
Design and Formal Analysis of Real-Time Memory Controllers

proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de

rector magni�cus prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor

Promoties, in het openbaar te verdedigen
op maandag 26 september 2016 om 16:00 uur

door

Yonghui Li

geboren te Shaanxi, China

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A.B. Smolders
1e promotor: prof.dr. K.G.W. Goossens
copromotor: dr. K.B. Akesson (CISTER INESC TEC and ISEP)
leden: prof.dr. Y. Wang (Uppsala University)

prof.dr.ir. J.P. Katoen (RWTH Aachen)
prof.dr.ir. C.H. van Berkel
dr.ir. R.J. Bril

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming

met de TU/e Gedragscode Wetenschapsbeoefening.

Design and Formal Analysis of
Real-Time Memory

Controllers

Yonghui Li

Committee:

prof.dr. K.G.W. Goossens Eindhoven University of Technology, promotor

dr. K.B. Akesson CISTER INESC TEC and ISEP, copromotor

prof.dr.ir. A.B. Smolders Eindhoven University of Technology, chairman

prof.dr. Y. Wang Uppsala University
prof.dr.ir. J.P. Katoen RWTH Aachen University
prof.dr.ir. C.H. van Berkel Eindhoven University of Technology
dr.ir. R.J. Bril Eindhoven University of Technology

© Yonghui Li 2016. All rights are reserved. Reproduction in whole or in part is prohibited
without the written consent of the copyright owner.

This thesis was typeset in LATEX, written in Sublime Text and built with SCons. The �gures
were created with Viso and the graphs were plotted using python matplotlib.

The cover of this thesis was designed by Mr. Juan Manuel Martelli.

Printed by CPI Koninklijke Wöhrmann – The Netherlands.

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-4140-9

A C K N O W L E D G M E N T S

The PhD study has resulted in this thesis after four-year hard work, which involved
many bright minds and productive collaborations with many people. I foremost thank
my promotor Prof. Kees Goossens for his continuous encouragement, and for his sharp
insights and valuable suggestions that helped to make progresses in my research and
also engineering skills. For his broaden knowledge and wisdom, I would like to say that
he is the one whom I can always believe. My special thank goes to my co-promotor
Dr. Benny Akesson for his comprehensive assistance in the whole procedure of my
research work. I extremely appreciate all the enjoyable and detailed discussions with
him, which helped me to make my work more concrete. In addition to the technical
work, I am also very grateful to him for taking care of me in life and for always giving
me valuable advices. I would also like to thank Prof. Yi Wang, Prof. Kees van Berkel,
Prof. Joost-Pieter Katoen, Dr. Reinder J. Bril, and Prof. Bart Smolders for being my thesis
committee and giving their valuable feedback.

Without productive and supportive collaborations, it is hard to come up with this
thesis. In particular, I want to thank Dr. Orlando Moreira, Hrishikesh Salunkhe, and João
Bastos for their help on the data�ow modeling of the memory controller. Without their
persistent support, it was hard to complete this work fast and was impossible to win
the best paper award from ESTIMEdia’ 15. I also thank Dr. Marc Geilen for the valuable
discussions of data�ow modeling. His deep insight helped me to correct my model and
make the work more concrete. My special thank also goes to Dr. Kai Lampka for the
generous discussions about timed automata model and for making my stay in Uppsala
enjoyable. I also appreciate his help in completing a paper published in a top conference.
Mladen Skelin has given very valuable feedback on a chapter of this thesis. Moreover,
the discussions with him were very enjoyable and useful. He deserves my gratitude. I
would also like to thank Valeriu Codreanu especially for his help in applying for the
permission to use the SURFsara servers. Acknowledgment also goes to SURFsara for
supporting the experiments of model checking.

