when it is. The performance of burst posted writes is presented in
comparison to normal posted writes. The overall speedup is the speedup for the
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entire system with all optimizations enabled. Numerical results are presented
in Table 7.1.
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test

prefetch
read
over
baseline

posted wr.
no prefetch
over
baseline

pfetch &
posted
over
pfetch only

burst
in addit. to
prefetch&
posted

all
techniques
over
baseline

write-1p - 5.511 - 1.369 7.542
write-2p - 6.007 - 1.412 8.484
write-4p - 3.505 - 2.820 9.883
write-8p - 2.003 - 2.824 5.655
read-1p 5.297 - - - 5.297
read-2p 5.379 - - - 5.379
read-4p 6.885 - - - 6.885
read-8p 5.817 - - - 5.817
LL1-1p 2.590 1.231 2.081 - 5.388
LL1-2p 2.498 1.250 2.359 - 5.892
LL1-4p 2.001 1.200 2.005 1.762 7.068
LL1-8p 2.000 - 1.338 1.494 3.996
LL6-1p 1.174 1.217 1.319 - 1.550
LL6-2p 1.217 1.249 1.331 - 1.620
LL6-4p 1.309 1.285 1.303 - 1.704
LL6-8p 1.298 1.016 1.021 - 1.325
LL12-1p 2.284 1.371 2.560 - 5.846
LL12-2p 2.330 1.375 2.683 - 6.252
LL12-4p 1.998 - 1.999 1.707 6.817
LL12-8p 1.997 - 1.501 1.499 4.494
LL21-1p 1.750 1.258 1.559 - 2.728
LL21-2p 1.735 1.267 1.590 - 2.758
LL21-4p 1.865 1.286 1.593 - 2.971
LL21-8p 1.971 - 1.010 - 1.990
jpeg-1p 1.003 1.055 1.058 - 1.061
jpeg-2p 1.006 1.060 1.060 - 1.066
jpeg-4p 1.012 1.076 1.075 - 1.089
jpeg-8p 1.011 1.073 1.074 1.032 1.122

Table 7.1: Speedup obtained using the different techniquesfor the considered
applications and bandwidths

7.5 Related Work

Many network on chip implementations already exist, some providing mature
flows with the possibility of generating a hardware description of the entire in-
frastructure [GDR05, BCGK04, BB04, PAM+07]. The authors often provide
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complete solutions covering all aspects of interconnect design including the
interface to the IPs.

Many studies also exist covering the optimization of different aspects of the
interconnect, like routing [HM04, FMLD07] and network topology [SCK05,
OM05], however we have found that little effort was dedicated to optimizing
the interfaces between traditional IPs, unaware of the existence of the NoC and
the NoC itself.

Of the literature dedicated specifically to network interfaces we mention
[RDP+05] which is a precursor of the architecture we use in our current
research proposed separating the networking function of the NI from the actual
interface to the IP. The implied benefit is the possibility ofeasily reusing part
of the design when developing interfaces to other types of IPs. The same idea
is also present in [HJK04].

Options for connecting IPs to NoC are explored by [BM03]. Thework
considers solutions based on both software and hardware, with an approach
focused on modifying the IP building wrappers around it. By comparison we
choose to leave the IP unaltered and only interface with it based on its existing
connections to standard buses.

Wrappers are also used by [SBB+06], with the advantage of both hiding the
implementation details of the interconnect from the IP and avoiding modifica-
tions of the IPs and the network internals.

None of the works previously mentioned suggests performance optimizations
at the level of the NI.

In the domain of high-performance cache-enabled processors, write coalescing
is a function commonly performed by write buffers [SC97] or by the cache
itself, as in the case of write-back caches. Prefetching hasalso been studied
extensively [fCB94]. Our work is focused on less costly solutions which do
not assume the presence of caches and integrate the functionality of the write
buffer into the communication infrastructure.

Despite the fact that the optimizations presented in this paper are generally well
known, we believe to be the first to propose and analyze them inthe context of
networks on chip.



