
Composable and Predictable Power
Management

Composable and Predictable Power
Management

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.Ch.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op donderdag 6 november 2014 om 12.30 uur

door

Andrew Thomas Nelson

Master of Science
geboren te Craigavon, Verenigd Koninkrijk

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. Kees Goossens

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. Kees Goossens Technische Universiteit Delft, promotor
Dr. Anca Molnos CEA Leti, co-promotor
Prof. dr. Koen Bertels Technische Universiteit Delft
Prof. dr. Ben Juurlink Technische Universität Berlin
Prof. dr. Jose Pineda Technische Universiteit Eindhoven
Dr. Said Hamdioui Technische Universiteit Delft
Prof. dr. Henk Sips Technische Universiteit Delft, reservelid

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Andrew Thomas Nelson

Composable and Predictable Power Management
Delft: TU Delft, Faculty of Elektrotechniek, Wiskunde en Informatica — III
Thesis Technische Universiteit Delft. – With ref. –

Met samenvatting in het Nederlands.

ISBN 978-94-6186-366-9

Subject headings: Power Management, Real-Time, Embedded Systems.

Cover image: From a T-shirt design worn at DATE 2012, “The balance of power is shifting. Energy
just declared indpendence”.

Copyright © 2014 Andrew Thomas Nelson
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without permission from the author.

Printed in The Netherlands

Acknowledgements

Trying to remember who all to thank is definitely a non-trivial part of the PhD. process.
The research in this thesis has been carried out as part of a group effort to research
composable and predictable System on Chips (SoCs) that we call CompSOC. I would
therefore like to start by thanking my promoter Kees Goossens for not only providing
guidance and encouragement throughout, but also for giving me the opportunity to be
part of a group of like minded people who strive to keep applications from interfering in
much the same way as some people obsessively try to prevent the different foods from
touching on their plate. I also thank my co-promotor Anca Molnos for the many coffee
fuelled discussions that helped ideas to form and new directions to be found.

At some point the talking has to end and the work just has to be done. Composable
and predictable platforms, microkernels and operating systems do not just create them-
selves, and I would therefore like to thank everyone past and present who worked on the
CompSOC platform, who are by now too numerous to start listing (but you know who you
are). I would specifically like to thank Ashkan Beyranvand Nejad and Martijn Koedam,
whom I collaborated with to create the Composable and Predictable Microkernel (CoMik)
and the Predictable Operating System (POSe). Many thanks also go to the students
who contributed work that assisted with my research, namely Sjoerd te Pas, Douwe van
Nijnatten and Bas Vermaat.

Life is not all about work, and thankfully there has been some time to squeeze in fun
in the past few years. In fact, it is hard to know where to begin with thanking all the people
who helped me spend time away from behind a desk. Whether it is bar visits, Northern
Ireland trips, weddings, Sinterklaas, cricket and sausage fests, or whatever, thanks again
to Anca, Andreas, Ashkan, Bart, Benny, Björn, Davit, Elena, Eugenia, Golnoosh, Joyce,
Jude, Karthik, Kees, Manil, Margriet, Martijn, Miran, Pao, Pavel, Radu, Richard, Sven,
and the others who were accidentally omitted.

Thanks, to my family and Jo’s family for their support and understanding during these
last few years. Most of all, thanks to Jo for all the friendship and support she has given me
during the highs and the lows of the last eleven years, of which the PhD. years must have
been particularly trying of her patience. What am I going to be able to use as an excuse
now?

v

Abstract

Composable and Predictable Power Management
The functionality of embedded systems is ever growing. The computational power of
embedded systems is growing to match this demand, with embedded multiprocessor
systems becoming more common. The limitations of embedded systems are not always
related to chip size but are commonly due to energy and/or power constraints. While it can
be possible to embed a more powerful Multiprocessor System on Chip (MPSoC), it is not
always possible to provide an energy or power supply that meets its demands within the
device’s size and weight requirements. Power management through Dynamic Voltage and
Frequency Scaling (DVFS) enables the device to be run at less than its maximum voltage
and frequency, allowing high computational capability when necessary while conserving
power at other times.

Embedded systems commonly perform real-time functionality. A real-time application
has an associated formal model to verify that it meets its timing requirements. This formal
model is used to perform a worst-case timing analysis to ensure that the application meets
its requirements. These models incorporate the worst-case timing of the application’s
computation and communication. Timing changes due to power management must also
be taken into account, complicating the verification process.

The drive for evermore functionality has led to mixed time-criticality systems, in
which multiple applications of various timing criticalities share the same (hardware)
resources. This complicates the verification process further as the timing interference due
to shared resource contention must be taken into account. A monolithic verification effort
is therefore traditionally required after system integration and must be carried out again if
any modifications are made that affect the timing of any of the applications.

The problem that we aim to solve in this work is to enable real-time applications to
perform independent execution and power management without violating their timing
requirements or invalidating the timing verification of concurrently executing applications.

vii

viii

To solve this problem, we contribute the Composable and Predictable Microkernel
(CoMik) to composably and predictably virtualise processors. When used in combination
with composable and predictable memory controllers and interconnect (as provided by
the Composable and Predictable System-on-Chip (CompSOC) platform), these virtual
processors cannot interfere with each other’s timing by even a single cycle. If whatever
executes on the virtual processors (e.g. an Operating System (OS) or an application
directly) has a real-time requirement, it can be verified independently of whatever executes
on the concurrent virtual processors and other virtual resources.

To enable formally analysable application execution, we contribute the Predictable
Operating System (POSe) that enables dataflow applications to be executed on the (vir-
tualised) processor. We contribute a combined application and platform dataflow graph,
including an algorithm to automate this process. When annotated with worst-case timings,
the combined application and system graph is then used to verify that the application
meets its timing requirement.

If the application’s performance is better than its requirement (e.g. when the input
or platform behaviour are better than worst case), its performance can be reduced using
DVFS to achieve a reduction in power consumption. We contribute an off-line convex
optimisation that uses the combined application and platform dataflow model to derive
static run-time operating frequency levels to achieve low power consumption. The off-line
technique is able to exploit static slack in the schedule, but not dynamic run-time slack
due to variations in task execution times. Before dynamic slack can be used it must be
possible to observe it. For this purpose, CoMik provides independent power, energy and
timing accounting per virtual processor. This enables each virtual processor to be assigned
individual power and energy budgets and POSe applications to be assigned timing budgets.
We contribute a description and model of how energy and power budgets can be distributed
between multiple virtual processors, enabling whatever executes on the virtual processor
to perform composable independent power-management without affecting the ability of
other virtual processors from using their entire budget allocation.

Using CoMik’s accounting infrastructure, we also demonstrate how the quality of
applications can be dynamically scaled to assist meeting timing, energy or power re-
quirements. We further contribute a distributed dynamic power management policy that
enables dataflow applications that are mapped onto multiple (virtual) processors to make
distributed dynamic slack observations and local power-management decisions.

We demonstrate the applicability of the presented techniques on an implemented Field
Programmable Gate Array (FPGA) prototype of a CompSOC hardware platform instance,
using an H.263 decoder as a case-study application. We show that our techniques do not
only work in theory, but that they are also implementable and implemented.

Contents

1 Introduction 1
1.1 Consumer Trends . 2
1.2 Industry Trends . 2
1.3 Problem Statement . 5
1.4 Requirements . 5
1.5 Contributions . 7
1.6 Overview . 10

2 The CompSOC: Mixed Time-Criticality Platform 11
2.1 Real-time Dataflow Applications . 14
2.2 CompSOC: Predictable and Composable Hardware 22
2.3 CoMik: Predictable and Composable Virtualisation 39
2.4 POSe: Dataflow Execution Library . 51
2.5 Dataflow Modelling of Application and Platform 56
2.6 Related Work . 63
2.7 Summary . 64

3 Composable Time, Energy and Power Accounting 67
3.1 DVFS Power Model . 67
3.2 POSe Accounting . 72
3.3 CoMik Composable Accounting . 74
3.4 Composable Energy Budget Distribution 77
3.5 Related Work . 89
3.6 Summary . 90

ix

x CONTENTS

4 Static Voltage and Frequency Scaling 91
4.1 Convex Power Optimisation . 92
4.2 Formulation for CVX convex solver 95
4.3 Applied in Practice . 98
4.4 Related Work . 101
4.5 Summary . 101

5 Dynamic Voltage and Frequency Scaling 103
5.1 Quality/Power Trade-off Mechanism 105
5.2 Distributed Real-time Multi-Core DVFS 121
5.3 Distributed Power Management Applied in Practice 131
5.4 Related Work . 136
5.5 Summary . 139

6 Case Study 141
6.1 CoMik’s Composable Virtualisation in Action 143
6.2 CompSOC HSDF Model Evaluation 144
6.3 Power Management of an H.263 Decoder 150
6.4 Summary . 155

7 Conclusions and Future Work 157

Bibliography 170

A Glossary 171
A.1 Abbreviations . 171
A.2 Lists of Symbols . 174

B Example CoMik and POSe Application Configuration 177

C Example HSDFG Convex Analysis Script 181

D Curriculum Vitae 185

E Publications 187

F Samenvatting 191

CHAPTER1
Introduction

Embedded systems are now ubiquitous in everyday life. This is in part due to the
omnipresent nature of technology that keeps us permanently tethered to the internet, such
as mobile phones and tablet computers. Other uses of embedded technology are not always
as obvious to the end user, e.g. by reducing usage complexity or increasing functionality of
existing everyday objects, such as cars and washing machines. In these roles, it is typically
used to perform real-time tasks that interact with the physical environment, e.g. fuel
injection regulation in modern combustion engines. Whatever the role of the embedded
system, the end user usually does not want to have to think much about it, or even know
that it is there at all. To quote ubiquitous computing pioneer Mark Weiser [106]:

‘The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable
from it.’

While much has changed since 1991, many of the predictions contained in [106] came
to fruition, and this quote is still as relevant today as when it was made.

Even though embedded systems are ubiquitous, it does not mean that there are no
outstanding problems to solve. Everyone with a smartphone will be aware that one of the
unpleasant consequences of this particular piece of technology “weaving” itself into our
everyday lives, is the need for us to monitor and tend to its energy needs by plugging it in
and recharging it all too frequently. We therefore proceed in this section to investigate the

1

2 CHAPTER 1. INTRODUCTION

consumer and industrial trends that led to this research into composable and predictable
power management.

1.1 Consumer Trends
Demand for portable devices, such as smartphones and tablets, is increasing [93, 113].
These devices require a portable power source, which is commonly a battery that needs
the user to plug it in to recharge it. Intervals between charges depend on both the capacity
of the battery and rate at which the device consumes energy from the battery, i.e. its power
consumption. Figure 1.1 presents the “Top 10 Smartphone Purchase Drivers” resulting
from a recent consumer survey carried out by market research company IDC. This survey
shows that battery life is the main purchase driver across all major smartphone operating
systems. [It also indicates that weight/size is less of a concern so maybe manufacturers
should think about increasing the battery capacity by putting in a larger battery.]

It is looking increasingly likely that smartphones and tablets are just the tip of the
portable device iceberg. Consumer trend watchers are highlighting the rising trend of
wearable devices as one of the major trends of 2014 [3, 56]. As an example, not content
with the information relaying capability of their smartphone, consumers are expected to
also want another smaller device on their wrist in the form of a smartwatch, which is
inevitably another device that needs to be charged regularly.

Wearable devices form part of a larger embedded system trend called the “internet
of things” [42, 57]. With Wireless Local Area Networks (WLANs) in almost every
home, more and more consumer devices are being embedded with some form of internet
connectivity, creating an internet of things. This is leading to another consumer trend in
2014 called “the internet of caring things”. These are portable devices and sensors that
perform a caring role, e.g. remote patient monitoring.

In summary, consumer trends are towards smarter connected portable devices. The
smartphone is one such device that has been on the market for a number of years and a
recent consumer survey presented in Figure 1.1 shows that battery life is a key concern
when deciding which smartphone to purchase.

1.2 Industry Trends
Consumer demands for smarter devices have not gone unnoticed by various industries. For
example, the automotive industry is increasingly catering for consumer gadget addictions
[102]. The most interesting of these for the future direction of the automotive industry
are the in-car gadgets that are automating the driving process, such as automated parking,
with fully automated driving being the end goal [74].

Automation is practical for both ease of use and safety, but the demand for ever
greater functionality has led to mixed criticality systems [21]. Mixed criticality generally
refers to mixing applications with differing safety criticalities on the same hardware

1.2. INDUSTRY TRENDS 3

Figure 1.1: Smartphone purchase drivers. (Source: IDC’s ConsumerScape360, by Michael
DeHart; via: Twitter, Francisco Jeronimo, http://t.co/AS2VjrEF2x, 12th May 2014)

http://t.co/AS2VjrEF2x

4 CHAPTER 1. INTRODUCTION

platform. Reduced area, weight, power and cost of materials are all reasons to share
hardware resources between applications, but potential interference due to resource sharing
complicates the verification of safety critical applications. For example, uncharacterised
non safety critical applications that share the same resources as a safety critical real-time
application could cause unbounded timing interference on the shared resources making it
impossible to guarantee the safety critical application’s timing behaviour.

In this thesis, we focus on the particular problem of mixed time-criticality that forms
part of the larger problem of mixed criticality in general. Real-time applications have
either soft, firm or hard timing requirements, ranging from lowest to highest strictness of
the requirement [14]. Safety critical real-time applications have hard timing requirements
[22], as failure to meet the requirement may cause physical harm to the system and its
surroundings, e.g. an electronic braking system. Firm real-time applications have strict
timing requirements with the value of the application’s output deteriorating rapidly after
the requirement deadline, but do not pose a risk of physical harm, e.g. a software defined
radio. Soft real-time applications have timing requirements but the value of the output
does not deteriorate so rapidly after a missed deadline and can therefore be deemed
functional while occasionally missing deadlines, e.g. an MP3 decoder. Non real-time
applications are applications with no real-time requirement. In a mixed time-criticality
system, applications of various timing requirements share the same platform resources.

Multi-core platforms compound the problem of verifying real-time applications in
a mixed time-criticality system further, as applications can be mapped across multiple
processors sharing not only the processors but also the interconnect that enables the
processors to communicate. Temporal isolation is a simplification strategy that allows
concurrent applications to execute on shared resources with statically bounded interference
[75]. The timing of applications can therefore be verified in isolation as the worst-case
interference is known in advance.

Virtualisation has been used for many years in desktop and server machines to share
resources, and is becoming increasingly common for embedded systems [45, 46]. Virtual-
isation simplifies resource sharing by enabling applications and Operating Systems (OSs)
to execute on virtual machines as if they were being executed on a physical hardware
platforms, simplifying the programming/porting process. Combining virtualisation with
temporal isolation creates virtual machines that are temporally isolated from each other.
Real-time applications can therefore be mapped onto a virtual machine and verified
independently from concurrent applications.

Power management of embedded systems enables applications to reduce the power con-
sumption of the platform by performing Dynamic Voltage and Frequency Scaling (DVFS)
or temporarily shutting down parts of the platform [15]. A reduction in power consumption
is achieved in exchange for an increase in computation time. This complicates providing
timing guarantees for real-time applications as the timing behaviour of the application
depends on used DVFS levels. While much work has been carried out on power manage-
ment of real-time systems [7, 47, 112], the power management of mixed time-criticality
systems is still an open issue. This is also the case for embedded virtualisation. While

1.3. PROBLEM STATEMENT 5

power management for virtual platforms is suggested in [46] for the context of migrating
virtual machines off of a core to shut it down, performing virtualised power management
using DVFS is unresolved.

In summary, there is a continuing trend for more functionality provided by embedded
systems. Resource sharing enables functionality to be added at lower cost than additional
dedicated hardware. This leads to an increase in mixed time-criticality systems. Temporal
isolation simplifies the verification of real-time applications on shared resources while
virtualisation simplifies programming shared resources. Power management of mixed
time-criticality platforms and independent DVFS in virtual platforms are still open issues.

1.3 Problem Statement
Power management of applications running on embedded systems is important due to
design considerations and consumer demands. These two factors are also driving the
creation of mixed time-criticality systems. Verifying the timing behaviour of real-time
applications in these systems is non-trivial, due to the possibility of inter-application
timing interference. As power management through DVFS changes application timing,
verifying application timing and bounding/limiting its effects on concurrent applications
is a problem.

The problem that we aim to solve in this work is therefore to enable real-time ap-
plications to perform independent execution and power management without violating
their timing requirements or invalidating the timing verification of concurrently executing
applications.

1.4 Requirements
Given our problem statement, we break our proposed solution down into the topics of:

• Composability: The ability to share resources within strict budgets such that a
system can be composed of independently executing and verifiable applications on
Virtual Platforms (VPs).

• Predictability: The ability to abstract a VP to a formal model to predict behaviours.

• Low Power: To enable applications to reduce their power consumption.

We introduce these topics in the following sections.

1.4.1 Composability
Composability enables concurrent applications to share resources within set limitation-
s/budgets. For timing, composability is sometimes referred to as temporal isolation. In

6 CHAPTER 1. INTRODUCTION

this thesis, we refer to the strictest form of composability where budgets for time, space
and energy resources are strictly enforced, e.g. when time sharing a memory resource
using Time Division Multiplexed (TDM) arbitration, each composable virtual processor
gets a time allocation in the schedule and a space allocation (dedicated memory region),
with the boundaries of that allocation being strictly enforced so that each thread can
only use its allocated time/space and no more than that. By composably arbitrating all
shared resources using (statically allocated) predictable budgets per composable thread,
applications are cycle-accurately temporally isolated, i.e. they cannot interfere with each
other’s timing behaviour by even a single cycle.

The energy/power supply of an embedded system is also typically a shared resource,
i.e. a battery. Our problem statement calls for independent power management and hence
also composable sharing of the energy/power resource. Applying the same principles
as temporal composability, each application must receive a statically allocated strictly
enforced energy/power budget. Each application must be able to use this budget in its
entirety, regardless of the behaviour of concurrent applications.

1.4.2 Predictability

Predictability is essential to give timing guarantees for real-time applications. We consider
an application to be predictable if a formal abstraction can be created that can be used
to derive predictions about the application’s timing behaviour prior to execution. The
accuracy of the formal model is determined by how close the predictions are to reality.
For real-time applications, it is important that the model is not only accurate but also
temporally conservative, i.e. that the timing of the application in reality can only be equal
to or better than the prediction by the model.

For an application to be predictable it must be executed on a predictable hardware
platform. It must therefore be possible to formally model the behaviour of the hardware
on which the application executes. On a multi-core memory mapped platform with
distributed shared memory, this means that it must be possible to conservatively model the
application’s execution on the processors and accesses to and from local and remote shared
memories. The user- and system-software, processors, interconnect, memory controllers,
memories and any other peripherals that the application might interact with must therefore
all have deterministic timing bounds. The composable arbitration of resources must also
be carried out in a deterministic manner so that it can be formally modelled.

1.4.3 Low Power

The purpose of power management is to reduce power and/or energy consumption. DVFS
is a common mechanism that enables a (usually) monotonic trade-off in performance
for a reduction in power consumption, i.e. a computation can be performed with lower
power consumption, but the computation will take longer. To be able to use the DVFS
mechanism while providing timing guarantees for real-time applications, it must therefore

1.5. CONTRIBUTIONS 7

be possible to incorporate the timing effects of the DVFS mechanism into the application’s
timing formalism.

Given our problem statement, multiple applications can share the processor. The
interference caused by each application’s power management strategy on the other ap-
plications must therefore be bounded and modelled as part of the timing formalism of
the applications. This is not practical, as the bounds on the interference of all other
concurrent applications would have to be known at design time. Using our strict definition
of composability, applications know their budget allocation at design time that this budget
is guaranteed to be interference free.

To achieve this, not only the arbitration of the DVFS mechanism must be composable,
but also its effects. This means that a DVFS level set by one application cannot interfere
with or be altered by other applications. The effects of DVFS also concern energy/power
budget depletion rate. Energy and power budgets allocated to applications must also be
guaranteed and strictly enforced, meaning that budgets must be able to be used in their
entirety, regardless of the behaviour of other applications.

1.5 Contributions
We proceed to outline the set of contributions made by this thesis that meet the require-
ments of our problem statement. Figure 1.2 presents a high level overview of our proposed
solution to the problem statement in Section 1.3.

1.5.1 Architecture
To enable composable and predictable execution of applications, we contribute the follow-
ing to our Composable and Predictable System-on-Chip (CompSOC) platform’s software
stack:

• The Predictable Operating System (POSe) OS implements the dataflow Model of
Execution (MOE) enabling applications to be structured, executed and analysed as
dataflow graphs.

• The Composable and Predictable Microkernel (CoMik) microkernel1 composably
and predictably virtualises a physical processor into multiple virtual processors,
enabling cycle-accurate composable sharing of the physical processor.

We contribute the following hardware to enable the CompSOC platform’s composable
and predictable software stack:

• Composable processing tile memory architectures. We propose multiple memory
architectures that enable temporally composable sharing of local scratch pad memor-
ies with Direct Memory Access (DMA) support.

1The work on CoMik was carried out in collaboration with Ashkan Beyranvand Nejad [16].

8 CHAPTER 1. INTRODUCTION

power management

NOC

Virtual Processor

Processor

accounts

accountsPOSe

C-HEAP

System
Space

User
Space

Formal model of Combined
Application & Platform

(HSDFG)

Power Minimisation
Off-line WCET

Analysis, for use at
run time

CoMik

TIFU

DMA

Memory
Architecture

PeripheralsDRAM

Software

Hardware

Processor
Tile

Platform

Rest of
CompSOC

1

2

3

Dataflow Application

Figure 1.2: Composable power management for real-time dataflow applications.

• The Timer-centric Interrupt and Frequency Unit (TIFU)1 is a hardware module that
each processor tile has. It is used to coordinate interrupt and DVFS changes at
programmable times. This module assists CoMik to provide virtualised interrupts
and DVFS configuration, enabling each virtual processor to have an independent
DVFS level.

1.5.2 Power Management

To achieve our objective of independent power management for real-time applications, we
contribute the following

• A method to allocate composable per application energy/power budgets, such that
each application can use its entire allocated budget regardless of the behaviours of
other applications.

1The work on the TIFU was carried out in collaboration with Ashkan Beyranvand Nejad [16].

1.5. CONTRIBUTIONS 9

• An analysis method to derive low-power conservative static Voltage and Frequency
Scaling (VFS) levels for real-time dataflow applications executing on the CompSOC
platform.

• An analysis method to derive low-power conservative DVFS levels that are se-
lected at run-time using a distributed closed control loop, for real-time dataflow
applications executing on the CompSOC platform.

• An investigation into the use of quality scaling mechanisms in adaptive applica-
tions to assist run-time power management by trading a reduction in quality for a
reduction in execution time. We carry out this investigation for an adaptive H.263
decoder application.

• A case study analysis of our static and dynamic power management techniques
applied to an H.263 decoder.

1.5.3 Formalism
To be able to provide real-time guarantees, and therefore to also perform DVFS while
guaranteeing not to violate requirements, we contribute the following:

• Dataflow timing abstractions for multiple inter-core First In First Out (FIFO) con-
figurations, using the C-HEAP communication protocol.

• A method to generate combined application and platform Homogeneous Synchron-
ous Dataflow Graphs (HSDFGs) that can be used for worst case analysis when the
actors are annotated with their Worst-Case Execution Times (WCETs).

1.5.4 Summary
As illustrated in Figure 1.2, our contributions enable real-time dataflow applications to
execute on composably virtualised hardware, including energy and power budgets, e.g. a
virtualised battery. This enables each dataflow application to be independently formally
modelled as a combined application and CompSOC platform HSDFG. These independent
models enable worst case timing analysis of the application when actors are annotated with
WCETs making them suitable for deriving timing guarantees for real-time applications.
We use the application’s formal model to derive suitable low-power DVFS levels that
are guaranteed not to violate the application’s real-time requirement. We contribute two
power management techniques. One of our techniques derives static conservative VFS
levels. Our other technique derives a set of conservative DVFS points that depend on
application progress using a run-time power management closed control loop to monitor
the application’s progress and select an appropriate conservative DVFS operating point.
We demonstrate our power management techniques applied to an implementation of an
H.263 decoder on an Field Programmable Gate Array (FPGA) prototyped instance of the
CompSOC platform.

10 CHAPTER 1. INTRODUCTION

1.6 Overview
The remainder of this thesis is organised as follows. We present details of the composable
and predictable CompSOC platform in Chapter 2. We describe the hardware platform
together with the dataflow formalism that we use to abstract the platform’s timing. We
conclude Chapter 2 by describing how the application and CompSOC hardware platform
can be modelled together as an HSDFG. In Chapter 3, we give an overview of the power
model we use to account for processor power consumption on an FPGA prototyped
implementation of the CompSOC platform. We also describe how energy, power and time
are composably accounted for using CoMik and POSe. This also includes a description of
how energy/power budgets are composably allocated in the CompSOC platform, so that
they can be used in their entirety regardless of the behaviour of concurrent applications.

We proceed in Chapter 4 to propose an off-line power management method to derive
low power DVFS levels per core for a real-time dataflow application. The derived DVFS
levels are guaranteed not to violate the application’s timing requirements. The method
we propose in Chapter 4 cannot make use of dynamic variations in task execution time.
In Chapter 5, we therefore propose a run-time power management method that makes
use of dynamic variations in task execution time to lower the power consumption of the
application further than achievable with our static power management technique. We
also investigate the use of quality scaling mechanisms in adaptive applications to trade a
decrease in quality for a decrease in execution time, thereby enabling further reductions
to the power consumption.

Having described our methods in the previous chapters, we apply them to an H.263
video decoder application in Chapter 6. We show that our power management techniques
are not only theoretical, but can be implemented in practice using an FPGA prototyped
CompSOC platform. We bring this thesis to an end in Chapter 7, by making conclusions
about the work in this thesis and describing potential avenues for future research.

CHAPTER2
The CompSOC: Mixed Time-Criticality Platform

Real-time applications require guarantees that they will meet their timing requirements.
To be able to do this, the platform on which they execute must be predictable. This
is further complicated whenever real-time applications share resources with other non
real-time applications. The contention for shared resources must be taken into account
when providing guarantees. This is not trivial, especially on mixed-time criticality systems
where real-time and non real-time applications can share resources. The behaviour of
non real-time applications might not be predictable, and therefore the contention for the
resource might be unpredictable too.

In this chapter, we describe the CompSOC platform that provides a composable and
predictable platform for the purpose of running applications of mixed time criticality.
This is achieved by CompSOC’s hardware and software framework, as illustrated in
Figure 2.1. Dataflow applications are executed on the platform using the POSe OS and
composably isolated using the CoMik microkernel. The CompSOC hardware platform
enables worst-case bounds to be derived for both computation and communication. For
real-time applications, a worst-case timing analysis is used to verify that the application
meets its timing requirements. In Section 2.1 we explain how dataflow is used to analyse
the behaviour of real-time applications.

The worst-case timings of the application depends on the hardware resources to which
it is mapped. In Section 2.2, we describe the CompSOC hardware platform, an instance
of which is illustrated in Figure 2.2a. We explain how the application’s mapping to

11

12 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

POSe: Dataflow Execution Library
in Section 2.4

Real-time Dataflow Applications in
Section 2.1

CompSOC: Predictable and Com-
posable Hardware in Section 2.2

CoMik: Predictable and Compos-
able Virtualisation in Section 2.3

POSe

Virtual
Processor

Processor
Tile

Processor
Tile

Processor
Tile

POSe POSe

Virtual
Processor

Virtual
Processor

CompSOC middleware

CompSOC hardware

so
ftw

ar
e

ha
rd

w
ar

esy
st

em
sp

ac
e

us
er

sp
ac

e 1
2

43

Figure 2.1: CompSOC high-level overview.

CompSOC’s hardware resources affects its timing and how we take this into account in the
application’s dataflow model. Both the dataflow application’s tasks and communication
require physical resources and take time to complete. In Section 2.2.3, we explain how a
mapped C-HEAP FIFO is modelled as a dataflow graph that when

To enable composable and predictable communication between processing cores,
we contribute composable memory architectures to the CompSOC processing tile in
Section 2.2.1. We describe how the communication and memory architecture of the tile is
configured to enable composable inter-tile communication, presenting two composable
configurations and explain the trade-offs between them. To support precisely timed
virtualisation of DVFS management and interrupts we further contribute the TIFU to the
CompSOC processing tile and describe it in detail in Section 2.2.4.

Composable virtualisation provides temporal isolation between applications, enabling
mixed time-criticality applications to share physical resources [31, 34]. To achieve this,
we contribute the CoMik microkernel in Section 2.3. CoMik divides the processor
into multiple composable virtual processors enabling applications of various criticalities
to co-exist on the same physical processor without interfering by even a single cycle.
This is achieved using TDM scheduling of virtual processors on the physical processor.
By modelling the TDM scheduling as a dataflow latency-rate server, the composable
virtualisation can be incorporated into the application dataflow graph for temporal analysis.

CoMik allows the user a choice of which OS and/or Model of Computation (MOC) to
use. It provides an interface similar to the physical processor, taking a pointer to a main
function, and interrupt handler and an exception handler, as illustrated in Figure 2.2b.
To enable the execution of dataflow applications, we contribute the POSe Real-Time
Operating System (RTOS) in Section 2.4. This is achieved by structuring applications
following the dataflow paradigm, with tasks as actors that communicate via C-HEAP
FIFOs as edges. We further describe how the POSe MOE is modelled as a dataflow graph

13

Memory Clock TFT Clock

System
Clock

C
D

C
C

D
C

C
D

C

DRAM

Controller
TFT

TFT
Peripheral

Raptor
Controller

core
MicroBlaze dmem

imemILMB

cmems

dmamems

DLMB

System
Clock

TIFU

DMAs

Processor Tile
Tile Clock

FSL

int.

clk

in
te

rr
up

ts

clk

DTL
DTLDTL

DPLB

core
MicroBlaze dmem

imemILMB

cmems

dmamems

DLMB

System
Clock

TIFU

DMAs

Processor Tile
Tile Clock

FSL

int.

clk

in
te

rr
up

ts

clk

DTL
DTLDTL

DPLB

dmem
imem

ILMB

cmems

dmamems

DLMB
TIFU

DMAs

Processor Tile

MicroBlaze
core

System
ClockTile Clock

FSL

int.

clk

in
te

rr
up

ts

clk

DTL
DTL DTL

DPLB

Æthereal NOC

Memory Tile TFT Tile

R
ap

to
rC

on
tro

lle
rC

lo
ck

R
ap

to
rC

on
tro

lle
rC

lo
ck

DTL

DTL

(a) CompSOC hardware platform instance.

IM EIM E

Processor

Virtual Processor n

IM E

Virtual Processor 1 Virtual Processor 2

Application POSe

ApplicationApplications

Guest OS

Cycle-Accurate TDM Partitioning

Interface Interface

handler
Exception

handler
Interrupt

function
Main

CoMik Microkernel

(b) CompSOC software hierarchy.

Figure 2.2: CompSOC platform overview.

14 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

enabling the POSe OS to be incorporated into the application dataflow graph for temporal
analysis.

After describing how real-time applications can be modelled and analysed as dataflow
graphs (Section 2.1 and Section 2.4, respectively), and presenting the CompSOC platform
(Section 2.2) that enables dataflow applications to be executed, in Section 2.5 we contribute
an algorithm that takes the dataflow model of a mapped application that is mapped onto
the CompSOC platform, and makes a combined application and CompSOC platform
dataflow graph.

2.1 Real-time Dataflow Applications

Real-time applications have timing requirements that must be met. To provide assur-
ances, the timing of the applications must be analysed. This is commonly achieved by
formalising applications using a MOC. Many types of MOC exist, with varying de-
grees of analysability and expressiveness. The CompSOC platform is able to execute
applications using the Kahn Process Network (KPN), Cyclo-Static Dataflow (CSDF),
Synchronous Dataflow (SDF) and Homogeneous Synchronous Dataflow (HSDF) MOCs,
ranging from most to least expressive. The choice of MOC is a trade-off, as generally the
more analysable a MOC is then the less expressive it is also [14]. It is harder to express
an application in a more restrictive MOC. As such, the most analysable MOCs are also
the most restrictive to program for, adding to design time.

SDF

HSDF

CSDF

Figure 2.3: Dataflow expressiveness.

In this thesis, we focus solely on the dataflow MOCs due to their analysability.
Figure 2.3 illustrates the hierarchy of expressiveness of the dataflow MOCs. Note that
KPN is not a dataflow MOC.

SDF is more expressive than HSDF, and all HSDFGs are Synchronous Dataflow
Graphs (SDFGs). Similarly, CSDF is more expressive than SDF, and all SDFGs are Cyclo-
Static Dataflow Graphs (CSDFGs). It is shown in [14] that all CSDFGs can be represented
as timing-equivalent HSDFGs. This means that applications can be modelled as either of
the more expressive SDF or CSDF MOCs while still being temporally analysable using
the HSDF formalism. The techniques presented in this thesis can be used on applications
that follow the HSDF MOC, and on applications that follow other dataflow MOCs that
are translatable to HSDF for temporal analysis, such as SDF and CSDF.

2.1. REAL-TIME DATAFLOW APPLICATIONS 15

v

(a) Insufficient tokens.

v

(b) Firing enabled.

v

(c) Firing complete.

Figure 2.4: HSDF actor firing.

An HSDFG is a graph, with actors represented by the graph vertices and FIFO
communication between actors represented by directed edges. Data is communicated
along the edges of the graph in atomic tokens, represented as a black circle on the edge.
Edges have an infinite token capacity, meaning that the number of tokens on an edge does
not inhibit the production of more tokens on that edge. HSDF actors require a single token
on each incoming edge before they are able to fire, i.e. the task has the data required for
execution. This is illustrated in Figure 2.4 where in Figure 2.4a actor v is unable to fire as
one incoming edge has no tokens, whereas actor v is enabled to fire in Figure 2.4b as there
is one token on each of its incoming edges. Depending on the scheduling scheme actors
can fire (at the earliest) as soon as they are able (Self-Timed Schedule (STS)) or possibly
defer firing until a later moment, e.g. when using a Static-Periodic Schedule (SPS). When
an actor fires, a token is consumed from each incoming edge. Upon completing execution,
one token is produced on each outgoing edge, as illustrated in Figure 2.4c.

2.1.1 Resource Constraints

To execute a dataflow application, it must be mapped onto a suitable platform, such as
the CompSOC platform. Whereas the only constraint on actor firing in an HSDFG is
sufficient token availability, mapped dataflow applications also have resource constraints
in addition to data dependencies. These implementation constraints are due to finite
resource capacity, e.g. FIFO buffer capacity. In order to take them into account within the
HSDFG framework, they must be modelled as a token dependency. This is achieved by
adding additional HSDFG edges and tokens to the original application HSDFG.

Mapping

The nature and timing of the resource constraint depends on the resource to which
the dataflow component is mapped. Dataflow applications consist of actors that are
implemented by computational tasks and edges that are implemented by C-HEAP FIFO
buffers. On a multi-processor system, individual tasks are mapped onto a processor. The
worst-case execution time of the task depends on the type of processor to which it is
mapped and the frequency at which the processor operates. The worst-case work of the
task is the worst-case number of cycles that must execute on the processor before the task
is complete, and therefore does not depend on the processor’s frequency. This makes
worst-case work a useful measurement of task execution duration for DVFS management.

16 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

Processor Tile Processor Tile

Æthereal NOC

producer consumer
dataspace

Figure 2.5: A C-HEAP FIFO mapping.

The application’s communication must also be mapped to platform resources, as
illustrated in Figure 2.5. The dataflow edge that is implemented as a C-HEAP buffer
can be mapped in the local scratchpad memory of either the producing or consuming
processing tile, or in a larger shared memory that is accessible via the Network on
Chip (NoC). When accessing memory locations via the NoC, the communication actions
must be mapped onto hardware communication resources, such as DMA modules and
NoC connections. As with the computational tasks, the use of these resources costs time.
The dataflow MOC does not allow graph edges to be annotated with an execution duration.
For analysis, additional actors are therefore added to the edges of an application’s dataflow
graph, that represent the duration of the operation on the communication resources. This
is explained in more detail for C-HEAP communication in Section 2.2.2.

Auto-concurrency constraint

An HSDF actor can execute infinitely many times auto-concurrently, with token availability
being the only constraint, e.g. the actor illustrated in Figure 2.6a has no incoming edges
and may fire infinitely many times auto-concurrently (at the same time in parallel) as it is
always enabled to fire. For instance, depending on the scheduler, a task executing on a
processor might be prevented from, or have limited auto-concurrency.

v

(a) Infinitely auto-concurrent.

v

(b) Non auto-concurrent.

Figure 2.6: HSDF actor auto-concurrency.

An auto-concurrency constraint on an actor can be modelled in a HSDFG by adding
an additional self-edge to the actor concerned. A self-edge is a directed edge where the

2.1. REAL-TIME DATAFLOW APPLICATIONS 17

source and destination actor are the same. It is governed by the same rules as other HSDF
edges, and therefore in order for the actor to fire, at least one token must be present on
the edge before the actor is enabled to fire. As the actor will only produce a token on
this edge after it has consumed one from it, auto-concurrency is limited by the number of
initial tokens on the edge, e.g. one initial token completely prevents auto-concurrency,
while two tokens allows two iterations of the actor to fire concurrently.

The scheduling schemes described in this thesis do not schedule application tasks
auto-concurrently. They are therefore modelled by actors with a self-edge containing a
single initial token. For simplicity of illustration, in this thesis self-edges are omitted from
actors in HSDFGs diagrams, unless required in the diagram to differentiate actors without
an auto-concurrency constraint, or it is otherwise stated.

Single-Resource Concurrency Constraint

When mapping an HSDF application to an actual Multiprocessor System on Chip (MPSoC)
platform, it is not always possible, or desirable, for each actor to be mapped onto its own
processor. As such, the application’s tasks will have to share the processor that they are
mapped onto. Instructions from only one task at a time can be processed on a single
threaded processor, so scheduling must be used to arbitrate which task gets to execute and
at what time.

In this thesis, task-level scheduling within an application is assumed to be performed
co-operatively. A task that is executing, cannot be pre-empted by another task. As such,
only one task belonging to an application can execute per processor at any given time.
Under a STS, actors start firing as soon as they have sufficient tokens to do so, but
multiple actors on the same processor may concurrently have sufficient tokens to fire,
e.g. Figure 2.7a illustrates a single resource on which all three actors are able to fire
concurrently. The single-resource constraint is therefore not captured by the STS.

21 3

Single Resource

(a) Concurrently enabled actors.

21 3

Single Resource

(b) Cycle of resource constraint
control edges.

Figure 2.7: Single-resource constraint control edges.

Token availability is the only method to control the firing of HSDF actors that are
executing following a STS. The single resource constraint is therefore taken into account
using (so called) “control” edges in the HSDFG. For the example illustrated in Figure 2.7a,
control edges are added in Figure 2.7b to ensure that only one actor can fire at a time.
The control edges form a cycle, with one of the edges containing a single initial token,
ensuring that only one actor at a time is able to fire. The actors therefore fire following

18 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

a Static-Order Schedule (SOS), starting with the actor that has the initial token on its
incoming control edge (actor 1 in the example).

Finite FIFO Capacity

A FIFO buffer that is mapped onto a hardware platform has a finite capacity. The HSDF
edges that represent inter-actor FIFOs have an infinite token capacity. A FIFO buffer with
finite capacity is modelled using two directed edges. One edge representing the direction
of data transfer between the two actors. The other edge represents the direction of transfer
of free space in the buffer.

i jproducer consumer

data
d(i, j)

(a) Infinite buffer capacity.

i
d(i, j)

j
d(j, i)
space

data

producer consumer

(b) Finite buffer capacity.

Figure 2.8: HSDFG FIFO buffer capacity representation.

2.1.2 HSDFG and Schedule Formalism
We continue by presenting the background material on HSDFG schedule formalism that
enables temporal analysis of dataflow applications. In this section, we present schedule
admissibility and analysis techniques for STS, Worst-Case Self-Timed Schedule (WCSTS)
and SPS schemes. These are applied in Chapter 4 and Chapter 5 to enable conservative
DVFS for real-time applications.

The firing time of an actor depends on the availability of tokens on its incoming edges
and the scheduling scheme. Under a Self-Timed Schedule (STS), the actors start firing as
soon as there are enough tokens to do so. Whereas in a Static-Periodic Schedule (SPS),
actors start firing at static periodic intervals that are derived to ensure token availability.
CompSOC executes dataflow applications following a STS. The actor firing times in an
STS schedule depends on actual actor firing durations. For dataflow applications, these
times depend on task execution times that can be data-dependent.

v1 v2 v3
d(1,2)

(1,2) (2,3)

Figure 2.9: HSDFG composed of actors, edges and initial tokens.

A HSDFG G, such as that illustrated in Figure 2.9 is represented using the tuple
(V,E, t,d). V is the finite set of annotated vertices. The vertices are dataflow actors. E is

2.1. REAL-TIME DATAFLOW APPLICATIONS 19

the finite set of annotated directed edges that connect the vertices. An edge is represented
by the tuple (i, j) ∈ E where i ∈V is the actor producing tokens on the edge and j ∈V is
the actor consuming tokens from the edge. The execution time of the k’th iteration k ∈ N
of an actor i is given by t(i,k), with t : V → R+. The initial token occupancy of an edge
(i, j) is given by d(i, j), with d : E→ N.

We use a schedule notation based on the one presented in [76]. The start time of the
k’th iteration of actor i firing is given by s(i,k) ∈ R+. The worst-case execution time of a
task is given by t(i), as it does not depend on the iteration k. The worst-case execution
time t(i) satisfies, ∀k ∈ N : t(i,k)≤ t(i).

Using this formal representation, it is possible to express the scheduling schemes as a
set of constraints that must be adhered to if the scheme is to be admissible.

Self-Timed Schedule (STS)

In a STS, actors fire as soon as they are enabled. It has been shown in [38] that an STS
schedule is admissible (i.e. valid) if and only if Equation 2.1 holds for every edge (i, j)∈ E
in the HSDFG.

s(j,k+d(i, j))≥ s(i,k)+ t(i,k) (2.1)

For a single edge in isolation, such as that illustrated in Figure 2.8a, constraint
Equation 2.1 ensures that the starting time of s(j,k+d(i, j)) an actor j consuming a token
from the edge cannot be earlier than the start time of the actor i that produced that token
s(i,k) in addition to the time that it takes for the producing actor to complete its firing
iteration t(i,k). The token being consumed in graph iteration k+d(i, j) is produced d(i, j)
iterations earlier, as the initial tokens on the edge are consumed first. All admissible
schedules (not just STS) must satisfy Equation 2.1.

Monotonicity

A dataflow application has tasks modelled as actors that can have variable execution times.
Due to the monotonicity of the dataflow MOC, a shorter execution time can only cause
an earlier enabling of subsequent actors, and similarly a longer execution time can only
cause a later enabling of subsequent actors. This is important for observing and using
slack for power management, as an observed earlier start can be conservatively used
to lower the DVFS level. From Equation 2.1, it follows that dataflow graphs execute
monotonically. In the context of the dataflow MOC, monotonicity of execution means that
an earlier enabling of an actor firing cannot cause a later enabling of a subsequent actor
firing, and similarly a later enabling of an actor firing cannot cause an earlier enabling of
a subsequent actor firing, i.e. from Equation 2.1, it follows that:

sl(i,k)> se(i,k)⇒ s(j,k+d(i, j))≥ sl(i,k)+ t(i,k)> se(i,k)+ t(i,k) (2.2)

20 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

where se(i,k) and sl(i,k) are earlier and later enablings of iteration k of actor i. Under
STS, actors start firing as soon as they are enabled. The enabling time s(j,k+d(i, j)) of
actor j that consumes tokens in iteration k+d(i, j) produced by actor i, cannot be any
earlier than the completion time of actor i in iteration k. For an actor firing duration of
time t(i,k), an earlier enabling se(i,k) of actor i causes it to complete iteration k earlier
than a later enabling sl(i,k). The earlier enabling se(i,k) of actor i therefore cannot cause
a later enabling s(j,k+d(i, j)) of actor j, and similarly a later enabling sl(i,k) of actor i
cannot cause an earlier enabling of actor j. From Equation 2.1, it follows that:

tl(i,k)> ts(i,k)⇒ s(j,k+d(i, j))≥ s(i,k)+ tl(i,k)> s(i,k)+ ts(i,k) (2.3)

where ts(i,k) and tl(i,k) are shorter and longer firing durations of iteration k of actor i. For
actor enabling time s(i,k), a shorter firing duration ts(i,k) of actor i causes it to complete
iteration k earlier than a longer firing duration tl(i,k). The shorter firing duration ts(i,k)
of actor i therefore cannot cause a later enabling s(j,k+d(i, j)) of actor j, and similarly
a longer firing duration tl(i,k) of actor i cannot cause an earlier enabling of actor j. The
dataflow abstraction of the application is therefore monotonic in both:

1. Actor enabling times s(i,k), as given by Equation 2.2.
2. Actor firing durations t(i,k), as given by Equation 2.3.

which means that:

1. Scheduling an application following any scheduling scheme other than STS cannot
improve the timing performance of the graph, because actors are fired as soon as
they are enabled in an STS.

2. Worst-case actor firing durations produce graph timings that conservatively bound
the timing performance of the graph using actual case actor timings.

We can therefore schedule an application graph following an STS, while conservat-
ively analysing the application’s timing following any scheduling scheme that satisfies
Equation 2.1. Moreover, using worst-case task timings enables conservative analysis of the
application’s timing for all actual task execution times. In the following two sections, we
will explain how WCSTS and SPS are used for conservative timing analysis of application
graphs that execute as STS in the actual case.