In the past four years, I have had the opportunity to work with a large number of
people. I am especially grateful to the Memory team, where I comprehensively learned
the memory subsystem. I enjoyed the discussions during the regular meetings. I also
appreciate the critical feedback from the team members on my work as well as their
great help on solving (non-)technical issues. I was fortunate to be a part of the mem-
ory team, and I am thankful to the team members Sven Goossens, Manil Dev Gomony,
Karthik Chandrasekar, and Jasper Kuijsten. The memory team was involved in a larger
CompSoC team, where I learned more about multicore embedded systems than any-
where else. I am grateful to the CompSocers Andrew Nelson, Martijn Koedam, Gabriela

v

Breaban, Reinier van Kampenhout, Shubhendu Sinha, Davit Mirzoyan, Juan Valencia,
Rasool Tavakoli, and Hadi Ahmadi Balef for the valuable and interesting discussions.

I am very grateful to the friendship of all members of the Electronic Systems group.
Many thanks to Firew Siyoum, Shakith Fernando, Erkan Diken, S. Rehan Afzal, Francesco
Comaschi, Luc Vosters, Mark Wijtvliet, Gert-Jan van den Braak, Maurice Peemen, Amir
Behrouzian, Hadi Ara, Joost van Pinxten, Andreia Moço, Robinson Medina Sanchez,
Sander Stuijk, for the wonderful discussions during internal/external meetings/confer-
ences, parties, and group events. My sincere thanks give to our group secretaries Marja
de Mol, Rian van Gaalen, and Margot Gordon for their special care and supportive as-
sistances that made my stay in the o�ce very comfortable. I am extremely thankful to
these Chinese in our group, including Dongrui She, Yifan He, Hailong Jiao, Xin Chen,
Jun Zhu, Bo Liu, Ang Li, Wenjin Wang, Wenfeng (Sean) Wang, Tong Geng, Qi Tang,
Zechuan Li, Hubiao Yang, for their help in work and life and also the great moments
that we shared together inside and outside work.

The PhD life might be not colorful without many friends for the daily life. I would
like to thank my running partners Jiong Zhang, Hefeng Zhou, Zizheng Cao, Qing Wang,
Jie Xie, for sharing many great moments outside. I am also grateful to Bilin Han, Caixia
Liu and Roy Berkeveld, Shenhai Ran, Wang Miao and Shuli Wang, Yuqing Jiao, Pei Tang,
Jun Xia, Guanna Li and Dapeng Sun, Jiquan Wang, Lin Xu and Yang Zhang, Huapeng
Sui, Shengnan Lu, Yaping Luo and many others who made my stay in Eindhoven �lled
with lots of joy and fun.

Finally, I would like to thank my family for supporting me through all these years.
Their encouragement and expectation drive me to move on. No matter how far away we
are from each other, our hearts are always close. In particular, I would like to thank my
farther who left us three years ago. May you �nd peace in heaven and you are always in
my heart. Last but not least, I am very grateful to my wife YingChao Cui for supporting
me to overcome the di�culties in life and work, and for sharing the exciting moments
together. I cannot imagine how miserable my life might be without her accompanying
in the past years. I really look forward to the future life being with her.

Yonghui Li, August 17, 2016

vi

A B S T R A C T

Design and Formal Analysis of Real-Time Memory Controllers

Modern multi-core embedded systems integrate an increasing number of heteroge-
neous resources to provide the necessary computational capacity for executing a variety
of applications simultaneously. To reduce the cost, resources are shared by real-time and
non-real-time applications. The former have timing requirements, such as a maximum
response time or a minimum throughput, which must always be satis�ed. The latter
must be responsive and require good average performance. However, it is di�cult to
design these systems because of the complex sharing of resources between applications,
making it challenging to meet their timing requirements.