218 CHAPTER 7. BANDWIDTH EFFICIENCY AND LATENCY HIDING

7.6 Conclusions

In this chapter we have studied optimizations that target the process of translat-
ing the requests coming from IPs into network packets. This translation layer
allows the IPs to perform requests using memory transactionsemantics while
being unaware how these requests travel to their destination and how responses
return.

We have found that while the latency introduced by the network-on-chip and
the bandwidth limitations due to sharing resources betweenmultiple proces-
sors can reduce performance, using simple optimizations can restore the lost
performance. The optimizations that we studied here consist of latency hiding
techniques, namely read prefetch and posted write and a bandwidth optimiza-
tion technique: write coalescing. We have found that prefetch read and posted
write are especially important for applications with a highcommunication-to-
computation ratio while burst transfers can offer an additional performance
benefit when the available link bandwidth is severely constrained.



Chapter 8

Conclusions

In this chapter we explain the position this thesis occupiesin the context
of NoC research. Section 8.1 explains the main objectives ofour research
and summarizes our findings, Section 8.2 indicates our contributions, Section
8.3 summarizes the contents of each chapter and Section 8.4 presents future
directions of research.

8.1 Objectives of research

In the electronics industry of the last several decades, miniaturization has an
exponential decrease in the manufacturing cost per transistor. This has allowed
an increase in the complexity and computational power especially in the case of
digital circuits. To deal with this complexity it was also necessary to decrease
the design cost per transistor. This was achieved thorough the use of automated
design tools and improved design methodologies.

One of the areas these automated tools target is the generation of an on-chip
interconnect. This is becoming more and more important as the number of on-
chip components that need to be connected to each other increases. The work
presented in this thesis allows us to evaluate different choices in the design of
NoCs which may be useful in the context of automated design tools. We also
develop and implement a series of algorithms to allocate network resources
and we provide a template for the NoC hardware.

In our analysis of NoC choices we found that topology is not ingeneral a
limiting factor (a performance loss of only 8%, as shown in Figure 2.19), with
the simple mesh and torus topologies presenting very good performance. The
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ring and Spidergon topologies have lower performance. We have found the
discretization of bandwidth division for link sharing purposes to introduce a
non-negligible performance loss (18%). On the other hand wehave found the
performance loss introduced by the contention-free routing model to be small
(5%) especially when considering the cost benefit which is a factor of 10 to 20
[GH10]. In terms of allocation efficiency, the difference between using global
optimization algorithms and heuristics is small, as is the impact of enforcing
in-order delivery.

Based on these findings, we have designed a NoC template that offers a good
performance-cost ratio. This network template can be used to create network
instances with any desired topology and connecting a customizable number
of IPs. We have also developed improved hardware for the layer connecting
IPs to the NoC. We have shown these improvements to mitigate the effect of
latency and bandwidth limitations on the performance of applications running
on the IPs connected to the network.

The largest part of the thesis though is dedicated to algorithms for the alloca-
tion of network resources to the applications requesting them. Our algorithms
improve upon the state of the art in terms of the efficiency of allocating
resources. For several algorithms we have offered a proof oftheir optimality.
We have shown that allocation can be performed at run-time with minimal
computation and memory requirements. We have also proposedhardware
accelerators that allow an even faster computation of the allocation.

8.2 Contributions

In this section we discuss the major contributions of this thesis.

• We propose network modelsthat allow us to determine achievable
network performance both in an ideal scenario and under the constraints
of real hardware. We evaluate these models for a wide range ofnetwork
topologies and under several types of traffic. We determine the effect
of various design choices including the contention-free routing model
which is supported by low-cost network implementations. Some of the
models are supported by optimal, linear-programming basedallocators
that allow establishing bounds on the performance of any type of inter-
connect.