Worst-Case Self-Timed Schedule (WCSTS)

A WCSTS is the STS of a dataflow graph in which all the actors fire for the duration of
their worst-case execution time. Due to the monotonicity of dataflow execution, the actor
firing times of a WCSTS cannot be earlier than those of a STS for the same graph. This
is a useful simplification that enables the derivation of conservative guarantees where
the precise duration of all executions of each actor is not known in advance, but where
the duration has a worst-case bound, e.g. an HSDF modelled H.263 video decoder with
data-dependent execution.

2.1. REAL-TIME DATAFLOW APPLICATIONS 21

The throughput of an HSDFG is derived with a Maximum Cycle Mean (MCM) µ(G)
analysis. For a WCSTS of a HSDFG, the graph executes in a periodic manner after K(G)
iterations. The period of the cyclical execution is µ(G) ·N(G), where N(G) is the cyclicity
of the graph [11]. The cyclicity N : G→ N of the graph is derived as follows:

N(G) = lcm
∀m∈M(G)

(
gcd
∀c∈C(m)

(
∑

∀e∈E(c)
d(e)

))
(2.4)

where M(G) is the set of all maximally strongly connected subgraphs in graph G, C(m)
is the set of all cycles in subgraph m and E(c) is the set of all edges, belonging to cycle
c. The math operator gcd is the greatest common divisor and lcm is the least common
multiple.

Throughput of the HSDFG is the rate at which the graph completes iterations. In
an HSDFG iteration, all actors complete a single firing. The average throughput of the
WCSTS of a HSDFG is therefore µ(G)−1 over any N(G) graph iterations in the cyclic
regime. The MCM µ : G→ R is calculated as [76]:

µ(G) = max
∀c∈Cs(G)

∑∀i∈V (c) t(i)

∑∀e∈E(c) d(e)
(2.5)

where Cs(G) is the set of all simple cycles in graph G and V (c) is the set of all actors be-
longing to cycle c. Due to the monotonicity of dataflow execution, the average throughput
derived for a graph following a WCSTS provides the lowest average throughput bound
for the same graph following an STS. The schedule of actors in a WCSTS of a HSDFG is
derived as follows:

∀k ≥ K(G) : s(i,k+N(G)) = s(i,k)+N(G) ·µ(G) (2.6)

where K : G→ N is the number of graph iterations until the periodic phase of execution.

Static-Periodic Schedule (SPS)

In an SPS, actors fire at periodic intervals. In [76] this is formally characterised for all
actors i ∈V and iterations k ∈ N as:

∀k : s(i,k) = s(i,0)+T · k (2.7)

with T being the period of the SPS schedule. The start time of every actor iteration s(i,k)
occurs at intervals of length T from the starting time of the actor’s first iteration s(i,0).
The per-edge admissibility constraint for an SPS is more strict than Equation 2.1:

22 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

s(j,k)+T ·d(i, j)≥ s(i,k)+ t(i) (2.8)

For a single edge in isolation, constraint Equation 2.8 ensures that the starting time
of the consuming actor s(j,k) cannot be earlier than the starting time of the producing
actor s(i,k) in addition to the worst-case time it takes for the producing actor to complete
t(i). The token being consumed in graph iteration k is produced d(i, j) iterations earlier,
as the initial tokens on the edge are consumed first. As actors fire with a period of T , the
token being consumed was produced at the latest T ·d(i, j) earlier than the finishing time
of current iteration of the producing actor s(i,k)+ t(i).

2.2 CompSOC: Predictable and Composable Hardware
The CompSOC hardware is a composable NoC centric MPSoC, providing the ability to
derive temporal bounds on execution and communication [44]. CompSOC is a tile-based
architecture, consisting of a combination of computation, interconnect and memory tiles,
as illustrated in Figure 2.2a. This illustration presents an example CompSOC platform
with three processing tiles, one memory tile and one Thin-Film Transistor (TFT) display.
An example set of logical point-to-point Æthereal NoC connections is also shown to
demonstrate how the tiles are able to communicate over the NoC. In Section 2.2.1, we
focus on the contribution of a composable processing tile enabling the creation of a
composable CompSOC hardware platform. Much work has been previously carried out
on the composable Æthereal NoC and Raptor Synchronous Dynamic Random Access
Memory (SDRAM) controller, as described in Section 2.2.2.

The CompSOC platform has an automatic generation toolflow [35], enabling the
platform architecture, communication and application configuration to be specified at
relatively high abstraction levels in Extensible Markup Language (XML). Additional
peripheral tiles can be added as needed, but care needs to be taken to ensure that the
peripherals maintain the predictable and composable nature of the CompSOC platform.

2.2.1 Processing Tile

The CompSOC processing tile enables predictable execution of software, enabling worst-
case timing bounds to be derived for executables, such as POSe actors. Using the
CoMik microkernel, the CompSOC processing tile enables the physical processor to be
temporally divided into multiple composable virtual processors. The CompSOC tile uses
the general purpose MicroBlaze processor unlike other temporally isolating processor
sharing techniques, such as Precision-Timed Systems (PRET) [65] that use a custom
processor with multiple independent hardware threads. The latter techniques have an
upper limit on concurrent composable computation, as they achieve temporal isolation by
allocating dedicated hardware processor resources.

2.2. COMPSOC: PREDICTABLE AND COMPOSABLE HARDWARE 23

core
MicroBlaze dmem

imemILMB

cmems

dmamems

DLMB

System
Clock

TIFU

DMAs

Tile Clock
FSL

int.

clk
in

te
rr

up
ts

clk

DTL
DTLDTL

DPLB

Figure 2.10: CompSOC processing tile

The CompSOC processor tile can be configured in multiple ways. Figure 2.10 illus-
trates an example configuration consisting of a single MicroBlaze processing core, some
local memory, one or more DMAs, and a TIFU. The MicroBlaze core is a soft core that we
configure to have a single 5-stage in-order pipeline with no branch prediction. The in-order
pipeline simplifies the core’s predictability, while disabling the branch prediction enables
CoMik to maintain composability between applications, as the branch predictor’s state,
which is influenced by applications executing in their partitions, would be carried over
between partitions. While the MicroBlaze processor has support for hardware caches and
virtual memory through the use of a Memory Management Unit (MMU), these features
are not implemented in the CompSOC platform. Caches are not implemented to simplify
predictability. While an MMU would be a desirable feature for memory composability
in the spacial domain, due to its ability to isolate memory regions, it is not implemented
due to the associated timing performance overheads of the MMU. An Memory Protection
Unit (MPU) would be a suitable alternative that provides memory region isolation without
the MMU’s overhead of address translation. While an MPU would be a desirable feature,
it is orthogonal to composable and predictable execution and is therefore not currently im-
plemented in the CompSOC platform. The CompSOC platform does use the MicroBlaze
processor’s hardware stack protection and the DMA drivers have software memory region
protection.

CoMik divides the processor into TDM time slices that are allocated to virtual pro-
cessors, as described in Section 2.3. Each virtual processor can perform DVFS, receive in-
terrupts and set timed interrupt events independently of other virtual processors. To achieve
this, we contribute the hardware Timer-centric Interrupt and Frequency Unit (TIFU) that
regulates CoMik’s virtual processor TDM schedule and enables composable and program-
mable timed DVFS and interrupt events. The TIFU is described in detail in Section 2.2.4.

24 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

Communication and Memory Architecture

CoMik is used to create virtual platforms consisting of multiple virtual processors that
can be located on multiple physical processing tiles. A virtual processor on one tile that
belongs to the same virtual platform as a virtual processor on another tile must be able to
communicate without interfering with any other virtual platform. Interference may occur
on shared hardware resources along the communication path. In the CompSOC processing
tile, these are the DMAs and local memories. In this section, we contribute an overview
of various processing tile communication and memory architecture configurations, as
illustrated in Figure 2.11. Of these memory architectures we contribute two composable
tile configurations and explain the difference and trade-offs between the two.

The CompSOC tile configuration of the MicroBlaze core has one instruction bus and
two data buses. One of each type is a single cycle latency Local Memory Bus (LMB)
(for a 32 bit word load/store) and the remaining data bus is multi-cycle latency Processor
Local Bus (PLB) (also for a 32 bit word load/store). Figure 2.11a presents a basic memory
architecture that uses one single port memory on each LMB. A bridge on the PLB allows
the MicroBlaze to perform Memory Mapped Input/Output (MMIO) transactions across the
Device Transaction Level (DTL) Æthereal NoC. MMIO transactions carried out across the
PLB are blocking, meaning that the computation stalls until the communication finishes.
As the transactions are communicated across the NoC to a remote memory location, the
exact duration of the stall depends on the configuration of the NoC and the arbitration of
the remote memory. A single word transaction can stall the computation on the processor
for hundreds of cycles. CoMik’s virtualisation scheme, as described in Section 2.3.3,
uses interrupts to context switch virtual processors, but it is not possible to interrupt the
multi-cycle PLB transaction. The worst-case interrupt service latency can therefore be
very high, and worse depend on the configuration of the rest of the system. Although
Figure 2.11a can be used when the interrupt service latency is less than a predefined jitter
bound, we prefer to make the virtual processor performance analysis independent of other
resource and therefore do not use this tile configuration.

Parallelising communication and computation using a DMA module enables non-
blocking remote MMIO transactions. The DMA is programmed using MMIO transactions
on the PLB, allowing multiple DMAs to be connected to the same bus. Once the DMA
module has been programmed with the source address, destination address and size of
the transaction then the processor may continue computation. Figure 2.11b presents a
modification of the CompSOC tile in Figure 2.11a to use a DMA module instead of a
bridge to perform communication over the NoC. The DMA module connects to a second
port on the dmem, enabling it to access the memory simultaneously with the processor.

The DMA module contains a FIFO transaction queue, allowing multiple outstanding
NoC transactions at any time. Each transaction is processed in order, with the amount of
data specified by the programmed size of the transaction being moved from the source
address to the destination address. For a DMA write transaction, the data is read from
the local memory connected to the DMA and written to the NoC accessible destination

2.2. COMPSOC: PREDICTABLE AND COMPOSABLE HARDWARE 25

core
MicroBlaze dmem

imemILMB

DLMB

Bridge

DPLB

clk DTL

(a) Blocking communication

core
MicroBlaze dmem

imemILMB

DLMB

DMA

clk

DPLB
DTL

DTL

(b) Parallelising communication and computation

core
MicroBlaze dmem

imemILMB

dmamem

DLMB

DMA

DPLB

clk DTL DTL

DTL

(c) Externally shared local tile memory

core
MicroBlaze dmem

imemILMB

dmamem

cmem

DLMB

DMA

DPLB

clk DTL

DTL

DTL

(d) Separate dual-port communication memory

core
MicroBlaze

Bridge

dmem
imemILMB

cmem

mux

DLMB

DMA

clk

DPLB

DTL

DTL DTL

DTL

DTL

(e) Using only single port memories

Figure 2.11: CompSOC processing tile communication and memory configurations

address. Similarly, for a read transaction, the data is read from the NoC accessible source
and written to the local DMA memory. To ensure application-level composability, each
DMA can only be used by a single application.

CompSOC tiles using either the memory architecture from Figure 2.11a or Fig-
ure 2.11b can communicate data via a remote shared memory. To communicate data
between tiles, it must first be written from a tile’s local dmem into a shared memory
location and then read into another tile’s local dmem. The memory architecture presented
in Figure 2.11c reduces the number of transactions required to communicate data between

26 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

Mem.
Arch.

Compos-
able

Parallel
Comm. &

Comp.

Remote
Access to
Tile Mem.

Single
Port Mem.

Only

All Mem.
on LMB

Figure 2.11a 7 7 7 3 3

Figure 2.11b 7 3 7 7 3

Figure 2.11c 7 3 3 7 3

Figure 2.11d 3 3 3 7 3

Figure 2.11e 31 3 3 3 7

1 When using a composable arbitration scheme, such as TDM or any temporally boundable
arbitration scheme with delay blocks.

Table 2.1: Overview of CompSOC memory architecture properties.

tiles by enabling data to be written directly into the tile’s local dmem from across the NoC.
This is achieved by using a separate dual-port memory for use with the DMA, called the
dmamem. This frees up one of the ports of the dmem, allowing it to be connected to the
NoC enabling remote MMIO access.

Using a separate dmamem with every DMA enables multiple DMAs to be instantiated
as part of the tile. DMAs can therefore become dedicated resources of virtual processors.
While access to the DMA resource is therefore composable and the Æthereal NoC
connections are composable, the time taken to complete a transaction also depends on
contention at the memory controller. Figure 2.11d illustrates a memory architecture that
enables multiple dual-port communication memories (cmems) to be instantiated per tile.
These cmems can therefore become dedicated resources of virtual platforms, removing
the possibility of contention from other virtual platforms. Virtual platforms consisting
of virtual processors on multiple physical processors can therefore perform composable
inter-tile communication by using dedicated DMAs, dmamems, Æthereal NoC channels
and cmems.

Figure 2.10 illustrates a version of the tile architecture from Figure 2.11d that has three
cmems, DMAs and dmamems enabling up to three virtual platforms to perform compos-
able communication to and from the tile. The dmamems and cmems use dual-port memory,
which has a higher logic overhead than single-port memory. Figure 2.11e presents an
alternative composable memory architecture that only uses single-port memories. This
is achieved by merging all dma and cmems into a single cmem that is arbitrated using a
composable arbitration scheme, such as TDM or any temporally boundable arbitration
scheme with delay blocks. MMIO transactions directly from the processor (using a
protocol bridge), local DMAs and NoC connections all contend for access to the cmem.
In general, access to the cmem is therefore significantly slower than directly accessing
the memory. This diminishes the memory access speed benefit of using local scratchpad
memories.

The saving achieved by using only single-port memories (higher memory density and

2.2. COMPSOC: PREDICTABLE AND COMPOSABLE HARDWARE 27

fewer memory controllers) is offset by the addition of a multiplexer and the logic for its
arbitration scheme. As such, the use of the memory architecture in Figure 2.11e only
makes sense if the number of cmems and dmamems that would be used for the memory
architecture in Figure 2.11d are of sufficient size and number that the saving outweighs
the additional cost of the multiplexer.

For the CompSOC platform to be composable, the processing-tile must use either the
architecture from Figure 2.11d or Figure 2.11e, as listed in Table 2.1. The choice is a
trade-off between faster memory access using the single-cycle per word LMB, provided
by the memory architecture of Figure 2.11d, and the potentially cheaper in terms of logic,
memory architecture of Figure 2.11e. The CompSOC FPGA prototype that is used in this
thesis uses the memory architecture from Figure 2.11d as the virtex 6 FPGA that is used
for experimentation uses dual-port memory blocks.

2.2.2 Predictable and Composable NoC Interconnect and SDRAM

The Æthereal NoC is the interconnect that joins all of the tile types together. It provides
virtual point-to-point connections across its network topology, that have predictable upper
bounds on throughput and latency. The point-to-point connections time share the hardware
along their path using TDM arbitration. The arbitration is configured in such a way to
avoid any contention for resources between the connections. The details of the Æthereal
NoC, and how it achieves these composable TDM configurations, are beyond the scope of
this thesis. Much research has been carried out on the Æthereal NoC for over a decade [32],
with detailed information available in [43, 94, 95].

Composable and predictable memory access is another part of the CompSOC platform
where much research has been performed [4, 33, 36, 63]. Whereas it may be possible
to provide multiple small scratch pad memories in tiles to avoid memory contention
and hence provide composability, this is not practical for larger and potentially off-chip
memories, such as SDRAM. Composable arbitration schemes, such as TDM and Credit
Controlled Static Priority (CCSP) with delay blocks [5], can be used to arbitrate the
memory. Semi static scheduling with patterns or restricted dynamic scheduling are used to
make the memory predictable allowing conservative bounds to be given on access latency
and throughput. More information on how this is achieved can be found in [63], as the
specifics are beyond the scope of this thesis.

2.2.3 Modelling CompSOC Inter-tile C-HEAP Communication

The CompSOC predictable hardware platform enables worst-case temporal bounds to be
calculated for a given usage. These worst-case timings are used with dataflow models
enabling a worst-case temporal analysis. In this section, we describe how the FIFO
communication of tokens along a dataflow edge can be implemented using the C-HEAP
communication protocol. We contribute three different inter-tile C-HEAP FIFO config-
urations with HSDFs timing models, enabling temporal analysis of the communication.

28 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

These models are incorporated into the combined application and CompSOC HSDFG, as
described in Section 2.5.2.

Edges as C-HEAP FIFOs

To ensure compatibility with the dataflow MOC, all inter-task communication must be
carried out using FIFO channels. POSe provides software FIFO channels using the
C-HEAP communication protocol [82]. A simple C-HEAP FIFO consists of a data buffer
and an administration that is stored in a shared memory that is accessible by both the
FIFO’s producer and consumer. Data is transferred as fixed size tokens of data. The
memory size of the FIFO buffer is therefore determined by the size of the FIFO tokens
and the number of tokens that the buffer accommodates.

0 1 2 3 4
WC

RC

(a) Initial empty buffer

0 1 2 3 4
RC

WC

(b) Release 2 tokens data

0 1 2 3 4
WC

RC

(c) Release 1 token space

0 1 2 3 4
RC

WC

(d) Release 4 tokens data

0 1 2 3 4
RC

WC

(e) Release 5 tokens space

Figure 2.12: C-HEAP circular buffer administration

The token size and FIFO capacity is configurable per FIFO channel. This information
is stored in each FIFO’s administration along with a read and write counter. The C-HEAP
protocol uses an administrated circular buffer to create a FIFO channel, as illustrated in
Figure 2.12. The Read Counter (RC) and Write Counter (WC) are used to track the FIFO
buffer occupancy. Figure 2.12a illustrates an empty C-HEAP buffer with a capacity of five
tokens. Whenever the producing task writes a token into the FIFO buffer, it increments
the write counter to release the data. This is shown in Figure 2.12b when two tokens
of data are inserted into the FIFO buffer and then released. Similarly, whenever the
consuming task reads a token from the FIFO buffer, it increments the RC. Figure 2.12c
demonstrates this for the running example by consuming a token from the FIFO buffer
and then releasing the space.

The occupancy of the buffer is determined by subtracting the RC from the WC and if
the result is negative adding the size of the buffer in terms of tokens, e.g for Figure 2.12c
the resultant occupancy is one, so there is no need to add the size of the buffer. Figure 2.12d
and Figure 2.12e demonstrate that the situation when both the RC and WC are equal is
ambiguous, as the buffer in Figure 2.12d is full yet the buffer in Figure 2.12e is empty. To
disambiguate this situation, in implementation, the most significant bit of the RC and WC

2.2. COMPSOC: PREDICTABLE AND COMPOSABLE HARDWARE 29

is toggled every time the counter wraps around when it reaches the end of the buffer. To
calculate the buffer occupancy, the counters are masked to find the RC and WC values
and their wrap around bit. As before, the masked RC value is subtracted from the WC
value, but now, the size of the buffer is only added to the resultant value if the two wrap
around bits differ.

The C-HEAP administration uses two values to track buffer occupancy to avoid the
need for any sort of memory locking mechanism in the event that the producer and
consumer tried to update the administration at the same time. This might occur whenever
the producer and consumer tasks execute on different processors on a multi-processor
system. By using two values, the producing task only ever updates the WC and the
consuming task only ever updates the RC, therefore negating the need for a memory lock.

A C-HEAP FIFO requires that both the producer and the consumer have access to
the memory on which it is mapped, i.e. that the memory is shared. On multi-core
platforms with a distributed memory architecture, the accessibility of memories can vary
per processor. In addition, the memories themselves can vary in capacity and access speed,
i.e. small fast local scratchpad memory vs. large relatively-slow remote SDRAM. In the
following sections, we present three rational C-HEAP configurations where the RC, WC
and FIFO buffer are located in various distributed memory locations. An overview of
some possible configurations is given in Table 2.2

C-HEAP Communication via Remote Shared Memory Only

Figure 2.13a illustrates the situation where the C-HEAP administration is located in
shared memory that is remote to both processing tiles. This might be necessary in the
situation where both processing tiles do not have any access to a local memory of the
other processing tile, but do have access to a shared memory. Both the producer and the
consumer task keep local copies of the C-HEAP FIFO’s RC and WC. Each task must
keep its local copies up-to-date. This is achieved by reading the values from the shared
memory. As the producer only updates the WC and the consumer only updates the RC,
they both only need to retrieve the value that the other task updates, to keep their local
C-HEAP administration up-to-date.

The processing tiles’ dmamems are local scratchpad memories. These are generally
fast to access but are relatively small. The shared remote memory can be a much larger
SDRAM. As such, in Figure 2.13a the full C-HEAP FIFO buffer is located in the shared
remote memory, with space reserved in the local dmamems for a single iteration of the
task’s produced/consumed tokens.

The enumerated transactions required to produce and consume data from a C-HEAP
FIFO that is configured as shown in Figure 2.13a are explained as follows:

1. Producer: Read RC into dmamem from shared memory then check RC and WC
for buffer space.

2. Producer: Write token from dmamem to shared memory.

30 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

In Section 2.2.3 Data1 RC1 WC1 Properties
Page 29 S S S Supports large data buffer. Slow2 to

access data and counters
7 P&C3 P P Relatively small data buffer. Fast to

access data and counters from producer,
but slow for consumer.

7 P4&C C C Relatively small data buffer. Fast to
access data and counters from consumer,

but slow for producer.
Page 31 P4&C P&C P&C Relatively small data buffer. Fast to

access data from consumer. Slow to
update counters, but fast to check.

Page 33 S P&C P&C Supports large data buffer. Slow to
access data and update counters, but fast

to check counters.
1 C-HEAP components (Data, RC, WC) in shared memory are either:

P Local to producer.
C Local to consumer.
S Not local to producer or consumer.

2 The CompSOC platform’s DMA and Æthereal NoC combination supports posted writes,
enabling multiple concurrently outstanding write transactions per connection, but only
one outstanding read transaction per connection. It is therefore preferable, from a timing
performance point of view, to minimise reading from remote shared memories.
3&4 It is not necessary for this buffer to reserve the full capacity of the FIFO, but it must
be minimally dimensioned to contain the maximum number of tokens that:
3 the consuming task requires for a single firing.
4 the producing task can output in a single firing.

Table 2.2: Overview of CompSOC memory architecture properties.

3. Producer: Write updated WC from dmamem to shared memory.

4. Consumer: Read WC from shared memory into dmamem then check RC and WC
for buffer data.

5. Consumer: Read token from shared memory to dmamem.

6. Consumer: Write updated RC to shared memory from dmamem.

Figure 2.13b presents an HSDF model of the C-HEAP memory mapping illustrated in
Figure 2.13a, enabling temporal analysis of the C-HEAP communication. The transaction
enumeration from Figure 2.13a is marked on the actors to show which transaction timings
they represent, with some actors representing the timing of multiple transactions.

2.2. COMPSOC: PREDICTABLE AND COMPOSABLE HARDWARE 31

Shared
Memory

Tile 1 Tile 2
Producer Consumer

buffer

RC

WCWC WC

RCRC

token token

3

1

2

4

6

5

dmamem dmamem

(a) C-HEAP memory mapping

B

Bp

DMA
Mem.

NOC &
Proc.

DMA
Proc.

1

2,3

6

2,3
cp

6

4,5

(b) HSDF model of Figure a

Figure 2.13: Inter-tile C-HEAP FIFO communication via remote shared memory only.

The C-HEAP FIFO is initially empty with its buffer capacity represented by B initial
tokens in Figure 2.13b. Transaction 1 is modelled by an actor that represents the time it
takes to read the RC from the shared memory and write it into the dmamem. The actor
representing the producing task p can subsequently fire if there is enough space in its
local output buffer of capacity Bp. In Figure 2.13a, local buffers have sufficient capacity
for a single token, making Bp = 1 and Bc = 1. Transactions 2 & 3 are represented by a
single actor that represents the time it takes for the DMA to transfer the produced data and
the updated WC onto the NoC. The following actor represents the time it takes for the
last word of data from transactions 2 & 3 to cross the NoC and be written into the shared
memory.

With the WC updated in shared memory to indicate the presence of data in the buffer,
the consuming task performs transactions 4 & 5 that are represented as a single actor in
Figure 2.13b, if there is enough space in the local buffer of capacity Bc. Once the data is
stored in the consuming task’s local dmamem, the actor representing the consuming task
c can fire. The task consumes the data and releases the space by performing transaction
6 using the DMA, to update the RC in the shared memory. This is represented in the
HSDFG in Figure 2.13b by two actors. The first actor represents the time taken by the
DMA to write the updated RC onto the NoC, while the second actor represents the time
for the RC to cross the NoC and be written into the shared memory. The producing task is
now able to observe this space by performing transaction 1, and the whole process repeats.

C-HEAP Communication Using Local Scratchpad Memories Only

The CompSOC processing tile has small scratchpad memories (cmem) that can be written
to from the NoC. Figure 2.14b illustrates a C-HEAP mapping that only uses memories
that are local to either the producing or consuming task, enabling faster access to the data
and requiring fewer NoC transactions. This comes at the cost of memory capacity as
local scratchpad memories are generally relatively small Static Random Access Memorys
(SRAMs). In Figure 2.14a, the C-HEAP buffer and administration is mapped in such a

32 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

way to only require data to be written across the NoC, taking advantage of the Æthereal
NoC’s posted write capability. This is achieved by placing the C-HEAP values that are
updated by the task on the other tile in the cmem, i.e the RC for the producing task and
the WC and buffer for the consuming task. Values that the task updates are located in the
local dmamem, enabling the remote copies of the values to be updated using the DMA to
write the values to the other tile’s cmem, i.e. the WC and token buffer for the producing
task and the RC for the consuming task.

Tile 1
Producer

Tile 2
Consumer

WC WC

token buffer

RC RC

2

1

3

cmemdmamem

cmem dmamem

(a) C-HEAP memory mapping

B
Bp

1,21,2
p

3
c

3

DMA

DMA

Proc. Proc.Mem.
NOC &

NOC &
Mem.

(b) HSDF model of Figure a

Figure 2.14: Inter-tile C-HEAP FIFO communication using local memories only.

The enumerated transactions required to produce and consume data from a C-HEAP
FIFO that is configured as shown in Figure 2.14a are explained as follows:

1. Producer: Check RC and WC for buffer space then write token from dmamem to
shared memory, if space is available.

2. Producer: Write updated WC from dmamem to cmem local to consumer.

3. Consumer: Check RC and WC for buffer space then read token from shared
memory to dmamem. Write updated RC to shared memory from dmamem.

We present a HSDF model in Figure 2.14b of the C-HEAP memory mapping that is
illustrated in Figure 2.14a. The actors in the HSDFG are marked with the transaction
enumeration from Figure 2.14a to show which transaction timings they represent, with
some actors representing the timing of multiple transactions.

The C-HEAP FIFO is initially empty with its buffer capacity represented by B initial
tokens in Figure 2.14b. The producing task checks for space in the buffer by comparing
the local RC and WC. The producing actor can subsequently fire if there is space in the
C-HEAP buffer and also enough space in its local output buffer of capacity Bp. Once the
producing task has completed, transactions 1 & 2 write the data and updated WC into the
consuming tile’s cmem. The timing of these transactions is represented by two dataflow

2.2. COMPSOC: PREDICTABLE AND COMPOSABLE HARDWARE 33

actors. The first actor represents the time taken by the DMA to write the data followed
by the WC onto the NoC. The second actor represents the time taken for the last word
of data from transactions 1 & 2 to be written across the NoC and into the cmem of the
consuming task.

The consuming task is enabled to fire whenever it observes the presence of the data in
the buffer by comparing its local RC and WC. After its firing has completed, it updates
the local RC and performs transaction 3 to release the space. The timing of transaction 3
is modelled using two dataflow actors. The first actor models the time it takes the DMA
to transfer the updated RC onto the NoC. The second actor represents the time it takes for
the RC to cross the NoC and be written into the cmem that is local to the producing task.
The producing task is now able to observe this space by comparing its local RC and WC,
and the whole process repeats.

C-HEAP Communication via Remote Shared Memory with Local Administrations

The C-HEAP memory mapping that is presented in Figure 2.13a uses a relatively slow
but potentially large memory to store the C-HEAP FIFO tokens. Its method of operation
requires six NoC transactions to be performed to produce and consume one token of
data. The scheme also does not take full advantage of the Æthereal NoC’s posted write
capability, as three of these six transactions are reads. The C-HEAP memory mapping
that is presented in Figure 2.14a uses fast to access, but small, local memories to store the
C-HEAP FIFO components. Its method of operation requires three NoC transactions to
be performed to produce and consume one token of data. All of the three transactions are
writes, taking full advantage of the Æthereal NoC’s posted write capability. We continue
by presenting a hybrid of these two C-HEAP memory mappings that uses the slower
potentially larger remote shared memory to store the C-HEAP buffer but uses the faster
local scratchpad memories to maintain the C-HEAP administration values. This mapping
requires five NoC transactions to be performed to produce and consume one token of
C-HEAP data, of which two of the five transactions are reads.

The C-HEAP memory mapping illustrated in Figure 2.15a is similar to the mapping
illustrated in Figure 2.14a, except the buffer is moved from the consuming tile’s cmem into
the shared memory. As such, the consuming tile requires a local buffer in the dmamem to
store C-HEAP token data that is read using a DMA from the C-HEAP buffer in the shared
memory.

As the C-HEAP administration and buffer reside in different memories, the producing
task must make sure that the data is written into buffer memory before updating the WC.
If this is not done and the time taken to write the WC into the consumer’s cmem is less
than the time taken to write the data in to the shared buffer then the consumer could read
the data from the buffer before it has been updated, or while it is partially updated [61].
To prevent this, the producing task reads a single word from the shared memory using
the same NoC connection before updating the WC. This ensures that the data has been
written into the shared memory, as transactions on Æthereal NoC connections are carried

34 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

Tile 1
Producer

Tile 2
Consumer

Shared
Memory

WC WC

tokentoken

RC RC

buffer

3

5

1
2

4

cmem

dmamem cmem

dmamem

(a) C-HEAP memory mapping

Bp

B

DMA
Mem.

NOC &
Proc.

DMA
Proc.

p c

1,2,3 1,2,3

5

4

5

(b) HSDF model of Figure a

Figure 2.15: Inter-tile C-HEAP FIFO communication using local and remote memories.

out using FIFO ordering.
The enumerated transactions required to produce and consume data from a C-HEAP

FIFO that is configured as shown in Figure 2.15a are explained as follows:

1. Producer: Check RC and WC for buffer space then write token from dmamem to
shared memory, if space is available.

2. Producer: Read single word from shared memory using the same NoC connection,
to ensure that the data has been written to the buffer.

3. Producer: Write updated WC from dmamem to cmem local to consumer.

4. Consumer: Check RC and WC for buffer space then read token from shared
memory to dmamem.

5. Consumer: Write updated RC from dmamem to cmem local to producer.

We model the memory mapping from Figure 2.15a as a HSDFG as illustrated in
Figure 2.15b. The actors in the HSDFG are marked with the transaction enumeration
from Figure 2.14a to show which transaction timings they represent, with some actors
representing the timing of multiple transactions.

The C-HEAP FIFO is initially empty with its buffer capacity represented by B initial
tokens in Figure 2.15b. The producing task observes the space in the buffer by comparing
its local RC and WC. It is enabled to fire if space is available in both the C-HEAP buffer in
the shared memory and in its local output buffer of capacity Bp. Once the producing task
has finished firing, the produced data is written into the C-HEAP FIFO using transactions

2.2. COMPSOC: PREDICTABLE AND COMPOSABLE HARDWARE 35

1,2 & 3, to write the data into the C-HEAP buffer in the shared memory, check it has
finished being written and update the WC. This is represented by two actors in the dataflow
model. The first actor represents the combined time it takes for the DMA to perform
transactions 1,2 & 3. The second actor represents the duration of time it takes for the WC
to be written across the NoC and into the consuming task’s local cmem.

The consuming task observes the presence of data in the C-HEAP buffer by comparing
its local RC and WC. If there is enough space in the consuming task’s local token buffer
of capacity Bc, then the data is read from the C-HEAP buffer by performing transaction 4
with the local DMA. Once the data is present in the local buffer, the consuming task can
fire. Upon completion, the space of the consumed data in the C-HEAP FIFO is released
by updating the RC and performing transaction 5 using the local DMA to update the RC
in the local cmem of the producing task. The timing of transaction 5 is represented by
two actors in the dataflow graph. The first actor represents the time taken by the DMA to
write the updated RC onto the NoC. The second actor represents the time it takes for the
RC to cross the NoC and be written into the cmem of the producing task. The producing
task is now able to observe this space by comparing its local RC and WC, and the whole
process repeats.

2.2.4 Time-centric Interrupt and Frequency Unit

CoMik requires interrupts and frequency changes to occur in a coordinated manner at
precise times, e.g. virtual processor context switches are triggered by an interrupt and
the frequency is changed to the CoMik slot frequency, as explained in Section 2.3.3.
Achieving this while enabling more complex functionality, such as partition-level DVFS
and interrupts, requires considerable coordination between the different hardware modules
that provide the functionality. Without hardware support, CoMik would have to provide
the coordination effort in software adding complexity, code size and timing overhead [16].
As such, we contribute the TIFU hardware module that provides the functionality required
by CoMik using integrated hardware coordination enabling a relatively low software
control overhead.

The TIFU module performs the roles of being a time reference, a DVFS module and
an interrupt controller. The TIFU follows a modular design, as illustrated in Figure 2.16,
integrating a Programmable Interrupt Controller (PIC), a DVFS module and two 64
bit Programmable Interrupt Timers (PITs), for the frequency scaled and unscaled time
domains (hence time-centric). A control unit interfaces with the processor and coordinates
requests with the TIFU’s internal modules, enabling the TIFU to perform functionality in
hardware that would otherwise have been in software.

The TIFU forms part of the CompSOC processor-tile, enabling per tile DVFS and
interrupt control. As illustrated in Figure 2.10 the TIFU is connected as a slave to the
processor via an Fast Simplex Link (FSL) bus. Software running on the processor sends
requests to the TIFU using the FSL instructions that form part of the MicroBlaze’s
Instruction Set Architecture (ISA). Multiple FSL instructions may need to be executed to

36 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

FSL

int.

int.int.

int.

TIFU

clk. in clk. out

ints. in int. out

unscaled
clock

scaled
clock

DTL DTL

DTL DTL

PIT

PIC DVFS

Control Unit

PIT

Figure 2.16: TIFU hardware architecture

provide or retrieve the appropriate amount of data associated with the request. To simplify
accessing TIFU services, we abstract away from the instruction level by providing driver
functions.

2.2.5 Control Unit

The TIFU’s control unit interprets the communication from the processor, performing the
requested action or returning the requested data. Each FSL transaction has a data length of
32 bits. The TIFU’s control unit interprets the most significant 16 bits as the operation and
the least significant 16 bits as the operand. The control unit uses the decoded operation
to decide which TIFU sub-modules carry out the operation. The decoded operation also
instructs the control unit what to do with the data. Depending on the operation, further
data may be required and is provided in subsequent FSL transactions. TIFU requests,
such as reading the time, requires data to be returned to the processor from the TIFU. The
TIFU makes the data available to be read by the processor across the FSL bus. Data larger
than 32 bits in size is read using multiple FSL transactions.

2.2.6 PIT Modules

The TIFU is called time-centric as its main utility is the precise timing coordination of
hardware DVFS and interrupt events. Due to its DVFS functionality, the TIFU straddles
two clock domains. To allow events to be triggered based on time in either domain, two
PIT modules are used, to provide a time reference for each domain. Each PIT module
contains a 64 bit hardware counter that counts the rising edges of an input clock signal.
In the TIFU, one PIT counts the reference clock (which we refer to as the tile clock) and
one PIT counts the scaled clock (which we refer to as the partition clock) produced by
the DVFS module. Each counter increments on each rising edge, enabling a single cycle
resolution time reference in both clock domains.

2.2. COMPSOC: PREDICTABLE AND COMPOSABLE HARDWARE 37

A 64 bit counter is used, as it provides sufficient magnitude to allow the PITs to count
for 5845 years using single cycle granularity at 100 MHz, without rolling over to zero
again. A 32 bit counter will roll over to zero after only 42.9 seconds under the same
conditions. While this might be sufficiently long for some use cases, it is safe to assume
that 42.9 seconds is too short for many use cases. In comparison to a 32 bit counter, a
64 bit counter does not add much additional complexity to the hardware, but does add
an area overhead. Software techniques can be used to effectively extend a 32 bit counter,
making it seem that the counter is larger than it actually is, but in comparison to a 64 bit
counter, this adds software complexity and overhead.

Each counter can be instructed to start or stop counting. The value of the counter
can be read while the counter is running or stopped. The 64 bit counter value needs to
be returned in two 32 bit (high and low) pieces via the TIFU’s FSL connection with the
processor. To ensure consistency between the high and low values, the 64 bit timer is
sampled in a single action by reading it into a 64 bit buffer that is subsequently returned
via the FSL. The values of the counters are also programmable via the FSL, allowing
the context of the timer to be stored and restored, thereby enabling CoMik partitions to
maintain their own virtual time reference as part of their context.

In order to regulate the timings of DVFS and interrupt events, the PITs are pro-
grammable to produce internal TIFU interrupts at requested times. The counters are
programmed with the time value at which the event should occur. This time value is
compared with the counter’s time value, to decide whether an internal TIFU interrupt
should be produced. If the counter’s time value is greater than or equal to the event time,
an internal interrupt is produced. Each PIT can store concurrent times for DVFS and
interrupt events. The requested event times are stored in separate registers. An internal
TIFU interrupt is produced for the particular module depending on which event register
triggers the event condition.

As described in Section 2.3.3, CoMik requires periodic interrupts to regulate the
context switching of its virtual processors. The PIT allows a period to be specified for
the internal interrupt that is produced for the PIC module. The period of the interrupt is
stored in a register. Whenever an interrupt is triggered for the PIC module, the value of
the period is added to the time that triggered the event and stored back in the PIC interrupt
time register, to produce an interrupt sometime in the future. CoMik’s virtual-processor
context-switch interrupt is always produced using the TIFU’s tile clock PIT. CoMik’s
partitions can specify periodic and non-periodic interrupts using the TIFU’s partition clock
PIT.

2.2.7 DVFS Module

The DVFS module allows the TIFU to scale the voltage and frequency of the CompSOC
processor-tile. On an Application Specific Integrated Circuit (ASIC) implemented system,
the DVFS module scales to the requested frequency and selects the lowest voltage that
reliably supports that frequency. The CompSOC platform is prototyped on FPGA. While

38 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

many FPGA chips support voltage and frequency scaling to some degree, using their
capability to support multiple voltage and frequency islands adds significant complexity
to the design.

The FPGA prototyped TIFU provides frequency scaling through clock division of the
reference clock signal. This is achieved by specifying the desired frequency as a fraction
of the reference frequency in the form of an integer numerator and denominator value.
The scaled clock frequency is derived from the reference clock frequency by propagating
a numerator amount of reference clock pulses in every denominator amount of reference
clock pulses, and blocking the rest. This is achieved on the FPGA by using a clock buffer
component with a clock enable pin, such as the BUFG component on Xilinx FPGAs. The
clock enable pin allows reference clock pulses to propagate through the buffer module
when it is raised, and blocks the reference clock pulses when it is low. By counting the
number of rising edges on the reference clock, the clock enable signal is raised for a
numerator amount of cycles every denominator amount of cycles. The clock pulse width
of the scaled clock remains the same as the reference clock, but on average the scaled
clock has a frequency that is a fraction (numerator over denominator) of the reference
clock.

For any given duration, frequency scaling alone only reduces the dynamic energy
usage of a component. By reducing the frequency it is possible to run components reliably
at lower voltages, decreasing both static and dynamic energy usage for the same duration.
In general, there is no advantage to be gained by running at a higher than necessary voltage
for the frequency in use. As such, voltage is scaled dynamically with the frequency, hence
DVFS. The FPGA prototyped TIFU does not physically scale the voltage on the FPGA.
Instead, the power model that is described in Section 3.1, assumes that the voltage has
been scaled to the lowest value that reliably supports each frequency.

New frequencies can be specified to occur immediately or at a specified time. Time
triggered frequency changes are achieved by programming the time at which the frequency
should take place on either of the TIFU’s PITs. The DVFS module contains registers for
each interrupt specifying the numerator and denominator that should be used to scale the
reference clock, in the event that the interrupt is raised. For example, to change to the
maximum frequency at a specific point in the future based on the unscaled tile clock PIT,
equal numerator and denominator values are programmed into the registers on the DVFS
module associated with the tile clock PIT and subsequently the PIT is programmed with
the time to commit the DVFS change.

The TIFU’s control unit enables compound jobs consisting of multiple operations,
such as clock gating the partition clock until a time in the future, to be achieved. This is
useful for the clock gating example, as the processor that controls the TIFU will be unable
to program a time to ungate the partition clock after it has been gated. Continuing with
the clock gating example, once the control unit has received all the information required
to perform the clock gating operation from the processor, it proceeds to request that the
DVFS module halts the clock immediately, by setting the scaling numerator value to zero.
After this has been performed, the control unit programs the future DVFS change using

2.3. COMIK: PREDICTABLE AND COMPOSABLE VIRTUALISATION 39

the DVFS and PIT modules as described previously.
CoMik’s processor virtualisation scheme requires that the frequency is scaled to a

specified level whenever the interrupt is generated that signals the virtual processor context
switch. The frequency level is programmable, and is stored in a register in the TIFU’s
DVFS module. Whenever the tile clock PIT raises an internal interrupt for the PIC module,
the DVFS module switches to the specified frequency that is stored in the register. A
separate register is provided by the TIFU’s DVFS module to allow the partition clock PIT
to trigger a frequency change, whenever it raises an internal interrupt for the PIC module.

2.2.8 PIC Module

The PIC module takes multiple interrupts as inputs and produces a single interrupt as
an output. The PIC maps the status of each incoming interrupt signal to a bit in a status
register that is accessible via the TIFU’s FSL connection. In the CompSOC plaform, once
the processor receives the interrupt produced by the TIFU, it reads the interrupt status
register from the TIFU to find out which interrupt was raised.

CoMik’s temporally isolated processor virtualisation also requires that the interrupts
are virtualised in a temporally isolated manner. If the interrupts are not virtualised, then
any interrupt could interfere with the timing of any virtual processor, whether it was
intended for that virtual processor or not. To prevent this, the PIC is programmable, via
its FSL connection, with a mask that is the same length as the interrupt status register.
The mask instructs the PIC on which of its incoming interrupts should cause its output
interrupt to be raised. When reading the interrupt status register, the mask is also used to
mask out the interrupt bits that the PIC is not currently responding to. CoMik associates
each virtual processor with its own interrupt mask. CoMik reprograms the PIC’s interrupt
mask as part of restoring the virtual processor’s context.

For a more detailed description and analysis of composable virtualisation of interrupts,
we refer the reader to [16].

2.3 CoMik: Predictable and Composable Virtualisation

The processor, like any other hardware resource in a system, becomes a point of
contention when it is shared among multiple applications. In a mixed time-criticality
system, where real-time and non real-time applications share the same hardware resources,
the inter-application interference due to resource contention can make it difficult or
impossible to provide real-time guarantees. Temporal composability is a solution to this
problem, enabling resources to be shared among applications in a manner that prevents
inter-application interference. This has been demonstrated for hardware components such
as the Æthereal NoC [32, 43, 94, 95] and the Raptor memory controller [4, 33, 36, 63].

Section 2.3 contains an abridged and updated version of publication [79].

40 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

In this section, we present the CoMik microkernel that enables composable virtual-
isation of the processor resource. It divides the processor’s time creating multiple virtual
processors that can be used as dedicated resources by partitions. These virtual processors
are cycle-accurately temporally-isolated, meaning that activity on concurrent virtual pro-
cessors that do not belong to the same partition, cannot affect each other’s timing by
even a single cycle. A partition can therefore be temporally verified in isolation as the
presence/absence of concurrent partitions does not affect the partition’s timing.

CoMik’s virtual processors provide an interface similar to that of the physical pro-
cessor, as illustrated in Figure 2.2b. They require a pointer to a main function and
optionally pointers to partition-level interrupt and exception handlers. As with a physical
processor, the pointer to the main function points to the start of the partition’s instructions
that represent its functionality. Similarly, the pointer to the interrupt handler points to
instructions that execute whenever a partition receives an interrupt, and the pointer to the
exception handler points to instructions that execute whenever an exception is raised.

On multi-processor platforms such as the CompSOC platform, CoMik can create
multiple virtual processors per physical processor. CoMik operates in a distributed manner
per physical processor. Each virtual processor’s utilisation of the underlying physical
processor is configured using its slot allocation in the virtual processor TDM scheduling
table.

Partitions consist of either a guest OS, or an application without an OS, as illustrated
in Figure 2.2b. The timing of a partition is designated as being either guaranteed or
best-effort. Virtual processors allocated to guaranteed partitions only use the TDM slots
allocated to them, whereas the virtual processors allocated to best-effort partitions may
use otherwise unused TDM slots in addition to their TDM allocation. By only using their
allocated TDM slots, guaranteed partitions ensure that the behaviour of other partitions do
not affect their timing.

In what follows, we present how the data required by CoMik to function is organised,
in Section 2.3.1 (An example of the C code used to configure CoMik is presented in
Appendix B). After that, we present how CoMik schedules virtual processors and maintains
cycle-accurate temporal isolation between them, in Sections 2.3.2 and 2.3.3 respectively.
We further describe how CoMik enables each partition to composably receive and handle
interrupts, exceptions and use partition-level critical regions, in Section 2.3.4. CoMik’s
memory allocation scheme is presented in Section 2.3.5, describing how each partition
can perform temporally isolated dynamic memory allocation. Finally, partition-level
independent power management is described in Section 2.3.6.