• We design allocation algorithms, some for generic networks and some
targeting specifically the contention-free routing model.Our algorithms
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perform spatial as well as temporal allocation. Spatial allocation con-
sists of selecting a specific path, or in the case of multi-path allocation
several paths, that a specific connection should use throughthe network.
Temporal allocation selects the slots in the TDM schedule tobe used
by each connection. We provide algorithms both for design time and
run-time allocation. Our algorithms improve upon the state-of-the art in
terms of performance and features.

• We provide hardware implementationsof the network on chip and the
interfaces between the network on chip and IPs. Our NoC proposal is
circuit-switched and uses the contention-free routing model. It compares
favorably to other proposals presented in the literature. Our interface to
the IPs presents several optimizations: write coalescing,posted writes
and read prefetch. We also present hardware acceleration modules
that are useful for increasing the performance of the onlineallocation
algorithm.

8.3 Thesis Summary

We began this thesis by introducing the problems related to the design of on-
chip interconnects and presenting traditional as well as modern solutions.

In Chapter 2 we proposed a series of network models which we then used to
evaluate the performance implications of several interconnect design choices.
We have also offered a mathematical solution based on linearprogramming to
the allocation problem in some of these models.

In Chapter 3 we proposed path allocation algorithms for the more restrictive
models introduced in Chapter 2. Where possible we made use ofoptimal
algorithms and we have demonstrated their optimality.

In Chapter 4 we proposed algorithms for slot selection. These algorithms are
used to improve or guarantee a certain latency bound for eachcommunication
channel. We have proven these algorithms to be optimal and wehave compared
their performance to the performance of previously proposed algorithms. We
have also looked into the effect of slot selection on actual application perfor-
mance.

In Chapter 5 we demonstrated route and slot selection performed at run time.
We have provided a memory and computationally efficient implementation of
the allocation algorithm and we have implemented hardware acceleration of
the algorithm.
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In Chapter 6 we proposed a hardware implementation of a network on chip
based on the contention-free routing model. Our network offers multi-path
routing and multicast, avoids header overhead, and has verylow configuration
time. We evaluated our proposal in FPGA and ASIC synthesis and we found
it to compare favorably in terms of hardware area and speed toother networks
reported in the literature.

In Chapter 7 we looked at how the raw communication services provided by
the network can be translated into transaction-level services offered to the
IPs. We presented optimizations regarding bandwidth use and latency hiding
techniques and we analyzed the overall effect on the execution time of real
applications.

8.4 Future Directions of Research

We present here new potential avenues for exploration having this work as
a starting point. In this thesis we have discussed many aspects of an on-
chip interconnect. It would be possible to combine some of the techniques
described here to achieve further improvements.

For example it may be possible to combine multi-path routingwith run-time
allocation. The multi-path allocation algorithms have polynomial running
time which is an advantage, although they may be slower on small topologies
and have slightly higher memory requirements. It would alsobe possible to
evaluate the more complex slot allocation algorithms in thecontext of run-time
allocation.

It would be possible to further improve the allocation algorithms, for example
using a rip-reroute technique which was not one of the targets of this study.
It would also be possible to explore different path orderings during offline
allocation.

It would be possible to combine our NoC hardware implementation supporting
fast connection set-up with a hardware accelerated allocation algorithm to cre-
ate a network which provides on-demand connections with very low latency.
This would allow networks based on the contention-free routing model with a
centralized allocator to support a wider range of applications.

Most importantly, the network and algorithms should be put to actual use,
because through actual use we discover the limitations and directions in which
we need to improve.