2.3.1 CoMik Organisation

CoMik structures the information that it requires to function in a hierarchical manner,
as illustrated in Figure 2.17. Information is grouped into control blocks, with global
information stored in a CoMik Control Block (CCB) and virtual processor specific
information stored in a Partition Control Block (PCB). Platform hardware information

2.3. COMIK: PREDICTABLE AND COMPOSABLE VIRTUALISATION 41

necessary for driver functions, such as for the TIFU and DMAs, are also stored in control
blocks.

DMA2 DMA3 DMA4DMA1

TIFU CCB1

PCB1 PCB2 PCB3

Figure 2.17: Example illustrating CoMik’s Hierarchy of Control Blocks.

Only one CCB exists per processor containing information such as the heap and stack
locations and sizes, the virtual processor TDM schedule, the CoMik slot and virtual
processor slot durations, and pointers to the PCBs and hardware control blocks. Each PCB
contains the information for a single virtual processor. This includes the virtual processor’s
heap and stack locations and sizes, operating frequency, pointers to its main function,
interrupt handler and exception handler, and pointers to control blocks of dedicated
hardware resources.

Temporal and energy accounting information is also stored within the CCBs and PCB
as is explained in more detail in Chapter 3.

2.3.2 Virtual Processor and Partition Scheduling

As multiple virtual processors must share the same physical processor resource, TDM
arbitration is used to decide which virtual processor is scheduled. TDM arbitration not
only ensures a level of service but also when the service will be delivered. It is also
relatively simple to formally analyse.

CoMik
VP2 VP3VP1

CoMik

Processor 1 Processor 2

VP5VP4 VP4

Virtual
Processor 3

Virtual
Processor 2C

oM
ik

C
oM

ik

C
oM

ikVirtual
Processor 1

Example Virtual Processor TDM Schedule

TDM Slot

Figure 2.18: Temporal processor virtualisation.

42 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

Figure 2.18 illustrates how virtual processors are scheduled following a TDM sched-
ule. In the diagram, physical processor 1 is virtualised as processors 1-3 and physical
processor 2 is virtualised as processors 4 and 5. The TDM schedule for processor 1 is il-
lustrated, showing that each virtual processor has one slot in the TDM table. At the start of
each TDM slot, CoMik switches context from the previously scheduled virtual processor
to the next virtual processor, ensuring cycle-accurate temporal isolation between them.
This is explained in more detail in Section 2.3.3. Figure 2.18 also illustrates how a virtual
processor may have multiple TDM slots, as shown for virtual processor 4 on physical
processor 2. The slots do not need to be consecutive and may have any distribution within
the TDM schedule.

until
I +C−R

clock gateschedule
partition

context
store

context
load

previous
virtual processor

next
virtual processor

slot I +C
virtual processor
start of

reload
processor pipeline R

critical region/
multi-cycle instruction

uninteruptible U

interrupt time I

jitter J CoMik slot C

transition T

end of virtual processor slot I

max(J)+ max(T)≤C−R

Figure 2.19: Cycle-accurate temporally-isolated virtual processor context switch.

If a slot in the TDM table has not been allocated to a virtual processor, or the slot is
allocated to a virtual processor that will be clock gated for the entirety of the slot, the
slot is deemed to be unused. These slots can be used by virtual processors that belong
to partitions with best-effort timing. A round-robin arbitration scheme is used to decide
which best-effort virtual processor gets the slot. Virtual processors that are allocated
to partitions that are guaranteed to be temporally isolated cycle-accurately from other
partitions cannot use the otherwise unused slots, as the availability of these slots depends
on the presence/absence of other partitions and their timing.

CoMik does not perform any scheduling within partitions. Virtual processors are
scheduled with cycle-accurate guaranteed or best-effort timing, but CoMik is agnostic
to what a partition executes on them. This provides a clear separation of concerns. For
instance, a guest Real-Time OS (RTOS) is free to use any partition-level scheduling
scheme, but the timeliness of whatever processes/tasks/threads that it schedules is solely
the responsibility of the partition. Care must be taken at design time when dimension-
ing the TDM table. For instance, shorter TDM slots allow for a higher throughput of
virtual processor context switches, enabling lower virtual processor response times, but
proportionally increases context switching overhead.

In practice, the default CoMik slot and partition slot lengths are 0x1000 and 0x10000
cycles, of the TIFU’s reference clock, respectively. These are values that are not dimen-
sioned for any particular purpose. With these numbers, 5.9% of the physical processor’s
time is spent in the CoMik slot as context switching overhead. The proportion of pro-
cessor time spent in the CoMik slot can be reduced by increasing the partition slot length.
Multiple virtual processors share the same physical processor, and are allocated slots in
the TDM scheduling table. Increasing the partition slot length also increases the time for

2.3. COMIK: PREDICTABLE AND COMPOSABLE VIRTUALISATION 43

a single TDM table period, which increases the worst-case response time of individual
slots, and hence also of the virtual processors.

2.3.3 Cycle-accurate Temporal Isolation

Partitioning and cycle-accurate temporal isolation simplifies the temporal verification of
real-time applications that share resources. This is partially achieved through scheduling,
as explained in Section 2.3.2. CoMik’s TDM scheduling scheme is regulated by a periodic
interrupt that signifies a virtual processor context swap. Critical regions and multi-cycle
instructions prevent the interrupt from being handled immediately. CoMik ensures that this
jitter does not permeate to the next scheduled virtual processor, providing cycle-accurate
temporal isolation.

Figure 2.19 illustrates how CoMik swaps virtual processor contexts. In this example,
the scheduling interrupt arrives at time I, but cannot be handled immediately, as the
processor is uninterruptible for a duration of U . This causes a jitter of time J. Duration
U is variable, depending on the critical region or multi-cycle instruction. After the jitter,
control passes to CoMik’s interrupt routine that performs the virtual processor context
switch. The context of the previous partition is stored. This entails storing the state of the
physical processor’s registers, etc., on the stack of the partition. CoMik then schedules
the next virtual processor as described in Section 2.3.2, before restoring its context. In
Figure 2.19, this transition from one virtual processor context to the other takes time T .
Duration T is variable, due to variation in scheduling time.

If the following virtual processor started immediately after its context is loaded, its
precise start time would depend on the jitter J and the transition time T . To provide
complete cycle-accurate isolation, CoMik ensures that the resumption time of the virtual
processor is independent of this variation. We achieve this by splitting the TDM slot
into a fixed duration CoMik slot and virtual processor slot, as illustrated in Figure 2.18.
The CoMik slot starts at the time the context change interrupt is raised and lasts for a
fixed duration, C in Figure 2.19. The virtual processor slot starts precisely at time I +C.
We achieve this by clock gating the physical processor after the next virtual processor’s
context has been loaded. The processor is ungated at time I +C−R, which is a constant R
cycles earlier than the start time of the virtual processor slot I +C to allow the processor
pipeline to return to the state it was in when the virtual processor was swapped out. For
the MicroBlaze processor, R is 2 cycles to account for the instruction fetch and decode
stages of the pipeline, enabling the virtual processor slot to start where it left off, with the
instruction at the execution stage of the pipeline.

To ensure that the virtual processor slot starts on time, the jitter and the context
transition time must be less than or equal to the time at which the physical processor
ungates, max(J)+max(T)≤C−R as is illustrated in Figure 2.19. A definitive upper
bound max(T) can be derived for the duration of the transition time. No inherent upper
bound for the interrupt jitter max(J) exists, as there is no inherent limit to the duration
of an uninterruptible critical region U . The jitter bound max(J) is therefore a design

44 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

decision that restricts the maximum length of partition-level critical regions. How this
is enforced is explained in Section 2.3.4. The jitter bound should last minimally long
enough to accommodate the processor’s longest multi-cycle instruction (32 cycles for the
integer division idiv instruction on the MicroBlaze processor). Increasing the duration
of the jitter bound max(J) also increases the necessary duration of the CoMik slot C. A
trade-off therefore exists between accommodating a longer worst-case critical region and
decreasing the CoMik slot overhead.

2.3.4 Partition-level Interrupts, Critical Regions and Exceptions

Partition-level (intra-partition) interrupt and exception handlers can be specified, allowing
partitions to use independent event handling policies. Events are handled hierarchically,
with control passing first to CoMik’s event handlers, allowing them to decide whether the
event is intended for a partition-level handler or CoMik.

Partitions are able to set partition-level timed interrupts and receive off-tile interrupts,
e.g. to coordinate partition-level inter-tile communication. Interrupts can only be received
while the partition is scheduled. Timed interrupts are stored as part of the partition’s
context and cannot occur while the partition is not scheduled. To prevent partitions from
receiving off-tile interrupts intended for another partition, each partition has a mask that
CoMik sets on the PIC to mask them out. Any timed or off-tile interrupts that arrive when
the partition’s virtual processor is not scheduled, are raised when the virtual processor is
scheduled next.

Partitions can enable and disable their sensitivity to interrupts, creating partition-level
critical regions. CoMik provides interrupt enabling and disabling functions that sets a
mask on the PIC to prevent interrupts from being raised. To maintain cycle-accurate
temporal isolation, partition-level critical regions should not be longer than the virtual
processor context switch jitter bound max(J), as explained in Section 2.3.3. The interrupt
disabling mask is therefore set with an expiry time that is equal to the jitter bound minus
the duration of the longest multi-cycle instruction. This prevents partitions with longer
than dimensioned for critical regions from interfering with the timing of other partitions.

Having to forcibly interrupt a partition’s critical region is a partition-level malfunction.
CoMik raises a partition-level exception when the partition is scheduled next, allowing
the partition’s exception handler to decide how to handle the situation.

Depending on the physical processor, other exceptions can be raised, e.g. a stack
pointer boundary exception. In the case that a partition decides to stop execution due to
an exception or otherwise, it is simply removed from the TDM schedule and also from the
best-effort list, if it was on it.

2.3.5 Memory Allocation

Partitions are allocated dedicated memory regions. A hardware MPU can be used to
prevent partitions from accessing memory regions allocated to other partitions, but it

2.3. COMIK: PREDICTABLE AND COMPOSABLE VIRTUALISATION 45

is orthgonal to achieving cycle-accurate temporal isolation, for instance the CompSOC
platform prototype that we use for the experimentation in this thesis does not have an
MPU. Without an MPU, malfunctioning partitions could overwrite information in memory
allocated to other partitions, causing inter-partition temporal interference. The use of an
MPU is therefore a trade-off between the area, cost and speed overhead of using one, and
lower reliability without.

CoMik’s heap and stack memory is statically allocated at design time. Memory for
each partition is dynamically allocated on CoMik’s heap, based on the partition’s memory
requirements. As with executing directly on the physical processor, each partition sets
aside a heap and stack region within its memory allocation. Partition-level dynamic
memory requests are allocated on the partition’s heap. The time taken to allocate the
memory is therefore independent of the memory requests of other partitions.

2.3.6 Partition-level Power Management

CoMik provides partitions with the ability to perform partition-level power management.
Partitions are able to make DVFS decisions that change the frequency of the physical
processor. The partition’s frequency is stored and restored as part of the virtual processor’s
context, allowing every partition to perform independent power management.

Lowering the frequency increases the duration of the partition’s critical regions. The
CoMik slot is therefore assigned a constant frequency level at design time. Using Fig-
ure 2.19 for reference, the virtual processor context switch interrupt I causes the frequency
to switch to the CoMik slot frequency. The rest of any partition-level critical region that
executes after the interrupt I is performed at this frequency. The jitter bound max(J), worst-
case virtual processor context transition time max(T), and the CoMik slot length C, are
therefore independent of the partition frequency but should be dimensioned appropriately
for the given CoMik slot frequency.

A partition can also clock gate itself for a duration of time, executing no instructions
while it is gated. TDM slots of clock gated partitions are therefore made available to
best-effort partitions. The virtual processor scheduler checks if the next scheduled virtual
processor is clock gated, is due to ungate, has a raised partition-level interrupt, or is
due to receive a timed partition-level interrupt, during its slot. If it will be gated for the
duration of its slot, the slot is designated as unused, allowing a best-effort application to
be scheduled, as described in Section 2.3.2.

If there are no best effort applications available to use the slot, then the idle partition
is scheduled. This partition consists of an infinite loop (a single instruction that branches
immediately to itself) that is clock gated. The idle partition is scheduled instead of the
scheduled clock gated partition because loading and unloading the partition’s instructions
into the processor pipeline would cause some of the instructions to execute. The exact
number of instructions depends on the specific processor pipeline. Scheduling the idle
partition therefore prevents the clock gated partition’s instructions from advancing, while
still clock gating the slot. Clock gating for a duration longer than a virtual processor slot

46 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

length therefore causes the partition to have a longer worst case response time to off-tile
interrupts. Any off-tile partition-level interrupts that are raised during the partition’s
unused slot are handled when the partition is scheduled next, as described in Section 2.3.4.

CoMik provides the composability part of composable and predictable power man-
agement. In the rest of this section we show how applications are modelled, executed
and analysed using the dataflow MOC, but without the use of DVFS. In Chapter 4 we
explain how these models are used to derive static VFS levels for use at run-time that are
guaranteed to meet the applications timing requirements. This technique has no run-time
computational cost, but is unable to consume slack in the schedule caused by dynamic
variations in task execution time. In Chapter 5 we present a run-time power management
technique that can make use of dynamic slack to perform conservative DVFS.

2.3.7 Temporally Modelling CoMik’s Virtualisation

We proceed to explain how the temporal effects of CoMik’s TDM arbitration on applica-
tions in a virtual platform are modelled. Using a HSDF latency-rate server abstraction of
CoMik’s TDM table, we describe how CoMik’s timing affects the worst-case execution
time of a computational task.

TDM Latency Rate Server

It is shown in [108] how the timing of TDM arbitration can be conservatively modelled
as a latency-rate server that can be represented as a dataflow model, which is illustrated
in Figure 2.20. A latency rate server is modelled as a HSDFG using two actors; a
latency L actor and an inverse rate R−1 actor. The R−1 actor represents the inverse of the
conservatively sustainable rate of the TDM table while the L actor represents the latency
before the rate R is conservative. Auto-concurrency allows the L actor to fire multiple
times concurrently, whereas auto-concurrency is prevented for the R−1 actor as it has a
self-edge with a single initial token. The duration of the latency L actor is equal to the
TDM table’s worst-case response time minus the inverse of the conservative rate R−1.

R−1L

Figure 2.20: HSDFG representation of a latency-rate server

The sustained rate R of a TDM table is the number of cycles of service received S in a
single table length divided by the number of cycles for a single table length T :

R =
S
T

(2.9)

2.3. COMIK: PREDICTABLE AND COMPOSABLE VIRTUALISATION 47

The latency L component of the latency-rate server is calculated as follows:

L = r−R−1 (2.10)

r = T −S+1 (2.11)

where r is the TDM table’s worst case response time that is calculated using Equation 2.11.
As an example, we continue by explaining how the timing of a virtual platform that is

allocated two out of four slots in a CoMik TDM table, configured to have a CoMik slot
of 1000 cycles and a virtual processor slot of 10000 cycles, is modelled as a latency-rate
server. By applying Equation 2.9 to the properties of the table, the value of sustainable
rate R of the table is calculated as follows:

T = 4× (10000+1000) = 44000 cycles

S = 2×10000 = 20000 cycles

R =
20000
44000

=
5

11
service cycles per cycle

meaning that this virtual processor receives a sustainable rate R of five service cycles for
every eleven cycles of the physical processor. Using Equation 2.11 and Equation 2.10 the
latency L after which the rate R is conservatively sustainable is derived as follows:

r = 44000−20000+1 = 24001 cycles

L = 24001−2.2 = 23998.8 cycles

The HSDF model is annotated with the actor timings of 23999 cycles for the L
actor. The duration of the virtualised actor timing R−1

v depends on the duration of the
computational task v that it represents, which is calculated as follows in Equation 2.12:

R−1
v = t(v)×R−1 (2.12)

where t(v) is the worst-case work of actor v and R−1 is the rate component of the latency-
rate server that represents the timing of TDM table of the virtual processor. For example, If
computational task v requires a worst-case work t(v) of 500 cycles, then R−1

v is calculated
as follows:

R−1
v = 500× 11

5
= 1100 cycles

and the R−1
v actor is therefore annotated with the timing of 1100 cycles.

Latency-rate produces a simple TDM abstraction that can be overly pessimistic. A
more complicated but less pessimistic model could be used instead [62].

48 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

HSDF Application Virtualisation

HSDF applications are composed of multiple tasks, and multiple of these tasks may be
mapped onto a single CoMik virtual processor. Like the physical hardware processor, the
virtual processor is a single resource, requiring task arbitration. On a virtual processor
using POSe, tasks are scheduled following a SOS enabling the arbitration to be modelled
as an HSDFG, such as the one illustrated in Figure 2.21a. Each actor cannot fire until
it has at least one token on each of its incoming edges. Even if an actor is scheduled
following the SOS, it might not be able to fire due to inter-tile data dependencies.

1 2 3

Processor

(a) Physical hardware processor

Ln Ln

R−1
1 R−1

2 R−1
3

Ln

Virtual Processor n

(b) CoMik virtual processor

Figure 2.21: HSDFGs of a task SOS on a physical and virtual processor

CoMik’s TDM table length and virtual processor slot allocation are configured per core.
The CompSOC platform is also a Globally Asynchronous Locally Synchronous (GALS)
system, and as such, the clock on each processing tile, and therefore CoMik’s TDM tables,
cannot be assumed to be synchronised. All this, coupled with dynamic variations in task
execution time, mean that data can arrive and enable a task to fire at any moment within
CoMik’s TDM table.

Figure 2.21b illustrates how the HSDF latency-rate server is incorporated into the
SOS, to bound the possibility that each task could experience the worst-case response time
of the virtual processor’s allocation in CoMik’s TDM table. Each task actor v is split into
a latency and rate actor. The incoming edges of the actors are connected to their respective
latency actors that represent the worst-case duration before the task is processed at the
sustainable rate of the virtual processor, once the task is enabled to fire. The outgoing
edges from the task actor v are connected to the their respective rate actors. The rate actor
of a latency-rate server is constrained by a self-edge, as illustrated in Figure 2.20. This
is not necessary in Figure 2.21b as the control edges that govern the task execution SOS
prevents auto-concurrency of the rate actors.

The latency actor Ln is annotated with the latency of the latency-rate server that
conservatively models the timing of the virtual processor n, to which task v is mapped.
This is calculated using Equation 2.10. The rate actor R−1

v of each task v, is annotated with
the number of cycles that it takes the task to perform its work at the virtual processor’s
sustainable rate, as calculated using Equation 2.12.

2.3. COMIK: PREDICTABLE AND COMPOSABLE VIRTUALISATION 49

Timing Effects of CoMik TDM scheduling and a GALS System

CoMik operates in a distributed manner with the TDM table on each core potentially
dimensioned in completely different ways, e.g. number of slots, slot length, frequency. By
performing a latency-rate server abstraction of the TDM table on each core it is possible
the timing behaviour of, and the interactions between all of the cores, even in a GALS
system. The latency-rate abstraction can be quite pessimistic, as it assumes that any data
communicated between cores always experiences the receiving core’s worst-case response
time, i.e it always arrives at the worst possible moment in the TDM schedule. If it is
possible to symmetrically dimension all of the CoMik TDM tables (i.e. CoMik and virtual
processor slot lengths, number of slots in the table, and allocate the application the exact
same slots on each core) then the latency-rate pessimism can be reduced.

Figure 2.22a illustrates an HSDFG application that could be executed by POSe on
CoMik’s virtual processors. On a single core without CoMik virtualisation, it executes
following a SPS as presented in Figure 2.22b. For a three core platform, if tasks one
to four are executed on cores one, two, three and two, respectively, following the same
SPS the same application would execute as illustrated in Figure 2.22c. Adding CoMik
virtualisation to all of the cores, with symmetrically dimensioned an synchronised TDM
tables results in the execution timing presented in Figure 2.22d. The schedule from
Figure 2.22c is unchanged, except it is “sliced” and shifted apart by the symmetrical
TDM schedules, due to the allocation’s of other partitions, in much the same way as a
Damien Hirst artwork1. It is therefore possible to bound the schedule using a latency-rate
server abstraction, by modelling the duration of the tasks at the sustainable rate of the
TDM schedule after a single delay of the latency of the latency-rate abstraction of the
TDM schedule, rather than experiencing the latency every time there is a communication
between cores.

Unlike for the latency-rate abstraction in general, a GALS system provides a com-
plication for this technique as it requires that all of the TDM tables are symmetrically
dimensioned and synchronised. Due to the nature of a GALS system, it might not be
possible to completely synchronise the TDM tables. Figure 2.22e illustrates what happens
to the execution of the application from Figure 2.22d when the TDM tables are not syn-
chronised. The schedule from Figure 2.22c is not so neatly partitioned as previously. If
the difference in TDM synchronisation can be bounded, then the execution can still be
conservatively bounded. As previously, the duration of the tasks are modelled using the
sustainable rate of the TDM table, but a single initial delay of the TDM schedule’s latency
minus the synchronisation variation bound is used instead. Each inter-core communication
is also assumed to experience the delay of the variation bound, which in general is less
pessimistic than assuming that each inter-core communication arrives at the worst-case
moment in the TDM schedule.

1Damien Hirst, “Some Comfort Gained from the Acceptance of the Inherent Lies in Everything”, 1996

50 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

1 2 3 4

(a) HSDF application.

core 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

(b) Single core SPS.

core 1

core 2

core 3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

(c) Multi-core SPS with synchronous starting time.

core 1

core 2

core 3

11

2

3

4

1

2

3

4

(d) Multi-core CoMik virtualisation of the SPS with synchronous starting time.

core 1

core 2

core 3

1

2

3

4

1

2

(e) Bounded synchronous CoMik TDM start time, with SPS executing as STS.

Figure 2.22: The affect of CoMik virtualisation on application graph throughput.

2.4. POSE: DATAFLOW EXECUTION LIBRARY 51

2.4 POSe: Dataflow Execution Library
We contribute the POSe library that simplifies creating new applications, or modifying
legacy applications, to fit the dataflow MOC. Using the C programming language, the
POSe library provides a dataflow modelling framework and MOE, that allows applications
to be structured and executed in a manner that can be represented and analysed as a
dataflow graph (An example of the C code used to configure POSe is presented in
Appendix B). Using this framework enables applications to be structured with clearly
defined computational tasks, that are representable as dataflow actors, that perform inter-
task communication by transferring tokens over FIFO channels.

2.4.1 POSe Organisation
The basic building blocks of dataflow graphs are actors and the edges that describe their
communication. Similarly, the basic building blocks of POSe’s dataflow applications are
computational tasks and the FIFO channels that they use to communicate. Internally, POSe
maintains the properties and relationship of these building blocks in C structs that are
known as control blocks. Applications, tasks and FIFOs are managed using Application
Control Blocks (ACBs), Task Control Blocks (TCBs) and FIFO Control Blocks (FCBs),
respectively. The end user does not interact with POSe’s control blocks directly, but
instead uses the provided Application Programming Interface (API) functions to access
the information they contain.

ACB1

TCB1 TCB2 TCB3

FCB1 FCB2

Figure 2.23: Example illustrating POSe’s Hierarchy of Control Blocks.

POSe dynamically allocates the memory for its control blocks on the virtual pro-
cessor’s heap. Each control block is created and initialised by calling its initialisation
function. Once initialised, the control blocks form a hierarchy that describes the struc-
ture of the application’s dataflow graph. To create this structure the control blocks are
initialised from the top of the hierarchy down.

2.4.2 Applications
The ACB must be created and initialised before all of the other POSe blocks as their
initialisation depends on its existence. The ACB is initialised with the number of tasks

52 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

that the application contains and a pointer to the task scheduling policy. The number of
tasks is used to dynamically allocate space for an array of pointers to the task TCBs.

The scheduling policy is a function that decides which task to execute next. POSe
executes dataflow actors in a non-preemptive manner (preemption of the virtual processor
is still possible), meaning that once scheduled, actors are able to execute to completion
without having their execution preempted by another task. In POSe, scheduling is per-
formed in a cooperative manner, with the scheduler being invoked after the completion
of each task. For the application to be analysable as a dataflow graph, the task scheduler
must also be analysable using dataflow. SOS is one such example of a dataflow analysable
scheduling policy.

2.4.3 Actors as Tasks

POSe’s dataflow applications consist of computational tasks that are C functions that take
no arguments. Each task is represented by a single TCB in the application hierarchy. The
example illustrated in Figure 2.23 is of an application that has three tasks. A pointer to
the initialised TCB is placed in the ACB’s TCB array.

Each task’s TCB is initialised with an Identification (ID), a stack size and a pointer
to the task’s function. The stack that is used by the task’s computation is allocated
dynamically on the heap using the specified stack size. The pointer to the task’s function
is stored in the TCB so that the application’s task scheduler can execute the function
whenever the task is scheduled.

Tasks consume data for computation via incoming FIFO channels and produce data
on outgoing FIFO channels. After the TCB has been initialised another function call is
used to specify how many incoming and outgoing FIFOs the task uses. This information
is used to dynamically allocate an array of incoming and an array of outgoing FIFO FCB
pointers.

Tasks may retain state between execution iterations, but to enable task code reuse and
to fit with the dataflow MOC, this must be accomplished using a self FIFO. This is a
FIFO that has the task as both the producer and consumer. The task consumes its state
information from the self FIFO at the start of its iteration and produces its updated state
information into the self FIFO at the end of its iteration.

2.4.4 Dataflow MOE

The dataflow MOC has implied actions, such as the transfer of data between tasks, that
must be carried out explicitly when executed on the CompSOC platform or other general
hardware. To enable dataflow applications to be executed and analysed as dataflow graphs,
we contribute the POSe MOE.

Figure 2.24, illustrates POSe’s dataflow task MOE that models the explicit actions
required to execute a dataflow application task on a processor. The POSe MOE is a
one-to-one replacement of each task actor in a dataflow application. Figure 2.24 illustrates

2.4. POSE: DATAFLOW EXECUTION LIBRARY 53

schedule execute writeread

Figure 2.24: POSe dataflow task MOE

the dataflow model of the explicit actions that are required to execute a single dataflow
actor on a physical hardware platform.

Dataflow actors can fire as soon as there are sufficient tokens on all of their incoming
edges. The “schedule” actor in Figure 2.24 represents the action of checking the task’s
firing rule to find out if there is sufficient data in its incoming FIFOs and enough space in
its outgoing FIFOs to complete a single execution iteration.

If there is sufficient data and space to pass the task’s firing rule, the POSe MOE
progresses to the “read” actor. Some of the task’s data could be located in memories
remote to the processor tile. The read actor represents the action of reading the necessary
remote data into local memory for the task to be able to execute to completion without
the need to fetch more data. In the CompSOC platform, data from local tile memories
is accessible at a constant rate of 32 bits per cycle, simplifying the predictability of task
execution time.

After all the necessary data is located in local memory, the POSes MOE proceeds to
execute the task, as represented by the “execute” actor in Figure 2.24. The task consumes
the data on its incoming FIFO channels, performs computation and then produces data on
its outgoing FIFO channels. Some of the output data may need to be written to remote
memory locations. The “write” actor represents this action.

Replacing each task actor in an application graph with the POSe MOE creates an
explicit dataflow representation of the implicit actions that are required to execute a
dataflow application on a physical hardware platform. The POSe MOE does not model
resource constraints, e.g. the availability of the processor to execute a task. The POSe
MOE should therefore be used in combination with dataflow modelling of resource
constraints to form a single analysable dataflow model of the application when mapped
on the hardware platform.

2.4.5 Dataflow MOE Implementation
The POSe MOE is an explicit sequential execution of functionality that is implicit to
dataflow graphs. It describes the actions to be performed by the processor to execute
individual tasks in the manner of a dataflow graph. The MOE’s actions and order are
the same for all tasks in the application. As such, the POSe OS provides a generic task
wrapper to implement its dataflow MOE.

The generic MOE wrapper function takes the task’s TCB as an argument allowing it
to perform the specific actions to execute that task. The task must therefore be scheduled

54 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

schedule execute writeread

scheduling
function

task execution
function

main function

Figure 2.25: POSe dataflow task MOE implementation

before the task wrapper is called. Each application must specify a scheduling function.
Before a task can be executed, the scheduling function is called to arbitrate which task is
next. After a task is scheduled the task wrapper is called with its TCB as an argument.
POSe’s main function is an infinite loop that repeatedly calls the scheduling function
followed by the task execution function, as illustrated in Figure 2.25.

Scheduling Function

POSe executes dataflow applications in a non-preemptive manner. As such, only one task
of the dataflow application can execute on the processor at a time. Each application must
therefore provide a scheduling function that arbitrates which task should execute next.
The scheduling function takes a single void pointer as an argument, effectively allowing as
many arguments as necessary to be passed to the function depending on how it interprets
the data at the void pointer location. A scheduling algorithm selects a task, following its
specific selection criteria. Following selection, it checks that the task’s firing rules are met,
i.e. that there is enough data in incoming FIFOs and space in outgoing FIFOs for a single
task iteration. Depending on the scheduling algorithm, if the firing rules are not met the
scheduler can either proceed to select another task or block by re-checking the firing rules.
Upon selecting a task that can fire, the scheduling function returns the ID of the task to be
executed.

The scheduling algorithm contained within the function can be as simple or as complic-
ated as the programming language allows. In order to for the application to be analysable
as a dataflow graph, it must also be possible to express the scheduling algorithm as part of
the application’s dataflow graph, e.g. SOS is incorporated into an application’s dataflow
graph in Section 2.1.1. Depending on the complexity of the algorithm this might not even
be possible.

Task Execution Function

Once a task has been scheduled, the POSe task execution function is called to execute
the task in a manner that is dataflow analysable. The task execution function is a generic
wrapper around the tasks computational function. It takes the task’s TCB as an argument,

2.4. POSE: DATAFLOW EXECUTION LIBRARY 55

enabling it to perform the specific actions necessary to execute the scheduled task.
Following POSe’s MOE, the task execution function iterates through all of the task’s

incoming and outgoing FIFO FCBs, that are listed in the task’s TCB, to check for the
availability of sufficient data and space. If the FIFO’s data is located in a remote memory
location, it is also read into local memory.

POSe’s scheduling function polls the task’s FIFOs until sufficient data and space is
available to execute the task, then executes the task’s computational function. The task
execution function finds the pointer to the task’s computation function specified in the
task’s TCB. When the task’s computational function completes, the execution thread
returns to the task execution function.

A single task iteration consumes a single token of data from each of the task’s incoming
FIFOs and produces a single token of data on each of the task’s outgoing FIFOs. After
the task’s computation function returns, the task execution function once again iterates
over all of the task’s FIFO FCBs to update the state of each FIFOs. The task execution
function also pushes data produced from the task computation function to FIFO buffers
located in remote memory, as necessary.

Power Management

Power management may be performed in either the user specified scheduling or task
execution function. In Section 3.2 we explain how POSe maintains accounts of run-time
temporal and energy information enabling power management functions to make DVFS
decisions while still meeting an application’s real-time requirements.

2.4.6 Multi-core Applications

POSe can be used to execute a single application on multiple processors. This might be
necessary to meet real-time requirements, or in a resource constrained platform where all
of the application’s task instructions and data might not fit in the memory of a single core.
POSe enables individual tasks from dataflow applications to be mapped and executed on
different processors.

ACB1

TCB1 TCB2

FCB1 FCB2

ACB1

TCB3

FCB2

core 1 core 2

Figure 2.26: POSe’s multi-core control block organisation

56 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

POSe keeps track of an application’s tasks and FIFOs on a multi-core platform using
control blocks, in the same manner as described in Section 2.4.1. POSe maintains a local
ACB per core, that keeps track of the application’s local tasks, as illustrated in Figure 2.26.
In this example, two of the application’s three tasks are mapped onto core 1 and the
remaining task is mapped onto core 2. The task’s TCBs, instructions and data are only
located on the tile to which the task is mapped.

Tasks that are located on different cores must be able to communicate, in order to form
part of a single application. This is achievable using POSe’s C-HEAP FIFO channels,
allowing a task on one core to be the producer, and a task on another core to be the
consumer. POSe maintains a single FCB per core for each FIFO used by tasks located
on that core. This means that an FCB is maintained on each core for FIFOs used to
communicate between two cores. These FCBs contain copies of the FIFO’s C-HEAP
administration, with information on the FIFO buffer’s address, token size and capacity.
The scheme that is used to maintain the coherency of the read and write counter variables,
that are used to indicate the buffer occupancy, depends on how the C-HEAP FIFO is
mapped onto the shared memories, as described in Section 2.2.3.

2.5 Dataflow Modelling of Application and Platform

In the previous sections of this chapter we have described the techniques and components
necessary to enable the execution of dataflow analysable applications. In this section, we
contribute a technique that translates a dataflow application with a platform mapping, to
a dataflow graph that combines the timing of the application and the software/hardware
delays of the CompSOC platform, enabling temporal analysis of the application.

In this section, we explain how the original application dataflow graph is modi-
fied, by adding dataflow actors and edges, to take into account delays associated with
inter-processor communication, POSe’s dataflow execution framework and CoMik’s vir-
tualisation of the processor using TDM arbitration. We contribute an algorithm that
describes how these modifications are applied to achieve the final dataflow analysable
application.

2.5.1 Mapped Dataflow Application

The starting point of our technique is a mapped dataflow application. In order to execute
the application on the CompSOC platform, each task is mapped on a processor. The
resultant inter-tile FIFO communication must also be mapped onto physical hardware
components, such as DMAs.

The hardware mapping of real-time applications affects their ability to meet their
timing requirements. Much work has been carried out on automated application mapping
[18, 53] and we acknowledge the importance of application mapping in meeting real-
time requirements and therefore the availability of scheduling slack to perform power

2.5. DATAFLOW MODELLING OF APPLICATION AND PLATFORM 57

management. The work in this thesis assumes as a starting point that the application is
already mapped to the platform and that the tasks are already scheduled following a per
core dead-lock free SOS.

An example mapping, for the dataflow application that is illustrated in Figure 2.27a,
is presented in Figure 2.27b. Each task is assigned to a processor, with tasks 1 and 3
assigned to the processor on tile 1 and tasks 2 and 4 assigned to the processor on tile 2.
Tasks are scheduled following a SOS per tile with additional control edges added to the
dataflow graph to model the processor resource constraint, as described in Section 2.1.1.

The mapping causes the edges between tasks 1 and 2 and tasks 3 and 4 to span multiple
tiles. POSe implements dataflow edges as finite capacity C-HEAP FIFOs. This is modelled
as described in Section 2.1.1 by adding an additional edge in the opposite direction of
each edge that spans multiple tiles. The finite capacity of each FIFO is represented by
the number of initial tokens on the additional edge, with each token representing the
availability of space for a single token in the C-HEAP FIFO. The DMA and memory
resources required for inter-tile communication also form part of the application mapping.

2.5.2 Incorporating Inter-tile C-HEAP Communication

The application mapping illustrated in Figure 2.27b has two inter-tile C-HEAP FIFO
communication channels. The capacity of the C-HEAP FIFO is modelled using an
additional reverse edge with the capacity of the FIFO represented by the number of initial
tokens on this edge, as described in Section 2.1.1. The precise timing and modelling of
the physical implementation of the FIFO depends on how the components of C-HEAP
FIFO are mapped. Section 2.2.3 explains how three C-HEAP configurations are modelled
as HSDFGs. We proceed to explain how these models are incorporated into a combined
application and CompSOC platform HSDFG.

Algorithm 2.1 Incorporate Inter-Tile C-HEAP

Require: input HSDFG G
for all C-HEAP edge pairs {(p,c),(c, p)} ⊆ E do

G← G\{(p,c),(c, p)}
G← G∪getCHeapHSDFG({(p,c),(c, p)})

end for
for all processors P do

Vp← getActors(G,P)
for all DMAs D local to P do

Vd ← getActors(G,D)
G← createSOS(G,Vd)
G← orderSOSactors(G,Vp,Vd)

end for
end for

58 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

2
1

3
4

(a) Example HSDFG application

Tile 1 NOC Tile 2

1

3

2

4

Processor DMA cmem Processor

cmem DMA

(b) Application and resource constraints mapped onto CompSOC hardware resources

Tile 1 NOC Tile 2

B1,2

B3,4

Bp3,4

Bp1,2

d3,4

d1,2

DMA

d2,1

d4,3

DMA

n2,1

cmem

2

4

1

3

Processor

n1,2

n3,4

Processorcmem

n4,3

(c) Incorporating hardware timing in the application’s dataflow graph

Figure 2.27: Combined application and CompSOC platform dataflow modelling

2.5. DATAFLOW MODELLING OF APPLICATION AND PLATFORM 59

Tile 1 NOC Tile 2

s1

e1

w1

s3

e3

w3

Processor

d3,4

d1,2

DMA

d2,1

d4,3

DMA

n2,1

s4

e4

w4

s2

e2

w2

Processor

n4,3

n1,2

n3,4

cmem

cmem

B3,4

B1,2

Bp1,2

Bp3,4

(d) Task dataflow actors replaced by POSe dataflow MOE

NOCTile 1 Tile 2

d3,4

d1,2

DMA

d2,1

d4,3

DMA

n2,1

s4

e4

w4

s2

e2

w2

L2

L2

Virtual Processor

s1

e1

w1

s3

e3

w3

L1

L1

Virtual Processor

n4,3

n1,2

n3,4

cmem

cmem

B3,4

B1,2

Bp1,2

Bp3,4

(e) Latency-rate abstraction of CoMik TDM table

Figure 2.27: Combined application and CompSOC platform dataflow modelling

60 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

Algorithm 2.1 describes the steps necessary to incorporate the C-HEAP models from
Section 2.2.3 into the mapped application HSDFG from Figure 2.27b. The algorithm
iterates over all of the C-HEAP edge pairs, that represent the forward data path and
the reverse space path of a single C-HEAP FIFO, replacing them with the appropriate
C-HEAP HSDFG. In Algorithm 2.1, {(p,c),(c, p)} ⊆ E is a set containing the edge pair,
from producer p to consumer c and back again, that represent a single C-HEAP FIFO. The
algorithm first removes the edges belonging to the C-HEAP edge pair from the mapped
graph G then merges the detailed HSDFG representation of the C-HEAP FIFO with graph
G. getCHeapHSDFG: E×E→ G returns the appropriate HSDFG representation of the
C-HEAP FIFO for the C-HEAP edge pair.

Some of the C-HEAP connections might use the same DMA, requiring that a cycle
of resource constraint edges are used to ensure that all the DMA actors fire sequentially.
Algorithm 2.1 iterates over all the DMAs of all the processors, finding all the actors that
belong to each DMA, before forming a single SOS per DMA and ordering the actors
relative to the SOS of the task actors on the local processor. The function getActors:
G×H → V takes a graph G and a hardware resource H and returns the set of actors V
from G that represent the timing of H. In Algorithm 2.1, this is used to find the set of
actors Vp that represent the processor P and the set of actors Vd that represent the DMA
D. The function createSOS: G×V → G takes an HSDFG G and a subset of actors V and
returns a graph G with a cycle of resource constraint edges to the actors V in G, forming
a SOS. The ordering of the transactions that are carried out on each DMA depends on
the order of task execution on the local processor that programs the DMA. The function
orderSOSactors: G×V ×V → G takes the graph G and two subsets of actors V , ordering
the SOS of the second set of actors relative to the first. This is used in the algorithm to
order the SOS of the DMA actors Vd relative to the ordering of the task actors on the local
processor Vp.

Figure 2.27c is what results when Algorithm 2.1 is applied to the mapped application
graph from Figure 2.27b. The two inter-tile C-HEAP edge pairs are replaced with
the C-HEAP HSDFG that models the C-HEAP communication using local scratchpad
memories only, as described in Section 2.2.3. Both C-HEAP FIFO channels use the
same DMA on each processing tile. Following Algorithm 2.1 the actors modelling DMA
transactions are added to a SOS per DMA and ordered relative to the task execution order
of the local processor.

2.5.3 Incorporating the POSe MOE

With the inter-tile communication modelled in Figure 2.27c, we proceed to explain how
the POSe MOE is incorporated into the application and CompSOC platform HSDFG. The
original HSDFG of the application from Figure 2.9, models the application tasks and their
communication. These are the same actors modelling processor tasks in Figure 2.27c.
Dataflow applications are executed on the CompSOC platform using the POSe OS, with
the timing overhead modelled using the POSe MOE HSDFG, as described in Section 2.4.4.

2.5. DATAFLOW MODELLING OF APPLICATION AND PLATFORM 61

Algorithm 2.2 describes how the POSe MOE is incorporated into the combined application
and CompSOC platform HSDFG.

Algorithm 2.2 Incorporate POSe MOE

Require: input HSDFG G
for all processors P do

Vp← getActors(G,P)
for all actors v ∈Vp do

G←substitute(G,v,POSeTaskMOE(v))
end for

end for

Algorithm 2.2 iterates over all actors in the HSDFG that model processor tasks,
substituting each of these actors with the POSe MOE. The function substitute: G×V ×
G→ G takes a graph G with an actor V to be substituted with a graph G and returns the
graph G with the completed substitution. The incoming edges of the substituted actor are
transferred to the first actor in the actor order of the replacement graph, and the outgoing
edges to the last actor. The function POSeTaskMOE: V → G takes an actor and returns
the POSe MOE graph for that actor.

As described in Section 2.4.4, the POSe task MOE consists of four actors; schedule sn,
read rn, execute en and write wn, for task ID n. The resultant graph, when Algorithm 2.2
is applied to the graph from Figure 2.27c, is illustrated in Figure 2.27d. The POSe MOE
read actors are omitted in this instance as the tasks in the application graph example do
not read any data from remote locations.

2.5.4 Incorporating CoMik TDM Timing

The combined application and CompSOC platform modelling described in the previous
sections explain how to model the application executing using the POSe OS directly
on the CompSOC hardware, as illustrated in Figure 2.27d. We proceed to explain how
CoMik virtualisation can be taken into account in the combined application and CompSOC
platform HSDFG.

CoMik virtualises a single processor into multiple virtual processors using TDM arbit-
ration, i.e. the virtual processors time share the physical hardware processor. Section 2.3.7
describes how the timing of CoMik’s virtualisation is modelled as a latency-rate server that
can be incorporated into the combined application and platform HSDFG. Algorithm 2.3
describes the steps necessary to incorporate CoMik’s latency-rate server abstraction into
the application HSDFG, e.g. translating Figure 2.27d into Figure 2.27e.

Algorithm 2.3 iterates over all of the virtual processors in the graph updating the timing
annotation of the actors that model the timing of tasks executing on the physical processor
to the timing of the tasks on the virtual processor. The function updateLRtiming: G×V →
G takes the HSDFG G and an actor v and updates its annotated timing to correspond with

62 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

Algorithm 2.3 Incorporate CoMik TDM Timing

Require: input HSDFG G
for all processors P do

Vp← getActors(G,P)
for all actors v ∈Vp do

G←updateLRtiming(G,v)
end for
for all edges (i, j) ∈ G do

if i 6∈Vp and j ∈Vp then
G←substitute(G, j,CoMikLRserver(j))
Vp←Vp \ j

end if
end for

end for

its execution time on the virtual processor, returning the updated HSDFG G. The latency
actors, of CoMik’s latency-rate server abstraction, are appended to the incoming inter-tile
communication edges. Algorithm 2.3 iterates over all the edges in the graph (i, j) for
every processor P. For the set of actors Vp belonging to P, if the producing actor i is
not in Vp and the consuming actor j is in Vp then the edge (i, j) is an incoming inter-tile
communication edge. The function CoMikLRserver: V → G takes an actor and returns
the latency-rate server HSDFG for that actor, which the algorithm then substitutes for j in
graph G. The actor j is then removed from the set of actors Vp as the substitution only
needs to occur once per actor.

2.5.5 Combined Application and CompSOC Platform HSDFG
Each of the algorithms presented in the previous sections take an HSDFG and modifies
it to produce an updated HSDFG that incorporates more of the detail of the application
timing on the CompSOC platform. Algorithm 2.4 presents how each algorithm is simply
invoked sequentially to produce a combined application and CompSOC platform HSDFG,
such as Figure 2.27e, from a mapped application HSDFG, such as Figure 2.27b.

Algorithm 2.4 Combined Application and Platform HSDFG

Require: mapped application HSDFG G
G← incorporateCHeap(G)
G← incorporatePOSe(G)
G← incorporateCoMik(G)

Algorithm 2.4 first invokes the function incorporateCHeap: G→ G that uses Al-
gorithm 2.1 to incorporate the timing of inter-tile communication using the C-HEAP

2.6. RELATED WORK 63

communication protocol. Algorithm 2.4 then invokes the incorporatePOSe: G→ G func-
tion that uses Algorithm 2.2 to incorporate the timing overhead of the POSe MOE. Finally,
Algorithm 2.4 invokes the function incorporateCoMik: G→ G that uses Algorithm 2.3
to incorporate the timing of CoMik’s TDM virtualisation into the application graph. A
combined application and CompSOC HSDFG is the end result.

2.6 Related Work

Interference between applications is a particular problem for safety-critical applications,
such as those found in the automotive [83] and aeronautical [52, 88, 92, 110] industries.
The strictest standards are found in the avionics industry, and ARINC specification
653 [10], is an avionics industry standard for the implementation of temporal and spatial
partitioning [52, 110]. The standard also specifies requirements for interfaces, libraries
and programming languages, enabling interoperability between ARINC 653 compliant
systems [88]. LynxOS-178 [66], VxWorks 653 [109], INTEGRITY [40] and PikeOS [96]
are commercially available ARINC 653 compliant RTOSs.

2.6.1 Composable and Predictable Systems

Two well known composable and predictable real-time system approaches are Time
Triggered Architecture (TTA) [57] and PRET [27]. TTAs have been researched since
1979 [58], and is a well established technique used when designing safety critical em-
bedded systems, e.g. in the avionics and automotive industry. Computation in a TTA
is triggered by the tick of a clock (known as a global clock) in much the same way as
synchronised hardware. Timing isolation is achieved by only permitting components to
interact at pre-computed points in time, as governed by the global clock. TTA architec-
tures therefore use non work-conserving inter- and intra-application scheduling, whereas
POSe’s intra-application scheduling is work conserving, i.e. an earlier task finish leads to
an earlier start of subsequent tasks.

Timing repeatability to reduce the complexity of verifying real-time systems, is the
focus of the PRET programming model [64] and platform [65]. Timing isolation and
repeatability is achieved in PRET by dedicating processor resources, e.g. independent
hardware threads. The PRET methodology needs ISA support for precise timing control,
such as a deadline instruction, and requires processor modification to supports such
instructions if they do not exist. With the CompSOC platform’s deterministic hardware
timing, and our strict notion of timing composability, where applications do not interfere
by even a single cycle, the CompSOC platform also has repeatable timing (see Section 6.1).
CoMik time shares the processor instead of dedicating processor resources, which lowers
average performance, but does not have a hardware limitation on scalability. The TIFU
enables precision timed actions to be performed, such as halt until deadline, without
requiring modification to the processor.

64 CHAPTER 2. THE COMPSOC: MIXED TIME-CRITICALITY PLATFORM

2.6.2 Virtualisation

Outside of safety critical domains, temporal and spatial partitioning is used for embedded
system virtualisation [41, 45,77]. The OKL4 microvisor [46] is a virtualising microkernel,
that is developed for use on mobile phones. It enables mixed time-criticality applications
to execute on virtual machines as if they were running directly on the hardware platform.
OKL4 uses thread-level partitions, with time slices allocated per-thread. Threads are
scheduled following a priority based pre-emptive schedule. As with ARINC 653, precisely
when the partition receives service depends on the presence/absence of other partitions.
OKL4 permits inter-partition communication, enabling timing interference between the
communicating partitions.

CoMik combines partition-level cycle-accurate temporal isolation with a virtualised
processor interface. Partitions are allocated one or more dedicated virtual processors on
one or more shared physical processors. A limitation of CoMik’s cycle-accurate isolation
is that guaranteed partitions may not receive information from any other partitions, but
they may send information in a non-blocking manner to best-effort partitions. Best-effort
partitions may communicate freely, but can experience inter-partition timing interference
due to the communication.

2.6.3 Formal Abstraction

Real-time calculus [99] is another formalisation method that can be used abstract real-time
systems to provide timing guarantees. We use dataflow as our formalism method for the
same reasons as given in [14]. The main advantage of dataflow is that it permits cyclic
data dependencies and can hence model back pressure. Our application abstractions are
able to use this back pressure to model FIFO occupancy Section 2.1.1. Real-time calculus
cannot capture back pressure, but can model the timing effect of buffer capacities in some
specific cases [100, 101].

2.7 Summary
In this chapter, we have presented the CompSOC platform for executing mixed time-
criticality applications. We show how the dataflow modelling paradigm is used to model
real-time applications enabling worst-case timing analysis to be performed to provide
guarantees. Dataflow is a restrictive MOC, and as such we describe the POSe OS that
enables applications to be structured and executed in a dataflow analysable manner. As a
mixed time-criticality platform, multiple applications with various timing requirements
may execute on the same processor. We present the CoMik microkernel that composably
virtualises the hardware processor into multiple virtual processors. Applications executing
on these virtual processors do not interfere with each other’s timing by even a single cycle.
We describe how to create a combined application and CompSOC platform dataflow graph
that enables temporal analysis of the application taking into account the timing overhead

2.7. SUMMARY 65

of the practical implementation. The power management techniques presented in the rest
of this thesis use the CompSOC platform’s temporal analysability to perform DVFS while
still meeting real-time application requirements.

CHAPTER3
Composable Time, Energy and Power Accounting

Composability enables applications to execute independently of one another while using
the same physical resources. In this chapter, we describe how the CompSOC platform
enables each application to maintain independent temporal, energy and power performance
budgets for composable power-management of real-time applications.

Power management of embedded systems is a trade-off between an increase in power
consumption or an increase in execution time (due to a reduction in operating frequency).
Due to the relation of time, energy and power, a reduction in power may even lead to an
overall increase in energy consumption for the amount of work performed. The exact
relationship between power and frequency depends on many factors including the type
of transistors used, feature size, and how the transistor is specifically dimensioned for
implementation. As many of the details are beyond the scope of this thesis, we first present
a general overview.

3.1 DVFS Power Model
The DVFS mechanism enables trading a decrease in operating frequency and voltage for
a decrease in power consumption. This trade-off is (usually) monotonic, meaning that a
reduction in operating frequency can only lead to a power consumption that is less than
or equal to what it was before. When the DVFS mechanism is applied to a processor, an
application can save power by simply lowering its operating frequency without needing

67

68 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

to be aware of how much power it will actually save. Unfortunately, without a power
model, it is impossible to say if this reduction in power consumption would also translate
to a reduction in energy consumption for the amount of work performed. The problem of
reducing power/energy consumption is further complicated on multi-core systems running
real-time applications with inter-core data dependencies, due to the complex trade-offs
available when using multiple DVFS islands. This is the topic covered in Chapter 4 and
Chapter 5. To be able to make informed DVFS trade-off decisions, a power model is
necessary.

The power consumption of a System on Chip (SoC) is complex to model as it is a
collection of many smaller components with various interactions and power behaviours.
Creating detailed and accurate power models of electronic components is beyond the scope
of this thesis, but an understanding of the power modelling is necessary to demonstrate
the applicability of our techniques to physical systems. The power/energy reduction
techniques presented in this thesis do not rely on a specific power model and are suitable
for use with any power model that can be expressed as a convex function of monotonically
decreasing power consumption as a consequence of decreasing operating frequency (and
hence voltage). While our techniques do not rely upon a specific power model, it is
important that they are applicable to current technologies and some foreseeable future
technologies. In the rest of this section, we present a basic overview of power modelling
and the problems faced by decreasing feature sizes.

3.1.1 Power Modelling Overview
SoCs are mainly composed of transistor based logic and interconnecting paths. Power is
primarily consumed performing logic functions and hence in the transistors. Much work
has therefore been carried out to model the power performance at the transistor level. The
alpha-power law [17,91] is a commonly applied Metal-Oxide-Semiconductor Field-Effect
Transistor (MOSFET) power consumption model. For instance, it is applied in [50, 72] to
model the power consumption of Complementary Metal-Oxide-Semiconductor (CMOS)
circuits. This is modelled in [50, 72] as the sum of the circuit’s dynamic switching power
consumption Pdynamic, its static leakage power consumption Pstatic and in [50] a constant
power consumption Pon:

Pcircuit = Pdynamic +Pstatic +Pon (3.1)

The dynamic power of the processor Pdynamic caused by gate switching is calculated
as follows:

Pdynamic = αCV 2
dd f (3.2)

where α is the circuit’s average switching activity, C is the circuit’s total capacitance, Vdd
is the supply voltage and f is the operating frequency. When performing DVFS, both

3.1. DVFS POWER MODEL 69

Vdd and f are scaled. For a requested f , a Vdd should be chosen that enables the lowest
power consumption. This can be achieved at run-time by performing a table lookup of
predetermined levels.

The static power consumption is more difficult to model, as it is a result of multiple
complex leakage phenomena in Field-Effect Transistors (FETs). Six different types
of MOSFET leakage current are described in [90]. The CMOS circuit power models
described in [50, 72] model sub-threshold leakage, reverse bias junction leakage and
in [72] also gate-oxide tunnelling leakage. The static processor power leakage Pstatic is
modelled simply as the sum of the power leakages from all gates in the circuit in [71]:

Pstatic = ∑
∀gates

(|Vbs|I j +VddIsub +VddIgate) (3.3)

where Vbs is the body bias voltage, I j is the reverse bias junction current, Isub is the
sub-threshold leakage current and Igate is the gate-oxide tunnelling current.

The constant power Pon is used to model the rest of the circuit’s power consumption
that is not covered by Pstatic and Pdynamic, such as the power consumption due to logic and
clocking paths.

Temperature has an affect on threshold voltage and on electron and hole mobility. It
therefore also affects power consumption and switching duration. The technique presented
in Chapter 4 optimises frequency levels off-line and is therefore unable to account for
run-time temperature variations. To ensure that power consumption is not underestimated,
the worst-case power consumption for any temperature for each frequency should be used.

3.1.2 DVFS Hardware Support

A hardware actuator is required to change the physical voltage and frequency levels of a
power island. Multiple power islands can exist per SoC with each having independent
voltage and frequency levels. The CompSOC platform is designed to have a power
island per tile, enabling each processor to independently perform DVFS. Clock Domain
Crossings (CDCs) are used to enable communication across clock domain boundaries.
There are multiple methods to implement CDCs. One common method is to use dual
ported SRAM memories at the clock domain boundary, with one port in each of the clock
domains.

In the case of the CompSOC platform, the TIFU provides the hardware actuator
that sets the voltage and frequency levels. For practical reasons, the TIFU in the FPGA
prototyped CompSOC platform does not actually perform voltage and frequency scaling of
FPGA regions. As the FPGA is being used to prototype an ASIC platform, any measured
power savings would not be indicative of those achievable on an implementation of the
ASIC platform. Instead, the timing effects of frequency scaling are achieved using clock
division, as explained in Section 2.2.4 and the platform’s power consumption is calculated
from a model, as described in Section 3.1.4.

70 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

CoMik enables independent voltage and frequency levels between virtual processors,
requiring relatively fast DVFS changing to maintain composability with a low temporal
overhead. Hardware techniques presented in [73] and [104] enable voltage and frequency
scaling in hundreds of nanoseconds, translating to frequency changes in tens of cycles at a
frequency of 100 MHz. The technique presented in [73] achieves DVFS transitions of
approximately 200 ns using 130 nm technology, in simulation. A physical implementation
of the technique presented in [104] was achieved in a 65 nm technology test-chip, and
performs DVFS transitions in approximately 100 ns. They achieve this using a voltage-
hopping technique that approximates the frequency between discrete frequency-levels
using dithering patterns to produce a linear interpolation [104]. The power consumed is
also a linear interpolation, making the frequency-power model a piecewise linear curve.

3.1.3 Decreasing Feature Sizes and DVFS

As Moore’s law continues, transistor sizes are ever decreasing [1]. For the MOSFET, this
causes many of the leakage currents to increase [72]. This has led to the development
of FETs with a different structure to the MOSFET, to minimise leakage currents. At
the time of writing, the FinFET and the Fully Depleted Silicon-on-Insulator (FD-SOI)
transistor are vying to replace the MOSFET at smaller feature sizes [67]. The specific
benefits of each are beyond the scope of this thesis and are still being debated. Importantly,
for the power management techniques proposed in this thesis, both technologies support
DVFS [55, 67].

At present, FD-SOI appears set to become the technology of choice for future SoCs
from STMicroelectronics [67]. This is at least partially down to its suitability for power-
management using DVFS, due to its wide voltage scaling range [28]. This makes FD-SOI
suitable for low-power applications, such as mobile devices. A 2.6 GHz ARM Cortex
A9 processor implemented in 28 nm FD-SOI technology that exhibits a wide voltage
scaling range is described in [49], demonstrating that FD-SOI is a feasible technology for
low-power mobile processors.

3.1.4 Convex Frequency-Power Model for CompSOC DVFS

The power-management techniques described in Chapter 4 and Chapter 5 require a convex
power model for use with the disciplined convex programming technique. Our techniques
calculate frequency scaling levels to obtain the lowest power consumption. It is assumed
that some form of table exists that translates the desired frequency to the appropriate
supply Vdd and bias Vbs voltages required to support the frequency. Independently scaling
Vdd and Vbs produces a frequency-power trade-off region [72], rather than a single convex
frequency-power trade-off curve.

A method is presented in [6] that demonstrates for simulated 28 nm FD-SOI tech-
nology how discrete points can be selected within the frequency-power trade-off region
and linearly interpolated, using voltage-frequency hopping techniques [104], to form a

3.1. DVFS POWER MODEL 71

piecewise convex frequency-power trade-off curve. The disciplined convex programming
method used by our technique in Chapter 4 requires a continuous convex frequency-power
model. Piecewise convex models can be conservatively fitted using a continuous function
to enable their usage with our technique.

0
10
20
30
40
50
60

0 20 40 60 80 100 120

Po
w

er
m

W

Frequency MHz

(a) Relationship between power and frequency.

0
100
200
300
400
500
600

0 20 40 60 80 100 120

E
ne

rg
y

pe
rC

yc
le

µ
J

Frequency MHz

(b) Energy consumption per cycle of work.

Figure 3.1: Continuous models suitable for convex optimisation.

The techniques presented in this thesis work with any convex frequency-power model
that can be expressed using disciplined convex programming [39]. In order to demonstrate
our techniques, we use the continuous convex frequency-power model as illustrated
in Figure 3.1a. Based on the power modelling equations presented in Section 3.1.1,
Figure 3.1a presents a continuous third-order polynomial function that is curve-fitted to
the discrete convex operating points from [104]. The points in [104] are on a normalised
frequency and power scale, from zero to one. To be able to give an idea of the sort of
savings that could be expected in realistic system, we multiply the normalised scales with
appropriate values.

We multiply the frequency scale by 120, as the FPGA prototyped CompSOC platforms
used in this thesis, have a maximum frequency of 120 MHz. As the MicroBlaze processors
are soft cores (that can be configured in many different ways), there is no definitive

72 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

appropriate value to multiply the power scale. For this purpose we use a measured power
value of 60 mW for an ARM Cortex-A8 processor running the Dhrystone benchmark at
125 MHz. This measurement was carried out by Texas Instruments for the OMAP3530
chipset [98]. Scaling the operating points from [104] and fitting the polynomial frequency-
power function P(f) produces the following model:

P(f) = 3.353×10−5 f 3 +2.065 (3.4)

where f is the operating frequency in MHz and the produced power P(f) is in mW. This
power model is illustrated in Figure 3.1a. We do not claim that this power model is
accurate for any particular processor, nor is it necessary that this particular power model
is used for the functioning of our techniques. The power model given by Equation 3.4
is used throughout this thesis for illustrative purposes only. While the ARM Cortex-A8
is a high-performance mobile processor and the MicroBlaze is a simpler soft-core, the
measured power value for the ARM Cortex-A8 is useful to put the power model in the
right area of approximation for power consumption by contemporary processors.

The convex optimisation techniques that we present in the following chapters can also
be used to minimise the amount of energy consumed for the amount of work performed.
The convex power function presented in Figure 3.1a translates to a convex energy per
cycle-of-work function, presented in Figure 3.1b, making it suitable for use with our
convex optimisation based technique. From Figure 3.1a and Figure 3.1b can be seen
that while lowering the frequency translates to a reduction in power, it does not always
translate to a reduction in energy for the amount of work performed. As the frequency
is reduced the duration of an individual cycle increases until eventually the static power
consumption causes further frequency reduction to cause an increase in energy required
to perform a single cycle.

3.2 POSe Accounting
For real-time applications, trading a reduction of power consumption for a reduction
in performance through DVFS must be done within the constraints of the application’s
timing requirements. Performing run-time DVFS therefore requires information about the
application’s current timing performance, e.g. the run-time power-management schemes
described in Chapter 5 use this run-time information to conservatively perform DVFS. In
this section, we describe how POSe provides the ability to monitor an application’s timing
performance at the task and application levels.

3.2.1 Task-level Timing

POSe tasks can be annotated with a worst-case work that is stored in the task’s associated
TCB. The task’s worst-case work is measured in cycles of work that the task executes in

3.2. POSe ACCOUNTING 73

its worst-case. The task’s WCET therefore depends on the task’s worst-case work and the
frequency at which the task is executed. The TIFU hardware timer, that counts the scaled
clock signal, counts the number of cycles of work that the task performs at run time. The
difference between the task’s measured cycles of work and the task’s worst-case work is
observed temporal slack.

1

2
3

(a) Actor 3 has two data dependencies.

task 1

task 2

task 3

earlier finish

earlier start
(b) Earlier start of task 3 is less than or equal to the
earlier finish of task 1 (or task 2 if it was early).

Figure 3.2: Task-level timing slack observation.

Task-level slack that is observed in this manner is not always useful to perform
conservative frequency scaling. Tasks can have multiple data dependencies, and an earlier
finishing time of one of the preceding tasks does not guarantee an earlier starting time of
the dependent task1. Figure 3.2 illustrates an example of an HSDF application in which
task 3 depends on data from tasks 1 and 2. In this example, task 1 finishes earlier than its
worst-case execution time. Task 3 cannot start immediately making its earlier start time
less than the earlier finish time of task 1. The timing slack that is available to perform
conservative frequency scaling is therefore equal to the earlier starting time of task 3 and
not the earlier finishing time of task 1.

3.2.2 Application-level Timing

Real-time requirements are commonly specified on larger granularity than the task level.
For instance, a frames per second timing requirement for a video decoder application may
require multiple graph iterations to complete a single video frame. POSe applications can
be mapped across multiple cores. POSe’s accounting operates in a distributed manner,
i.e. POSe on each core only has the timing information of the part of the application that
is mapped locally. If global application timing information is required, it is up to the
application’s power-management scheme to communicate this information via the regular
dataflow communication channels.

POSe accounts application-level timing on the granularity of application graph iter-
ations. Timing requirements can be set as an integer number of graph iterations to be

1An earlier enabling of an actor depends on the latest finish of preceding actors. In [80], slack lost due to
multi-core execution was not correctly taken into account. Tasks accumulated slack to scale their next iteration
regardless of whether this translated to earlier subsequent task starting times.

74 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

performed within an amount of time. This information is stored in the application’s ACB,
with the time stored in terms of the number of cycles of the unscaled clock frequency.

POSe can only measure how many times the locally mapped part of the application
graph has finished. Applications can be modelled as HSDF, SDF or CSDF graphs. For
SDF and CSDF modelled applications, tasks might have to fire multiple times to complete
a single graph iteration. The combined application and CompSOC platform dataflow
models, described in Section 2.5, require that application tasks are scheduled following a
SOS. The schedule order is specified to POSe as a table of local task IDs. POSe’s task
scheduler simply schedules the task with the ID corresponding to the next ID in the table,
and wraps around to the first table entry after the last table entry has been scheduled.
By specifying that the table should contain the SOS of local task executions for a single
application graph iteration, the number of local application graph iteration completions
are counted by observing the number of times the scheduler reaches the end of the SOS
table.

POSe performs the application graph count in a distributed manner. The number of
local application graph iterations that have completed can differ per core. This can happen
because data is buffered in the FIFO channels between dataflow tasks that are mapped
onto different cores. POSe does not provide any explicit method to determine locally how
many times the application graph has completed globally. This information can be gained
by the application in multiple ways. One way is by having a single “synchronising” task
with which the final task in each static order schedule communicates. The synchronising
task can fire whenever it has received a single token from the final task in each core’s
SOS. The synchronising task’s iteration count is the number of complete application
graph iterations. This information can then be communicated via the regular dataflow
communication channels to tasks on the other cores, if required.

While using a synchronising task is relatively simple to implement, it limits scalability.
All cores must be able to communicate with the core on which the synchronising task
is mapped. Even though the amount of communicated data is relatively small, the
communication infrastructure must exist to enable this. In Section 5.2 we describe a
distributed power-management technique that uses the local application graph count and
the static information of the graph topology and mapping to calculate the minimum number
of complete application graph iterations that must have taken place. Each core performs
the calculation independently, requiring no explicit synchronisation or communication of
the calculated result.

3.3 CoMik Composable Accounting

The CoMik micro-kernel enables composable energy and power accounting per virtual
processor. The execution on each virtual processor is cycle-accurately isolated from other
concurrent virtual processors that operate on the same physical processor, as explained
in Section 2.3. It is therefore possible to maintain independent accounts, and set inde-

3.3. COMIK COMPOSABLE ACCOUNTING 75

pendent budgets per virtual processor. In this section, we explain how CoMik maintains
independent time and energy accounts for each virtual processor, before describing how
independent composable energy budgets are allocated in Section 3.4.

CoMik enables each virtual processor to composably perform DVFS management.
The frequency of the virtual processor can be changed at any time by the software running
on the virtual processor. Following the processor power model described in Section 3.1,
each frequency level has an associated power consumption, i.e. the rate at which energy is
consumed. The energy accounting information is updated whenever a frequency change
takes place. Knowing the current frequency level and its associated power level, the
time between the previous frequency change and the current frequency change is used
to calculate the amount of energy consumed since the last frequency change. A running
total of energy consumed by a virtual processor is simply the sum of all of the energy
calculations for every frequency change.

CoMik splits the processor time into CoMik slots and virtual processor slots and
maintains separate CoMik and virtual processor accounts. A timed interrupt signal is
raised whenever the virtual processor’s slot has come to an end and the CoMik slot begins.
The TIFU simultaneously raises the interrupt and changes the processor frequency to the
CoMik slot frequency. As is explained in Section 2.3, it can be a number of cycles until
the virtual processor’s execution can be interrupted, due to an uninterruptible multi-cycle
instruction or critical region. Once interrupted the virtual processor’s energy accounting is
updated, and its context is stored. For simplicity, the virtual partition’s energy accounting
only tracks the energy consumed during the virtual processor slot, i.e. before the interrupt
occurred. The energy accounting is stored as part of the virtual processor’s context
enabling accounting and budgeting per virtual processor.

3.3.1 Implementation

CoMik divides the processor’s time between executing user code during the virtual
processor slots, and executing CoMik code to context swap between virtual processors
in the CoMik slot. Each virtual processor keeps an account of its energy consumption in
its associated PCB (described in Section 2.3.1). The energy consumed during the CoMik
slot is accounted for in CoMik’s CCB. The virtual processors and CoMik can receive
independent energy or power budgets. A detailed explanation of composable energy and
power budgeting is given in Section 3.4.

In both the PCB and the CCB, the energy accounting and budgeting is maintained as a
set of three 64 bit signed integer variables:

ENERGY energy_budget The energy allocated to the account.
ENERGY energy_budget_remaining The currently remaining budgeted energy.
TIME last_account_update The last time that the account was updated.

with the type definitions of ENERGY and TIME used to differentiate the type of data
stored in the variables. Energy is stored in units of Joules, with the unit prefix (milli-,

76 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

micro-, etc.) determined by the power model used. The energy_budget variable
stores the total of the energy budget that is allocated to the virtual processor or CoMik
account. The energy_budget_remaining value is initialised with the energy_
budget value. As the virtual processor or CoMik consumes its budget, the associated
energy_budget_remaining is decremented by the consumed amount. Whenever
the budgeting information is updated, a time-stamp is stored as the last_account_
update value. The last_account_update time is used as the starting time for
future energy consumption calculations. The user code executing on a virtual processor
only has access to its own energy accounting information and this access is read-only.

user code

100 MHz

50 MHz
86 MHz

CoMik CoMik

100 MHz 100 MHz

user code user code10
0

M
H

z

update start of slot
update end of slot

update DVFS change
update DVFS change

update end of slot
update start of slot

update get current values

86
M

H
z

Figure 3.3: CoMik energy accounting update points.

The energy budgets of the virtual processors are updated by CoMik in the CoMik
slot, before and after each virtual processor slot, as illustrated in Figure 3.3. After CoMik
schedules the virtual processor it sets the last_account_update, of the virtual
processor’s account, equal to the start time of the next virtual processor slot. This is done
so that the virtual processor’s energy consumption is measured from the start of its next
slot and not the entire time since it was last updated at the end of its previous slot. At this
point (the end of the CoMik slot), CoMik also updates its own energy account in the CCB
with the energy consumed during the CoMik slot, and updates the last_account_
update value in the CCB.

After the virtual processor slot has ended, the energy accounts are updated to account
for the energy consumed between the last_account_update and the end of the slot.
The last_account_update value in the virtual processor’s PCB and in CoMik’s
CCB is set to the time of the end of the virtual processor slot.

During the virtual processor slot, the accounting information is updated whenever a
DVFS change is made, or whenever the user code requests the current account values,
as illustrated in Figure 3.3. If a DVFS change is made, the power associated with the
old frequency level is multiplied by the amount of time that the virtual processor has
spent at that level since the last_account_update. Similarly, if the current account
values are requested, the power associated with the current frequency level is multiplied
by the amount of time since the last_account_update and the current time. The
amount of energy calculated in either case is deducted from the energy_budget_
remaining and the last_account_update value is updated to match.

The user code executing on a virtual processor can access the accounting values of its
virtual processor via API get functions, provided as part of CoMik’s API. CoMik does

3.4. COMPOSABLE ENERGY BUDGET DISTRIBUTION 77

not provide the equivalent set functions, making the energy accounting values read-only
from the perspective of the user code.

3.4 Composable Energy Budget Distribution
The CompSOC platform’s composable virtual processors ensure that the timing behaviour
of code executing on concurrent virtual processors does not interfere. Each partition is
assigned an independent timing budget (that represents the partitions real-time require-
ment) and also an energy and/or power budget. Partitions can independently perform
power-management, using their budgets in whatever manner. This means that partitions
may consume their budgets at different rates, with some partitions consuming their budgets
earlier than others.

The timing budget represents an abstract resource of time to complete a quantity of
work. The rate at which a partition consumes this budget effects its timeliness, but has no
effect on the timing behaviour of other partitions. The energy and power budgets represent
a physical finite platform resource. Once a partition has consumed these budgets, any
further consumption uses a physical resource that was not allocated to it, interfering with
the ability of the partition, to which the resource was allocated, from consuming it. For
example, if two similarly dimensioned partitions on the same processor are given the same
energy budget, if one partition always runs at the maximum DVFS level and the other at
the minimum DVFS level then the partition running at the maximum DVFS level will run
out of energy much sooner than the other partition. If the application in the partition with
no energy was to continue running, it would consume energy that was not allocated to it,
e.g. from the energy allocated to the partition running at minimum DVFS. The application
running at minimum DVFS would therefore not be able to use the entire budget it was
allocated. This interference between applications is non-composable.

Even if the partition with no energy was prevented from being scheduled again, energy
would still be required to keep its idle slots in a low-power state. Completely voltage
gating the processor would not offer a solution, as storing and restoring the processor’s
context still requires energy. It is therefore necessary for composability that energy is held
in reserve to cover this eventuality. How big the reserve needs to be depends on many
factors, such as the minimum and maximum power consumption rates. In this section, we
describe a method that enables composable energy and/or power budgets per partition,
providing a guarantee that a partition will be able to consume the entire budget it was
allocated regardless of its power-management strategy or the behaviour of concurrent
partitions.

3.4.1 Dividing the Core Energy Budget
We begin by describing how an energy budget that is allocated to a single core is compos-
ably divided among multiple virtual partitions. Each partition is assigned an individual
energy budget that can be used independently without interfering with the ability of

78 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

other partitions to consume their budget. The ability to design and verify in isolation
without the need for a final monolithic verification step is central to the composable design
paradigm. A specifically tailored energy solution that depends on a behavioural analysis
of concurrent partitions therefore does not fit this design concept. A developer may not
even know how their own partition’s power-management will perform at run-time, if for
instance the partition’s execution is data dependent and the power-management responds
to these variations.

Energy not only needs to be budgeted for the partitions but also for CoMik to execute
between partition slots. Enough energy Ecomik has to be budgeted for CoMik to run for as
long as any partition still has energy remaining. Our method allocates each partition an
energy budget based on the number of slots that it is allocated in the CoMik TDM table.
Given a single energy budget for the core Ecore ∈ R+, this budget is divided into four
types of energy budget allocation; partition slot energy Epartition ∈ R+, CoMik slot energy
Ecomik ∈ R+, reserve energy Ereserve ∈ R+ and final slot energy Efinal ∈ R+. The Efinal
budget is another type of reserve budget that ensures that if the scheduled application runs
out of energy somewhere during its partition slot there is enough energy to complete the
partition slot at whatever DVFS level it is running at.

The partition slot energy budget Epartition is the amount of energy allocated to a
single partition slot. The total partition energy budget for the entire core is calculated as
N ·S ·Epartition, where N ∈ N is the maximum number of TDM table iterations that can
be completed within the Ecore budget and S ∈ N is the total number of slots in the TDM
table. Similarly, the CoMik slot energy budget is the amount of energy allocated to permit
CoMik to execute for the duration of a single CoMik slot in the TDM table. The total
CoMik energy budget for the entire core is therefore calculated as N ·S ·Ecomik.

The reserve energy budget Ereserve is the amount of energy per TDM slot that must be
held in reserve to be consumed by the partition slots of partitions that have finished their
energy budget, so that other partitions may finish theirs. In the worst-case, this budget
will be used by all but one of the partitions, as the last partition to finish its budget cannot
affect the composability of other partitions. The total reserve energy budget for the entire
core is therefore calculated as N · (S−A) ·Ereserve, where A ∈ N is the smallest TDM slot
allocation assigned to a single partition on the core. If this is not known at design time,
the worst-case, A = 1, can be used for a conservative result.

The final slot reserve energy budget Efinal is dimensioned to contain enough energy
to allow the completion of the partition slot in the eventuality that the partition’s energy
budget runs out at some point during the slot. This is necessary to ensure that the partition
is able to complete its entire energy budget allocation. The partition’s energy budget is
not monitored continuously during execution. The only guaranteed time that a partition’s
budget is checked is at the end of each partition slot. A partition with a non-empty energy
budget is scheduled regardless of whether it has enough energy to complete the partition
slot and may execute at any power-level for the duration of the slot. The final slot energy
budget per core is therefore calculated as V ·Efinal, where V ∈ N is the number of virtual
processors that share the TDM slots. If this is not known at design time, the worst-case,

3.4. COMPOSABLE ENERGY BUDGET DISTRIBUTION 79

V = S, can be used for a conservative result.
The sum of all four budget types must be less than or equal to the energy budget of

the core Ecore, as presented in the following equation:

Ecore ≥ N · (S · (Ecomik +Epartition)+(S−A) ·Ereserve)+V ·Efinal (3.5)

Each partition n receives an independent energy budget En proportional to the number of
slots An that it is allocated in CoMik’s TDM table, which is calculated as follows:

En = N ·An ·Epartition (3.6)

Even though the budget is calculated per partition slot, the partition receives its energy
budget En as a single quantity, thereby virtualising the energy source, e.g. the partition
can be viewed as having a virtual battery.

−c ·Pcomik

Ecomik
−c ·Pcomik

Ecomik
−c ·Pcomik

Ecomik
−c ·Pcomik

Ecomik
−c ·Pcomik

Ecomik
−c ·Pcomik

Ecomik

< Pmax < Pmax < Pmax

PmaxPmaxapp. 1

CoMik

idle

app. 2 E2− p ·P2E2− p ·P2

E1− p ·P1
Efinal− (p ·P1−E1)
E1 = 0

p

c
Pmin

E reserve
−p ·Pmin

Time→

Figure 3.4: Composable energy consumption.

Figure 3.4 illustrates an example of how applications composably consume energy
from their energy budgets. Applications illustrated in Figure 3.4 run at a constant power
level, but in implementation they can change DVFS settings at any time. In this example,
application 1 runs at maximum power Pmax and application 2 runs at less than maximum
power < Pmax causing application 1 to consume its energy budget E1 before application 2
consumes its energy budget E2. CoMik is invoked at regular intervals (to perform ap-
plication context switch, etc.), consuming energy from its energy budget Ecomik (total
tile CoMik energy budget). Application 1 runs out of energy in the middle of its final
slot, with the shortfall in its energy budget E1 being decremented from the Efinal reserve
budget (total tile final slot energy budget). After this, application 1 cannot be scheduled
and its slots are idled at the minimum available power level Pmin. The energy consumed
by idled slots is decremented from the Ereserve budget (total tile reserve energy budget).

80 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

The execution of application 2, and its ability to consume its entire energy budget E2, is
completely unaffected by application 1 finishing its budget earlier.

The virtualised energy source is a dedicated resource of the partition that is guaranteed
to be composably isolated from interference due to the behaviour of other partitions. The
reserve energy budget Ereserve is dimensioned to ensure that slots of partitions that have
consumed their budgets can be idled without affecting the budgets of other partitions. In
the worst-case, one partition consumes its energy budget at the lowest power level Pmin
and the other consumes its energy budget at the highest power level Pmax. The partition
that consumes its energy budget at Pmax will finish its budget first and its slots are idled
at Pmin using energy from the Ereserve budget. The relationship between the quantities of
these budgets is therefore as follows:

Epartition

Pmin
=

Epartition

Pmax
+

Ereserve

Pmin
(3.7)

which can be rewritten to find Ereserve as follows:

Ereserve = Epartition ·
(

Pmax−Pmin

Pmax

)
(3.8)

Calculations made using these equations are composable as they do not depend on
application specific information. From Equation 3.8 it is clear that the per slot reserve
energy budget is less than or equal to the per slot partition energy budget Epartition, with
the proportion dependent on the values of Pmax and Pmin. The lower the ratio of Pmin to
Pmax the more energy needs to be held in reserve per slot, as presented in Figure 3.5.

0

20

40

60

80

100

0 20 40 60 80 100

Pe
rc

en
ta

ge
of

E
pa

rt
iti

on

Pmin percentage of Pmax

Figure 3.5: Ereserve in relation to Epartition, Pmin and Pmax.

The reserve energy budget is calculated to cover the amount of energy required to idle
the partition’s slots from the moment its energy budget runs out. The final slot energy
budget is therefore only required to hold enough energy to make up the shortfall in the
event that the partition runs at Pmax for the rest of its partition slot after running out of
energy. The final slot energy budget Efinal is therefore calculated as follows:

3.4. COMPOSABLE ENERGY BUDGET DISTRIBUTION 81

Efinal = p · (Pmax−Pmin) (3.9)

where p ∈ R is the duration of the partition slot.
The energy that is allocated to the core is divided among the budgets to maximise the

number of table iterations N that can be composably completed. By rewriting Equation 3.5,
a relationship for N is described as follows:

N ≤ Ecore−V ·Efinal

S · (Ecomik +Epartition)+(S−A) ·Ereserve
(3.10)

As N is an integer number of table iterations, the right side of Equation 3.10 is rounded
down:

N =

⌊
Ecore−V ·Efinal

S · (Ecomik +Epartition)+(S−A) ·Ereserve

⌋
(3.11)

Substituting Equation 3.8 and Equation 3.9 into Equation 3.11 produces the following
equation:

N =

 Ecore−V · p · (Pmax−Pmin)

S · (Ecomik +Epartition)+(S−A) ·Epartition ·
(

Pmax−Pmin
Pmax

)
 (3.12)

The maximum number of table iterations N is achieved for a given core energy budget
whenever all the partitions consume their partition energy budget Epartition at Pmin, making
the energy consumed by the partition slot Epartition = p ·Pmin. The CoMik slot is executed at
a constant frequency and hence power-level (some periods of clock gating may occur, but
it is conservative to assume a constant power-level greater than or equal to the clock gating
power-level). The energy consumed by the CoMik slot is therefore Ecomik = c ·Pcomik,
where c ∈ R is the duration of the CoMik slot.

N =

 Ecore−V · p · (Pmax−Pmin)

S · (c ·Pcomik + p ·Pmin)+(S−A) · p ·Pmin ·
(

Pmax−Pmin
Pmax

)
 (3.13)

The duration of the CoMik slot c bounds the worst-case work that must be performed
in the CoMik slot. Lowering the frequency lowers the power-level but also increases the
duration of the CoMik slot c. As shown in Figure 3.1b, at lower frequency levels this
will cause the total amount of energy to increase for the amount of work performed. The
lowest energy consumption by the CoMik slot is therefore achieved at the frequency of the

82 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

lowest energy in Figure 3.1b. For a CoMik slot with a worst-case work of Wcomik cycles,
using the power model described in Equation 3.4 with frequency fcomik in MHz, Ecomik is
calculated in joules (J) as follows:

Ecomik = c ·Pcomik =
Wcomik

fcomik×106 · (3.353×10−8 f 3
comik +2.065×10−3) (3.14)

By differentiating Equation 3.14 and solving the resultant equation, the value of f that
corresponds to the minimum Ecomik is found to be 31.34 MHz. Using Equation 3.13 and
Equation 3.14 with the following attributes:

fcomik = 31.34 MHz

Wcomik = 4096 cycles

p = 546.133 µs

S = 10 slots

V = S slots

A = 1 slot

Ecore = 100 J

Pmin = 2.065 mW from Equation 3.4 with f = 0 MHz

Pmax = 60 mW from Equation 3.4 with f = 120 MHz (3.15)

we plot N for a sweep of fcomik = 0→ 120 MHz (fcomik in Equation 3.15 is used for
subsequent experimentation) producing the graph presented in Figure 3.6 that shows the
maximum number of TDM table iterations N that can be achieved for the range of CoMik
slot frequencies fcomik. This graph shows that the maximum number of iterations are
achieved for the given core energy budget Ecore.

0

1

2

3

4

5

0 20 40 60 80 100 120
0

1.5

3

4.6

6.1

7.6

Ta
bl

e
Ite

ra
tio

ns
(×

10
6)

Ti
m

e
fo

rp
ar

tit
io

ns
(h

)

CoMik Frequency (MHz)

Figure 3.6: Effect of CoMik slot frequency on number of TDM iterations.

While a CoMik slot frequency of 31.34 MHz enables the maximum number of
composable TDM table iterations, it does not produce the longest maximum composable

3.4. COMPOSABLE ENERGY BUDGET DISTRIBUTION 83

run-time R, as presented in Figure 3.7 using the same attributes as for Figure 3.6. The
maximum composable run-time R is the maximum time that the energy budgets can
provide for composable execution (i.e. a platform with a maximum composable run-time
of one hour, cannot guarantee composable execution after that hour), and is calculated as
follows:

R = N ·S · (c+ p) (3.16)

which is the duration of a single TDM table iteration S ·(c+ p) multiplied by the maximum
number of table iterations N.

2
4
6
8

10
12
14

0 20 40 60 80 100 120

M
ax

.
C

om
po

sa
bl

e
(h

)

CoMik Frequency (MHz)

Figure 3.7: Effect of CoMik slot frequency on the maximum composable run-time.

While Figure 3.7 shows that the system will be able to run composably for longer,
Figure 3.6 shows that when the CoMik frequency drops below 31.34 MHz, fewer table
iterations are achievable for the same core energy budget. This means that even though the
maximum composable run-time gets longer as fcomik→ 0, the amount of time allocated
to partitions to perform work actually decreases, when fcomik < 31.34 MHz. Depending
on the target application of the system, this could still be a worthwhile trade-off.

The number of table iterations N that is calculated using Equation 3.11 is used to
calculate the total energy allocated per core to the partitions Epartition, the total energy held
in reserve Ereserve, the total energy allocated to CoMik Ecomik, and the total energy held in
reserve for a partition’s final slot Efinal. These energy budgets are calculated as follows:

Epartition = N ·S · p ·Pmin (3.17)

Ereserve = N · (S−A) · p ·Pmin

(
1− Pmin

Pmax

)
(3.18)

Ecomik = N ·S · c ·Pcomik (3.19)

Efinal =V · p · (Pmax−Pmin) (3.20)

Epartition Equation 3.17 is the energy allocated to a single partition slot Epartition = p ·Pmin
multiplied by the number of partition slots in the TDM table S and the maximum number

84 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

of iterations of the TDM table N. Ereserve Equation 3.18 is the energy held in reserve for
a single slot Ereserve, calculated using Equation 3.8, multiplied by the maximum number
of slots in the TDM table that the reserve needs to be held for S−A and the maximum
number of iterations of the TDM table N.

Plotting the distribution of Ecore to the Ereserve, Ecomik and Epartition budgets with the
attributes from Equation 3.15 (Efinal is a tiny proportion of Ecore and therefore is not
visible in this graph), but with p = 0→ 10 ms, produces Figure 3.8. This graph shows
that increasing the partition slot length increases the ratio of the core budget that the
partitions can be composably allocated. The effect is greater for shorter partition slot
durations. As p→ ∞, the longer partition slots increase the TDM table duration, which in
turn reduces the maximum number of iterations N that can be completed for the given
core energy budget. Increasing p also increases the amount of energy kept in reserve to
bound the energy consumption of the partition’s final slot Efinal. As p→∞, Efinal increases
consuming an ever larger proportion of the core energy budget, eventually reducing the
ratio of core energy given to the partitions at longer partition slot durations. While there
is an optimal p to provide a maximum ratio of core energy to the partition, it is not
necessarily a practical value as longer partition slots increases the time between partition
swaps and increases the duration of a single TDM table iteration. If the partition slots are
too long relative to the real-time requirements of the applications within the partitions,
then the sampling/output of the applications will appear bursty or require buffering, which
would require physical memory resources with additional area and power consumption
overhead.

E
co

re
(J

)

Partition Slot Duration (ms)

E reserve

Ecomik

Epartition
0

20

40

60

80

100

0 2 4 6 8 10

Figure 3.8: Effect of the partition slot duration on Ecore budget distribution.

Relatively short partition slot lengths p and a shorter TDM table (i.e. fewer number
of slots S) are more generally suitable to meeting latency requirements of applications.
Whereas shorter partition slot lengths p decrease the ratio of core energy that is allocated
to the partitions, fewer slots S in the TDM table increases the proportion of core energy
allocated to the partitions. This is presented in Figure 3.9 for the attributes from Equa-
tion 3.15 except with S = 2→ 100. The maximum number of composable partitions is
equal to the amount of slots in the TDM table, with 2 being the minimum number of slots

3.4. COMPOSABLE ENERGY BUDGET DISTRIBUTION 85

that permits sharing. For a constant partition slot duration p, as the number of slots in
the TDM table increases S→ ∞ the amount of energy that is allocated to the partitions
decreases. In Figure 3.9, this is due to the smallest slot allocation to a virtual processor
A remaining at the conservative level of one slot, while the total number of slots in the
TDM table increases. This causes more energy to be held in the Ereserve budget to cover
the possibility that the single slot virtual processor depletes its budget at minimum power,
while the rest of the slots deplete their budget at maximum power.

E
co

re
(J

)

Number of TDM table slots

E reserve

Ecomik

Epartition
0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

Figure 3.9: Effect of the number of TDM table slots on Ecore budget distribution.

In Figure 3.10, we present the Ecore budget distribution for a range of values of the
minimum virtual processor slot allocation A. This graph is produced using the values
from Equation 3.15, but with S = 100 and A = 1→ 50. This range is chosen for A as the
smallest virtual processor allocation cannot be greater than 50% of S when the processor
is shared, i.e. if one virtual processor has > 50% of S then another virtual processor is
guaranteed to have the smallest allocation, and that it is < 50% of S. Increasing A enables
less energy to be held in the Ereserve budget, permitting more energy to be used by the
partitions, increasing the Epartition budget, while at the same time increasing the maximum
number of composable table iterations N, thereby increasing the amount of energy that
needs to be held in the Ecomik budget.

E
co

re
(J

)

Smallest Virtual Processor Slot Allocation

E reserve

Ecomik

Epartition
0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

Figure 3.10: Effect of the smallest slot allocation on Ecore budget distribution.

86 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

3.4.2 Guaranteed Composable Run-time

The end result of the energy budget dimensioning is a virtualised composable energy
source, which can be thought of as a virtual battery. To achieve composability, energy
is held in reserve, reducing the amount of energy that the partitions can composably
use. It is possible that none, some or all of the reserve energy budget remains after the
partitions have depleted their energy budget. This cannot be composably redistributed to
the partitions as the quantity of remaining reserve energy depends on the behaviour of all
of the partitions. After the point where the virtual batteries have depleted, the remaining
reserve energy can continue to power the system, but without a composability guarantee.

Since each partition may perform power management using DVFS, the amount of
time that the system can run for a given energy budget depends on the frequency levels,
and hence power levels, that it uses. For an energy budget of 20000 J1, using the power
model from Equation 3.4, at continuous maximum power consumption (f = 120 MHz)
the budget would be depleted in 3.86 days. At continuous minimum power consumption
(f = 0 MHz) the budget would be depleted in 112.1 days.

The ratio of the minimum power to the maximum power affects the amount of energy
that must be held in reserve, as presented in Figure 3.5. The higher the ratio, the lower the
energy reserve that must be held. Increasing the ratio, by lowering the maximum power-
level (e.g. by preventing the partitions from scaling above a particular frequency) reduces
the amount of energy that must be held in reserve, enabling more energy to be distributed
to the partitions’ energy budgets, providing a longer composable run-time. Figure 3.11
demonstrates this for the values from Equation 3.15, but with Ecore = 20000 and scaling
Pmax. In this figure, the max. run-time line is the composable run-time whenever all
the partitions consume their budget at minimum power, and the min. run-time line is
the composable run-time whenever all the partitions consume their budget at maximum
power.

0
20
40
60
80

100
120

0 10 20 30 40 50 60

Ti
m

e
(d

ay
s)

Pmax (mW)

max. run-time
min. run-time

Figure 3.11: Composable run-time keeping Pmin constant.

1approx. 5.56 Wh, which is equivalent to the rated capacity of a current generation smart-phone battery.
Battery self-leakage is not taken into consideration in this instance, but there is no fundamental reason preventing
it, given an appropriate model.