Appendix A

Sample LP model for a 2x2 mesh
network

set I;
/* R-R links */

set R;
/* routers */

set O;
/* NI io */

set J;
/* connections */

param a{j in J, r in R};
/* comm incidence at routers */

param b{j in J, o in O};
/* comm incidence at NI */

param c{j in J};
/* comm weight */

param d{i in I, r in R};
/* link incidence at routers */

var x >= 0;
var y{j in J} integer;
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var z{i in I, j in J} integer;
maximize tput: x;

s.t. wt{j in J}: y[ j] >= x* c[ j];
s.t. pv{i in I, j in J}: z[ i, j] >= 0;
s.t. bwl{i in I}: sum{j in J} z[ i, j] <= 16.0;
s.t. nbw{o in O}: sum{j in J} y[ j] * b[ j, o] <= 16.0;
s.t. csv{r in R, j in J}: a[ j, r] * y[ j] + sum{i in I} d[ i, r] * z[ i, j] = 0;
/* conservation of each flow at each router */

data;
# *** this begins the data section

set I := R0to1 R0to2 R1to0 R1to3 R2to0 R2to3 R3to1 R3to2;
set R := R0 R1 R2 R3;
set O := NI0 NI1 NI2 NI3 NI4 NI5 NI6 NI7 NO0 NO1 NO2 NO3 NO4 NO5
NO6 NO7;
set J := C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
C17

C18 C19 C20 C21 C22 C23;

param a : R0 R1 R2 R3 :=
C0 1 - 1 0 0
C1 - 1 1 0 0
C2 1 0 - 1 0
C3 - 1 0 1 0
C4 0 1 - 1 0
C5 0 - 1 1 0
C6 0 0 0 0
C7 0 0 0 0
C8 - 1 0 1 0
C9 1 0 - 1 0
C10 - 1 0 1 0
C11 1 0 - 1 0
C12 0 0 0 0
C13 0 0 0 0
C14 0 0 - 1 1
C15 0 0 1 - 1
C16 - 1 0 1 0
C17 1 0 - 1 0
C18 0 1 - 1 0
C19 0 - 1 1 0
C20 0 0 0 0
C21 0 0 0 0
C22 0 0 1 - 1
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C23 0 0 - 1 1
;
param b : NI0 NI1 NI2 NI3 NI4 NI5 NI6 NI7 NO0 NO1 NO2 NO3

NO4 NO5 NO6 NO7 :=
C0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
C1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
C2 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
C3 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
C4 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
C5 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
C6 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
C7 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
C8 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
C9 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
C10 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
C11 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
C12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
C13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
C14 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
C15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
C16 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
C17 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
C18 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
C19 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
C20 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
C21 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
C22 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
C23 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

;
param c :=

C0 0.686
C1 0.001
C2 1.681
C3 0.001
C4 0.625
C5 0.001
C6 1.008
C7 0.001
C8 1.549
C9 0.001
C10 0.620
C11 0.001
C12 1.553
C13 0.001
C14 1.012
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C15 0.001
C16 0.915
C17 0.001
C18 0.752
C19 0.001
C20 1.016
C21 0.001
C22 1.333
C23 0.001

;
param d : R0 R1 R2 R3 :=

R0to1 - 1 1 0 0
R0to2 - 1 0 1 0
R1to0 1 - 1 0 0
R1to3 0 - 1 0 1
R2to0 1 0 - 1 0
R2to3 0 0 - 1 1
R3to1 0 1 0 - 1
R3to2 0 0 1 - 1

;

end
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Example configuration of the
proposed model

/* the mapped address of the configuration shell */
volatile int * cfg=( volatile int * ) 0x80000000;
volatile int * mem0=( volatile int * ) 0x90000000;

const int SETUP=4;

const int I0= MSG | 0;
const int I1= MSG | 4;
const int I2= MSG | 8;

const int O0= MSG | 0;
const int O1= MSG | 1;
const int O2= MSG | 2;

const int R00= MSG | 0;
const int R01= MSG | 1;
const int R10= MSG | 2;
const int R11= MSG | 3;

const int NI00= NI BASE | 0;
const int NI01= NI BASE | 1;
const int NI10= NI BASE | 2;
const int NI11= NI BASE | 3;

const int CMD SETUPCHANNEL=4;
const int CMD READCREDITS=6;
const int CMD WRITECONFIG=10;
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const int CMD WRITECREDITS=14;
const int ENDOFPACKET=8;

inline int conf( int a, int b, int c, int d)
{

return a+( b<<7)+( c<<14)+( d<<21);
}

/* this function is declared inline,
* it will translate into 3 writes to
* the configuration port consisting
* preferably of constant values */
inline void writecfg( int ni, unsigned int adr, unsigned int val)
{