3.4. COMPOSABLE ENERGY BUDGET DISTRIBUTION 87

When Pmax is capped at 50 mW the minimum composable run-time is approximately
3 days, and at 10 mW the minimum composable run-time is approximately 12 days. While
putting a cap on the highest power level (frequency) that a partition can use has benefits,
it also reduces the freedom the frequency range that the partition can use to perform
DVFS. More importantly, capping the higher end of the frequency range can only make
it more difficult for a partition to meet its real-time requirement. Figure 3.12 presents
the composable run-time for the same configuration, but this time increasing the ratio of
the minimum power to the maximum power by raising the minimum power level while
keeping the maximum power level constant at the value given in Equation 3.15.

0
10
20
30
40
50
60
70

0 10 20 30 40 50 60

Ti
m

e
(d

ay
s)

Pmin (mW)

max. run-time
min. run-time

Figure 3.12: Composable run-time keeping Pmax constant.

As the minimum power Pmin increases, the amount of energy that needs to be held in
reserve decreases allowing more energy to be distributed to the partitions. The minimum
composable run-time increases, reflecting the larger partition energy budget. The max-
imum composable run-time decreases even though the partition energy budget increases
because the budget increase does not compensate the increase in minimum power level.

3.4.3 Multi-core Systems
On a single core, care is taken that enough energy is held in reserve to bound the eventuality
that some partitions consume their budget quickly (e.g. at maximum power) and other
partitions consume it slowly (e.g. at minimum power). This reserve is necessary as it
is not necessarily possible, or practical, to completely power down the processor for
the fine grained durations of partition slots. On multi-core systems each core gets an
individual energy budget Ecore that is divided into the partition, CoMik and reserve budgets.
Depending on the energy allocated to the core, the type of core (in a heterogeneous system)
and the configuration of CoMik (e.g. number of TDM slots), each core could have a
different composable run time. If it is not possible to fully power down the processor after
it has completed, the core must also hold enough energy in reserve to idle the processor
until the rest of the processors have composably completed their budgets.

In a homogeneous system, in which the power consumption of every processor is
conservatively bounded using the same power model and CoMik is configured with the

88 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

same values on each processor (same number of TDM slots, etc.), each core can be
assigned the same quantity of energy budget. The maximum and minimum composable
run-time of each core will therefore be the same. On systems that are unable to completely
power down individual processors enough energy must be held in reserve to permit the
partitions on each core to consume their entire energy budget. This is achieved using the
energy budgeting equations Equation 3.17–Equation 3.20, by setting the smallest partition
slot allocation A = 0, thereby ensuring that an energy reserve is maintained for each slot
in the TDM table for the eventuality that the partitions on the core finish their energy
budgets sooner than the maximum composable run-time.

We leave the dimensioning of energy budgets in heterogeneous multiprocessor systems
as future work.

3.4.4 Composable Power Budgets

In the previous sections we have described in detail how a single energy budget (such
as a battery) can be composably shared among multiple partitions. Energy in embedded
systems can also come from power sources that deliver energy at a rate, such as from
energy scavenging components. The maximum power consumption Pmax of the platform
caps the rate at which the partitions can consume an energy budget. Allocating power
budgets to partitions that are higher than Pmax gives the partition freedom to always
execute at maximum frequency. If a partition’s power budget is lowered below Pmax this
is not possible. A simple solution to ensure that a partition stays within its power budget
is to cap the maximum frequency (and hence power) that the partition can use. If the
partition is running a real-time application, the maximum frequency cap might cause it to
violate its real-time requirements (or at least its worst-case guarantee). There is therefore
a fundamental upper-limit on the amount of power that a partition can consume and
also a practical lower-limit (which is application dependent) below which the temporal
requirements of a real-time application are no longer guaranteed to be met.

A power budget is expressed in units of Watts. To fit with CoMik’s energy accounting
scheme, the power budget is translated into a replenishing energy budget. As with the
energy distribution scheme, we assume that each core is assigned an individual power
budget, Pcore. CoMik replenishes the core energy budget Ecore every N TDM table
iterations, with the amount of energy that corresponds with the available energy, which is
calculated as follows:

Ecore = Pcore ·N ·S · (c+ p) (3.21)

where S is the number of slots in CoMik’s TDM table, c is the CoMik slot duration and p is
the partition slot duration. The Ecore budget is divided between CoMik and the partitions,
with the per TDM slot CoMik energy budget Ecomik calculated using Equation 3.14 and
the per TDM slot partition energy budget Epartition as follows:

3.5. RELATED WORK 89

Epartition =
Ecore

N ·S
−Ecomik (3.22)

The Ecore budget is divided by the number of table iterations N and the number of slots
in the table S to calculate the amount of energy that is available to perform a single CoMik
and partition slot. The Epartition budget receives the remainder of the budget. This amount
might not be enough to execute the entire slot at maximum frequency. To account for this,
the maximum frequency that the partition can use is capped at a lower frequency fcap that
the energy budget can sustain until the next replenishment, which can be calculated using
Equation 3.4 as follows:

Epartition = (3.353×10−5 f 3
cap +2.065) · p (3.23)

fcap =
3

√(
Epartition

p
−2.065

)
· 1

3.353×10−5 (3.24)

where in Epartition is in mJ and fcap is in MHz.
A higher maximum partition frequency is more desirable, to meet the real-time

requirements of a larger set of applications. Increasing the amount of energy that is
allocated to the partitions slots, by decreasing the frequency of the CoMik slot, increases
the maximum partition slot frequency, but has an adverse affect on the partition’s ability
to meet real-time requirements. Decreasing the frequency of the CoMik slot increases
the CoMik slot length c and therefore also the TDM table length N ∗ S ∗ (c+ p). This
increases the amount of energy in the Ecore budget for a given Pcore, as calculated using
Equation 3.21, which in turn enables a higher sustainable partition frequency. However,
this higher maximum partition frequency does not translate into a higher maximum
partition throughput, as the increase in maximum partition frequency does not compensate
the loss in throughput caused by the longer CoMik slot that is necessary due to the lower
CoMik slot frequency.

3.5 Related Work
The related work on DVFS power modelling is covered in Section 3.1.

The concept of resource containers was described in [13] for servers. They define a
resource container as containing all resources that the server uses to perform a particular
independent activity. In [105] the resource container concept was applied to energy
and time in an energy-aware operating system. The maintained accounts are used to
make scheduling decisions. The resources assigned to a container can be limited, with
enforcement provided by the operating system. While use of resources can be limited per
container they are not guaranteed. Resources assigned to a container can be reduced if
they are consumed elsewhere, e.g. by another resource container.

90 CHAPTER 3. COMPOSABLE TIME, ENERGY AND POWER ACCOUNTING

The resource container concept is applied to an embedded system in [68, 69] for use
in low-power wireless sensor networks. Using a multiprocessor hardware architecture,
they partition the platform into multiple physical power domains. They use a device that
they call the Energy Management and Accounting Preprocessor (EMAP), to provide fine
grained monitoring and independent accounting of the energy dissipated in the power
domains. The EMAP periodically updates the host processor with the energy accounts for
the operating system to make scheduling and power management decisions.

Similar to the resource container concept, CoMik maintains composable independent
energy and power accounts for virtual processors. This was originally published for an
earlier version of the CompSOC platform in [80] (The related work in [80] mainly covers
embedded virtualisation, which we cover here in Section 2.6). Our composable energy
and power budgeting technique described in [103] and Section 3.4, provides our virtual
processors with a guaranteed allocation. From what we can ascertain, no related work
exists on energy/power allocation for composable application execution.

3.6 Summary
In this chapter, we have presented the CompSOC platforms composable time, energy and
power accounting. We gave a general overview of how the energy and power consumption
of electronic systems are commonly modelled, and presented the energy and power models
that are used to model the processor power consumption in the CompSOC platform.
Following this, we described how POSe provides task or application timing accounting
information and CoMik provides energy accounting information to the application to
make power-management decisions.

Having described how CompSOC’s run-time accounting is performed, we explain
how energy and power budgets are composably distributed between virtual processors.
Even though each virtual processor has its energy composably accounted for, the manner
in which the system’s energy is allocated to virtual processors is important to ensure that
applications executing on the virtual processor can composably use the energy or power
budget that it is allocated. The energy that an application is allocated En on a virtual
processor n is calculated using Equation 3.6. This calculation is composable as it only
depends on the application’s configuration, i.e. the number of slots allocated to its virtual
processor.

CHAPTER4
Static Voltage and Frequency Scaling

Voltage and frequency scaling in order to minimise energy and/or power consumption
for real-time applications is non-trivial. Reducing the operating frequency increases
execution times, potentially violating timing requirements. In this chapter, we apply
convex programming to dataflow modelled applications, enabling the derivation of timing
guarantees at different frequency levels. Furthermore, the convex model enables the
derivation of optimal frequency levels that produce the lowest power consumption.

Convex optimisation is computationally intensive, making it better suited to off-
line use. In this chapter, we present an off-line technique that derives static frequency
levels that minimise the power consumption of a dataflow modelled application that is
annotated with worst-case timings. In Section 2.5, we described how the CompSOC
platform and application is modelled as a single dataflow graph. Here the topology and
timing of the dataflow graph is translated into a set of constraints forming a convex
optimisation problem. In Section 4.1, a detailed explanation of this translation, along
with the formulation of objective functions for optimisation, is given. We follow this in
Section 4.5 with an experimental evaluation, demonstrating our technique’s effectiveness
and also its limitations, in Section 4.3 before making some concluding statements.

91

92 CHAPTER 4. STATIC VOLTAGE AND FREQUENCY SCALING

4.1 Convex Power Optimisation

The DVFS mechanism enables the trade-off between execution speed and power consump-
tion. On real-time systems, execution speed can only be traded within the bounds of the
application’s temporal requirements. The trade-off between execution speed and power
was presented in Section 3.1. In this section, we explain how the timing of the CompSOC
platform dataflow model from Section 2.5 is represented as a set of Disciplined Convex
Program (DCP) [39] constraints that take DVFS into account [81]. We further describe the
minimising objective functions that in combination with these constraints form a convex
optimisation problem that can be solved to obtain optimal per-core static frequency levels
for power consumption.

4.1.1 SPS Convex Programming Constraint

POSe executes an application’s tasks following a STS. An STS schedule varies depending
on actor firing duration (task execution time). A WCSTS or SPS is used to conservatively
model the STS execution by annotating each actor with their worst-case firing duration.
We describe the formalism of these scheduling techniques in Section 2.1.2. An SPS
schedule is also conservative in regards to the WCSTS, but is easier to analyse. By
modelling the application as an SPS we therefore conservatively bound the timing of the
actual application using a STS.

The per edge SPS feasibility constraint is given by Equation 2.8, which we repeat here
for readability purposes:

s(j,k)+T ·d(i, j)≥ s(i,k)+ t(i) (2.8 repeated)

which states that the start time of the consuming actor s(j,k) can only be later than the
finishing time of the producing actor s(i,k)+ t(i), d(i, j) iterations ago, where d(i, j) is
the number of initial tokens on the edge and T is the period of the SPS. We modify this
constraint to model the task execution duration when performing VFS as follows:

s(j,k)+T ·d(i, j)≥ s(i,k)+
t(i)
f (i)

(4.1)

where t(i) is the worst-case work of actor i measured in cycles and f (i) is the frequency
that is used as actor i fires. As the frequency f (i) decreases, the firing duration of actor i
increases.

One constraint is added to the convex optimisation for every edge in the application’s
HSDFG. For a dataflow application executing in POSe on a CoMik virtualised platform,
a constraint is added per edge in the combined application and platform HSDFG, as
illustrated in Figure 2.27 in Section 2.5.

4.1. CONVEX POWER OPTIMISATION 93

4.1.2 Power Minimising Objective Functions
With the timing of the combined application and platform graph represented as a set of con-
vex constraints, it is possible to formulate minimising objective functions for power. The
convex problem solver minimises the objective function by scaling the function’s free vari-
ables within the context of the problem’s constraints. In this section we present objective
functions that are used with the per edge SPS constraints to minimise power consumption
while meeting the application’s latency and throughput requirements. We continue by
describing how this can be achieved for various static frequency configurations.

Reducing Single-Core Power Consumption

The power consumption of the processors in the CompSOC platform are modelled using
Equation 3.4, which we repeat here for readability purposes:

P(f) = 3.353×10−5 f 3 +2.065 (3.4 repeated)

This power model relates the processor’s frequency f in MHz to its power consumption
P(f) in nJ. For a single core system, we can formulate Equation 3.4 as the objective
function of a convex optimisation problem with fcore as the free variable:

minimise(3.353×10−5 f 3
core +2.065) (4.2)

with the following per edge constraints derived from Equation 4.1:

s(j,k)+T ·d(i, j)≥ s(i,k)+
t(i)
fcore

(4.3)

where each actor in the graph executes at the same frequency fplatform in Hz. To ensure
that the SPS schedule meets its latency L (maximum time between task firings) and/or
throughput constraint R, the period T of the schedule is represented by a free variable and
is constrained by the following two constraints:

T ≤ L (4.4)

T ≤ R−1 (4.5)

where Equation 4.4 ensures that the period T of the SPS is less than or equal to the latency
requirement between actor firings and Equation 4.5 ensures that the period T is less than
or equal to the inverse rate requirement of the graph.

The convex problem solver will return the frequency fcore that produces the lowest
power consumption while permitting the application to meet its timing requirements. All
of the platform’s clock generators can be set to this frequency, with its associated voltage,
at design time.

94 CHAPTER 4. STATIC VOLTAGE AND FREQUENCY SCALING

Reducing Multi-Core Power Consumption

The CompSOC platform is a multi-processor platform that has voltage and frequency
islands per processor. These can be configured statically at design time, or dynamically at
run-time, enabling the selection of different voltage and frequency levels per processor.
We can achieve this by using the following objective function that is formulated from
Equation 3.4:

minimise

(
∑

∀c∈cores

(
3.353×10−5(fc×10−6)3 +2.065

)
+Pplatform

)
(4.6)

which minimises the sum of the power consumed by all of the processing cores while
executing the application, where fc of core c is measured in Hz, and Pplatform is a constant
representing the power consumed by the rest of the platform other than the cores. As
before, we form the constraints for this optimisation from the per-edge constraint given in
Equation 2.8.

NOCTile 1 Tile 2

d3,4

d1,2

DMA

d2,1

d4,3

DMA

n2,1

s4

e4

w4

s2

e2

w2

L2

L2

Virtual Processor

s1

e1

w1

s3

e3

w3

L1

L1

Virtual Processor

n4,3

n1,2

n3,4

cmem

cmem

B3,4

B1,2

Bp1,2

Bp3,4

f1 f2fplatform

Figure 4.1: Combined application and platform HSDFG with per core DVFS.

Figure 4.1 illustrates an example combined application and dataflow graph. In this
example, the rest of the platform has a static frequency of fplatform and processing cores 1
and 2 are each assigned independent frequencies f1 and f2, respectively. The timer that
regulates CoMik’s TDM arbitration, measures time using the static fplatform as reference.

4.2. FORMULATION FOR CVX CONVEX SOLVER 95

The latency Lc before the virtual processor is able to service any arrived data therefore
depends on fplatform. FIFO channels that have a producing actor i with a duration affected
by fplatform, as illustrated in Figure 4.1, use the constraint given by Equation 4.1, but unlike
previously fplatform is constant. Other edges with producing actors i that depend on fc use
the following constraint:

s(j,k)+T ·d(i, j)≥ s(i,k)+
t(i)
fc

(4.7)

where fc is a free variable in the optimisation that scales to achieve the objective function
given in Equation 4.6. The application’s real-time requirements are taken into account as
constraints given by Equation 4.4 and Equation 4.5.

Reducing Multi-Core CoMik Virtual Processor Power Consumption

CoMik enables each physical processor in a system to be virtualised into multiple virtual
processors, as described in detail in Section 2.3. CoMik achieves this by time sharing
the physical processor using TDM scheduling. As power is the rate at which energy is
consumed, virtual processors consume energy at a lower rate than the physical processor,
which is proportional to the virtual processor’s allocation in CoMik’s TDM table. Taking
this into account produces the following power minimisation function:

minimise

(
∑

∀c∈cores

((
3.353×10−5(fc×10−6)3 +2.065+

Pshared

C

)
· Ac

Sc

)
+Pdedicated

)
(4.8)

where C is the number of physical processors in the platform, Sc is the length of CoMik’s
TDM table on the physical processor that virtual processor c resides and Ac is the number
of TDM slots that c is allocated. The power consumed by shared components Pshared (e.g.
the NoC) is divided evenly between the number of physical processors C. This simple
method assumes homogeneous processors, but a more complex division for a heterogen-
eous platform is possible. For each virtual processor c belonging to the application’s VP,
its portion of the processor’s power and Pshared is calculated proportional to its allocation
Ac in the TDM table length Sc. The sum of the power consumed by the VP’s dedicated
components Pdedicated is added to the power consumed by the VP’s virtual processors and
the VP’s share of the power consumed by the rest of the platform.

4.2 Formulation for CVX convex solver
Having described in theory how convex problems are formulated to derive frequencies to
achieve reduced energy or power consumption, we proceed to explain how we describe

96 CHAPTER 4. STATIC VOLTAGE AND FREQUENCY SCALING

NOCTile 1 Tile 2

3

4

25

1

d3,4

d1,2

DMA

d2,1

d4,3

DMA

n2,1

s4

e4

w4

s2

e2

w2

L2

L2

Virtual Processor

s1

e1

w1

s3

e3

w3

L1

L1

Virtual Processor

n4,3

n1,2

n3,4

cmem

cmem

B3,4

B1,2

Bp1,2

Bp3,4

fplatform
f(2)f(1)

Figure 4.2: Combined application and platform HSDFG with per core DVFS.

these convex problems as DCPs. The CVX convex solver for Matlab takes a DCP as an
input and solves it for the objective function within the problem’s constraints, returning
the values of the free variables that provide a solution (An example of the Matlab code
required to perform a convex analysis is presented in Appendix C). In Code 4.1 we present
part of the DCP that returns the per core frequencies that minimise the energy consumption
of the application illustrated in Figure 4.2.

The actor firing times s, core operating frequencies t and the SPS period T are
identified as being variables that the DCP is solved to obtain. The objective function given
by Equation 4.8 is set as a minimising objective function. The functions pow_pos and
inv_pos are functions provided by the CVX toolbox that return the convex positive part
of the power and inverse functions respectively. Array A contains each virtual processor’s
TDM slot allocation and array S contains the TDM table length for each virtual processor,
in terms of slots. Two constraints are used to specify that the returned core frequencies
f have to be ≥ 0 and ≤ the maximum possible frequency achievable on the platform
MAX_FREQUENCY. The application’s real-time latency L and inverse throughput inv_
pos(R) requirements are set as constraints that ensure that the period T of the resulting
SPS meets these requirements.

The inter-actor token dependencies of the HSDFG are represented by one constraint
per edge in the graph that is derived from Equation 4.1. In this example, the labels of the
actors from Figure 4.2 are integers that identify the location of the actors’ attributes in the

4.2. FORMULATION FOR CVX CONVEX SOLVER 97

cvx_begin
variable s(NUM_ACTORS) % array of actor start times
variable f(NUM_CORES) % array of core frequencies
variable T % SPS period

minimise(
sum((3.353E-5*pow_pos(f*1E-6,3)+2.065+Pshared/NUM_CORES)*A/S

+ Pdedicated)
)

f >= 0
f <= MAX_FREQUENCY

L >= T % latency requirement
inv_pos(R) >= T % throughput requirement

% per edge token constraints
s(s1) + T*0 >= s(L1) + t(L1)*inv_pos(fplatform) % edge 1
s(e1) + T*0 >= s(s1) + t(s1)*inv_pos(f(1)) % edge 2
s(e2) + T*0 >= s(s2) + t(s2)*inv_pos(f(2)) % edge 3
s(d1_2) + T*0 >= s(w1) + t(w1)*inv_pos(f(1)) % edge 4
s(s1) + T*1 >= s(w3) + t(w3)*inv_pos(f(1)) % edge 5
... % omitted per edge token constraints

cvx_end

Code 4.1: Part of the energy minimising DCP for Figure 4.2.

start time and worst-case work arrays, s and t respectively. Array t contains the constant
worst-case work values of the actors. The coefficient of T is the number of initial tokens
on the edge.

It is not always possible for the CVX solver to find a solution to the DCP within the
given constraints, e.g. if the specified real-time requirement is infeasible. If CVX can
solve the DCP, the array of f contains the per core frequencies and T contains the SPS
throughput. The array s contains admissible SPS actor firing times, which are not used
for execution as the application executes following a STS.

The frequencies that are produced using the convex optimisation are in the R domain.
Commonly, it is only possible to perform DVFS to achieve a static set of discrete voltage
and frequency levels that were decided at design time. To remain temporally conservative,
the closest available frequency level that is greater than the derived optimal frequency is
used. By doing this, the resulting frequency levels cannot be said to be optimal for the
original objective they were derived for. Due to the monotonicity of dataflow execution,
using a higher frequency level cannot cause the application to perform with a lower
throughput or longer latency. This results in static slack in the application’s schedule that

98 CHAPTER 4. STATIC VOLTAGE AND FREQUENCY SCALING

our technique cannot exploit using the available static frequency levels. We remedy this
in Chapter 5 using a run-time technique that observes static and dynamic slack in the
application’s schedule and performs DVFS.

4.3 Applied in Practice

We continue by demonstrating how our convex optimisation technique is applied in
practice to achieve a reduction in application power consumption. We show this for our
running example dataflow application that is illustrated, with its mapping, in Figure 4.2.
The application is mapped onto two CoMik virtual processors that are mapped onto two
physical cores of a CompSOC platform. Both virtual processors are configured with
an allocation of five slots out of a ten slot TDM table, with the CoMik and partition
slot durations set to 4096 and 65536 cycles at the processor tile’s maximum frequency,
respectively. The entire CompSOC platform is configured with a frequency of 120 MHz,
which serves as the maximum frequency for the processor tiles. Each virtual processor is
able to independently perform DVFS, with 16 available frequency levels that linearly scale
the maximum frequency, i.e. frequency level one is 120/16 = 7.5 MHz, up to 120 MHz
at frequency level 16.

For static frequency scaling, we want to achieve the lowest possible power consump-
tion while always meeting the application’s real-time requirement in the worst case. As
described in Section 4.2, the combined application and platform HSDFG can be formu-
lated as a convex program, enabling the derivation of static frequency levels that provide
the lowest power consumption while meeting the application’s throughput requirements.

To demonstrate the applicability of our model to deriving static low-power frequency
levels, we begin by using our model to calculate the power consumption and period of
the graph for all 256 possible frequency combinations of the two cores. We achieve
this using a similar convex program to that described in Code 4.1, where the frequency
combination f is specified (i.e. is no longer a free variable in the optimisation) and
the objective function is minimise(T). Figure 4.3 shows the results of solving the
convex program for the 256 possible frequency combinations. Figure 4.4 shows the power
consumption (from the run-time energy accounting) and graph period measured from an
FPGA instance of the CompSOC platform. For each frequency combination, the measured
graph period from the FPGA platform instance is shorter than the graph period calculated
from the model. Our model therefore conservatively bounds the actual throughput of the
application.

Many of the 256 points produce the same graph period, but a different power consump-
tion. This occurs due to the nature of this particular application’s topology, where one of
the core frequencies is responsible for the critical graph cycle. If the frequency on one core
is held constant, the frequency of the other core can be set to any level that does not make
it part of the critical cycle, while the graph throughput remains the same. Higher frequency
levels can therefore increase the power consumption without increasing graph throughput.

4.3. APPLIED IN PRACTICE 99

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
w

er
(m

W
)

Period (ms)

Figure 4.3: Full search using the model.

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
w

er
(m

W
)

Period (ms)

Figure 4.4: FPGA measurements for all frequency combinations.

Figure 4.5 presents the pareto front for the goal of low power-consumption and graph
period. This set of frequency combinations produce the lowest power consumption at
the particular graph period. As the front is monotonically decreasing for an increase in
the graph’s period, for a given throughput requirement, the closest point with a period
lower than the requirement produces the lowest power option. Performing a full search of
the frequency space and deriving a pareto front is not a scalable solution, as the number
of possible combinations increases exponentially with the number of cores used by the
application.

Our power minimising convex program, enables the derivation of low-power frequency
combinations that meet the application’s real-time requirement, by solving a single convex
program. The calculated frequencies are in the continuous domain, and are therefore
rounded up to the nearest available discrete frequency level, to ensure that the graphs
period remains timing conservative. The result can no longer be called optimal, as it
might not have been necessary to round all of the frequencies up to the nearest discrete

100 CHAPTER 4. STATIC VOLTAGE AND FREQUENCY SCALING

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
w

er
(m

W
)

Period (ms)

Pareto front
Optimal Point for 3.5 ms Requirement

Rounded up

Figure 4.5: Pareto front from the full search using the model.

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
w

er
(m

W
)

Period (ms)

Samples
Rounded up

Figure 4.6: Sampling the graph period range at regular intervals.

frequency level, it might have been possible to round some down while still meeting the
throughput requirement.

As an example, we use our convex program to find the lowest power frequency
combination for a graph period of 3.5 ms (approx. 285.7 graph iterations per second).
The resultant combination are the frequencies of 9.73 and 9.65 MHz for core one and
two, respectively. The result takes approximately 2 seconds to derive on the ageing dual
core laptop that I am writing this thesis on. The graph period and power consumption of
this combination is shown as a triangle in Figure 4.5. The frequencies are rounded up to
the nearest available frequency level (15 MHz), producing the point shown by a circle in
Figure 4.5, which still produces a low power combination while meeting the application’s
throughput requirement. Figure 4.5 shows the low power frequency combinations that are
derived for a range of throughput requirements. The range of period lengths between all of
the cores running at maximum frequency and running at minimum frequency, is sampled
at regular intervals to produce 100 throughput requirements, indicated by crosses in

4.4. RELATED WORK 101

Figure 4.6. The power minimising convex program is solved for each of the requirements,
producing low power frequency combinations. The resultant frequencies are rounded up
to the nearest available discrete frequency level, as indicated by the circles in Figure 4.6.
As a result the same rounded up discrete frequency combination can be valid for multiple
frequency combinations in the discrete domain.

We have shown that our model conservatively bounds the timing observations as
measured on an FPGA instance of the CompSOC platform. Using our model we have
demonstrated how a static low power frequency combination is derived using our convex
programming technique, that meets the application’s real-time requirements.

4.4 Related Work
To present a coherent overview of related power management techniques, we present
the related work of static off-line and dynamic on-line power management techniques
together in Section 5.4 on Page 136.

4.5 Summary
In this chapter, we have explained how a combined application and CompSOC platform
HSDFG can be formulated as a convex optimisation problem that can be solved to find
operating frequencies for optimal power consumption. For each optimisation objective, we
describe an appropriate objective function that produces either an optimal static frequency
for the entire platform, or a single static frequency per core. For each objective function,
we also describe how the combined application and platform HSDFG is represented using
an optimisation constraint per edge in the graph.

Using the example combined application and platform HSDFG from Figure 4.2, we
have presented how the graph is formatted as a DCP to be solved by the CVX convex
problem solver for Matlab.

CHAPTER5
Dynamic Voltage and Frequency Scaling

Dynamic variations in application timing leads to slack (in addition to static slack) at
run-time enabling voltage and frequency levels to be lowered. Static voltage and frequency
scaling techniques, such as the technique presented in Chapter 4, scale using static slack
in the application’s worst-case schedule. In this chapter, we propose a novel run-time
DVFS technique to take advantage of the dynamically accumulated slack in the actual
schedule.

To ensure guaranteed timing conservativeness, run-time power management can only
be performed using slack that has been observed in the schedule, as opposed to using
a prediction based approach. We propose a closed power management control loop
(illustrated in Figure 5.1) that uses the quantity of observed slack as the input for making
power management decisions. To achieve this, POSe and CoMik maintain timing and
energy accounts as described in Section 3.2 and Section 3.3 respectively. Figure 5.1 also
illustrates the use of a quality scaling mechanism in addition to DVFS.

Some adaptive applications can provide a quality scaling mechanism, enabling a
reduction in quality in exchange for a reduction in execution time. Applications with
adaptive algorithms that can decrease the execution time of tasks for a monotonic decrease
in output quality are used to generate more timing slack. Once observed, this slack is used
by the power-management policy to scale the application’s frequency to a lower level than
would otherwise have been possible, while still guaranteeing to meet the application’s
timing requirement in the worst case.

103

104 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

Combined or Separate Policies

QualitySlackBudget

Power
Manager

Manager
Adaptive
Algorithm

Output

Frequency

Quality
Level−

+

DVFS

Used Budget Observe

Observe
Time Account

Energy/Power1Accounts

1 The power budget is accounted for using an energy account that has a periodic
replenishment interval.

Table 5.1: Power/energy management control loop.

The power and quality management policies are created by the application developer
and can be combined into a single control policy or used as separate policies. These
policies use the observed slack in the application’s accounts to decide on the application’s
operating frequency and quality level, as illustrated in Figure 5.1. Timing and power slack
is observed by comparing the application’s accounted time and energy over a number of
application graph iterations and comparing them with budgeted values, i.e the slack in an
account is the budgeted amount minus the used amount. If an account’s slack is positive,
there is a surplus in the account that can be used to lower the operating frequency and/or
increase the quality-level. If an account’s slack is negative, there is a deficit in the account,
which means that it has used too much of the budgeted resource, e.g. the application’s
execution takes longer than the budgeted amount of time causing it to miss a deadline.
The power- and quality-management policies must ensure that budgets with hard or firm
requirements never have negative slack.

In the following section, we explain how a quality-management policy is used to assist
in meeting an energy budget in addition to a separate power-management policy. We
demonstrate this on a dedicated single core (i.e. non-virtualised) CompSOC platform for
an H.263 decoder application that has been modified to enable a trade-off between output
quality and execution time. In Section 5.2, we explain how the progress of a dataflow
modelled application that is mapped onto multiple processor cores is conservatively
estimated in a distributed manner (on each core), enabling temporally conservative DVFS
and quality scaling decisions, based solely on locally available run-time information.

5.1. QUALITY/POWER TRADE-OFF MECHANISM 105

5.1 Quality/Power Trade-off Mechanism

0

50

100

150

200

250

300

350

0 2 4 6 8 10

Fr
am

e
E

ne
rg

y
C

on
su

m
pt

io
n

(m
J)

Quality level

FRAME BUDGET

1

23

4

5

6

7

8

9

10

11

12
13

14

15

16

17
18
19
20
2122
2324

25

26
27

28

29

30

31
32 33

34
3536

37

38
39

40

41

42
43 4445

FRAME TRACE

Figure 5.1: Adaptive H.263 decoder per frame trace of quality-level scaling to meet the
indicated average energy target.

Adaptive applications [70] may change their execution profile at run-time, enabling,
e.g. a slower exact algorithm to be substituted for a faster approximate algorithm at the
cost of output quality. For example, in [19, 111], it was shown for an MPEG2 video
decoder that output quality may be sacrificed to meet timing constraints by adapting the
application.

In this section, we describe a low-complexity technique for application quality scaling,
with a relatively small processing and energy overhead. Figure 5.1 shows how an adaptive
H.263 decoder [48, 97], using our technique on a single core platform, can scale the
quality of selected algorithms in order to meet an average energy-per-frame budget. This
is achieved by simply decreasing the quality level whenever the video is consuming more
energy per frame than budgeted, and similarly increasing the level when it consumes less.
Playing a video on a mobile phone is an example use case that can benefit from such a
trade-off. If, for instance, a user wanted to display a video right until the end, but the
phone’s battery does not contain sufficient charge for this, and also retain enough energy
to make a possible emergency phone call. Quality scaling for power reduction enables
the user to have the option to watch the entire video at lesser quality, while not exceeding
its allocated energy budget. This enables the user to retain some energy in the battery to
make their potential emergency phone call.

We demonstrate our technique for an adaptive H.263 decoder application mapped
onto a single core of a CompSOC platform instance. We analyse the effectiveness of our

Section 5.1 contains an abridged and updated version of publication [78]

106 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

technique for the use case of scaling quality in order to achieve a particular number of
decoded frames from an initial energy budget. We show that our technique works with
both soft and firm real-time DVFS techniques, and that the timing criticality of the DVFS
technique does not significantly affect our technique’s ability to trade a decrease in quality
for a decrease in energy consumption. From experimentation on a single processing
core, we show that our quality-scaling technique is able to extend the number of video
frames decoded by up to 45% for the same energy budget, over using the DVFS technique
on its own, in exchange for a quality reduction of up to 22dB of Peak Signal to Noise
Ratio (PSNR).

5.1.1 Adaptive Application

VLD IQ IDCT FR UP

MC

Figure 5.2: H.263 decoder application task graph.

We demonstrate our technique using an adaptive baseline H.263 video decoder ap-
plication [48]. The H.263 application decodes the input video stream as illustrated in
Figure 5.2. The compressed stream first undergoes Variable Length Decoding (VLD).
The resultant stream consists of macroblocks, with each macroblock containing frequency
encoded YUV information for an 8×8 block of pixels.

Macroblocks belong to either an I-frame or a P-frame. I-Frames contain the inform-
ation to reconstruct all the pixels of the encoded frame. These frames are reconstituted
through Inverse Quantisation (IQ), Inverse Discrete Cosine Transform (IDCT), and Frame
Reconstruction (FR). P-frames do not contain the encoded version of the entire frame.
Instead these frames contain Motion Compensation (MC) information, that groups pixels
with vector translations, allowing the frame to be reconstructed from the previously recon-
structed frame. The reconstructed I/P-frames undergo Up Scaling (UP) to fit the allocated
display area.

An adaptive H.263 decoder [97] contains parametrised adaptive functions in the
application that enables it to decrease the decoder’s execution time in exchange for a
reduction in the decoder’s output quality. The adaptive H.263 decoder used here contains
the following two adaptive functions:

1. Parametrised number of decoded AC values in a macroblock.
2. Parametrised up-scaling complexity.

A frequency domain macroblock is encoded using a Discrete Cosine Transform (DCT)
[48]. An 8×8 value macroblock of this type consists of a single DC value, that represents

5.1. QUALITY/POWER TRADE-OFF MECHANISM 107

Increasing Horizontal Frequencies

Fr
eq

ue
nc

ie
s

Ve
rt

ic
al

In
cr

ea
si

ng DC value

AC values

Figure 5.3: 8×8 macroblock.

the average value for the macroblock, and 63 AC values, as illustrated in Figure 5.3.
As shown in this 2 dimensional representation of the macroblock, the further in each
dimension an AC value is from the DC value, the higher the frequency is that it represents
in that dimension. By selectively ignoring AC values, the time taken for the IDCT task of
the decoder may be decreased, in exchange for a reduction in reproduction quality of the
spatially encoded macroblock. The encoding process places less value on higher frequency
information in the macroblock, due to human perception. Similarly the adaptable function
in the decoder allows scaling of the amount of processed AC values, ignoring AC values
at the higher end of the frequency spectrum first.

Parametrised up-scaling complexity is achieved by a similarity-threshold parameter
passed to a bi-linear interpolation algorithm. If the two pixels under comparison are
similar to within the threshold value, then no interpolation takes place. In this eventuality
one of the compared values is simply reproduced. If the two pixels are suitably dissimilar,
bi-linear interpolation is performed. By relaxing the similarity threshold, a reduction in
execution time is achieved at the expense of the reproduction quality of the final image.

Scalable Quality Mechanisms

The quality scalable functions of the H.263 have data dependent execution times and
quality of output. In this section, we experimentally evaluate the H.263 decoder’s scalable
quality mechanisms, using an input set of three videos. The H.263 decoder has two
scalable quality mechanisms, each having 10 discrete quality levels, giving 100 possible
quality combinations that may be requested. For each of these combinations we evaluate
both the amount of work that is performed in order to produce a frame of decoded video at
a particular requested quality-level and also the image reproduction quality of the adaptive
algorithms.

To obtain a measurement of performed work for each of these quality combinations,
we decode the input videos with the quality-levels fixed at a single combination for the
duration of the decoding. In order to provide a single value per quality-level, we take
the average work required to decode a video frame from the first 30 decoded frames.
The reproduction quality of the quality scaling mechanisms is also be measured for each
of the combinations. The quality is measured as Peak Signal to Noise Ratio (PSNR),
of the reproduced frame to the original encoded frame. To provide a single value per

108 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

quality-level, we take the average PSNR of the first 30 decoded frames. The results of
our evaluation of the H.263’s quality scaling mechanism is presented in Figure 5.4 for the
three input videos.

1 2 3 4 5 6 7 8 9 10 1
2

3
4

5
6

7
8

9
10

6.5

7

7.5

8

8.5

9

W
or

k
(c

yc
le

s
×

10
6)

AC Quality
UP Quality

W
or

k
(c

yc
le

s
×

10
6)

(a) Akiyo average work.

1 2 3 4 5 6 7 8 9 10 1
2

3
4

5
6

7
8

9
10

25

30

35

40

45

50

P
S

N
R

(d
B

)

AC quality
UP quality

P
S

N
R

(d
B

)

(b) Akiyo average PSNR.

1 2 3 4 5 6 7 8 9 10 1
2

3
4

5
6

7
8

9
10

6.5

7

7.5

8

8.5

9

W
or

k
(c

yc
le

s
×

10
6)

AC Quality
UP Quality

W
or

k
(c

yc
le

s
×

10
6)

(c) Tree average work.

1 2 3 4 5 6 7 8 9 10 1
2

3
4

5
6

7
8

9
10

25

30

35

40

45

50

P
S

N
R

(d
B

)

AC quality
UP quality

P
S

N
R

(d
B

)

(d) Tree average PSNR.

1 2 3 4 5 6 7 8 9 10 1
2

3
4

5
6

7
8

9
10

8

8.5

9

9.5

10

10.5

W
or

k
(c

yc
le

s
×

10
6)

AC Quality
UP Quality

W
or

k
(c

yc
le

s
×

10
6)

(e) Bus average work.

1 2 3 4 5 6 7 8 9 10 1
2

3
4

5
6

7
8

9
10

20

25

30

35

40

45

P
S

N
R

(d
B

)

AC quality
UP quality

P
S

N
R

(d
B

)

(f) Bus average PSNR.

Figure 5.4: Quality mechanism performance, for the average of 30 decoded frames.

Figures 5.4a, 5.4c and 5.4e show the work to produce a decoded frame at each quality-
level combination for the decoded akiyo, tree and bus reference videos respectively. The

5.1. QUALITY/POWER TRADE-OFF MECHANISM 109

resultant surfaces from each video are not exactly the same due to the data dependent
nature of the quality scaling mechanism’s. Even with the data dependent variation, it is
clear that by decreasing either of the two quality scaling mechanisms, there is a monotonic
reduction in work that must be performed to decode a frame. This is a useful property of
the quality-scaling mechanisms as it ensures that requesting a lower quality-level will not
lead to extra work having to be performed.

From Figures 5.4a, 5.4c and 5.4e, it is apparent that the up-scaler quality mechanism
produces a larger reduction in work needed to decode a frame, across its range of quality-
levels, than the AC-values quality mechanism. This demonstrates that the reduction of
work by quality scalable algorithms is algorithm specific. It depends on the physical
nature of the algorithm, or the minimum acceptable quality of output that is still useful.

Figures 5.4b, 5.4d and 5.4f show the PSNR against requested quality-level for the
decoded akiyo, tree and bus reference videos respectively. As with the surfaces produced
by exchanging a reduction in quality for a reduction in work, the resultant surfaces here are
also vary due to the data dependent nature of the quality scaling mechanism. Nevertheless,
the results from the three input videos show a monotonic decrease in received quality-level
as the requested quality-levels are decreased. Reducing the quality-level for the AC-value
mechanism shows the largest quality reduction at its lowest quality value, with an ≈10
dB difference in comparison to the up-scaler mechanism at its lowest quality value.

7

7.5

8

8.5

9

9.5

25 30 35 40 45 50

W
or

k
(c

yc
le

s
×

10
6)

PSNR (dB)

1

2
3

4
5

6

7

8

9

10

Figure 5.5: Work against PSNR for the 10 selected quality levels.

To simplify the quality scaling to a single mechanism, requiring only one quality-level
to be specified, we select a subset of the available 100 quality combinations to create a
single monotonic quality to work trade-off, as presented in Figure 5.5. To achieve this,
we simply scale both quality mechanisms equally, producing 10 possible quality levels
with the desired monotonic trade-off. From Figure 5.5 we can see that on average a work
reduction of 2×106 cycles is achievable for a quality reduction of 22dB PSNR.

110 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

5.1.2 Quality for Power Reduction

We continue by describing how our temporal and power constrained quality scaling
technique works in general. We further show how it may be applied in practice using the
CompSOC platform and the adaptive H.263 decoder described in Section 5.1.1.

A reduction in quality creates temporal slack that can then be exchanged for a reduction
in power consumption through DVFS. These power management decisions for real-time
applications must be taken in the context of their timing requirements. We achieve this on
the CompSOC platform at run-time, by observing slack in the application’s timing budget
(schedule) and selecting an appropriate DVFS level that slows the application down but
that still enables the application to meet its real-time requirement in the worst case. This
can be achieved simply as follows, if a block of code can execute to completion without
stalling that takes duration t to execute at frequency f , and it has slack of duration z, then
it can conservatively scale to any frequency ≥ fz, with fz calculated as follows:

fz = f · t
t + z

(5.1)

This is guaranteed to be conservative because the finishing time of the block of code
executing at frequency fz, cannot be later than the finishing time of the code starting z
cycles later and executing at frequency f . How and when to perform the scaling depends
on the power management policy, which we proceed to explain in the following section.

Applied in General

To make our technique generally applicable for systems that can perform DVFS, we
introduce a quality management layer between the application and the system’s exist-
ing power-management, as illustrated in Figure 5.6. Independent quality- and power-
management policies are shown in Table 5.2. Having independent policies enables the
technique to be applied to platforms that already have DVFS power-management policies.
As they are independent, the quality- and power-management policies may also operate at
different granularities, e.g. for the H.263 decoder, the quality may change every frame
while the frequency changes every macroblock (this is just an example, not a suggested
configuration). This allows our technique to be more general and therefore more widely
applicable, than by having a single combined quality- and power-management policy.

Table 5.2 presents policies for four scenarios of time and energy budget under- and
overuse, with the action that is taken in each case. If the temporal budget has surplus
(i.e. the application is running ahead of schedule) then the power-manager can lower the
frequency and voltage conserving power, while still meeting the temporal requirement.
If the temporal budget is showing that the application is running a deficit (i.e. the
application is running behind schedule), then the power-manager must increase the
frequency and voltage to meet the temporal requirement. The increase in the frequency
also means an increase in power consumption, and is therefore dependent on the slack

5.1. QUALITY/POWER TRADE-OFF MECHANISM 111

Application

DVFS Policy

Hardware

DVFS Policy

Hardware

Quality Policy

Adaptive Application

Current Proposed

Operating System Operating System

Figure 5.6: System hierarchy.

Time
surplus deficit

Energy
surplus scale frequency1 maximum frequency
deficit scale frequency1 maximum frequency

1 using conservative frequency derivation from Equation 5.1.

(a) Power-management DVFS policy. (Regardless of energy/power budget constraint)

Time
surplus deficit

Energy
surplus increase quality decrease quality
deficit decrease quality decrease quality

(b) Quality-management policy

Table 5.2: Quality- and power-management policies, based on run-time temporal/en-
ergy/power budget information.

in the energy/power budget. If the temporal and energy/power budgets are concurrently
running deficits, then a conflicting situation arises whereby the system needs to increase
the frequency in order to meet the temporal budgets constraint, while at the same time
needing to lower energy/power consumption in order to meet the energy/power budgets
constraint. Which one to prioritise is therefore a policy decision and depends on the
requirements of the application. The power-management policy in Table 5.2a, prioritises
the application’s real-time requirement over its energy/power requirement, i.e. if the time
budget is running a deficit, the frequency is increased regardless of the energy/power
budget constraint.

Scaling the quality of an adaptive application, such as the adaptive H.263 decoder
described in Section 5.1.1, enables a trade-off in quality for a reduction in execution time.
Table 5.2b shows a simple example quality-management policy. In this policy the quality
is decreased when the temporal or energy/power budgets are running a deficit. Quality
may be increased again whenever all the budgets have slack. This directly assists in

112 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

meeting the application’s time budget by reducing the amount of work that the application
has to perform to decode a frame. This reduction in work also assists in meeting the
application’s energy budget, even without frequency scaling. When used in combination
with the power-management policy described in Table 5.2a, the reduction in work due
to quality scaling can also translate into a reduction in operating frequency and hence a
lower power consumption.

Applied to the CompSOC Platform

We proceed to explain how our quality-management technique is applied to the CompSOC
platform. The quality- and power-management control loop that is illustrated in Figure 5.1
is implemented in software as a function at the application-level. We implement the
quality- and power-management as independent functions, following the quality- and
power-management schemes described in Table 5.2. In our implementation, the quality-
manager returns the quality-level as an integer from 1 to 10, with 1 being the lowest
quality and 10 being the highest. The adaptive functions take this number as an input and
scale their algorithm accordingly. The power-management function derives a frequency to
use, following Equation 5.1 calls the TIFU driver function that sets the frequency. The
quality- and power-management functions are called by the application. The frequency of
calling the management functions is a design decision. For the H.263 decoder, the quality-
and power-managers are called on the granularity of video frames.

The H.263 decoder is a real-time application. POSe represents this requirement
as a time budget. The H.263 decoder can also be given an energy budget, specifying
the maximum amount of energy the application can use to complete the video. This is
translated into a target energy consumption per frame, which is effectively a power budget.
Since the timing requirement takes priority over the energy requirement in the quality- and
power-management policies described in Table 5.2, the energy requirement is specified
with a soft criticality.

The quality- and power-managers use POSe’s run-time accounting information to ob-
serve slack. The relevant budgeting information, provided by the POSe power-management
API, consists of the following:

• time_budget Amount of time in system time budgeted for n application graph itera-
tions.

• used_time_budget Current time in system time used from the temporal budget.

• energy_budget Amount of energy budgeted for the entire application execution (i.e.
for decoding the entire video).

• power_budget Amount of energy budgeted for the current time interval (i.e. video
frame duration).

• used_power_budget Current energy used from the power budget, for the current
time interval (i.e. video frame duration).

5.1. QUALITY/POWER TRADE-OFF MECHANISM 113

where system time is the time measured in cycles of the unscaled reference clock of the
TIFU. There is a linear relationship between the progression of system time and wall time.

The H.263 application calls the control_loop function, as described in Code 5.1,
before every frame. The amount of temporal slack that is available in the budget is
calculated by subtracting the used_time_budget from the time_budget. The
power_budget is calculated by dividing the energy_budget by the number of
frames in the video to obtain the power budget constraint, in terms of energy per frame.
The amount of slack that is available in the power budget is calculated by subtracting the
used_power_budget from the power_budget.

void control_loop(){
time_slack = getTimeBudget();
time_slack -= getUsedTimeBudget();
power_slack = getPowerBudget();
power_slack -= getUsedPowerBudget();

app_quality = h263_quality_manager(time_slack,power_slack);

h263_power_manager(time_slack);
}

Code 5.1: Quality- and power-management control loop.

After the control_loop function calculates the time and power slacks, it calls the
quality- and power-management functions. The h263_quality_manager, described
in Code 5.2, follows the policy from Table 5.2b. For this policy, if both temporal and
power slack are positive, then the quality-level is incremented. If either temporal or power
slack is negative, then the quality level is decremented. For all other slack combinations,
the quality-level is maintained at its current level. If the quality-level is outside the range
of 0 to 10, then the closest available quality level is chosen and returned. The control_
loop uses the returned value to set the global app_quality variable for the adaptive
functions.

The h263_power_manager, described in Code 5.3, follows the policy from
Table 5.2a. In this policy, if time slack is negative the frequency level is set to the
maximum available frequency (MAX_FREQUENCY), otherwise the frequency is scaled
following Equation 5.1. The frequency is scaled depending on how much time_slack
there is and the amount of time it takes to decode a single frame (time_to_decode_
frame) at the maximum available frequency. For conservative frequency scaling, the
time_to_decode_frame must be at least as long as the worst-case time to decode a
frame. For soft criticality frequency scaling, a speculative time_to_decode_frame
can be used, which can be obtained by observing the time taken to decode previous frames.
The derived frequency_scale is multiplied by the number of available frequencies
(NUM_FREQUENCIES) and rounded up to the next available frequency to remain con-

114 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

int h263_quality_manager(time_slack, power_slack){
/* Quality policy */
if(time_slack < 0 || power_slack < 0){

quality_level = getCurrentQualityLevel() - 1;
}else if(time_slack > 0 && power_slack > 0){

quality_level = getCurrentQualityLevel() + 1;
}

/* stay within available quality range */
quality_level = max(quality_level,0);
quality_level = min(quality_level,10);

return quality_level;
}

Code 5.2: Quality-management function.

servative. The result is multiplied by the difference in frequency between two frequency
levels, to obtain the frequency_level to be requested. If the frequency_level
is outside the available range of MIN_FREQUENCY to MAX_FREQUENCY, it is rounded
to the nearest available frequency. The frequency_level is then set by calling the
setfrequency function with the required frequency.

Changes in the time taken to decode a frame are observed the next time the control
loop is executed. For instance, lowering the quality in this iteration reduces the time taken
to decode a frame, which can be observed by the control loop the next time that it is
invoked.

5.1.3 Case Study

Having presented how our technique is applied to the adaptive H.263 decoder from
Section 5.1.1 for the CompSOC platform, we proceed to evaluate the performance of
our technique. We achieve this using an implementation of the adaptive H.263 decoder
executing on an FPGA prototyped CompSOC platform. We investigate the relationship
between the requested quality level and the output quality of the decoded video frame,
measured as a Peak Signal to Noise Ratio (PSNR) in comparison to the reference frame,
decoded at the highest quality settings. We also investigate the relationship between the
requested quality level and the amount of work required to decode a single frame of
video. Following this, we evaluate our quality-scaling technique by providing an in depth
analysis of its application to the use case of decoding a particular number of video frames
for a given energy budget.

While our experimental results show absolute power and energy estimates, we do not

5.1. QUALITY/POWER TRADE-OFF MECHANISM 115

void h263_power_manager(time_slack){
/* Power policy */
if(time_slack < 0){
frequency_level = MAX_FREQUENCY;

}else{
frequency_scale = time_to_decode_frame/(time_to_decode_frame

+ time_slack);
frequency_level = ceil(frequency_scale * NUM_FREQUENCIES)*

MAX_FREQUENCY/NUM_FREQUENCIES;
}

/* stay within available frequency range */
frequency_level = max(frequency_level,MIN_FREQUENCY);
frequency_level = min(frequency_level,MAX_FREQUENCY);

setfrequency(frequency_level);
}

Code 5.3: Power-management function.

make any claims about the accuracy of our used power model 1. The power model that
we use is for comparative purposes only, enabling us to evaluate whether our technique
provides an improvement in comparison to the same situation without our technique. Our
processor power model is based on the power consumption estimate of the MicroBlaze
processor, at 120MHz, for the ml605 board’s virtex 6 FPGA. We obtained an estimate of
348mW using the Xilinx “Xpower Analyzer” tool, for a mapped and routed instance of
a MicroBlaze processor on the FPGA. What is important for demonstrating the validity
of our technique, is that by lowering the processor’s operating frequency (and voltage to
match) the processor’s power consumption decreases. As such, we use a simple linear
relationship between frequency and power, but emphasise that our technique also works
for other monotonic frequency/power models, such as those with a quadratic or cubic
relationship, as may be obtained from the parametrised model described in [51].

We start our experimental evaluation by investigating the effectiveness of our quality-
and power-scaling technique to meet a target number of decoded video frames within a
given energy budget, e.g. the remaining energy in a battery. We decode a video using the
adaptive H.263 decoder for the five configurations described in Table 5.3. The decoder is
given an energy budget of 15 J to decode 45 video frames, while maintaining a real-time
throughput requirement of 10 frames per second. The depletion of the energy budget
during the three different runs can be seen in Figure 5.7. The baseline test is carried out

1The experimentation results in this section were published in [78] and used a simple linear approximation
of the frequency power trade-off. These results are still valid for the purpose of demonstrating the effectiveness
of our technique, but may cause confusion if absolute energy numbers are compared with experimentation
elsewhere in this thesis.

116 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

Worst-case
Frame Timing

Frequency
Scaling

Quality Scaling Annotated as

N/A1 7 7 NO FS NO Q
7 speculative 7 FS NO Q
7 speculative 3 FS Q
3 conservative 7 WC FS NO Q
3 conservative 3 WC FS Q

1 The time to decode a frame is used by the scaling mechanisms and therefore has no
effect when both scaling mechanisms are not in use.

Table 5.3: Experimentation configurations.

without frequency scaling or quality scaling (NO FS NO Q), at the processor’s maximum
frequency. As can be seen in Figure 5.7 running at the processor’s maximum frequency
causes the energy budget to deplete at a relatively fast rate, with the energy budget depleted
by the 28th frame.

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45

E
ne

rg
y

B
ud

ge
tR

em
ai

ni
ng

(J
)

Frames

NO FS NO Q
FS NO Q

FS Q
WC FS NO Q

WC FS Q

Figure 5.7: Remaining energy budget.

Frequency scaling is performed in accordance with either a conservative or speculative
power-management policy. The conservative policy derives a frequency using Equation 5.1
to use until the next invocation of the control loop, for the amount of slack available and
the worst-case time to decode a frame. The actual decoding time of video frames cannot
use more slack than is available and therefore the H.263 decoder is guaranteed to meet its
frame rate.

Deriving an application’s worst-case timings can be complicated (even impossible),
requiring detailed knowledge of the application’s algorithms. While worst-case timings

5.1. QUALITY/POWER TRADE-OFF MECHANISM 117

are necessary to be able to give timing guarantees for hard or firm real-time applications,
soft real-time applications, such as the H.263 video decoder, can incur some deadline
misses without devaluing the output significantly. We therefore also present experimental
evaluations of our quality- and power-scaling technique using speculative frame decoding
times. We use a simple speculation method of using the time taken to decode the previous
frame when deriving an appropriate frequency to use.

Enabling frequency-scaling using worst-case (WC FS NO Q) and speculative (FS
NO Q) frame decoding times enables the processor to run at lower frequencies than the
baseline (NO FS NO Q), thereby consuming energy at a lower rate. Figure 5.8 shows that
given a per frame work budget suitable to achieve 10 fps on a processor with a maximum
frequency of 120 MHz, that the power-management is able to scale the frequency while
meeting the real-time requirement. In both the case of the worst-case (WC FS NO Q) and
speculative (FS NO Q) frame times, the slack always remains positive, which shows that
the 10 fps was met.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

Ti
m

e
S

la
ck

(C
yc

le
s
×

10
6)

Frames

FRAME BUDGET
NO FS NO Q

FS NO Q
FS Q

WC FS NO Q
WC FS Q

Figure 5.8: Remaining work budget after each frame.

In comparison to the situation with no frequency-scaling (NO FS NO Q) in Figure 5.8,
by running continuously at maximum frequency the H.263 decoder under uses its work
budget, causing it to continuously accumulate timing slack. In Figure 5.7 it can be seen
that by enabling frequency-scaling ((WC) FS NO Q) that the energy budget now stretches
to the 37th frame, which is a 32% improvement but is still short of the 45 frame target.

The application’s timing slack is accumulative, meaning that the application retains
slack between frames. If the conservative policy runs faster than the speculative policy
in a particular frame then the conservative policy has more slack to use for frequency
scaling in the next frame. Figure 5.9 shows that for this investigation, on average the
conservative and speculative policies use similar frequencies, which in turn translates into
similar energy consumption, as is apparent from Figure 5.7 where the FS NO Q and WC

118 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

FS NO Q lines almost completely overlap.

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

Fr
eq

ue
nc

y
(M

H
z)

Frames

FS NO Q
FS Q

WC FS NO Q
WC FS Q

Figure 5.9: Processor frequency-level per frame.

Frequency-scaling alone is not able to reduce the energy consumption rate further
without affecting the video’s decoded frame rate. By enabling quality-scaling in conjunc-
tion with frequency-scaling ((WC) FS Q), the 45 frame target is met within the given en-
ergy budget, as shown in Figure 5.7. With the use of quality-scaling and frequency-scaling
((WC) FS Q), the same initial energy budget lasted for 22% more frames than frequency-
scaling alone ((WC) FS NO Q), and for 60% more frames than without frequency- and
quality-scaling (NO FS NO Q).

We proceed to test the effectiveness of our quality- and power-management technique,
for a range of energy budgets, e.g. a range of remaining energy in a battery. For a given
energy budget within this range, we run the experiment again with and without quality
scaling, for a minimum frame requirement of 45 frames, producing the figures shown
in Figure 5.10. Figure 5.10a demonstrates the energy budget depletions for frequency
scaling without quality scaling (WC FS NO Q). The power-management policy described
in Table 5.2a scales the frequency to meet temporal requirements but does not attempt
to meet the energy target for 45 frames. Figure 5.10b demonstrates the battery depletion
with both frequency scaling and quality scaling enabled (WC FS Q). In contrast to the
power-management policy, the quality-management policy described in Table 5.2b tries
to meet energy requirements. This can be seen in Figure 5.10b as the quality-manager
tries to make the energy budget last for 45 decode frames. Some starting energy budgets
are too low and cannot stretch to 45 frames, even at the lowest quality setting, and other
starting energy budgets are so large that the 45 frame target is met without any quality
scaling. A funnel shaped region exists in Figure 5.10b where run-time adjustments made
by the quality manager are effective to meet the 45 frame requirement.

The total energy budget is divided among the number of frames to create a per frame

5.1. QUALITY/POWER TRADE-OFF MECHANISM 119

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45

E
ne

rg
y

B
ud

ge
tR

em
ai

ni
ng

(J
)

Frames

(a) Without quality scaling

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45

E
ne

rg
y

B
ud

ge
tR

em
ai

ni
ng

(J
)

Frames

(b) With quality scaling

Figure 5.10: Energy budget depletion from various starting points, while decoding H.263
video with a soft 45 frame minimum requirement.

energy budget. Figure 5.1 shows a per frame trace of how the quality manager adjusts the
quality level in respect to this budget, for the policy described in Table 5.2b. Whenever
there is an energy budget surplus, represented by the trace being below the budget line, the
quality is increased one quality-level per frame. Whenever there is a deficit, represented
by the trace being above the budget line, the quality-level is decreased by one level per
frame. With quality scaling enabled the policy keeps the energy per frame close to the
budget. This is sufficient to meet the energy budget’s soft real-time requirement.

The outcome of the five different experimental runs are shown in relation to the per
frame energy budget in Figure 5.11. Both runs with quality scaling enabled, FS Q and
WC FS Q, are shown to keep the energy consumption close to the budgeted amount. The
quality levels that they use to achieve this are shown in Figure 5.12. From this graph
it can be seen that the quality management with the conservative frame decoding time
produces the highest quality for more frames, but also reaches the lowest quality level of
the two runs. The quality-management policy does not take the frame decoding time into
account, only if the work budget has a surplus or a deficit. Even though the work budget
continuously had a surplus when quality scaling was enabled ((WC) FS Q), as can be seen
in Figure 5.8, the difference between the speculative and conservative frame decoding
times affect the frequency level that the power-manager derives and hence the rate of
energy consumption. As per Figure 5.1, this in turn affects the chosen quality level by

120 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

the quality management, which also affects the work required to decode a frame, leaving
more/less slack and energy for the next quality- and power-management decisions.

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45

E
ne

rg
y

(J
)

Frames

FRAME BUDGET
NO FS NO Q

FS NO Q
FS Q

WC FS NO Q
WC FS Q

Figure 5.11: Energy budget consumption per frame.

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45

Q
ua

lit
y

Le
ve

l

Frames

FS Q
WC FS Q

Figure 5.12: Requested quality-level.

A reduction in quality-level translates into a reduction in work that is performed to
decode the frame. This in turn translates into an accumulation of extra slack in the work
budget, thereby enabling lower frequencies to be used to decode the frame while still
meeting the application’s throughput requirement. This effect can be seen in Figure 5.9
where the frequency-scaling and quality-scaling combined ((WC) FS Q) is able to run
more often at lower frequencies than without quality-scaling ((WC) FS NO Q). This is

5.2. DISTRIBUTED REAL-TIME MULTI-CORE DVFS 121

achievable while meeting the video decoder’s throughput requirement, as can be seen in
Figure 5.8. While the choice of a conservative or speculative frame decode time does not
have a direct affect on quality management decisions, it does affect the frequency derived
by the power-manager which affects the application’s energy consumption, and hence
indirectly also affects the quality management. From our experimentation, the choice of a
conservative (WC) or speculative frame decode time did not cause a significant difference
in the ability of our technique to meet the application’s energy budget, as can be seen
in Figure 5.7. While the difference is small for this example, it is likely that a greater
difference could be observed for other applications or methods of speculation.

5.1.4 Conclusion
The energy and power savings that can be made using quality scaling, with adaptive applic-
ations, are application and platform dependent. We show how these scaling mechanisms
may be applied in a practical context for an H.263 adaptive real-time application executing
on an existing MPSOC platform. By using independent power- and quality-managers
our technique is able to be integrated more easily onto platforms with existing real-time
DVFS power-management techniques.

Through experimentation, using an FPGA prototyped CompSOC platform, we show
that quality scaling enables the same level of energy budget to be used to decode more
frames than with frequency scaling alone. From our experimentation we show that the
same level of energy budget can be used to decode up to 45% more frames when using
quality-scaling, but at a cost to image reproduction quality of up to 22 dB PSNR.

While we have successfully demonstrated the applicability of quality scaling adaptive
applications, we proceed in the rest of this thesis to explain our static and dynamic power
management techniques without the use of quality scaling.

5.2 Distributed Real-time Multi-Core DVFS
Implementing a DVFS control loop, such as illustrated in Figure 5.1, in an application
mapped onto multiple cores is non-trivial. As with the application itself, run-time applic-
ation progress information is distributed across the cores. One solution is to explicitly
communicate each core’s local progress information to a centralised point that collates this
information, derives appropriate conservative frequency-levels and explicitly communic-
ates this information back to the cores. This method is not scalable as each core must be
able to communicate with a single point requiring physical communication infrastructure
to achieve this.

Conservatively performing DVFS in a distributed manner using locally available
application progress information is only possible if the locally available information
does not overestimate the progress of the rest of the application. Overestimating the
application’s progress can lead to a selection of a lower frequency-level causing the
application to potentially violate its timing requirement.

122 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

In this section, we start by describing how slack in a schedule is conservatively used
to scale the period of an SPS schedule without violating its throughput requirement. We
follow this with a detailed description of how implicitly communicated global progress
information in dataflow modelled applications is used to calculated conservative global
slack estimates using only locally available progress information. We finish this section
with a description of a conservative method for performing run-time DVFS using the
locally observed conservative global slack information.

5.2.1 Conservative Multi-Core Distributed Slack Observation

Our run-time power management control loop requires conservative slack observations
in order to derive DVFS levels that reduce power consumption while meeting the ap-
plication’s real-time requirements. We therefore continue by showing how slack may be
observed in a conservative manner on a distributed multi-core system.

task 1

task 2

task 3

task 4

t(1)

t(2)

t(3)

t(4)

t(1)

t(2)

t(3)

t(4)
s(4,0) s(4,1)

t(3)

t(2)

t(1) t(1) t(1) t(1)

t(2) t(2)

t(3) t(3)

t(4) t(4)
s(4,2) s(4,3)

schedule length T

Figure 5.13: Example WCSTS (and SPS) for the HSDFG illustrated in Figure 2.27a

Figure 2.27a illustrates an example WCSTS for our running example mapped dataflow
application from Figure 2.27b. The graph executes with period T , enabling it to meet the
minimum throughput requirement of T−1. As illustrated in Figure 5.14, dynamic slack
in the schedule occurs whenever the tasks execute at less than their WCET. Apart from
actual-case task execution, dynamic slack can also occur due to actual-case communication
times, due to TDM alignment in the NoC, or between the cores, etc.

As described in Section 2.1.2, a WCSTS can be conservatively modelled as an SPS
for analysis purposes, as illustrated in Figure 5.13. Figure 5.15 presents another possible
SPS for our running example application where the application’s execution period T is
equal to the schedule length, providing a less cluttered image for illustrative purposes.

SPS Analysis for STS Execution

Figure 5.16 illustrates the same SPS task start times from Figure 5.15, but with the same
varying task execution times from Figure 5.14. Tasks have the same start times s(i,k) but
now finish earlier creating gaps or slack in the schedule where no tasks are firing. These

5.2. DISTRIBUTED REAL-TIME MULTI-CORE DVFS 123

task 1

task 2

task 3

task 4

Figure 5.14: Possible STS schedule with task execution times ≤ worst-case

task 1

task 2

task 3

task 4

t(1) t(1)

t(2)

t(3)

t(4)

t(2)

t(3)

t(4)

TT ·0 T ·1 T ·2
k = 1k = 0 k = 2

s(4,0) s(4,1)

Figure 5.15: Another possible SPS for the HSDFG illustrated in Figure 2.27a with the
graph annotated with some worst case execution times t(v)

regions where tasks cannot fire due to the restriction of the SPS task start time are marked
in Figure 5.16 as unusable slack.

As is illustrated in Figure 5.14, tasks scheduled using a STS fire as soon as there is a
token on their incoming edges, enabling the use of the unusable slack from Figure 5.16.
Since start times of a HSDFG following a STS are always earlier or the same as the same
HSDFG following a SPS, if an SPS is guaranteed to temporally conservative the STS is
also guaranteed to be temporally conservative. As such, we give temporal guarantees as if
the HSDFG is scheduled as an SPS while actually scheduling the HSDFG following a
STS.

We clarify this further with the example illustrated in Figure 5.17. In this example, the
graph has an inverse throughput requirement T that must be met. After one application
graph iteration following a STS, the graph has finished Z time units earlier than its
requirement and therefore has Z time units of slack. The slack is used to derive a suitable
frequency level to permit the SPS of the second graph iteration to finish while satisfying
the throughput requirement.

The frequency level that was derived for the SPS is then applied to the second iteration
of the graph, but scheduled following a STS, the result of which is illustrated in Figure 5.18.
The second iteration of the graph also meets the requirement with some slack to spare,

124 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

task 1

task 2

task 3

task 4

unusable
slack

Figure 5.16: Same SPS from Figure 5.15 with task execution times shorter than the
worst case

task 1

task 2

task 3

task 4

TZ

Figure 5.17: Slack Z from an STS iteration used to perform DVFS on the following SPS
iteration

allowing the following iteration of the graph to scale, and so on.

Local STS Application-level Slack Observation

The aim of our distributed power management technique is to ascertain conservative global
progress using locally observable progress information. We observe local application-level
progress as slack. The further an application is ahead of its timing requirement the more
slack it has.

The calculation of slack requires a frame of reference to measure against. The
application’s throughput requirement is translated into a set of deadlines that a set number
of application iterations must complete by. In a multi-core system, only some of the
application’s tasks are executed locally. POSe executes the local tasks following an SOS.
Each SOS iteration fires the tasks for a single application graph iteration. Depending on
the number of iterations that the application’s timing requirement is for, after the same
number SOS iterations the application can measure its current time against its deadline to
calculate its locally observed timing slack.

Figure 5.19 illustrates the timing of an STS of our running example application.
Ideally, after the end of the application graph iteration the end of an application iteration
the application level slack Z is measured and frequency scaling is performed, as illustrated

5.2. DISTRIBUTED REAL-TIME MULTI-CORE DVFS 125

task 1

task 2

task 3

task 4

Z(0) Z(1)

Figure 5.18: Guaranteed conservative second iteration SPS frequency level applied to
second iteration STS

task 1

task 2

task 3

task 4

core 1

core 2

1 3

2 2

1 3 1

2 44

3

4

1

Figure 5.19: Example STS of HSDFG from Figure 2.27b shown per task and per core

in Figure 5.20.
To be able to conservatively perform DVFS to reduce power consumption, we require

a method to conservatively translate the locally observed progress information into global
application progress information. Using this global progress information, we also require a
method to convert this information into a frequency level to be set locally that is guaranteed
not to violate the application’s throughput requirement.

Observing Global Application Progress Implicitly

The combined application and platform CompSOC HSDFGs, as illustrated in Figure 2.27,
are fully connected directed graphs. This means that every dataflow actor has a path to
and from every other actor in the graph. Due to dataflow monotonicity, an earlier finishing
of any of the actors can not lead to a later enabling of subsequent actors in the graph, but
can lead to an earlier enabling. A task finishing earlier on one processor can therefore
enable a task on another processor to fire earlier. Due to the finite capacity of the FIFOs

126 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

core 1

core 2

Z(0) Z(1)

31

22 4

31

2 4

31

Figure 5.20: Frequency scaling per SOS iteration of the STS from Figure 5.19

connecting the tasks (see Section 2.1), an earlier finish by a producing/consuming task
can enable the consuming/producing task earlier by releasing its data/space sooner.

Figure 5.21 illustrates this effect for our running example application from Fig-
ure 2.27b, where the inter-core FIFOs between tasks 1 and 2, and tasks 3 and 4 have a
buffer capacity of one token. Both iterations of task 2 are stalled until task 1 completes
and releases its output data. The third iteration of task 1 is stalled waiting on task 2 to
release the space in the buffer so it can fire. A greater capacity buffer would allow task 1 to
proceed, allowing the execution of the application on that core to proceed further without
the need to stall for space. This leads us to Theorem 5.1.

core 2

core 1 1 3 1

2 42 24 4

1 331

Figure 5.21: STS of HSDFG with finite inter-core FIFO capacities of one token.

Theorem 5.1. Given an HSDF graph with bounded FIFO capacities, there is a worst
case bound on how many iterations one task i may be ahead/behind another task j in the
graph, given that the available data and space (d(i, j)+d(j, i)) on their connecting edges
is known.

Proof. A FIFO of finite capacity between a producer task i and a consumer task j can
be represented in an HSDFG by edges (i, j) and (j, i) [107]. Initial data in the FIFO is
represented by initial tokens d(i, j) and the initial space in the FIFO by initial tokens
d(j, i), as illustrated in Figure 2.8b. The total buffer capacity of the FIFO is therefore the
sum of initial data tokens and available space tokens, i.e. d(i, j)+d(j, i).

Given Equation 2.1, the producer task i may be up to d(i, j) iterations ahead of
consumer task j, and similarly j may be up to d(j, i) iterations ahead of producer task
i. The combined CompSOC and application dataflow model is a fully connected graph,
meaning that for every actor in the graph there is a path to every other actor. A task
may be connected to another task via multiple routes through the graph. Due to the
cumulative constraint of Equation 2.1 applied to edges along the path, the consumer
cannot be further ahead than the shortest path (in terms of tokens) between the producer
and the consumer and similarly the producer cannot be further ahead than the shortest path

5.2. DISTRIBUTED REAL-TIME MULTI-CORE DVFS 127

between the consumer and the producer, i.e. the path between producer and consumer
with least data/space constrains other paths between producer and consumer with more
data/space.

After an SOS has finished, while it is not necessarily possible to tell, using local
information, exactly how many iterations of an SOS has completed on another core, it is
possible to conservatively know how many SOS iterations the other core is maximally
behind. This information can be translated into a conservative estimate of global slack.

Conservatively Estimating Global Slack

Having calculated the application’s local slack Yc (on core c) it is possible to conservatively
derive a global slack quantity. We know from Theorem 5.1 that the FIFO buffer capacity
constrains how far ahead one task can be ahead or behind a task that it communicates with.
Due to the fully connected nature of CompSOC’s combined application and platform
HSDFGs there is a path between each task and every other task in the application. To find
the most number of iterations Bc that the local SOS on core c can be ahead of an SOS on
another core we take the maximum of the shortest paths between the SOS on core c and
the SOSs on all other cores. The shortest path between an SOS on core c and an SOS on
another core is the shortest path (in terms of tokens) between any task on core c and any
task on the other core.

After an SOS has completed n iterations, all of the tasks belonging to that SOS have
completed n iterations. Using Bc we know that all tasks on the path have at least completed
n−Bc iterations. This means that all of the application SOSs have at least started the
(n−B)th iteration. Assuming all other SOSs still have to complete Bc +1 SOS iterations
before they have also completed n iterations is therefore a conservative assumption. Using
the application’s worst-case period T , we can conservatively estimate the global slack Zc
from the observed local slack Yc as follows:

Zc =
Yc− (Bc +1) ·T

N
(5.2)

where N is the number of application graph iterations between power management invoca-
tions. As the frequency of other cores is not known locally, the application’s worst case
period T must bound the possibility that other cores are executing at the lowest available
frequency level fmin. T is derived off-line using a convex program of the combined
application and platform HSDFG to minimise T while the frequencies of all of the cores
are set to fmin.

Equation 5.2 therefore ensures that each core locally calculates a global slack value Zc
that is less than or equal to the actual global slack value.

128 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

Conservatively Estimating Global Slack in a GALS System

It is not always possible to guarantee the synchronised start time of the SOSs on multiple
cores, e.g. in a GALS system. Temporally bounded variations V in the start times are
conservatively taken into account by assuming that all the cores started at the latest time
allowed by the bound. For systems with this variation, it is taken into account in the
conservative slack calculation Z as follows:

Zc =
Yc− (Bc +1) ·T −V

N
(5.3)

How to derive the bound V on the variation in starting time is beyond the scope of
this thesis. Further reading on bounded clock variation in GALS systems can be found
in [26, 84]

5.2.2 Globally Conservative DVFS

Once slack has been observed, it is then possible to use this slack to reduce the operating
frequency thereby reducing power consumption. Care must be taken that any reduction
in operating frequency does not violate the applications real-time requirements. In this
section, we present how conservative run-time DVFS can be achieved, using mapping-
specific off-line derived tables that specify how much observed slack is required to
conservatively use a particular frequency. We explain how these tables are derived and
how they are applied at run time.

Full Search

Using the combined application and CompSOC platform dataflow graph a per core
frequency lookup table is derived with appropriate per-core frequency-levels for the
amount of observed slack. For an application that is mapped onto a relatively small
number of cores with relatively few frequency-levels, it is possible to calculate the
minimum application SPS period and power consumption for each frequency combination,
an example of which is presented in Figure 4.3. The range of pareto optimal frequency
levels for power consumption to SPS period are selected for use at run-time. The pareto
front of Figure 4.3 is presented in Figure 4.5. From this range of selected points, a
table with the minimum required SPS period for each frequency-level is created. By
subtracting the minimum period of the graph from all of the graph periods, the amount of
slack necessary to conservatively execute a single iteration of the graph for the particular
frequency combination is calculated. An example the resultant frequency-slack table is
presented in Table 5.4.

5.2. DISTRIBUTED REAL-TIME MULTI-CORE DVFS 129

Frequency (MHz) Required Slack (s)
120 0
90 0.01
60 0.03
30 0.06

Table 5.4: Example frequency-slack table.

Sampling Using Convex Analysis

The number of points in the full search solution space grows exponentially with the
number of cores that the application is mapped onto. For a platform with C cores and
F possible frequency-levels, FC points are calculated. For relatively large designs that
are mapped onto many cores, this approach will eventually become infeasible as the
processing of all the points will take too long.

The number of calculated points can be reduced by formulating the combined applica-
tion and CompSOC platform model as a convex optimisation problem, as described in
Section 4.1, and solving it for a range of SPS period constraints. An example of this
technique is presented in Figure 4.6. The derived frequencies are optimal for the given
minimisation objective, but are in the R domain and must be rounded up to the nearest
available discrete frequency-level. After rounding, the frequency values are no longer
optimal for the minimising objective. Given that the un-rounded frequency values were
derived for the application’s SPS schedule, and hence its worst-case performance, the
application might not execute at its worst-case or even close to its worst-case for most of
its execution, and therefore the optimal frequency values are unlikely to be continuously
optimal during the application’s execution anyway. Our run-time power management
technique is slack conserving, meaning that any observed application-level slack that is
not used is still available for use later.

A frequency lookup table is created per core from the sampled SPS period and
frequency data. As before, the table consists of the minimum SPS period that each
frequency-level conservatively supports. The accuracy of the table depends on the number
and distribution of the sampled SPS periods in the range, e.g. for any sampling distribution,
adding additional sampling points (the original points remain where they are) can only
increase the accuracy of the result.

Selecting a Conservative Frequency Level

The period of an SPS can be shorter than its schedule length, i.e. the time before the last
actor in the first SPS iteration finishes firing can be longer than its period. We refer to
the length of the SPS as the application graph’s latency. If the frequencies are statically
set, then the graph’s latency is observed once at the start of the execution with actors
firing with period of the SPS thereafter. If DVFS is performed, the SPS becomes longer

130 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

in duration for lower frequencies and shorter in duration for higher frequencies. When
lowering the frequency of an SPS a latency may be observed for the first iteration at
the lower frequency. This is because the worst-case latency of the graph at the lower
frequency is greater than the worst-case latency of the graph at the higher frequency.

The worst-case latency of the graph can also be derived using a minimising convex
program in combination with the CompSOC platform’s combined application and dataflow
graph. This is achieved using a DCP, as presented in Code 5.4. The minimum worst-case
latency Lmin occurs when all the cores execute at the maximum frequency Lmax and the
maximum worst-case latency occurs when all the cores execute at minimum frequency.
Lmin is therefore derived using Code 5.4 by setting all the core frequencies f equal to the
maximum frequency, and similarly Lmax is derived by setting all the core frequencies f to
the minimum frequency.

cvx_begin
variable s(NUM_ACTORS) % array of actor start times
variable T % SPS period

minimise(sum(s+t))

s >= 0

% per edge token constraints
s(s1) + T*0 >= s(L1) + t(L1)*inv_pos(fplatform) % edge 1
s(e1) + T*0 >= s(s1) + t(s1)*inv_pos(f(1)) % edge 2
s(e2) + T*0 >= s(s2) + t(s2)*inv_pos(f(2)) % edge 3
s(d1_2) + T*0 >= s(w1) + t(w1)*inv_pos(f(1)) % edge 4
s(s1) + T*1 >= s(w3) + t(w3)*inv_pos(f(1)) % edge 5
... % omitted per edge token constraints

cvx_end

Code 5.4: Part of the maximum schedule latency derivation DCP for Figure 4.2.

In order to transition to a lower frequency, the amount of slack that is observed must
be enough to bound the increased latency of the graph at the lower frequency. To remain at
the same frequency, or transition to a higher frequency, the amount of slack observed only
needs to bound the period of the SPS at that frequency level. The frequency tables that
are used for scaling therefore have two slack values; one for transitioning to a frequency
when a higher frequency is currently in use, and the other for transitioning to a frequency
when the current frequency is less than or equal to it.

This frequency-slack table can be calculated from the previously presented frequency-
slack table (Table 5.4) during initialisation. For runtime power management that takes
place every N application graph iterations, the resultant slack table that is used at run-time
is derived as presented in Table 5.5, where S is the slack value from the original table, and

5.3. DISTRIBUTED POWER MANAGEMENT APPLIED IN PRACTICE 131

f is the current frequency when performing table lookup.

Frequency (MHz) Required Slack (s) (fnew ≥ f) Required Slack (s) (fnew < f)
fnew S×N S×N +Lmax−Lmin

Table 5.5: Run-time frequency-slack table derivation using Table 5.4 as input.

Using this table, it is possible to perform run-time DVFS that is guaranteed to be
temporally conservative.

5.3 Distributed Power Management Applied in Practice
Having explained how our technique works in theory, we proceed by demonstrating our
technique applied in practice. To do this, we use the same running example application,
platform and configuration from Section 4.3. Using our run-time power management
technique, the frequency of the application’s processors are scaled to meet the application’s
real-time requirement, while lowering the application’s power consumption.

The advantage of using a dynamic power management technique, is that it uses
both static slack and slack generated by dynamic timing variations, to reduce power
consumption. While our static power management technique from Chapter 4 selects
frequency levels to minimise power consumption, due to the availability of a limited set
of discrete frequency levels, the derived frequency levels might not consume all of the
available static slack, even in the worst-case. To demonstrate this, we use our running
example application that has constant worst-case task execution times. Using our static
power management technique from Chapter 4, we derive frequencies that provide the
lowest power consumption, while ensuring that the application still meets a throughput
of 1000 graph iterations per second. Figure 5.22 shows the graph finishing times from
using static VFS with the derived frequencies, in comparison with executing the graph
at maximum frequency and the application’s throughput requirement. Even though our
static power management method scales the throughput of the application while always
meeting its throughput requirement, due to the finite set of available discrete frequency
levels, there is still some static slack available that the application can use to perform
DVFS.

Unlike our static power management technique, described in Chapter 4, our dynamic
technique is able to consume slack that occurs dynamically at run-time. This ability
comes at a cost, as the power management control loop is executed at run-time, increas-
ing the amount of computation that must be performed within the application’s timing
requirements. Our technique also runs in a distributed manner, which means that the
control loop is executed on each of the application’s processors. Our power management
implementation (which is not necessarily the most timing efficient implementation) for
the MicroBlaze processor costs approximately 5000 cycles of computation per invocation.
Depending on the timing of the graph, it might not make sense to invoke the power

132 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

gr
ap

h
ite

ra
tio

ns
(×

10
3)

time (s)

max. frequency
static VFS

requirement

Figure 5.22: Graph iteration finishing times.

management function every graph iteration. Invoking the run-time power management
after every so many graph iterations, allows the cost of the power management control to
be amortised over the number of iterations.

0

5

10

15

20

25

30

35

0 20 40 60 80 100

av
er

ag
e

po
w

er
(m

W
)

interval (graph iterations)

Figure 5.23: Average power consumption with variable power management interval.

Using our power minimising convex program of the combined application and plat-
form HSDFG, we generate a conservative frequency-slack table to be used at run-time.
Figure 5.23 presents the average application power consumption, for performing power
management at various application graph intervals. At the run-time power management
interval of one graph iteration the application’s average power consumption is 31 mW,
which compares quite poorly to the 3.64 mW achieved by our static power management
technique for the same application. The high power consumption is in part caused by
the computational cost of performing run-time power management, and in part caused
by the pessimistic conservative assumption of the progress of the application on other

5.3. DISTRIBUTED POWER MANAGEMENT APPLIED IN PRACTICE 133

cores, as described in Section 5.2.1. As the number of graph iterations between power
manager invocations increases, the average power consumption (in general) decreases,
until it eventually plateaus at approximately 3.47 mW. The power consumption is only
marginally better than the 3.64 mW achieved by the static technique. This is because the
only dynamic variation in execution time is due to the invocation of the power manager
and communication via the NoC, and also because the computation required by the power
manager is a relatively big amount, in comparison to the application.

Many applications (like the H.263 decoder in Chapter 6) have dynamic variations in
task execution time. We demonstrate the effects of a shorter than worst-case task execution
time, for the running example application, by changing the task execution times of the
tasks on each core. Figure 5.24 presents graph iteration finishing times whenever all of
the tasks constantly execute at 50% of their worst-case work than was used for the off-line
analysis. The static VFS technique is unable to take this reduction of execution time into
account and therefore completes graph iterations at a higher rate than when the tasks
execute at 100% of their worst-case work. This can be seen when the static VFS finishing
times in Figure 5.24 are compared with those in Figure 5.22.

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

gr
ap

h
ite

ra
tio

ns
(×

10
3)

time (s)

max. frequency
static VFS

dynamic VFS

Figure 5.24: Graph iteration finishing times using 50% task worst-case work.

Our run-time power management technique observes application level slack (on
the granularity of application graph iterations) and uses this as the input of the power
management control loop. Figure 5.25 shows the slack observed by the power manager
for a power management invocation every 100 graph iterations. The observed slack
settles after a number of graph iterations into a stable but fluctuating quantity of between
approximately 165-190 ms. The power manager performs a lookup of the frequency-slack
table to find the frequency that provides the lowest power while being guaranteed to
meet the application’s throughput requirement. Performing the power management every
100 graph iterations means that the application must have enough slack for the chosen
frequency to temporally bound the eventuality that the 100 graph iterations all execute
at their worst-case timing. Figure 5.26 shows that the amount of slack required when

134 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

performing power management every 20 graph iterations is much less. Approximately
fluctuating between 32-43 ms. If it is necessary to buffer the output of the graph until its
deadline, then performing power management at smaller intervals is desirable to minimise
the required buffering. Figure 5.23 shows that smaller power management intervals
consume more power on average. The power management interval is therefore a trade-off
between average power consumption and output buffer capacity. As this thesis is primarily
concerned with power consumption, we leave any further analysis of this trade-off as
future work.

160

165

170

175

180

185

190

0 2 4 6 8 10 12 14

sl
ac

k
(m

s)

time (s)

core 1
core 2

Figure 5.25: Observed slack using 50% task worst-case work and DVFS every 100
graph iterations.

30

32

34

36

38

40

42

44

0 2 4 6 8 10 12 14

sl
ac

k
(m

s)

time (s)

core 1
core 2

Figure 5.26: Observed slack using 50% task worst-case work and DVFS every 20 graph
iterations.

The fluctuations in the application’s slack levels are due to the limited set of discrete
frequency levels. The power management oscillates between discrete frequency levels,

5.3. DISTRIBUTED POWER MANAGEMENT APPLIED IN PRACTICE 135

effectively interpolating the frequencies, which can be seen in Figure 5.27. The oscillat-
ing/interpolation occurs naturally as a result of the control loop without being explicitly
induced by the power manager. This also translates into an oscillating energy consumption
per graph iteration, as presented in Figure 5.28. The fluctuations present in this graph
are mostly due to the frequency levels presented in Figure 5.28, but also the variations
in the time taken for a single graph iteration due to the variable time taken for data to
cross the NoC. Our run-time power management technique reduces the average power
consumption to 2.51 mW when the application tasks execute at 50% of their worst-case
work, which is a significant decrease when compared with our static power management
technique’s 3.64 mW.

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14

fre
qu

en
cy

(M
H

z)

time (s)

core 1
core 2

Figure 5.27: Core frequencies using 50% task worst-case work with DVFS.

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2 4 6 8 10 12 14

en
er

gy
(m

J)

time (s)

core 1
core 2

Figure 5.28: Graph iteration finishing times using 50% task worst-case work.

We have shown that our distributed run-time power management technique is able
to use slack that is observable at run-time to decrease the application’s average power

136 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

consumption without missing any deadlines. The results presented in this section show
how our techniques work for a simple application that has tasks with constant execution
times. In Chapter 6 we demonstrate our static and dynamic techniques applied to an H.263
decoder application that has data dependent task execution times.

5.4 Related Work

Much work has been carried out on the topic of power management using DVFS over
approximately the last two decades [20, 37]. In this thesis, we make a distinction that is
not always made in literature between VFS where the voltage and frequency are set to as
static level and is a design time power management decision and DVFS where the voltage
and frequency can be dynamically changed at run-time. In some related work, Dynamic
Power Management [24] (DPM, this abbreviation does not appear in the glossary of this
thesis to avoid confusion) is considered as separate to DVFS for gating the voltage and
frequency to a part of the system for a duration of time. Whether the physical mechanism
is separate to the hardware DVFS controller or not, we consider turning off portions of a
circuit (processor) to be logically just another level in the DVFS mechanism where the
frequency is zero and the voltage is the level of the particular power down state. In this
thesis, the term dynamic power management is used to distinguish dynamic run-time
power management (Chapter 5) from static off-line power management (Chapter 4). In
this section, we focus on related work that help to contextualise the power management
techniques presented in Chapters 4 and 5.

DVFS is a commonly used mechanism in many smart phones, tablets and laptops.
Using a notion of load [15] (the specific definition of load can vary), the processor’s
performance is increased to meet high load demands and reduced to as the load dissipates.
While this technique is sufficient in many instances to provide a subjectively fluid user
experience, it is unsuitable for use with real-time applications that require firm or hard
timing guarantees. The difficulties faced in performing DVFS with real-time applications
was also acknowledged almost two decades ago in [112]. Real-time applications require
timing guarantees with formal mathematical timing abstractions used to verify that they
are met. Static off-line and dynamic on-line algorithms are proposed in [112] to find an
energy optimal schedule for a set of independent real-time tasks (jobs) with deadlines.
The algorithms are applied to a single core, with the derived schedule specifying the task
that should execute and the DVFS level that it should execute at, ensuring that the tasks
meet their deadlines.

An overview of different real-time power management techniques can be found in
[7,47]. With the techniques from [112] still featuring highly. A notable omission from [47]
is the acknowledgement that the work in [112] only applies to single core architectures.
With the rise of multiprocessor architectures, by the time that [7] was published, the
authors highlighted multiple [8, 59, 60, 89] multiprocessor power management techniques.

More recently, a multi-core power management was proposed in [29] for tasks with

5.4. RELATED WORK 137

arbitrary arrival times, that extended their single core technique from [30], by translating
the multi-core problem into a single core problem using a “parallelism” factor and deriving
a single global DVFS level for low energy consumption.

5.4.1 Power Management for Graph Based Applications

The most relevant multiprocessor power management technique highlighted in [7] to the
work in this thesis is [89], as it considers precedence constraints between the tasks on the
multiprocessor. These precedence constraints form a group of tasks (application) into a
graph topology.

Graph structured applications have (data) dependencies between tasks. These de-
pendencies restrict the ordering of the tasks and hence also the possible schedules [89].
In [24, 25], an off-line power management technique is proposed to reduce the energy
consumption of periodically scheduled KPN applications. Their techniques use heuristics
to achieve a static schedule. Another heuristic is then used to decide on a trade-off point
between static frequency levels that all the cores will use and the amount of time that can
be used to power down the cores.

Off-line and on-line power management techniques are proposed in [23] for dynamic
dataflow applications modelled using Finite State Machine Scenario Aware Dataflow
(FSM-SADF). Dynamism in the application is captured as a set of SDF scenarios (the
Scenario Aware Dataflow (SADF) part) with each of these scenarios representing a state
in the Finite State Machine (FSM). A combined FSM-SADF analysis is used to identify
critical cycles in the scenarios and hence the application’s throughput for different DVFS
levels. The heuristic then prunes this space to find frequencies per application scenario
that provides the lowest energy consumption. The technique lacks implementation details,
such as how the actors execute as an FSM-SADF at run-time, and only the analysis
technique was implemented. Without implementation details, the analysis is therefore
purely theoretical. This is a common occurrence with power management publications.
One of the claims in [23] is that static dataflow methods are not suitable to model the
dynamic behaviour of applications such as an H.263 video decoder, rendering them
unsuitable for use in conservative run-time DVFS techniques. We demonstrate that
this assumption is incorrect in Chapter 6 by applying our techniques that use static
dataflow analysis to an H.263 decoder application. Our technique uses dynamic variations
in the application’s execution time to perform power management while meeting the
application’s timing requirement.

5.4.2 Distributed Queue Occupancy Power Management

Queue occupancy power management techniques use the occupancy of task output queues
as an application progress indicator. This information is then used to perform DVFS.
These techniques commonly claim applicability to GALS systems where queues are used
between clock domains.

138 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

A distributed queue occupancy power management technique is presented [54]. Each
tile uses a formula to predict future queue occupancy and explicitly communicates this
information to each other core. Using the collective information from the other processors,
each processor derives a locally applicable DVFS level. An interesting observation in [54]
is that local DVFS using only locally available information can lead to the unbalanced
situation where one core scales to a low DVFS level based on local observations, but
this local scaling has a global impact and affects the local observations made by other
cores. As a consequence, while one core scales to a low DVFS level, other cores have to
maintain a high DVFS level to meet timing requirements. This is used as a justification
for their explicitly communicated co-ordination approach.