/* each configuration word consists of 37/6=7 parts
* a packet consists of header=0, address, data
*
* a write transaction consists of 3 words
* a header with a value of 0, the address and data

*
* it takes 24 cycles to serialize a write operation
* to a remote configuration port, 2 such writes
* are required for configuring one channel
*/

cfg[ 0]= conf( CMD WRITECONFIG, ni, MSG , MSG);
cfg[ 0]= conf( MSG, MSG, MSG , MSG);

cfg[ 0]= conf( MSG,
/* address, start with MSB*/
MSG,
MSG | (( adr>>29) & 0x3f ),
MSG | (( adr>>23) & 0x3f )
);

cfg[ 0]= conf(
MSG | (( adr>>17) & 0x3f ),
MSG | (( adr>>11) & 0x3f ),
MSG | (( adr>> 5) & 0x3f ),
MSG | (( adr<< 1) & 0x3f )
);

cfg[ 0]= conf(
/* data, start with MSB */
MSG | ( ( val>>31) & 0x1),



229

MSG | ( ( val>>25) & 0x3f),
MSG | ( ( val>>19) & 0x3f),
MSG | ( ( val>>13) & 0x3f)
);

cfg[ 0]= conf(
MSG | ( ( val>> 7) & 0x3f),
MSG | ( ( val>> 1) & 0x3f),
MSG | ((( val<< 5)+ 31) & 0x3f),
ENDOFPACKET
);

}

void setup connection 1()
{

/* the channel setup command, followed by the slot table
* as two-6-bit words (the slot table has 8 entries),
* followed by one padding (0) 6-bit word
*
* this identifies a path using slot 6 at destination
*/
cfg[ 0]= conf( CMD SETUPCHANNEL, MSG+1, MSG, 0);

/* the path starting with the destination NI and going
* backwards to the source NI
* two hops can be configured per 32-bit word
* (4 6-bit configuration words)
*
* the route used is NI00 - R00 - R10 - R11 - NI11
*/
cfg[ 0]= conf( NI11, MSG | 4, 0, 0);
cfg[ 0]= conf( R11, I1 | O2, R10, I0 | O1);
cfg[ 0]= conf( R00, I2 | O1, NI00, MSG | 0);

/* the response channel
* a hardware cooldown timer inside the
* configuration shell will make sure that
* routers have enough time to process
* one configuration request before
* the second one begins
*/
cfg[ 0]= conf( CMD SETUPCHANNEL, MSG+1, MSG, 0);
cfg[ 0]= conf( NI00, MSG | 4, 0, 0);
cfg[ 0]= conf( R00, I1 | O2, R10, I1 | O0);
cfg[ 0]= conf( R11, I2 | O1, NI11, MSG | 0);
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/* provide credits to the channel to allow it to send data
* we need to identify the NI which has the channel
* the number of the channel and the number of credits
*
* for simplicity, each of these pieces of information
* is contained in one configuration word
*
* both the request and response channel need to be
* initialized
*/
cfg[ 0]= conf( CMD WRITECREDITS, NI00, MSG , MSG | 15);
cfg[ 0]= conf( CMD WRITECREDITS, NI11, MSG , MSG | 15);
/* the same command can be used to write status flags
* for example we could disable a channel using the
* following command
*/
//cfg[0]=conf(CMD WRITECREDITS, NI00, MSG — 4,MSG — 2); disable

channel

/* credits can also be read back, for example when we
* intend to tear-down a connection we should first make
* sure that all packets have drained from the given channel
*/
cfg[ 0]= conf( CMD READCREDITS, NI00, MSG , ENDOFPACKET);
u=cfg[ 0];