A run-time closed control-loop power-manager is applied to dataflow applications
in [9]. The applications that the technique is applied to must comply with a particular
structure, with a single identifiable producer and consumer task. Buffer occupancy
is used as the control loop’s feedback mechanism. Unlike [54], there is no explicitly
communicated global progress information. Instead, each tile tries to maintain a static
occupancy in its output buffer. While the exact levels of these static occupancies are
important to prevent the sort of unbalanced DVFS described in [54], no technique is
described in [9] on how to find these levels.

5.4.3 Implementation for DVFS Verification

Many real-time DVFS publications focus on the mathematical nature of power or energy
minimisation, but neglect to verify if their technique is implementable, not just as a
model, but in practice. This is not a trivial step, and can reveal that assumptions made
while modelling do not hold in reality. The power management publications [85–87] are
exceptions, taking a more implementation driven approach.

Using the physical hardware platform described in [12], the energy priority scheduling
technique in [86] implements an enhancement of the theoretical technique from [112]. The
power consumption results they present are physical measurements from their hardware
platform. While we acknowledge that this is not always possible for practical reasons
such as time or cost, it is important that power management techniques are more than just
a theoretical exercise.

5.4.4 This Work in Context

The work in Chapters 4 and 5 of this thesis describe a distributed multiprocessor static and
dynamic power management techniques for (virtualised) dataflow applications that can be
analysed as HSDF graphs. Our techniques do not perform task scheduling or mapping.
Given a static schedule and mapping, our static power management technique uses a
convex program to derive temporally conservative low power static per core DVFS levels.
Our technique can also be used to derive a single global DVFS level if that is required.

5.5. SUMMARY 139

Our dynamic power management technique has much in common with buffer occu-
pancy power management techniques. Actors representing tasks cannot fire unless there
is sufficient data in incoming buffers and space in outgoing buffers. The progress of
dataflow applications is therefore intrinsically linked to buffer occupancy. We extend our
design time convex programming technique to derive a frequency-slack lookup table per
core, that enables a temporally conservative distributed DVFS decisions to be made. Our
technique does not explicitly communicate progress information between processor tiles,
but uses the fully connected nature of the combined application and CompSOC platform
HSDFG to conservatively infer global application progress from local application progress.
The combination of our design time derived frequency-slack lookup table and distributed
conservative global progress observation ensures that our technique does not exhibit the
unbalanced multi-core power management described in [54].

We implement our techniques on an FPGA prototype of the CompSOC platform.
This ensures that our techniques are actually implementable in practice and that real-
time requirements are met. We acknowledge that a limitation of our FPGA prototyping
approach is that it is not possible to simply measure power and energy consumption, as
what would be measured relates to the FPGA implementation of the prototype and not the
prototyped platform itself. Ideally, we would implement an instance of our CompSOC
multi-core platform in silicon and perform power and energy measurements, but time,
financial budgets and current research objectives have not made this a reality so far.

5.5 Summary

In this chapter, we have presented run-time DVFS techniques enabling dynamic variations
in the application’s task execution times to be used to lower the voltage and frequency-
level of the processor, reducing power consumption. Using an adaptive H.263 application
as an example, we describe how output quality can be used as an accompanying scaling
mechanism to DVFS. We show how the quality-level of the application can be regulated by
a separate quality-manager, reducing the execution time of adaptive tasks. This reduction
in execution time can be used to achieve real-time requirements, or to reduce power
consumption when applied with a power-manager that scales the frequency-level based
on the amount of observed slack.

We follow this by describing how applications that are mapped across multiple pro-
cessors are conservatively scaled using limited application graph topology information
at run-time, i.e. the number of cores on which the application is mapped, the maximum
buffer capacity of the graph in terms of tokens, and using only locally observed progress
information. If the period of the SPS of the application graph meets the throughput re-
quirement of the application, the scaling is performed conservatively. This can be verified
off-line using the static analysis techniques described in Chapter 4.

Using the combined application and CompSOC platform dataflow graph, we further
describe two methods how application and mapping specific per core frequency lookup

140 CHAPTER 5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

tables can be derived off-line. One presented technique is to perform a full search of the
solution space and select pareto optimal points to create the table. The other technique
uses the convex optimisation technique from Section 4.1 to derive optimal core frequencies
for a range of application SPS periods.

CHAPTER6
Case Study

It is intended that our techniques are applicable not just in theory, but also in practice. In
this chapter, we apply our power management techniques to an H.263 decoder application
running on an FPGA prototype of a CompSOC platform instance. A photo of a similar
experimental setup to the one used in this chapter is presented in Figure 6.1. Unlike the
running example application Figure 2.27a that is used throughout this thesis, the H.263
decoder has data-dependent task execution times, i.e. some video frames take longer
to decode than others. For instance, I-frames take significantly longer to process than
P-frames. Our power management technique is not application specific and our run-time
power management is implemented in a simple look-up table manner, with no run-time
learning capability. While this keeps the computational cost of our technique low, it
cannot anticipate sudden workload increases, even if they occur at predictable intervals,
yet our technique adequately deals with this scenario. We choose the H.263 decoder to
demonstrate our power management techniques as it is a soft real-time application, with
an easy to comprehend timing requirement in frames per second. Throughout this chapter,
we treat the H.263 decoder as if it has a firm real-time requirement. Using the H.263
decoder, we show that our technique can reduce power consumption of a real application
with data dependent execution times while firmly meeting the application’s real-time
requirements.

We guarantee that the H.263 decoder applications will meet its deadlines regardless
of concurrently executing applications by executing the application on CoMik’s virtual

141

142 CHAPTER 6. CASE STUDY

processors. The H.263 is therefore able to perform power management without its timing
being affected by, or affecting the timing of, concurrent applications. In the following
section we demonstrate CoMik’s composable virtualisation that enables each virtual
processor to execute code that is cycle-accurately isolated from code belonging to other
applications on other virtual processors. In Section 6.3 we proceed to demonstrate
our power management techniques applied to multiple mappings of an H.263 decoder
application, running on a CoMik virtualised multi-core platform.

Figure 6.1: CompSOC platform demonstrator from our DATE 2014 university booth.

6.1. COMIK’S COMPOSABLE VIRTUALISATION IN ACTION 143

6.1 CoMik’s Composable Virtualisation in Action

We continue by experimentally demonstrating CoMik’s cycle-accurate temporal isol-
ation and predictability of its virtual processors. We demonstrate this for an FPGA
prototyped instance of the CompSOC hardware platform, as described in Section 2.2. The
clock frequency is set to have an upper bound of 120 MHz. We configure CoMik to use a
CoMik slot duration of 4096 cycles and a virtual processor slot duration of 65536 cycles,
making a virtual processor TDM scheduling slot 69632 cycles.

0

40

80

120

160

200

240

1 2 3 4 5 6 7 8

D
ec

od
ed

Fr
am

es
/S

ec
.

Virtual Processor TDM Slots out of a Table of 8 Slots

Direct on Processor
Requirement

Figure 6.2: MP3 decoder mapped onto a single virtual processor that has its perform-
ance scaled using its TDM slot allocation.

To be suitable to run real-time applications, CoMik’s virtual processors are not only
composable, but predictable also. Figure 6.2 presents the timings of an MP3 decoder (not
modelled as a dataflow application) executing directly on the physical processor and as a
guaranteed partition on a virtual processor that is configured to have between one and eight
slots in an eight slot TDM table. From Figure 6.2 it can be seen that there is a predictable
linear relationship between the number of slots allocated to the virtual processor and the
MP3 frame decoding rate. Due to the CoMik slot, the virtual processor that uses all eight
slots does not decode the MP3 frames as quickly as the physical processor directly. A
virtual processor with a minimum of two slots out of eight is sufficient to meet the MP3
decoder’s requirement of 38 decoded frames per second, allowing the remaining slots to
be used for other partitions.

We continue by demonstrating the timing of concurrently executing applications. We
do this by executing a soft real-time MP3 decoder as a best-effort partition and a firm
real-time application that generates “ticks” in response to periodic interrupts that are
virtualised for that application, as a guaranteed partition. The tick generating application
clock gates between ticks, leaving any full slots between ticks unused. Each application

Section 6.1 contains experimentation from publication [79]

144 CHAPTER 6. CASE STUDY

is allocated a single virtual processor on the same physical processor with each virtual
processor allocated a single slot in a two slot TDM table.

Figure 6.3 presents the resultant timing of the two applications. The tick is produced at
regular intervals, except when the time of the tick does not occur when the tick application
is scheduled. In this instance the tick is produced in the partition’s next scheduled virtual
processor slot. The TDM slots that the tick partition leaves unused due to clock gating,
are given to the best-effort MP3 decoder partition. The MP3 decoder therefore finishes
decoding its frame earlier, enabling its power management scheme to temporarily clock
gate the processor while still meeting its throughput requirement.

557056 1114112 16711680 cycles

Interrupt Handled Used Idle SlotInterrupt Idle Slot

Tick

MP3

Figure 6.3: A best-effort MP3 decoder partition that is cycle-accurately isolated from a
guaranteed tick application responding to PIT interrupt “ticks”.

We continue our experimentation by demonstrating that the timing of the tick partition
that is guaranteed to be cycle-accurately isolated, does not change by a single cycle
whenever another partition is added to the system. To achieve this, we add an additional
best-effort partition to be executed concurrently. Its virtual processor is not allocated a
TDM slot, so it can only make use of unused slots.

Figure 6.4 presents the difference between the timings of the original partitions with
the added best-effort partition, and the timings that were used for Figure 6.3. The MP3
decoder partition shows timing variation between runs, as it must share the unused slots
with the added best-effort partition. The tick application has exactly the same timing with
or without the additional best-effort partition, demonstrating that it is cycle-accurately
composable.

We have demonstrated that CoMik cycle accurately isolates applications executing on
dedicated virtual processors. Applications can choose to give up this isolation in order
to receive otherwise unused slots from other applications. In the rest of this chapter, we
focus on applications executing on CoMik’s virtual processors that have guaranteed slot
allocations.

6.2 CompSOC HSDF Model Evaluation

Having described in the previous sections how real-time dataflow streaming applications
that are mapped onto a CompSOC platform are formalised as an HSDFG for timing
analysis, we proceed to demonstrate the accuracy of our modelling technique. To do this,

6.2. COMPSOC HSDF MODEL EVALUATION 145

-50
-40
-30
-20
-10

0
10

0 20 40 60 80 100 120D
iff

er
en

ce
(c

yc
le

s
×

10
4)

Number of Produced Ticks or Decoded MP3 Frames

Guaranteed Tick App.
Best-Effort MP3 Decoder

Figure 6.4: Timing difference when run with and without an additional Best-Effort
Application.

we execute applications on a FPGA prototyped four core CompSOC platform and compare
their actual timings with those predicted by timing analysis of the application’s associated
HSDFG. For this purpose, we use both the example application from Figure 2.27a (which
we will henceforth refer to as the synthetic application), and an H.263 decoder application
with which we decode various video streams. In this section, we will show:

• Our technique applied to both a synthetic and H.263 decoder application.
• The tightness of our technique using applications with tasks that constantly execute

with WCETs.
• That our technique conservatively bounds the timings of GALS systems, ranging

from 100% synchronous Fully Aligned (FA) clock and symmetric TDM table,
to systems where the alignment of TDM tables is unknown and all inter-core
communications are conservatively assumed to arrive with Worst-Case Arrival
(WCA).

• That the tightness of the bounds predicted by our technique depends on the amount
of knowledge of the system, i.e. the alignment of the TDM tables.

• That our technique can correctly predict trends, e.g. whether an improvement in
throughput is expected when changing mapping.

The CompSOC platform that we use for our experiments has four homogeneous
processor tiles executing at 120 MHz, with local instruction, data, communication and
DMA memories. Each tile has multiple DMAs and each application is allocated a single
DMA per tile.

6.2.1 Synthetic Application

We start our experimentation by comparing the actual graph iteration finishing times of
the synthetic application, as measured on the FPGA prototype of the CompSOC platform,
with the predicted latency and throughput of its HSDF model from Figure 2.27e. The
synthetic application is structured following Figure 2.27a with each actor representing a

146 CHAPTER 6. CASE STUDY

task and each edge a C-HEAP FIFO between the tasks. Each FIFO has a buffer capacity
of two tokens. For the purposes of ascertaining the accuracy of the model for worst-case
analysis, each task has a constant execution time and therefore always executes at its
worst-case. Each CoMik instance is configured to have a TDM table length of ten slots
with five slots allocated to the synthetic application’s VP. Each TDM slot comprises of a
CoMik slot and a partition slot, with durations of 4,096 and 65,536 cycles, respectively.

The finishing times of the application’s graph iterations, as measured from the FPGA
instance of the CompSOC platform, are presented in Figure 6.5. The synthetic application
can be seen to make progress (complete graph iterations) whenever its VP is scheduled
for five out of the ten iterations of the TDM table, creating the impression of “steps”. The
CoMik overhead between its five allocated slots also prevents application progress, but is
so small that it is unnoticeable in the graph.

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

G
ra

ph
Ite

ra
tio

ns

Time (ms)

FPGA
FA
WCA

Figure 6.5: Synthetic application graph iteration finishing times.

The predicted timings of the application’s HSDF model are also presented in Figure 6.5,
and the predicted latency and rate can be seen to conservatively bound the synthetic
application’s actual finishing times. The effect on timing performance of the VPs’ TDM
allocation is captured by a latency rate abstraction, as described in Section 2.3. The rate
of execution of each VP is calculated as 8 virtual cycles per 17 cycles of the physical
processor. The timings of actors s{1,2,3,4}, e{1,2,3,4}, w{1,2,3,4}, from Figure 2.27e, are
modified to reflect the virtual rates of execution.

The VP’s rate of execution is sustainable after a latency of 368639 cycles, as derived
by Equation 2.10 in Section 2.3. In Section 2.3.7, we described how knowledge about
the alignment and dimensioning of the TDM table is used to reduce pessimism in the
model. In the most pessimistic case, it is assumed that data communicated between
cores always arrives at the WCA time, i.e. that the data arrives just too late to be
noticed and has to wait the worst-case amount of time before the application is scheduled
again. In this case, the latencies L1 and L2 from Figure 2.27e are annotated with the
latency of the CoMik TDM table for that tile. Alternatively, if the TDM tables are

6.2. COMPSOC HSDF MODEL EVALUATION 147

symmetrically dimensioned and FA (100% synchronous), the latency of the VP’s latency
rate abstraction is conservatively taken into account as a single offset before the rate of
the VP is sustainable, as described in Section 2.3.7, with zero delay being assigned to
L1 and L2. The results presented in Figure 6.5 for the FPGA implemented CompSOC
platform has cycle-accurate FA CoMik TDM tables on each core. The HSDF model’s
prediction achieves a conservative bound for both the WCA and FA cases. The FA method
achieves a tighter bound (predicting throughput to within 1.65% of the actual case) than
the WCA method (predicting throughput to within 91.68%). This is as expected because
the tiles were fully aligned and not having or using this knowledge results in a pessimistic
prediction. In some GALS systems, it may not be possible to bound the TDM table
alignment, or it may be desirable to use a non-symmetric CoMik TDM configuration, and
for these instances, the WCA method still gives a guaranteed conservative timing bound.

0
500

1000
1500
2000
2500
3000
3500
4000

-6 -4 -2 0 2 4 6

G
ra

ph
Ite

ra
tio

ns
pe

rs
ec

on
d

Misalignment (TDM slots)

FPGA
BAFA

WCA

Figure 6.6: Synthetic application throughput for the range of TDM table alignments.

If it is possible to bound the alignment of the TDM tables, it is possible to get a less
pessimistic conservative timing bound. Figure 6.6 presents the synthetic application’s
measured throughput, from the CompSOC FPGA implementation, for the complete range
of TDM table alignments. It also presents the throughput predicted by the HSDF model
when annotated with the TDM table’s alignment bound. The Bounded Alignment (BA)
annotation method uses a single VP latency offset minus the alignment bound, and
annotates latencies L1 and L2 with the alignment bound. If the misalignment is zero,
then the BA annotation matches the FA case, while if the misalignment is equal to the
VP latency, then the BA annotation matches the WCA case. From Figure 6.6 it can
be seen that the predicted throughput is quite tight (to within 1.86%) when there is no
misalignment, but becomes less tight as the TDM tables are more misaligned. This
happens because the model assumes that every iteration of the graph is affected by the
misalignment. But since multiple graph iterations can finish within a single slot, as can
be seen in Figure 6.5, this is not always the case in actuality, e.g. If the application slots
that are scheduled concurrently multiple iterations of the graph can finish in this time

148 CHAPTER 6. CASE STUDY

without being affected by the misalignment. As the tables become more unaligned, more
iterations of the graph are affected by the misalignment and the accuracy of the model
increases again. From this, it can be seen that the WCA annotation can be tightly accurate
(to within 0.4% in Figure 6.6) when slot tables are completely unaligned in the actual
case, while conservatively bounding all other alignments.

6.2.2 H.263 Decoder

We proceed to apply our technique to an H.263 decoder (without quality scaling) that has
data dependent task execution times (see Section 5.1.1 for details). Figure 6.7 presents
the frame finishing times from multiple decoding runs and the predictions from the FA
and WCA modelling cases. Three different videos (akiyo, bus and tree [2]) are used as
input for the H.263 decoder. To demonstrate the accuracy of our technique for worst-case
analysis, the wcet run executes the H.263’s tasks with the constant worst-case task timings
measured from the runs of the three videos. The H.263 decoder is mapped onto all four
cores of the FPGA prototyped CompSOC platform, with FA symmetric CoMik TDM
tables. Each table has three slots, of which two are allocated to the H.263 decoder’s
VPs. Each TDM slot is configured to have a CoMik slot duration of 4,096 cycles and
a partition slot duration of 196,608 cycles. From Figure 6.7, it can be seen that the FA
and WCA annotated HSDF model predictions conservatively bound the three video runs
and the wcet run, although it is hard to see from Figure 6.7 that the FA annotated model
conservatively bounds the wcet runs timing because the FA prediction is so tight that the
wcet and FA lines appear to overlap at this scale. As the three videos (akiyo, tree and bus)
generally have better than worst-case task execution times, their achieved throughput is
higher than for the wcet execution and therefore also the HSDF model predictions. This is
a limitation of worst-case analysis in general and is not specific to our technique. What
is important, is that our technique conservatively bounds the application’s worst-case
execution, and it achieves this.

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10 12 14

D
ec

od
ed

Fr
am

es

Time (seconds)

akiyo
tree
bus
wcet
FA
WCA

Figure 6.7: H.263 frame decoding times (wcet and FA overlap).

6.2. COMPSOC HSDF MODEL EVALUATION 149

For our final experiment, we compare the accuracy of the H.263 decoder’s HSDF
model throughput prediction with the throughput achieved by the H.263 decoder executing
with constant task WCET on the FPGA instance of the CompSOC platform (wcet), for
the H.263 decoder mapped onto one to four cores. Apart from the application mapping
the platform is configured the same as for the previous H.263 decoder experiment. From
Figure 6.8, it can be seen that the FA annotated model that matches the platform’s
alignment achieves a tight conservative bound for the four mappings. The WCA also
achieves a conservative bound, which is less tight but also bounds the application’s
throughput if the TDM table’s alignment was unknown. While the WCA bound is
conservative for all table alignments, Figure 6.8 shows that for a platform with a bounded
and relatively small variation in TDM, the WCA bound becomes less accurate as the
number of cores increases. This is due to the pessimistic assumption that every inter-core
communication arrives at the worst-case time in the TDM table, and therefore incurs a
Worst-Case Response Time (WCRT). Both the FA and WCA HSDF annotations correctly
show that the two core mapping of the H.263 decoder does not offer an advantage for
application throughput over the single core mapping. The FA predicted throughput also
correctly shows that the three and four core mappings perform better for application
throughput than the single core mapping, whereas the WCA predicts throughputs worse
than the single core mapping for the three and four core mappings. Both FA and WCA
correctly predicts an improvement in graph throughput moving from a two core to three
core mapping, and from a three core to four core mapping.

0

5

10

15

1 2 3 4

Fr
am

es
pe

rs
ec

on
d

Number of Cores

wcet
FA
WCA

Figure 6.8: H.263 frame rate per mapping.

From our experimentation, we can conclude that our technique conservatively and
accurately models application worst-case timings when mapped onto multiple cores of
the CompSOC platform. The accuracy of our technique is better if the alignment of
symmetrically dimensioned CoMik TDM tables on the cores can be bounded. Regardless
of the TDM table’s alignment or dimensioning, our technique is still able to produce
conservative timing predictions for application graph latency and throughput.

150 CHAPTER 6. CASE STUDY

6.3 Power Management of an H.263 Decoder
We have shown in previous sections that CoMik offers composable and predictable virtu-
alisation of the CompSOC platform, that POSe provides predictable dataflow execution
and that the application timing can be formally analysed using a combined application
and HSDF. In this section, we proceed to demonstrate our power management technique
applied to an H.263 decoder application that executes on our CompSOC FPGA prototype.
Unlike our running example application, the H.263 decoder has data dependent task
execution times. We demonstrate how this affects our power management technique by
decoding three different video clips (bus, tree and akiyo), which each producing different
timing behaviour from the decoder. We add a fourth video to this mix (wcet) that has com-
putational tasks with constant execution times that are equal to the worst case times of the
computational tasks of the three video clips. In addition to this, we also demonstrate the
effect of mapping the H.263 over one to four cores on our power management techniques.
We show that both our static and dynamic techniques are useful for power reduction, and
that our dynamic technique is able to use dynamic variations in task execution time to
reduce power consumption further than our static technique.

Mapping VLD IQ IDCT MC + FR UP
1 1 1 1 1 1
2 1 1 1 2 1
3 1 1 3 2 3
4 1 1 3 2 4

Table 6.1: H.263 decoder processing core task mappings.

Table 6.1 describes each of the four mappings that we use during our experimentation.
These mappings are generated by an automated tool that only ensures that the application’s
memory requirements are met. We do not claim that these mappings are in anyway optimal
for low power execution or throughput performance. In doing so, we show that our analysis
and power management techniques are able to analyse and reduce the power consumption
of whatever mapping the designer wants to use.

The H.263 decoder has widely varying task execution times that not only depend on
the contents of the video frame (i.e. whether there is a lot of motion), but also on the
type of frame. As described in Section 5.1.1, H.263 video streams consist of I-frames
and P-frames, with I-frames generally taking longer to decode than P-frames. This can
be seen in Figure 6.9 for the single core mapping of the H.263 decoder when it decodes
the tree video at maximum frequency (MAX). Every twelve frames there is a “spike”
where an I-frame takes longer to decode. The H.263 decoder’s tasks therefore execute
at less than their worst case execution time for most iterations of the application graph.
This dynamic variation in task execution time provides the dynamic slack that our run-
time power management technique uses in addition to the application’s static slack. The
H.263 decoder requires 99 graph iterations to decode a single frame and we invoke the

6.3. POWER MANAGEMENT OF AN H.263 DECODER 151

2
4
6
8

10
12
14
16
18

0 20 40 60 80 100

Fr
am

es
pe

rs
ec

on
d

Frames

MAX
VFS

DVFS

Figure 6.9: Per frame decoding rates for the tree video (1 core).

power manager once per frame. Performing conservative run-time power management
on the H.263 decoder with its widely varying task execution times shows that our power
management control loop able to deal with sudden changes in the amount of available
slack without violating the application’s timing requirement.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 5 10 15 20 25Fr
am

es
ah

ea
d

of
re

qu
ire

m
en

t

Time (s)

1 core
2 cores
3 cores
4 cores

Figure 6.10: Frames in advance of requirement to guarantee conservative execution.

Our dynamic power management technique uses slack in the schedule to perform
DVFS while meeting the applications requirement. Our technique ensures that enough
slack is present to bound the application’s worst case execution at the lower frequency
before transitioning to that level. This means that the application is always running ahead
of schedule. Depending on the nature of the application, it might be necessary to buffer
this output until the required time. In Figure 6.9 the dynamic power management video
maintains an average of four frames per second. Since some frames decode faster than
necessary, some must decode slower to maintain the four frames per second average.

152 CHAPTER 6. CASE STUDY

From Figure 6.10 we can see that our technique executes the application approximately
1-2 frames in advance to bound the possibility of worst case execution at lower frequency
levels. This is a feasible cost as the frames can be buffered in the Dynamic Random Access
Memory (DRAM). The amount in advance that the application needs to run depends
on the graph’s worst case execution and the frequency level used, e.g. in Figure 6.10,
the 3 and 4 core examples have a shorter worst-case graph period than the 1 and 2 core
examples and therefore require less buffering to conservatively run at the same frequency.
We leave a detailed investigation on output buffering of applications using our technique
as future work.

0
20
40
60
80

100
120
140
160
180

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Po
w

er
(m

W
)

Number of Cores

MAX
VFS
DVFS

akiyotreebuswcet
(a) Power

0

5

10

15

20

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Fr
am

es
pe

rs
ec

on
d

Number of Cores

requirement
MAX
VFS
DVFS

akiyotreebuswcet
(b) Throughput

Figure 6.11: Reported values from the CompSOC FPGA prototype for the H.263 decoder
application decoding four videos (wcet, bus, tree, akiyo) and mappings (1-4 cores).

Figure 6.11 presents the power and frame rate (throughput) of the H.263 decoder for all
of the various mappings and videos, as resulting from execution on the CompSOC FPGA

6.3. POWER MANAGEMENT OF AN H.263 DECODER 153

prototype platform. The H.263 decoder is allocated two out of three virtual processor
slots on each physical core, with a maximum frequency of 120 MHz, CoMik slots of
4096 cycles and virtual processor slots of 196608 cycles. A firm frame rate requirement
of four frames per second was used to ensure that the H.263 decoder could meet the frame
rate requirement at maximum frequency for all videos and mappings.

Figure 6.11a shows the average power consumed by each video for each of the four
mappings. These power numbers only include the power consumption of the processors
and not of the infrastructure required by a multi-core system, such as a NoC. Using more
cores may require additional infrastructure at a cost of increased power consumption. In
this investigation, we make the simplifying assumption that the platform is a four core
system with the same infrastructure cost in terms of power for each mapping, which
can therefore be removed from the power consumption comparison. The application
only accounts for the energy that it consumes and therefore does not account for virtual
processor slots that it does not use, or for time on cores to which it is not mapped.

When executing at maximum frequency (MAX) on all cores, the average power
consumed is simply the number of cores multiplied by the power consumption of a single
core. To apply our static power management (VFS) technique (as described in Chapter 4),
we use a power minimising convex program of the combined application and platform
HSDFG of the four mappings. We use the H.263 decoder’s worst case task timings, to
ensure that the analysis is temporally conservative for all of the decoded videos. This can
be seen in Figure 6.11b where none of the videos decoded at a frame rate less than the
required four frames per second. By using static per core frequency levels per mapping,
our static power management technique lowers the power consumption by the same
amount for each mapping, regardless of the decoded video, as can be seen in Figure 6.11a.
The static frequencies used are dimensioned for the worst case, which means that the three
videos with dynamic variation in their task execution times (bus, tree, akiyo) execute at a
higher than necessary frame rate, as presented in Figure 6.11b.

By applying our run-time power management technique (as described in Chapter 5),
the throughput of the videos with dynamic task execution time variation are lowered
further than with our static power management technique while still meeting the timing
requirement, as can be seen in Figure 6.11b (DVFS), or in isolation in Figure 6.12.

The lower frequencies used by our dynamic power management also translates into
a further power reduction in comparison to our static technique. This can be seen in
Figure 6.11a by comparing the power consumption using our dynamic technique with
that of our static technique, and can be seen more clearly in Figure 6.13 where the power
consumption of these techniques are shown in isolation.

The power consumption using our dynamic power management technique while
decoding the wcet video is comparable with our static power management technique,
which is as expected as there is little dynamic variation (there is still some due to variations
in inter-core communication times) in the application’s execution time to enable further
reduction using DVFS. The power consumption due to our dynamic technique while
decoding the wcet is actually greater than that of our static technique. This can be

154 CHAPTER 6. CASE STUDY

4

4.01

4.02

4.03

4.04

4.05

4.06

1 2 3 4

Fr
am

es
pe

rs
ec

on
d

Number of Cores

wcet
bus
tree
akiyo

Figure 6.12: Frame rates achieved for the range of mappings and decoded videos using
DVFS.

0

5

10

15

20

25

30

1 2 3 4

Po
w

er
(m

W
)

Number of Cores

VFS
wcet DVFS
bus DVFS
tree DVFS

akiyo DVFS

Figure 6.13: Power consumption due to our static and dynamic techniques.

explained by the application’s lack of dynamic variation, coupled with the additional
power consumption of the run-time power management function executing on all four
cores.

For the three videos with dynamic task execution times, our dynamic technique lowers
the power consumption for all four mappings, but unlike our static technique where the
four core mapping produced the lowest power consumption, the single core mapping
produces the lowest power consumption using our dynamic technique. For the single core
mapping, earlier finishing times by the tasks always translates into a earlier finishing times
at the application level. This is not necessarily the case for multi-core mappings where
a task finishing earlier may have little or no affect on the application timing. Unlike for
the single core mapping, tasks can block waiting on data from another core, diminishing
accumulated slack.

6.4. SUMMARY 155

While we do not have enough information to form a general rule (nor are we proposing
that one is likely), we can say that in this case for the H.263 decoder that the four core
mapping is better for low power consumption when performing static power management.
Considering the single core option as the lowest power configuration when executing
at maximum frequency, the four core mapping using static power management offers a
76.8% power reduction for a 15.8-50.9% decrease in throughput, for the range of videos
tested. We can also say that in this case the single core mapping is generally better
(not for the wcet video) for low power consumption when performing dynamic power
management. In comparison to a single core mapping at maximum frequency, the single
core mapping using dynamic power management offers a 59.2-92% power reduction for a
28.2-65.5% decrease in throughput.

If one design had to be chosen to be the low power design, there is no clear “winner”.
The four core static power managed solution (obviously) requires four cores, which
although it is beneficial in terms of power consumption, is expensive in terms of area.
The single core dynamic power managed solution is cheaper in terms of area, but is not
guaranteed to have a lower power than the four core static power managed solution, if
there is not sufficiently available dynamic slack. This leads us to the conclusion that while
all our power management techniques lower the H.263 decoder’s power consumption,
it is not possible to objectively state that dynamic power management is in some way
better than static power management, or that one of the designs provides the lowest power
consumption for all decoded videos. As system design is a multidimensional trade-off,
our power management techniques provide options at system design time, but can also
reduce the power consumption for applications where the platform design is finalised and
the mapping is known.

6.4 Summary

In this chapter, we demonstrated the composability and predictability of our power man-
agement techniques in combination with the CompSOC platform. We did this by imple-
menting our power management techniques on an FPGA prototyped CompSOC platform
instance. Each processor in the multi-core CompSOC platform used the CoMik mi-
crokernel enabling each processor to be divided into multiple virtual processors. Through
experimentation using multiple applications mapped to separate virtual processors, we
demonstrated that the applications were composably isolated by showing that the applica-
tions did not interfere with each others timing by even a single cycle.

We followed this by demonstrating through experimentation that the CompSOC
platform with the CoMik virtualisation layer and POSe is predictable, by comparing
timing output from applications executing on the FPGA prototyped CompSOC platform
with output from a worst-case timing analysis using its combined application and platform
HSDF. As with any worst-case analysis technique, the accuracy of our model depends on
the variation of the task execution times at run-time. Our experimentation showed that for

156 CHAPTER 6. CASE STUDY

certain platform configurations, and an application with constant task execution times, our
model is accurate to within 1.86% of the measured time from the FPGA prototype.

Having demonstrated the important properties of our CompSOC platform, we applied
our power management techniques to an H.263 decoder application, for a range of decoded
videos and mappings. For this particular application and set of configurations, we show
that our static technique can lower the power consumption by 76.8% and our dynamic
technique can lower the power consumption by 59.2-92%.

CHAPTER7
Conclusions and Future Work

Consumer demand for portable devices is on the increase. These devices are commonly
powered by a battery that the user needs to keep charged. While this might seem like a
minor inconvenience, battery life is currently a key driver in smartphone purchase. Apart
from portable devices, there is a general trend for smart devices that simplify and automate
the user experience for reasons of efficiency and safety. This continual demand for ever
greater functionality has led to mixed criticality systems. In this thesis, we focus on the
problem of mixed time-criticality where multiple applications of various time-criticalities
share the same resources.

Timing verification of real-time applications performing power management is com-
plicated, as power reduction is achieved by reducing computational performance, i.e.
power management affects the timing behaviour of the application. Power management in
mixed time-criticality systems is more complicated still, as power management of shared
resources can affect the temporal behaviour of concurrent applications.

In Chapter 2, we present the composable and predictable CompSOC platform that
consists of a MPSoC hardware platform and software stack. The CompSOC platform has
been designed from the ground up to enable resources to be composably and predictably
shared, with all shared hardware resources composably arbitrated. The CoMik microkernel
composably arbitrates the processor providing a virtualised hardware interface. The
physical processor is virtualised along with its DVFS mechanism (with assistance from
the TIFU) enabling each virtual processor to perform independent power management

157

158 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

while not interfering with other virtual processors by even a single cycle.
We further describe the POSe OS that enables the execution of dataflow applications.

To be able to derive timing guarantees we explain how the timing behaviours of (virtual-
ised) dataflow applications are formalised as an independent combined application and
CompSOC platform HSDFG. The CompSOC platform therefore supports the execution
and verification of mixed time-criticality applications by cycle-accurately isolating virtu-
alised hardware. Applications that are mapped onto the CompSOC platform can therefore
be verified independently.

In Chapter 3, we explain how CoMik and POSe maintain distributed composable
energy, power and time accounts. This information is provided at the application-level
enabling the application to make progress based decisions, e.g. when performing power
management. We also describe how a single energy or power resource is composably
allocated among concurrent applications, enabling each application to completely use
the budget it receives regardless of the behaviour of other applications, i.e. that each
application has a virtual battery/power-supply. From a design perspective, we show that
system dimensioning choices, such as the number of slots in CoMik’s TDM table, affect
the amount of energy that the system needs to hold in reserve to ensure composable use of
energy/power budgets.

Applications are free to use their virtual battery however they see fit. In Chapters 4 and 5,
we present temporally conservative power management techniques for real-time applica-
tions. Our power management techniques enable virtualised real-time applications that
execute on the CompSOC platform to lower their power consumption without violating
their timing requirements. We present a static power management method in Chapter 4,
that uses an off-line power minimising convex program, of the application’s combined
application and CompSOC platform HSDFG, to derive low-power static VFS levels for
use with the virtual processors on which it is mapped.

While our static technique lowers the application’s power consumption without any
modification to the application, it is unable to use run-time slack that is caused by
dynamic variations in task execution time. In Chapter 5, we present a dynamic power
management technique that uses distributed per-core run-time control loops to monitor
local application progress, in terms of slack. The local application progress is modified
using knowledge of the application’s graph topology to achieve a conservative estimate
of global application progress to select a low-power conservative DVFS operating point
using a table lookup. The table is created off-line using a power minimising convex
program to derive frequencies that can be conservatively transitioned to, for the amount of
slack observed.

From our work in Chapters 4 and 5 we learned that our static HSDF dataflow model
of the application and platform can be applied conservatively as part of static and dynamic
power management techniques. Our investigation into using adaptive applications to
provide a quality for power trade-off mechanism showed that this was possible, but
unfortunately there are currently not that many suitable adaptive applications. Maybe this
will change in the future.

159

We present experimental analyses of our techniques in Chapters 4 and 5, using a
synthetic application that we use as a running example throughout this thesis. In Chapter 6
we present a case study analysis of our power management techniques applied to an
H.263 decoder application that has data dependent task execution times. In doing this, we
demonstrate that our techniques are not only valid in theory but are also implementable.
We perform our analysis on an FPGA prototype of a four core CompSOC platform
instance. We demonstrate both our static and dynamic power management techniques
applied to a virtualised H.263 decoder for multiple video inputs and mappings.

From our case study analysis, we show that both our static and dynamic power
management techniques can perform better than each other in certain circumstances. Our
dynamic power management technique adds a power management control loop to the
application’s execution that is additional computation that needs to be performed within
the application’s timing requirement. For applications with little dynamic variation in task
execution time, our static technique provides the lowest power consumption. Our case
study analysis shows that our dynamic technique provides the lowest power consumption
for applications with enough dynamic variation in task execution time to compensate for
the additional computation required by the control loop used by our dynamic technique.

In this thesis, we have presented the CompSOC platform that enables applications to
independently perform power management without violating the timing requirements of
concurrent applications. We explain and demonstrate how virtualised real-time dataflow
applications can perform power management without violating their timing requirements.
To verify application timings, we explain how dataflow applications are formalised as
a combined application and CompSOC platform HSDFG, enabling applications to be
verified in isolation. Applications with mixed time-criticalities can therefore be executed
on the CompSOC platform and perform independent power management, while the timing
of concurrent real-time dataflow applications can still be verified in isolation.

7.0.1 Future Work

Some things to do while we wait on other engineers to invent the hoverboard. . .

• An automated design and analysis flow. The CompSOC platform already has a
well developed flow for MPSoC platform generation. This could be extended to
apply the analysis work in this thesis to automatically analyse applications and their
mapping to generate the frequency-slack tables for use at run-time.

• Mapping and scheduling. The work in this thesis assumes that the application
already has a mapping and a per-core SOS as a starting point. We could extend our
technique with an algorithm to find a mapping and schedule that works well with
our techniques to lower the power consumption.

• clock (voltage) gating. The power management techniques in this thesis only used
DVFS to lower the voltage and frequency, but not to switch off the processor

160 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

completely. We could extend our technique to use a mixture of our current DVFS
approach with powering down the processor.

• Remapping for core shutdown. Completely powering off a core that is under-
utilised could create greater power savings than using DVFS, but requires that the
virtual processors that are running on the core are remapped. It would have to be
investigated how/if this could be done composably.

Bibliography

[1] International Technology Roadmap for Semiconductors (ITRS) - Process Integra-
tion, Devices, and Structures, 2011. Updated 2012. http://www.itrs.net/
reports.html.

[2] Benchmark Videos. https://media.xiph.org/video/derf/, 2014.

[3] The Future of Wearable Tech. PSFK Labs, 2014. http://www.slideshare.
net/PSFK/psfk-future-of-wearable-technology-report.

[4] B. Akesson and K. Goossens. Memory Controllers for Real-Time Embedded
Systems. Embedded Systems Series. Springer, first edition edition, 2011.

[5] B. Akesson, A. Hansson, and K. Goossens. Composable resource sharing based on
latency-rate servers. In Digital System Design, Architectures, Methods and Tools,
2009. DSD’09. 12th Euromicro Conference on, pages 547–555. IEEE, 2009.

[6] Y. Akgul, D. Puschini, S. Lesecq, E. Beigne, P. Benoit, and L. Torres. Methodology
for Power Mode selection in FD-SOI circuits with DVFS and Dynamic Body
Biasing. In Power and Timing Modeling, Optimization and Simulation (PATMOS),
2013 23rd International Workshop on, pages 199–206. IEEE, 2013.

[7] S. Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96,
2010.

[8] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In
Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’07, pages 289–298, New York, NY, USA, 2007. ACM.

161

http://www.itrs.net/reports.html
http://www.itrs.net/reports.html
https://media.xiph.org/video/derf/
http://www.slideshare.net/PSFK/psfk-future-of-wearable-technology-report
http://www.slideshare.net/PSFK/psfk-future-of-wearable-technology-report

162 BIBLIOGRAPHY

[9] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini. A feedback-based
approach to dvfs in data-flow applications. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 28(11):1691–1704, 2009.

[10] ARINC. 653 Avionics Application Software Standard Interface.
http://www.arinc.com.

[11] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and linearity,
volume 3. Wiley New York, 1992.

[12] J.-D. Bakker, K. Langendoen, and H. Sips. Lart: Flexible, low-power building
blocks for wearable computers. In Distributed Computing Systems Workshop, 2001
International Conference on, pages 255–259. IEEE, 2001.

[13] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new facility for
resource management in server systems. In OSDI, volume 99, pages 45–58, 1999.

[14] M. Bekooij, A. Moonen, and J. van Meerbergen. Predictable and composable
multiprocessor system design: A constructive approach. In Bits&Chips Symposium
on Embedded Systems and Software, 2007.

[15] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design techniques for
system-level dynamic power management. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 8(3):299–316, 2000.

[16] A. Beyranvand Nejad. Composable Virtual Platforms for Mixed-Criticality Embed-
ded Systems. PhD thesis, Delft University of Technology, Nov. 2014.

[17] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D. Meindl. A physical
alpha-power law MOSFET model. In Proceedings of the 1999 international
symposium on Low power electronics and design, pages 218–222. ACM, 1999.

[18] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao, D. Hensgen, et al. A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and Distributed computing, 61(6):810–837,
2001.

[19] R. J. Bril, C. Hentschel, E. F. Steffens, M. Gabrani, G. van Loo, and J. Gelissen.
Multimedia qos in consumer terminals. In Signal Processing Systems, 2001 IEEE
Workshop on, pages 332–343. IEEE, 2001.

[20] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design. In
System Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii International
Conference on, volume 1, pages 288–297. IEEE, 1995.

BIBLIOGRAPHY 163

[21] A. Burns and R. Davis. Mixed criticality systems: A review. Department of
Computer Science, University of York, Tech. Rep, 2013.

[22] G. C. Buttazzo. Hard real-time computing systems: predictable scheduling al-
gorithms and applications, volume 24. Springer, 2011.

[23] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal.
Throughput-constrained dvfs for scenario-aware dataflow graphs. In In 19th
Real-Time and Embedded Technology and Applications Symposium, RTAS, pages
175–184. IEEE, 2013.

[24] P. de Langen. Energy Reduction Techniques for Caches and Multiprocessors. Oct.
2009.

[25] P. de Langen and B. Juurlink. Leakage-aware multiprocessor scheduling. Journal
of Signal Processing Systems, 57(1):73–88, 2009.

[26] D. Dolev, M. Függer, C. Lenzen, M. Perner, and U. Schmid. HEX: scaling
honeycombs is easier than scaling clock trees. In Proceedings of the 25th ACM
symposium on Parallelism in algorithms and architectures, pages 164–175. ACM,
2013.

[27] S. A. Edwards and E. A. Lee. The case for the precision timed (pret) machine. In
Proceedings of the 44th annual Design Automation Conference, pages 264–265.
ACM, 2007.

[28] O. Faynot, F. Andrieu, O. Weber, C. Fenouillet-Beranger, P. Perreau, J. Mazurier,
T. Benoist, O. Rozeau, T. Poiroux, M. Vinet, L. Grenouillet, J.-P. Noel, N. Posseme,
S. Barnola, F. Martin, C. Lapeyre, M. Casse, X. Garros, M. A. Jaud, O. Thomas,
G. Cibrario, L. Tosti, L. Brevard, C. Tabone, P. Gaud, S. Barraud, T. Ernst, and
S. Deleonibus. Planar fully depleted soi technology: A powerful architecture for
the 20nm node and beyond. In Electron Devices Meeting (IEDM), 2010 IEEE
International, pages 3.2.1–3.2.4, 2010.

[29] M. E. Gerards, J. L. Hurink, P. K. Holzenspies, J. Kuper, and G. J. Smit. Analytic
clock frequency selection for global dvfs. In Parallel, Distributed and Network-
Based Processing (PDP), 2014 22nd Euromicro International Conference on, pages
512–519. IEEE, 2014.

[30] M. E. Gerards and J. Kuper. Optimal dpm and dvfs for frame-based real-time
systems. ACM Transactions on Architecture and Code Optimization (TACO),
9(4):41, 2013.

[31] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens,
M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad, et al. Virtual exe-
cution platforms for mixed-time-criticality systems: the CompSOC architecture
and design flow. ACM SIGBED Review, 10(3):23–34, 2013.

164 BIBLIOGRAPHY

[32] K. Goossens and A. Hansson. The Æthereal network on chip after ten years: Goals,
evolution, lessons, and future. In Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pages 306–311. IEEE, 2010.

[33] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page policy for
mixed time-criticality memory controllers. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 525–530. EDA Consortium, 2013.

[34] S. Goossens, B. Akesson, M. Koedam, A. B. Nejad, A. Nelson, and K. Goossens.
The CompSOC design flow for virtual execution platforms. In Proceedings of the
10th FPGAworld Conference, page 7. ACM, 2013.

[35] S. Goossens, B. Akesson, M. Koedam, A. B. Nejad, A. Nelson, and K. Goossens.
The CompSOC design flow for virtual execution platforms. In Proceedings of the
10th FPGAworld Conference, page 7. ACM, 2013.

[36] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A reconfigurable real-
time sdram controller for mixed time-criticality systems. In Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), 2013 International Conference
on, pages 1–10. IEEE, 2013.

[37] K. Govil, E. Chan, and H. Wasserman. Comparing algorithm for dynamic speed-
setting of a low-power cpu. In Proceedings of the 1st annual international confer-
ence on Mobile computing and networking, pages 13–25. ACM, 1995.

[38] R. Govindarajan and G. R. Gao. A novel framework for multi-rate scheduling in
dsp applications. In Application-Specific Array Processors, 1993. Proceedings.,
International Conference on, pages 77–88. IEEE, 1993.

[39] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx, Mar. 2014.

[40] Green Hills Software. INTEGRITY. http://www.ghs.com.