}

void setup connection 2()
{

/* forward path:
* NI00(slot 3)
* -> R00(slot 4)
* -> R10(slot 5)
* -> NI10(slot 6)
*/
cfg[ 0]= conf( CMD SETUPCHANNEL, MSG| 1, MSG, 0);
cfg[ 0]= conf( NI10, MSG | 4, R10, I0 | O2);
cfg[ 0]= conf( R00, I2 | O1, NI00, MSG | 1);

/* reverse path:
* NI10(slot 2)
* -> R10(slot 3)
* -> R00(slot 4)
* -> NI00(slot 5)
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*/
cfg[ 0]= conf( CMD SETUPCHANNEL, MSG, MSG| 32, 0);
cfg[ 0]= conf( NI00, MSG | 5, R00, I1 | O2);
cfg[ 0]= conf( R10, I2 | O0, NI10, MSG | 0);

/* credits
* NI00 - channel 1 given 15 credits
* NI10 - channel 0 given 15 credits
*/
cfg[ 0]= conf( CMD WRITECREDITS, NI00, MSG| 1 , MSG | 15);
cfg[ 0]= conf( CMD WRITECREDITS, NI10, MSG , MSG | 15);

}

void config programmable bus()
{

/* configuration of a remote bus,
* as performed by AEthereal
*
* we identify the NI that the bus
* configuration port is connected to
* and we write the address mask and value
* to specific configuration addresses
*/
writecfg( NI01, 0x00000d00, 0xf0000000);
writecfg( NI01, 0x00000c00, 0x80000001);

/* for a second channel */
writecfg( NI01, 0x00004504, 0xf0000000);
writecfg( NI01, 0x00004404, 0x90000001);

}

int main( void)
{

int i;
/* configure a remote bus */
config secbus();
/* setup connections */
setup connection 1();
setup connection 2();
/* perform write and read operations
* to remote meories to verify proper
* operation
*/
for ( i=0; i<256; i++) mem0[ i]= i+256;
printf( ”%d”, mem0[ 10]);
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return 0;
}
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C source of the online allocation
algorithm

Some function names and variables were renamed to better correspond with the
algorithm in chapter 5. The main loop body has been reorganized to achieve faster
execution.

void norec( int source)
{

int crtLink, crtDest, level, allowedDistance;
level=0;
allowedDistance=dist[ source];
slotmask tmp;
solution[ 0]= source;
solLink[ 0]= crtLink=firstLink[ source];
avSlots[ 0]= ALLSLOTS;
goto nrl2;
while ( 1) // main non-recursive loop
{

sl=avSlots[ level];
nrl1:
crtLink=solLink[ level]+ 1;
nrl2:
solLink[ level]= crtLink;
node=solution[ level];
if ( crtLink>=lastLink[ node])
{

if (! level) break;
level--;
continue;
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}
crtDest=dest[ crtLink];
tmp=sl &˜ slots[ crtLink];
if ( crtDest==dest)
{

if ( compute bw( tmp) <requiredBw)
{

goto nrl1;
}
solution[ level+1]= dest;
avSlots[ level+1]= tmp;
solution found( level);
break;

}
if ( dist[ crtDest] > ( allowedDistance- level))
{

goto nrl1;
}
if ( compute bw( tmp) <requiredBw)
{

goto nrl1;
}
level++;
solution[ level]= crtDest;
avSlots[ level]= sl=shift( tmp);
crtLink=firstLink[ crtDest];
goto nrl2;

}
}
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Notations
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Table D.1: Table of Notations

V the set of network nodes, can be interpreted as vertices in a graph
R the set of routers,R ⊂ V

r one router,r ∈ R

J the set of communication channels
j one communication channel,j ∈ J

E the set of network links, can be interpreted as edges in a multigraph
e one edgee ∈ E