[41] Z. Gu and Q. Zhao. A state-of-the-art survey on real-time issues in embedded
systems virtualization. 2012.

[42] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot): A
vision, architectural elements, and future directions. Future Generation Computer
Systems, 29(7):1645–1660, 2013.

[43] A. Hansson and K. Goossens. On-Chip Interconnect with aelite. Embedded
Systems. Springer, Dordrecht, 2011.

[44] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC: A template for
composable and predictable multi-processor system on chips. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 14(1):2, 2009.

http://cvxr.com/cvx

BIBLIOGRAPHY 165

[45] G. Heiser. The role of virtualization in embedded systems. In Proceedings of
the 1st workshop on Isolation and integration in embedded systems, pages 11–16.
ACM, 2008.

[46] G. Heiser and B. Leslie. The okl4 microvisor: Convergence point of microker-
nels and hypervisors. In Proceedings of the first ACM asia-pacific workshop on
Workshop on systems, pages 19–24. ACM, 2010.

[47] S. Irani and K. R. Pruhs. Algorithmic problems in power management. ACM
SIGACT News, 36(2):63–76, 2005.

[48] ITU-T. Recommendation H.263, 2005. http://www.itu.int/rec/
T-REC-H.263-200501-I.

[49] D. Jacquet, G. Cesana, P. Flatresse, F. Arnaud, P. Menut, F. Hasbani, T. Di Gilio,
C. Lecocq, T. Roy, A. Chhabra, C. Grover, O. Minez, J. Uginet, G. Durieu, F. Nyer,
C. Adobati, R. Wilson, and D. Casalotto. 2.6GHz ultra-wide voltage range energy
efficient dual A9 in 28nm UTBB FD-SOI. In VLSI Technology (VLSIT), 2013
Symposium on, pages C44–C45, 2013.

[50] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for
real-time embedded systems. In Design Automation Conference, 2004. Proceedings.
41st, pages 275–280, 2004.

[51] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for
real-time embedded systems. In Proceedings of the 41st annual Design Automation
Conference, pages 275–280. ACM, 2004.

[52] R. John. Partitioning in avionics architectures: Requirements, mechanisms, and
assurance. Technical report, 1999.

[53] R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal. An automated flow to
map throughput constrained applications to a mpsoc. In OASIcs-OpenAccess Series
in Informatics, volume 18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2011.

[54] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark. Coordinated, distrib-
uted, formal energy management of chip multiprocessors. In Low Power Electronics
and Design, 2005. ISLPED’05. Proceedings of the 2005 International Symposium
on, pages 127–130. IEEE, 2005.

[55] A. Keshavarzi, D. Somasekhar, M. Rashed, S. Ahmed, K. Maitra, R. Miller,
A. Knorr, J. Cho, R. Augur, S. Banna, C.-H. Shaw, A. Halliyal, U. Schroeder,
A. Wei, J. Egley, K. Korablev, S. Luning, M.-R. Lin, S. Venkatesan, S. Kengeri,
and G. Bartlett. Architecting advanced technologies for 14nm and beyond with
3d finfet transistors for the future soc applications. In Electron Devices Meeting
(IEDM), 2011 IEEE International, pages 4.1.1–4.1.4, 2011.

http://www.itu.int/rec/T-REC-H.263-200501-I
http://www.itu.int/rec/T-REC-H.263-200501-I

166 BIBLIOGRAPHY

[56] S. Khan and E. Marzec. Wearables – Tech Trends. Deloitte
University Press, 2014. http://dupress.com/articles/
2014-tech-trends-wearables/.

[57] H. Kopetz. Internet of things. In Real-Time Systems, pages 307–323. Springer,
2011.

[58] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, 2003.

[59] T.-W. Lam, L.-K. Lee, I. K. To, and P. W. Wong. Energy efficient deadline
scheduling in two processor systems. In Algorithms and Computation, pages
476–487. Springer, 2007.

[60] T.-W. Lam, L.-K. Lee, I. K. To, and P. W. Wong. Competitive non-migratory
scheduling for flow time and energy. In Proceedings of the twentieth annual
symposium on Parallelism in algorithms and architectures, pages 256–264. ACM,
2008.

[61] E. Larsson, B. Vermeulen, and K. Goossens. A distributed architecture to check
global properties for post-silicon debug. In Test Symposium (ETS), 2010 15th IEEE
European, pages 182–187. IEEE, 2010.

[62] A. Lele, O. Moreira, and P. J. Cuijpers. A new data flow analysis model for tdm.
In Proceedings of the tenth ACM international conference on Embedded software,
pages 237–246. ACM, 2012.

[63] Y. Li, B. Akesson, and K. Goossens. Dynamic command scheduling for real-
time memory controllers. In Proc. Euromicro Conference on Real-Time Systems
(ECRTS), 2014.

[64] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee. Predictable
programming on a precision timed architecture. In Proceedings of the 2008 in-
ternational conference on Compilers, architectures and synthesis for embedded
systems, CASES ’08, pages 137–146, New York, NY, USA, 2008. ACM.

[65] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee. A PRET microarchitec-
ture implementation with repeatable timing and competitive performance. In Proc.
Int’l Conference on Computer Design (ICCD), Oct. 2012.

[66] LynuxWorks. LynxOS-178. http://www.lynuxworks.com.

[67] P. Magarshack, P. Flatresse, and G. Cesana. Utbb fd-soi: A process/design sym-
biosis for breakthrough energy-efficiency. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’13, pages 952–957, San Jose, CA,
USA, 2013. EDA Consortium.

http://dupress.com/articles/2014-tech-trends-wearables/
http://dupress.com/articles/2014-tech-trends-wearables/

BIBLIOGRAPHY 167

[68] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J. Kaiser. The low power
energy aware processing (leap) embedded networked sensor system. In Proceedings
of the 5th international conference on Information processing in sensor networks,
pages 449–457. ACM, 2006.

[69] D. McIntire, T. Stathopoulos, S. Reddy, T. Schmidt, and W. J. Kaiser. Energy-
efficient sensing with the low power, energy aware processing (leap) architecture.
ACM Transactions on Embedded Computing Systems (TECS), 11(2):27, 2012.

[70] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing
adaptive software. Computer, 37(7):56–64, July 2004.

[71] M. Meijer. On-chip fully-digital power supply control. Master’s thesis, TU
Eindhoven, 2005.

[72] M. Meijer and J. P. de Gyvez. Technological boundaries of voltage and frequency
scaling for power performance tuning. In Adaptive Techniques for Dynamic Pro-
cessor Optimization, pages 25–47. Springer, 2008.

[73] M. Meijer, J. Pineda de Gyvez, and R. Otten. On-chip digital power supply
control for system-on-chip applications. In Proceedings of the 2005 international
symposium on Low power electronics and design, pages 311–314. ACM, 2005.

[74] G. Meyer and S. Deix. Research and innovation for automated driving in germany
and europe. In Road Vehicle Automation, pages 71–81. Springer, 2014.

[75] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time systems. In
Real-Time Technology and Applications Symposium, 2001. Proceedings. Seventh
IEEE, pages 75–84. IEEE, 2001.

[76] O. M. Moreira and M. J. Bekooij. Self-timed scheduling analysis for real-time
applications. EURASIP Journal on Advances in Signal Processing, 2007.

[77] T. Nakajima, Y. Kinebuchi, H. Shimada, A. Courbot, and T.-H. Lin. Temporal and
spatial isolation in a virtualization layer for multi-core processor based information
appliances. In Proceedings of the 16th Asia and South Pacific Design Automation
Conference, pages 645–652. IEEE Press, 2011.

[78] A. Nelson, B. Akesson, A. Molnos, S. te Pas, and K. Goossens. Power versus
quality trade-offs for adaptive real-time applications. In Embedded Systems for
Real-time Multimedia (ESTIMedia), 2012 IEEE 10th Symposium on, pages 75–84.
IEEE, 2012.

[79] A. Nelson, A. Beyranvand Nejad, A. Molnos, M. Koedam, and K. Goossens.
CoMik: A Predictable and Cycle-Accurately Composable Real-Time Microkernel.
Design, Automation & Test in Europe, 2014.

168 BIBLIOGRAPHY

[80] A. Nelson, A. Molnos, and K. Goossens. Composable power management with en-
ergy and power budgets per application. In Embedded Computer Systems (SAMOS),
2011 International Conference on, pages 396–403. IEEE, 2011.

[81] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. T. Nguyen, and K. Goossens.
Power minimisation for real-time dataflow applications. In Digital System Design
(DSD), 2011 14th Euromicro Conference on, pages 117–124. IEEE, 2011.

[82] A. Nieuwland, J. Kang, O. P. Gangwal, R. Sethuraman, N. Busá, K. Goossens, R. P.
Llopis, and P. Lippens. C-HEAP: A heterogeneous multi-processor architecture
template and scalable and flexible protocol for the design of embedded signal
processing systems. Design Automation for Embedded Systems, 7(3):233–270,
2002.

[83] G. Pelz, P. Oehler, E. Fourgeau, and C. Grimm. Automotive system design and
autosar. In Advances in Design and Specification Languages for SoCs, pages
293–305. Springer, 2005.

[84] M. Perner, M. Sigl, U. Schmid, and C. Lenzen. Byzantine self-stabilizing clock dis-
tribution with hex: Implementation, simulation, clock multiplication. In DEPEND
2013, The Sixth International Conference on Dependability, pages 6–15, 2013.

[85] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-power
microprocessor. In Proceedings of the 7th annual international conference on
Mobile computing and networking, pages 251–259. ACM, 2001.

[86] J. Pouwelse, K. Langendoen, and H. Sips. Energy priority scheduling for variable
voltage processors. In Low Power Electronics and Design, International Symposium
on, 2001., pages 28–33. IEEE, 2001.

[87] J. Pouwelse, K. Langendoen, and H. J. Sips. Application-directed voltage scaling.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 11(5):812–826,
2003.

[88] P. J. Prisaznuk. Arinc 653 role in integrated modular avionics (ima). In Digital
Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th, pages 1–E.
IEEE, 2008.

[89] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scaling of tasks with precedence
constraints. Theory of Computing Systems, 43(1):67–80, 2008.

[90] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mech-
anisms and leakage reduction techniques in deep-submicrometer cmos circuits.
Proceedings of the IEEE, 91(2):305–327, 2003.

BIBLIOGRAPHY 169

[91] T. Sakurai and A. R. Newton. Alpha-power law MOSFET model and its applications
to CMOS inverter delay and other formulas. Solid-State Circuits, IEEE Journal of,
25(2):584–594, 1990.

[92] S. Samolej. ARINC Specification 653 Based Real-Time Software Engineering.
e-Informatica, 5(1):39–49, 2011.

[93] A. Smith. Smartphone ownership–2013 update. Pew Research Center:
Washington DC, 2013. http://pewinternet.org/Reports/2013/
Smartphone-Ownership-2013.aspx.

[94] R. Stefan. Resource Allocation in Time-division-multiplexed Networks on Chip.
PhD thesis, Delft University of Technology, Apr. 2012.

[95] R. Stefan, A. Molnos, and K. Goossens. daelite: A tdm noc supporting qos,
multicast, and fast connection set-up. 2012.

[96] SYSGO. PikeOS. http://www.sysgo.com.

[97] S. te Pas. Quality versus energy trade-off for real-time applications on a compos-
able MPSoC. Master’s thesis, Department of Electrical Engineering, Eindhoven
University of Technology, 2012.

[98] Texas Instruments. OMAP3530 Power Estimation Spreadsheet.
http://processors.wiki.ti.com, 2010.

[99] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. In Circuits and Systems, 2000. Proceedings. ISCAS 2000
Geneva. The 2000 IEEE International Symposium on, volume 4, pages 101–104.
IEEE, 2000.

[100] L. Thiele and N. Stoimenov. Modular performance analysis of cyclic dataflow
graphs. In Proceedings of the seventh ACM international conference on Embedded
software, pages 127–136. ACM, 2009.

[101] W. Tong, O. Moreira, R. Nas, and K. van Berkel. Hard-real-time scheduling on
a weakly programmable multi-core processor with application to multi-standard
channel decoding. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2012 IEEE 18th, pages 151–160. IEEE, 2012.

[102] L. Ulrich. Top ten tech cars. Spectrum, IEEE, 51(4):38–47, 2014.

[103] D. van Nijnatten. Budgeting energy in a composable microkernel. Master’s thesis,
Department of Electrical Engineering, Eindhoven University of Technology, 2013.

http://pewinternet.org/Reports/2013/Smartphone-Ownership-2013.aspx
http://pewinternet.org/Reports/2013/Smartphone-Ownership-2013.aspx
http://processors.wiki.ti.com

170 BIBLIOGRAPHY

[104] P. Vivet, E. Beigne, H. Lebreton, and N.-E. Zergainoh. On line power optimization
of data flow multi-core architecture based on vdd-hopping for local DVFS. In
Integrated Circuit and System Design. Power and Timing Modeling, Optimization,
and Simulation, pages 94–104. Springer, 2011.

[105] M. Waitz. Accounting and control of power consumption in energy-aware oper-
ating systems. Master’s thesis, Department of Computer Science 4, University of
Erlangen, 2003.

[106] M. Weiser. The computer for the 21st century. Scientific american, 265(3):94–104,
1991.

[107] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient computation of buffer
capacities for multi-rate real-time systems with back-pressure. In Proceedings
of the 4th international conference on Hardware/software codesign and system
synthesis, CODES+ISSS ’06, pages 10–15, New York, NY, USA, 2006. ACM.

[108] M. H. Wiggers, M. J. Bekooij, and G. J. Smit. Modelling run-time arbitration by
latency-rate servers in dataflow graphs. In Proceedingsof the 10th international
workshop on Software & compilers for embedded systems, pages 11–22. ACM,
2007.

[109] Wind River. VxWorks 653. http://www.windriver.com.

[110] J. Windsor and K. Hjortnaes. Time and space partitioning in spacecraft avionics. In
Space Mission Challenges for Information Technology, 2009. SMC-IT 2009. Third
IEEE International Conference on, pages 13–20. IEEE, 2009.

[111] C. C. Wüst, L. Steffens, W. F. Verhaegh, R. J. Bril, and C. Hentschel. Qos control
strategies for high-quality video processing. Real-Time Systems, 30(1-2):7–29,
2005.

[112] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In
Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on,
pages 374–382. IEEE, 1995.

[113] K. Zickuhr. Tablet ownership 2013. Pew Research Center: Wash-
ington DC, 2013. http://pewinternet.org/Reports/2013/
Tablet-Ownership-2013.aspx.

http://pewinternet.org/Reports/2013/Tablet-Ownership-2013.aspx
http://pewinternet.org/Reports/2013/Tablet-Ownership-2013.aspx

APPENDIXA
Glossary

This chapter provides a guide to the language used in this thesis. Section A.1 contains a
list of abbreviations.

A.1 Abbreviations
This list of abbreviations explains the most commonly used abbreviations in this thesis,
along with the page number on which they are first used.

ACB Application Control Block . 51

API Application Programming Interface .51

ASIC Application Specific Integrated Circuit . 37

BA Bounded Alignment . 147

CCB CoMik Control Block . 40

CCSP Credit Controlled Static Priority . 27

CDC Clock Domain Crossing . 69

CMOS Complementary Metal-Oxide-Semiconductor . 68

CoMik Composable and Predictable Microkernel . 7

POSe Predictable Operating System . 7

171

172 APPENDIX A. GLOSSARY

CompSOC Composable and Predictable System-on-Chip . 7

CSDF Cyclo-Static Dataflow. 14

CSDFG Cyclo-Static Dataflow Graph . 14

DCP Disciplined Convex Program . 92

DCT Discrete Cosine Transform . 106

DMA Direct Memory Access . 7

DRAM Dynamic Random Access Memory . 152

DTL Device Transaction Level .24

DVFS Dynamic Voltage and Frequency Scaling . 4

FA Fully Aligned . 145

FCB FIFO Control Block. .51

FD-SOI Fully Depleted Silicon-on-Insulator . 70

FET Field-Effect Transistor . 69

FIFO First In First Out . 9

FPGA Field Programmable Gate Array . 9

FR Frame Reconstruction .106

FSL Fast Simplex Link . 35

FSM Finite State Machine . 137

FSM-SADF Finite State Machine Scenario Aware Dataflow . 137

GALS Globally Asynchronous Locally Synchronous . 48

HSDF Homogeneous Synchronous Dataflow . 14

HSDFG Homogeneous Synchronous Dataflow Graph . 9

ID Identification . 52

IDCT Inverse Discrete Cosine Transform . 106

IQ Inverse Quantisation . 106

ISA Instruction Set Architecture .35

KPN Kahn Process Network . 14

LMB Local Memory Bus . 24

MC Motion Compensation . 106

MCM Maximum Cycle Mean . 21

MMIO Memory Mapped Input/Output . 24

MMU Memory Management Unit . 23

A.1. ABBREVIATIONS 173

MOC Model of Computation . 12

MOE Model of Execution . 7

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor 68

MPSoC Multiprocessor System on Chip . 17

MPU Memory Protection Unit . 23

NoC Network on Chip . 16

PCB Partition Control Block. .40

PIC Programmable Interrupt Controller . 35

PIT Programmable Interrupt Timer . 35

PLB Processor Local Bus . 24

PRET Precision-Timed Systems . 22

PSNR Peak Signal to Noise Ratio . 106

OS Operating System. 4

RC Read Counter . 28

SADF Scenario Aware Dataflow. 137

SDF Synchronous Dataflow . 14

SDFG Synchronous Dataflow Graph . 14

SDRAM Synchronous Dynamic Random Access Memory . 22

SoC System on Chip . 68

SOS Static-Order Schedule . 18

SPS Static-Periodic Schedule . 15

SRAM Static Random Access Memory . 31

STS Self-Timed Schedule . 15

TCB Task Control Block . 51

TDM Time Division Multiplexed . 6

TIFU Timer-centric Interrupt and Frequency Unit . 8

TFT Thin-Film Transistor . 22

TTA Time Triggered Architecture . 63

UP Up Scaling. .106

VFS Voltage and Frequency Scaling . 9

VLD Variable Length Decoding . 106

VP Virtual Platform . 5

174 APPENDIX A. GLOSSARY

WC Write Counter . 28

WCA Worst-Case Arrival . 145

WCET Worst-Case Execution Time . 9

WCRT Worst-Case Response Time. .149

WCSTS Worst-Case Self-Timed Schedule .18

WLAN Wireless Local Area Network . 2

XML Extensible Markup Language . 22

A.2 Lists of Symbols
In this section, we present an overview of the commonly used symbols throughout this
thesis. In the following sections, the symbols are organised per topic.

A.2.1 Dataflow Graphs
Table A.1 presents the commonly used symbols for dataflow graph analysis.

Symbol Description Page
µ Dataflow graph Maximum Cycle Mean (MCM) Page 21
C Set of dataflow graph cycles Page 21
d Initial tokens Page 19
E Set of dataflow communication channels Page 18
G Tuple (V,E, t,d) representing dataflow graph Page 18
K Number of graph iterations until the periodic phase of execution

under a Self-Timed Schedule (STS)
Page 21

N Dataflow graph cyclicity Page 21
s Task start time Page 19
t Task execution time Page 19
T Schedule period under a Static-Periodic Schedule (SPS) Page 21
V Set of dataflow actors Page 18

Table A.1: List of common dataflow symbols.

A.2.2 Latency-Rate Servers
Table A.2 presents the commonly used symbols for latency-rate server analysis.

A.2. LISTS OF SYMBOLS 175

Symbol Description Page
L Latency component Page 46
r Worst-case response Page 47
R Rate component Page 46
S Service duration Page 46
T Time frame in which the service is provided Page 46

Table A.2: List of commonly used latency-rate server symbols.

A.2.3 Composable Accounting

Symbol Description Page
A Smallest TDM allocation assigned to a partition Page 85
c CoMik slot duration Page 81
Ecomik Energy allocated for a single CoMik slot Page 78
Ecomik Total energy allocated for virtual processor final slots on a pro-

cessor
Page 79

Ecore Energy allocated to a single physical processor Page 78
Efinal Energy allocated to bound the energy consumption of the virtual

processor’s final slot
Page 78

Efinal Total energy allocated to bound the energy consumption of virtual
processor final slots on a processor

Page 79

En Energy allocated to virtual processor n Page 79
Epartition Energy allocated for a single partition slot Page 78
Epartition Total energy allocated for the partition slots on a processor Page 83
Ereserve Energy held in reserve to bound the energy consumption of a

single partition slot
Page 78

Ereserve Total energy held in reserve to bound the energy consumption of
partition slots on a processor

Page 83

f Frequency Page 68
fcap Cap on maximum frequency Page 89
fcomik CoMik frequency Page 82
N Number of TDM table iterations Page 78
p CoMik partition slot duration Page 81
Pcomik Power consumption of CoMik Page 81
Pcore Power budget of a processor n Page 88
Pmax Maximum power consumption Page 79
Pmin Minimum power consumption Page 79

Continued on next page

176 APPENDIX A. GLOSSARY

Table A.3 – continued from previous page
Symbol Description Page
Pplatform Power consumption of the rest of the platform (NoC, SDRAM,

etc.)
Page 94

R Maximum composable run time Page 83
S Number of service slots in a TDM table Page 78
V Number of virtual processors Page 78
Wcomik CoMik work in cycles Page 82

Table A.3: List of symbols.

A.2.4 Conservative Slack Estimation
Symbol Description Page
Bc Maximum number of application graph iterations that the SOS

on core c can be ahead of an SOS on another core
Page 127

N Number of application graph iterations between power manage-
ment function invocations

Page 127

T Schedule period under a Static-Periodic Schedule (SPS) Page 122
Yc Local observed slack on core c Page 127
Zc Conservative global slack estimation on core c Page 127

Table A.4: List of symbols.

APPENDIXB
Example CoMik and POSe Application Configuration

In Code B.1, we present an example of the C code used to configure CoMik and POSe
to execute an H.263 decoder application. This example configuration is for a single tile
mapping.

1 #include "comik.h"
2 #include "pose.h"
3

4 #include "h263_headers.h"
5 #include "h263_firing-rules.h"
6 #include "h263_memmap.h"
7

8 #include "vld.h"
9 #include "dQuant.h"

10 #include "idct.h"
11 #include "AddBlock.h"
12 #include "upscale.h"
13

14 /*
15 * App constants
16 */
17 #define h263_ID_APP1 1
18 #define NBR_LOCAL_TASK_h263 5
19

20 /* Create CoMik TDM schedule */
21 int tdm_table[2] = { 1, 0 };

177

178APPENDIX B. EXAMPLE COMIK AND POSE APPLICATION CONFIGURATION

22 TABLE app_tdm = { 0, sizeof(tdm_table) / sizeof(int), tdm_table };
23

24 /* Create H.263 SO schedule */
25 int h263_task_table_so_app1[5] = { 1, 2, 3, 4, 5 };
26 TABLE h263_task_so_app1 = { 0, sizeof(h263_task_table_so_app1) / sizeof(

int), h263_task_table_so_app1 };
27

28 void app1_entry()
29 {
30 os_initialise_libpose();
31

32 /*
33 * Application h263
34 */
35 os_add_application(h263_ID_APP1, NBR_LOCAL_TASK_h263,

os_task_scheduler_so, (void*)&h263_task_so_app1);
36

37 /*
38 * Add Tasks of Application H.263
39 */
40 os_add_task(1, 0, h263_VLD_app1);
41 os_set_task_fifos(1, 4, 1);
42 os_add_task(2, 0, h263_DQuant_app1);
43 os_set_task_fifos(2, 2, 2);
44 os_add_task(3, 0, h263_idct_app1);
45 os_set_task_fifos(3, 1, 2);
46 os_add_task(4, 0, h263_AddBlock_app1);
47 os_set_task_fifos(4, 2, 3);
48 os_add_task(5, 0, h263_Upscale_app1);
49

50 os_set_task_fifos(5, 0, 1);
51

52 /*
53 * Add FIFOs of Application H.263
54 */
55 os_add_fifo(1, 1, 2, 0, 0, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),

INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(
VLD2Dquant), 1, 1, 0, 0);

56 os_add_fifo(2, 1, 3, 1, 0, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),
INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(VLD2Idct)
, 1, 1, 0, 0);

57 os_add_fifo(3, 1, 4, 2, 0, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),
INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(
VLD2AddBlock), 1, 1, 0, 0);

58 os_add_fifo(4, 2, 3, 0, 1, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),
INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(
DQuant2Idct), 1, 1, 0, 0);

59 os_add_fifo(5, 3, 4, 0, 1, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),
INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(
Idct2AddBlock), 1, 1, 0, 0);

60 os_add_fifo(6, 4, 5, 0, 0, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),
INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(
AddBlock2Up), 1, 1, 0, 0);

179

61 os_add_fifo(7, 1, 1, 3, 0, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),
INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(
VLDDataLocal), 1, 1, 0, 0);

62 os_add_fifo(8, 2, 2, 1, 1, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),
INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(
DQuantDataLocal), 1, 1, 0, 0);

63 os_add_fifo(9, 4, 4, 1, 2, INT_PTR(NULL), INT_PTR(NULL), INT_PTR(NULL),
INT_PTR(NULL), VOID_PTR(NULL), VOID_PTR(NULL), 1, sizeof(
AddBlockDataLocal), 1, 1, 0, 0);

64

65 /*
66 * Insert initial tokens where necessary
67 */
68 os_insert_fifo_token(7, 1, 1, NULL);
69 os_insert_fifo_token(8, 2, 1, NULL);
70 os_insert_fifo_token(9, 4, 1, NULL);
71

72 /*
73 * Set Tasks Firing Rules Parameters of Application H.263
74 */
75 os_set_task_firing_rule(1, firing_rule_h263_VLD, 1);
76 os_set_task_firing_rule(2, firing_rule_h263_DQuant, 1);
77 os_set_task_firing_rule(3, firing_rule_h263_idct, 1);
78 os_set_task_firing_rule(4, firing_rule_h263_AddBlock, 1);
79 os_set_task_firing_rule(5, firing_rule_h263_Upscale, 1);
80

81 os_set_app_throughput_requirement(h263_ID_APP1, 0.1, 99); // 10 fps
82

83 os_application_start();
84 }
85

86 int main()
87 {
88 mk_mon_sync();
89

90 /* Setup CoMik */
91 mk_init_comik(0, 0, &app_tdm);
92

93 /* Setup a virtual processor (partition) */
94 mk_init_partition(h263_ID_APP1, 22*1024, 138*1024, app1_entry, NULL,

NULL);
95

96 /*
97 * Set the microkernel and virtual processor slot durations
98 */
99 mk_set_mk_slot_duration(0x1000);

100 mk_set_partition_slot_duration(0x100000);
101

102 mk_start();
103 }

Code B.1: Example CoMik and POSe initialisation C code for a single-core H.263
decoder.

APPENDIXC
Example HSDFG Convex Analysis Script

In Code C.1, we present a Matlab script that is used in conjunction with the CVX toolbox
to perform convex analysis of a combined application and platform HSDFG. This script is
used to find either the minimum period of the application’s SPS (mint) or the application’s
minimum power consumption (minp).

1 function [cvx_optval,f,sSc,sr,se,sw,sLc,sd,sn,B,iL,V,T,energy] = static(
mode,varargin)

2

3 if ischar(mode)
4 mode = lower(mode);
5 else
6 error(’mode must be a string’);
7 end
8

9 Lat = [0,0];
10 R_inv = [1,1];
11 V = 0;
12 iL = 0;
13

14 switch mode
15 case ’mint’
16 c = varargin{1};
17 p = varargin{2};
18 S = varargin{3};
19 A = varargin{4};

181

182 APPENDIX C. EXAMPLE HSDFG CONVEX ANALYSIS SCRIPT

20 V = varargin{5};
21 tR = (A*p)/(S*(c+p));
22 R = [tR,tR];
23 iL = (S*(c+p)) - (A*p) +1 -(1/tR);
24 R_inv = 1./R;
25 Lat = Lat*0+V;
26 case ’minp’
27 c = varargin{1};
28 p = varargin{2};
29 S = varargin{3};
30 A = varargin{4};
31 V = varargin{5};
32 T = varargin{6};
33 tR = (A*p)/(S*(c+p));
34 R = [tR,tR];
35 iL = (S*(c+p)) - (A*p) +1 -(1/tR);
36 R_inv = 1./R;
37 Lat = Lat*0+V;
38 otherwise
39 error(’Unrecognised mode’);
40 end
41

42 s = [1152,1200,1060,1173];
43 r = [5484,5520,824,855];
44 e = [4162,8062,6112,2862];
45 w = [1336,975,1644,1283];
46 L = [0,0,0,0];
47 d = sparse([1,3,2,4],[2,4,1,3],[15,15,15,15]);
48 n = sparse([1,3,2,4],[2,4,1,3],[73,73,73,73]);
49

50 corder = sparse([1,3,2,4],[2,4,1,3],1:4);
51 scheds = {[1,3],[2,4]};
52 dmascheds = {{[1,2],[3,4]},{[2,1],[4,3]}};
53

54 B = sparse([1,3],[2,4],[2,2],nnz(d),nnz(d));
55

56 if length(scheds) > 0
57 for i = 1:length(scheds)
58 sched = scheds{i};
59 for j = 1:length(sched)
60 mapping(sched(j)) = i;
61 s(sched(j)) = s(sched(j)) * R_inv(i);
62 r(sched(j)) = r(sched(j)) * R_inv(i);
63 e(sched(j)) = e(sched(j)) * R_inv(i);
64 w(sched(j)) = w(sched(j)) * R_inv(i);
65

66 L(sched(j)) = Lat(i);
67 end
68 end
69 end
70

71 fmax=120;
72 Prest=(120^3)*3.353e-5 + 2.065;

183

73

74 tic;
75 cvx_begin quiet
76 variable sSc(size(s,2))
77 variable sr(size(r,2))
78 variable se(size(e,2))
79 variable sw(size(w,2))
80 variable sLc(size(L,2))
81 variable sd(nnz(corder))
82 variable sn(nnz(corder))
83

84 switch mode
85 case ’mint’
86 variable T
87 f = ones(length(scheds),1)*fmax;
88 minimise(T)
89 case ’minp’
90 variable f(length(scheds))
91

92 if length(scheds) > 0
93 P = ’’;
94 for i = 1:length(scheds)
95 sched = scheds{i};
96 if ~strcmp(P,’’)
97 P = strcat(P,’ + ’);
98 end
99 P = strcat(P,sprintf(’(pow_pos(f(%d),3)*3.353e-5 + 2.065 + (Prest

/2))*R(%d)’,i,i));
100 end
101 end
102

103 minimise(P)
104

105 f >= (fmax/16)*0.9999999
106 f <= fmax
107 otherwise
108 error(’Unrecognised mode’);
109 end
110

111 % static order schedule
112 if length(scheds) > 0
113 for i = 1:length(scheds)
114 sched = scheds{i};
115 for j = 1:length(sched)
116 p = sched(j);
117 if j == length(sched)
118 c = sched(1);
119 D = 1;
120 else
121 c = sched(j+1);
122 D = 0;
123 end
124

184 APPENDIX C. EXAMPLE HSDFG CONVEX ANALYSIS SCRIPT

125 sr(p) >= sSc(p) + s(p) * inv_pos(f(i)) * fmax
126 se(p) >= sr(p) + r(p) * inv_pos(f(i)) * fmax
127 sw(p) >= se(p) + e(p) * inv_pos(f(i)) * fmax
128 sSc(c) + D*T >= sw(p) + w(p) * inv_pos(f(i)) * fmax
129

130 sSc(p) >= sLc(p) + L(i)
131 end
132 end
133 end
134

135 % inter core communication
136 if length(dmascheds) > 0
137 for i = 1:length(dmascheds)
138 sched = dmascheds{i};
139 for j = 1:length(sched)
140 comm = sched{j};
141 cn = corder(comm(1),comm(2));
142 if j == length(sched)
143 ncomm = sched{1};
144 ncn = corder(ncomm(1),ncomm(2));
145 D = 1;
146 else
147 ncomm = sched{j+1};
148 ncn = corder(ncomm(1),ncomm(2));
149 D = 0;
150 end
151

152 sd(cn) >= sw(comm(1)) + w(comm(1)) * inv_pos(f(mapping(comm(1))))

* fmax
153 sn(cn) >= sd(cn) + d(comm(1),comm(2))
154 sLc(comm(2)) + B(comm(2),comm(1))*T >= sn(cn) + n(comm(1))
155 sLc(comm(1)) + T >= sd(cn) + d(comm(1),comm(2))
156

157 sd(ncn) + D*T >= sd(cn) + d(comm(1),comm(2))
158 end
159 end
160 end
161 cvx_end
162 toc;
163

164 f=ceil(f.*16./fmax)*fmax/16;
165

166 energy = sum(sum((((f).^3)*3.353e-5 + 2.065 + Prest/2))*R);
167

168 if ~strcmp(cvx_status,’Solved’)
169 cvx_optval = -1;
170 energy = -1;
171 end

Code C.1: Example Matlab code to perform a convex analysis (to minimise the period or
power consumption) of a combined application and platform HSDFG.

APPENDIXD
Curriculum Vitae

Andrew Nelson was born in Craigavon, Northern Ireland in 1983. He received his M.Sc.
degree in Embedded Systems at Eindhoven University of Technology, the Netherlands in
2009. After this, he moved to Delft University of Technology to perform research towards
achieving a Ph.D. Since 2014, he is employed as a Researcher at Eindhoven University
of Technology. His research interests include real-time (including mixed time-criticality)
low-power multi-core embedded-systems and the timing analyses thereof.

185

APPENDIXE
Publications

Journal Articles

[1] Andrew Nelson, Kees Goossens, Benny Akesson, “Dataflow Formalisation of Real-
Time Streaming Applications on a Composable and Predictable Multi-Processor
SOC”, Under submission to SYSARC: Special Issue on High-performance and
Real-time Embedded Systems.

[2] Kees Goossens, Arnaldo Azevedo, Karthik Chandrasekar, Manil Dev Gomony, Sven
Goossens, Martijn Koedam, Yonghui Li, Davit Mirzoyan, Anca Molnos, Ashkan
Beyranvand Nejad, Andrew Nelson, Shubhendu Sinha, “Virtual execution platforms
for mixed-time-criticality systems: The CompSOC architecture and design flow”,
ACM SIGBED, vol. 1, 2013.

[3] Andreas Hansson, Marcus Ekerhult, Anca Molnos, Aleksandar Milutinovic, An-
drew Nelson, Jude Ambrose, Kees Goossens, “Design and implementation of an
operating system for composable processor sharing”, Microprocessors and Mi-
crosystems, Elsevier, vol. 35, no. 2, pp. 246-260, 2011.

187

188 APPENDIX E. PUBLICATIONS

Conference Papers
[1] Benny Akesson, Anna Minaeva, Premysl Sucha, Andrew Nelson, Zdenek Han-

zalek, “An Efficient Configuration Methodology for Time-Division Multiplexed
Resources”, Work in progress.

[2] Shubhendu Sinha, Martijn Koedam, Rob van Wijk, Andrew Nelson, Ashkan
Beyranvand Nejad, Marc Geilen, Kees Goossens, “Composable and Predictable
Dynamic Loading for Time-Critical Partitioned Systems”, Accepted to appear at
DSD, 2014.

[3] Andrew Nelson, Ashkan Beyranvand Nejad, Anca Molnos, Martijn Koedam, Kees
Goossens, “CoMik: A Predictable and Cycle-Accurately Composable Real-Time
Microkernel”, Design, Automation & Test in Europe, 2014.

[4] Sven Goossens, Benny Akesson, Martijn Koedam, Ashkan Beyranvand Nejad,
Andrew Nelson, Kees Goossens, “The CompSOC design flow for virtual execution
platforms”, Proceedings of the 10th FPGAworld Conference, pp. 7, 2013.

[5] Andrew Nelson, Benny Akesson, Anca Molnos, Sjoerd te Pas, Kees Goossens,
“Power versus quality trade-offs for adaptive real-time applications”, Embedded
Systems for Real-time Multimedia (ESTIMedia), 2012 IEEE 10th Symposium on,
pp. 75-84, 2012.

[6] Andrew Nelson, Anca Molnos, Ashkan Beyranvand Nejad, Davit Mirzoyan, Sorin
Cotofana, Kees Goossens, “Embedded Computer Architecture Laboratory: A
Hands-on Experience Programming Embedded Systems with Resource and Energy
Constraints”, Workshop on Embedded and Cyber-Physical Systems Education,
Published, 2012.

[7] Andrew Nelson, Orlando Moreira, Anca Molnos, Sander Stuijk, Ba Thang Nguyen,
Kees Goossens, “Power minimisation for real-time dataflow applications”, Digital
System Design (DSD), 2011 14th Euromicro Conference on, pp. 117-124, 2011.

[8] Andrew Nelson, Anca Molnos, Kees Goossens, “Composable power management
with energy and power budgets per application”, Embedded Computer Systems
(SAMOS), 2011 International Conference on, pp. 396-403, 2011.

[9] Jude Ambrose, Anca Molnos, Andrew Nelson, Sorin Cotofana, Kees Goossens,
Ben Juurlink, “Composable local memory organisation for streaming applications
on embedded MPSoCs”, Proceedings of the 8th ACM International Conference on
Computing Frontiers, pp. 23, 2011.

[10] Andrew Nelson, Andreas Hansson, Henk Corporaal, Kees Goossens, “Conservative
application-level performance analysis through simulation of MPSoCs”, Embedded

189

Systems for Real-Time Multimedia (ESTIMedia), 2010 8th IEEE Workshop on, pp.
51-60, 2010.

[11] Anca Molnos, Jude Angelo Ambrose, Andrew Nelson, Radu Stefan, Sorin Cotofana,
Kees Goossens, “A composable, energy-managed, real-time MPSoC platform”, Op-
timization of Electrical and Electronic Equipment (OPTIM), 2010 12th International
Conference on, pp. 870-876, 2010.

Workshop Paper (without published proceedings)

[1] Benny Akesson, Sander Stuijk, Anca Molnos, Martijn Koedam, Radu Stefan,
Andrew Nelson, Ashkan Beyranvand Nejad, Kees Goossens, “Virtual platforms for
mixed time-criticality applications: The CoMPSoC architecture and SDF3 design
flow”, Proceedings of workshop on Quo Vadis, Virtual Platforms, 2012.

APPENDIXF
Samenvatting

Composable en Voorspelbaar Vermogen Beheer

De functionaliteit van embedded systems neemt voortdurend toe. De rekenkracht van de
embedded systems groeit om aan deze vraag te kunnen blijven voldoen, terwijl embedded
multiprocessor systems steeds normaler worden. De beperkingen van embedded systems
zijn niet altijd gerelateerd aan de grootte van de chip, maar zijn veelvuldig een gevolg van
beperkingen in energie en/of vermogen. Hoewel het mogelijk is om een krachtiger MPSoC
te gebruiken, is het niet altijd mogelijk om een energie- of vermogen bron te verschaffen,
die de vraag aankan binnen de volume- en gewichtseisen van het apparaat. Door “power
management” middels DVFS is het apparaat in staat om op minder dan zijn maximum
spanning en frequentie te draaien, wat ruimte laat voor een groot rekenvermogen indien
nodig, met behoud van vermogen op andere momenten.

Embedded systems hebben vaak een real-time functionaliteit. Een real-time applicatie
heeft een bijbehorend formeel model om te controleren of het voldoet aan de timing
vereisten. Dit formele model wordt gebruikt om een “worst-case” tijd analyse uit te voeren
om er voor te zorgen dat de applicatie aan de vereisten voldoet. Deze modellen bevatten
de worst-case timing van de berekening en communicatie van de applicatie. Met timing
veranderingen als gevolg van power management moet ook rekening worden gehouden,
wat het verificatie proces bemoeilijkt.

De drive voor steeds verdergaande functionaliteit heeft geleid tot "mixed time-criticality
systems", waarin meerdere applicaties met verschillende timing criticalities dezelfde hard-

191

192 APPENDIX F. SAMENVATTING

ware delen. Dit compliceert het verificatie proces verder, aangezien rekening moet worden
gehouden met de verstoring van de timing door de gedeelde resources. Een monolithi-
sche verificatie actie is dan ook traditioneel vereist na systeem integratie en deze moet
opnieuw worden uitgevoerd als er aanpassingen zijn gedaan die de timing van applicaties
beïnvloeden.

De probleemstelling die we willen oplossen in dit proefschrift is om real-time appli-
caties zelfstandig te laten executeren en power management uit te laten voeren zonder
hun timing vereisten te overtreden of de timing verificatie van gelijktijdig uitvoerende
applicaties ongeldig te maken.

Om dit probleem op te lossen, introduceren we de Composable and Predictable
Microkernel (CoMik) om processors composable en voorspelbaar te virtualiseren. Deze
virtuele processors kunnen elkaars timing met geen enkele cyclus verstoren, wanneer ze
worden gebruikt in combinatie met composable en voorspelbare geheugen controllers en
interconnect (zoals verschaft door het CompSOC platform). Als hetgeen dat draait op
de virtuele processors (bv. een OS of een applicatie rechtstreeks) een real-time vereiste
heeft, kan het, onafhankelijk van hetgeen dat draait op gelijktijdige virtuele processors en
virtuele resources, worden geverifieerd.

Om formeel analyseerbare applicatie uitvoering mogelijk te maken, dragen we het
Predictable Operating System (POSe) bij dat dataflow applicaties in staat stelt om te wor-
den uitgevoerd op een (gevirtualiseerde) processor. Onze bijdrage is een gecombineerde
applicatie en platform dataflow graaf, inclusief een algoritme om dit proces te automati-
seren. Wanneer het wordt toegelicht met de worst-case timing, wordt de gecombineerde
applicatie en systeem graaf gebruikt om te verifiëren dat de applicatie zijn timing vereiste
haalt.

Als de applicatie beter presteert dan vereist (bv. wanneer de input of platform gedrag
beter zijn dan "worst case"), kan de prestatie naar beneden worden bijgesteld door middel
van DVFS om een vermindering in het energieverbruik te realiseren. Wij contribueren
een off-line convex optimalisatie, die een gecombineerd applicatie- en platform dataflow
model gebruikt om statische run-time frequentie niveaus af te leiden en een laag energie-
verbruik te bereiken. De off-line techniek kan statische “slack” (speling) benutten in het
schema, maar geen dynamische run-time slack als gevolg van variatie in de taak uitvoering
tijden. Voordat de dynamische slack kan worden gebruikt, moet het eerst kunnen worden
waargenomen. Voor dit doel verschaft CoMik onafhankelijke vermogen, energie en tijd
verantwoordingen per virtuele processor. Dit houdt in dat elke virtuele processor indivi-
duele vermogen en energie budgetten toegewezen kan krijgen en aan POSe applicaties
kunnen timing budgetten worden toegewezen. Onze bijdrage is een beschrijving en een
model voor de verdeling van de energie- en vermogen budgetten tussen meerdere virtuele
processors, zodat wat er draait op de virtuele processor composable onafhankelijk power
management kan uitvoeren zonder het vermogen te beïnvloeden van de andere virtuele
processors om hun hele budget allocatie te gebruiken.

Met behulp van CoMik’s verantwoording infrastructuur, laten we ook zien hoe de
kwaliteit van de applicaties dynamisch kan worden afgestemd om te helpen voldoen aan

193

de timing, energie of vermogen vereisten. Verder contribueren wij een gedistribueerd
dynamisch power-management beleid dat het mogelijk maakt om dataflow applicaties,
die worden afgebeeld op meerdere (virtuele) processors, observaties te laten maken over
gedistribueerde dynamische slack en lokale power-management beslissingen.

We laten de toepasbaarheid van de gepresenteerde technieken zien op een geïmplemen-
teerd Field Programmable Gate Array (FPGA) prototype van een CompSOC hardware
platform instantie, met behulp van een H.263 decoder als een case studie applicatie. We
tonen aan dat onze technieken niet alleen in theorie werken, maar ook dat ze toepasbaar
en geïmplementeerd zijn.

	Title page
	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1.1 Consumer Trends
	1.2 Industry Trends
	1.3 Problem Statement
	1.4 Requirements
	1.5 Contributions
	1.6 Overview

	2 The CompSOC: Mixed Time-Criticality Platform
	2.1 Real-time Dataflow Applications
	2.2 CompSOC: Predictable and Composable Hardware
	2.3 CoMik: Predictable and Composable Virtualisation
	2.4 POSe: Dataflow Execution Library
	2.5 Dataflow Modelling of Application and Platform
	2.6 Related Work
	2.7 Summary

	3 Composable Time, Energy and Power Accounting
	3.1 DVFS Power Model
	3.2 POSe Accounting
	3.3 CoMik Composable Accounting
	3.4 Composable Energy Budget Distribution
	3.5 Related Work
	3.6 Summary

	4 Static Voltage and Frequency Scaling
	4.1 Convex Power Optimisation
	4.2 Formulation for CVX convex solver
	4.3 Applied in Practice
	4.4 Related Work
	4.5 Summary

	5 Dynamic Voltage and Frequency Scaling
	5.1 Quality/Power Trade-off Mechanism
	5.2 Distributed Real-time Multi-Core DVFS
	5.3 Distributed Power Management Applied in Practice
	5.4 Related Work
	5.5 Summary

	6 Case Study
	6.1 CoMik's Composable Virtualisation in Action
	6.2 CompSOC HSDF Model Evaluation
	6.3 Power Management of an H.263 Decoder
	6.4 Summary

	7 Conclusions and Future Work
	Bibliography
	A Glossary
	A.1 Abbreviations
	A.2 Lists of Symbols

	B Example CoMik and POSe Application Configuration
	C Example HSDFG Convex Analysis Script
	D Curriculum Vitae
	E Publications
	F Samenvatting