Pr the set of links arriving at routerr
Qr the set of links departing from routerr
yj the bandwidth requirement of channelj

zej the bandwidth used on linke by channelj
zejk the bandwidth used in slotk on link e by channelj
zejk the remaining capacity of slotk on link e after thejth allocation
P a path in the network (a list of network links or edges)
S the set of all slots
si the slot with numberi, numbering starts from 1
Sq,w the set slots available on the edge(q, w)

Spath the set slots available apath, considering proper alignment
Source the source node during a path-finding operation
Destination the destination node during a path-finding operation
bwr the requested bandwidth
ce the capacity of an edge (flow algorighm)
B(Sx) orBSx the bandwidth offered by a set of slotsSx



Table D.2: Table of Notations for the in-order path selection algorithm

pi a path (represented by path length and set of slots)
ri the arrival time of pathpi
A set of all paths
X a solution to the in-order slot selection problem
ξX the set of all solutions
A an optimal solution
Xi a solution with the property thatpi ∈ Xi

ξXi
the set of all solutions of the formXi

Ai an optimum over the setxiXi

Q1,j a subset of A,{p1, p2, ...pj}
X1,j a solution which is a subset ofQ1,j

ξX1,j the set of all solutions of the formX1,j

A1,j an optimum over the setxiX1,j

A′
1,j an optimal solution likeA1,j used for proof by contradiction

Table D.3: Table of Notations for the slot selection algorithms

A the set of available slots
Ak,i,j subset of{s2...sk} with sk ∈ Ak,i,j, |Ak,i,j| = j

and ending withq selected slots whereq mod3 = i

P(A, i) the property that setA obeys the bandwidth requirement
over the window{si..si+w−1}

A a minimal subset ofA which satisfiesP(A, i), ∀i
Ak,i,j a minimal set of the formAk,i,j that satisfies

P(A, x), ∀x ∈ {1..k − w + 1}
w the size of the window for the enhanced slot selection algorithm
Ck a list of valuesck−w+2..ck ∈ {0, 1}
Ak,Ck

a subset of A with the property that
sq ∈ Ak,ck−w+2,ck−w+3,...,ck ⇔ cq = 1, ∀q ∈ {{k − w + 2..k}}

Aw−1,START a particular case ofAk,Ck
wherek = w − 1

Ak,Ck
a valid, optimal partial solution of the formAk,Ck
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Samenvatting

IN DIT proefschrift behandelen wij het probleem van de verdeling van netwerk-
bronnen in het kader van op connectie-gebaseerde netwerkenop een chip die

gegarandeerde prestaties moeten leveren.

Deze verdeling moet aan de bandbreedte- en doorlooptijdvereisten van alle connecties
voldoen, en ook aan de beperkingen van het netwerkmodel met betrekking tot de
mogelijke verdeling van tijdsloten.

We bieden een theoretisch model van de prestaties die bereikt kunnen worden door
het meest algemene netwerk, en we analyseren de vermindering van die prestatie
als gevolg van specifieke implementatiekeuzes, zoals topologie, discrete allocatie-
eenheden, enzovoort.

Verder behandelen we verdelingsalgoritmen die kenmerkendzijn voor het
contentievrije-routerings model, en we stellen verbeterde algoritmen voor om paden
en tijdssloten te vinden. Voor sommige van deze algoritmen bewijzen we optimaliteit.

We tonen aan hoe het vinden van paden en tijdsloten plaats kanvinden terwijl het
systeem actief is, in plaats van dat tijdens het ontwerp van het systeem te doen.

De resultaten laten zien dat ten opzicht van een ideaal netwerk, practische netwerkim-
plementaties die gebruik maken van zogenaamde time-division multiplexing, gemid-
deld tot 43% van hun prestaties verliezen, waarvan de grootste gedeelten door
discrete allocatie-eenheden en zogenaamde pakketheaders. We stellen een nieuw
netwerk voor, dAElite genaamd, dat geen pakketheaders gebruikt, en een verbetering
in prestatie tegen lagere implementatiekosten laat zien ten opzichte bestaande van
netwerken.
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