SDRAM is typically used as a main data storage device in embedded systems to store
the data for the executed applications. It is shared by memory requestors, such as proces-
sors, DMAs, and hardware accelerators, which generate diverse memory tra�c in terms
of arbitrary read/write transactions with variable sizes on behalf of the applications
they run. As a result, the memory controller coordinating between the requestors and
the SDRAM has to provide guaranteed performance for real-time applications, while
still giving good average performance to the rest, in the context of this diverse memory
tra�c. It is di�cult for a memory controller to meet this requirement, because SDRAM
is a complex resource, resulting in interference between requestors when they com-
pete for the memory. Existing real-time memory controllers execute transactions by
scheduling commands to the SDRAM either (semi-)statically based on pre-computed
command schedules or dynamically. Static scheduling eases the analysis by sacri�cing
average performance, since run-time information cannot be exploited, and it does not
e�ciently support variable transaction sizes. On the other hand, dynamic scheduling
achieves better average performance, while the analysis becomes harder. Therefore, ex-
isting dynamically-scheduled memory controllers and/or their analyses only support
�xed transaction sizes.

The goal of this thesis is to overcome the problem of designing an e�cient real-time
memory controller for increasingly complex systems that feature a mix of real-time
and non-real-time applications. The main contributions of this thesis are 1) a memory
controller, named Run-DMC, designed to e�ciently deal with the diverse tra�c by dy-
namically scheduling commands for each transaction at run-time, and 2) three analysis
approaches proposed to provide the worst-case response time (WCRT) and worst-case
bandwidth (WCBW) based on a formalization, a data�ow model, and a timed automata
model, respectively.

vii

The architecture of Run-DMC consists of a front-end and a back-end. The front-end
connects to the requestors through a bus or Network-on-Chip (NoC). It receives trans-
actions from di�erent requestors and then uses a novel work-conserving time-division

multiplexing (TDM) arbiter to send transactions to the back-end. The TDM arbiter uses
time slots with variable lengths to cope with the variable-sized transactions. Moreover,
the requirements of the requestors can be satis�ed by allocating a di�erent number
of slots to them. The back-end executes transactions with variable sizes by dynami-
cally scheduling commands to the SDRAM using a new command scheduling algorithm,
which exploits pipelining within and between transactions.

Run-DMC is analyzed using three proposed analysis approaches. Our �rst approach
is based on a formalization that accurately computes the time when a command is sched-
uled. The formalization is implemented as an open-source tool called RTMemController.
Based on the formalization, the WCRT and WCBW can be computed, and they are guar-
anteed to be conservative using manual proofs, which are time-consuming to make. Our
second approach switches the e�ort from formal analysis to modeling the timing behav-
ior of the memory controller, which is much easier and faster. The worst-case bounds
can be derived by analyzing the model with existing techniques and tools, which can
automatically handle the complex interferences between transactions. The second ap-
proach is based on a mode-controlled data�ow (MCDF) model. An existing tool called
Heracles is used to automatically derive the WCBW bound. However, Heracles cannot
analyze the WCRT. The third approach uses a timed automata (TA) model to accurately
capture the timing behavior of Run-DMC, and the bounds on WCBW and WCRT are
obtained by verifying properties of the TA model via model checking. Finally, since the
same memory controller is analyzed with these three analysis approaches, we investi-
gate their strengths and weaknesses with respect to performance, portability, exploita-
tion of static information, simulation, validation, and veri�cation.

The proposed memory controller and the analysis approaches are experimentally
evaluated. The results demonstrate that Run-DMC signi�cantly outperforms a state-
of-the-art semi-static memory controller in the average case by achieving 44.9% smaller
response time and 16.7% larger bandwidth, while they are comparable in the worst-case.
Moreover, we compare the performance of the three analysis approaches and quantify
the impact of their underlying assumptions. The results show that the TA model out-
performs the MCDF model that in turn is better than the formal analysis approach.

viii

C O N T E N T S

1 introduction 1
1.1 Real-Time Embedded Systems . 2
1.2 Problem Statement . 5
1.3 Thesis Contributions . 7

2 background & terminology 13
2.1 SDRAM Architecture and Operation . 13
2.2 Real-Time Memory Controllers . 18
2.3 Analysis of Real-Time Memory Controllers 21

3 run-dmc: a real-time memory controller with dynamic com-
mand scheduling 31
3.1 Related Work . 32
3.2 Memory Controller Front-End . 33
3.3 Memory Controller Back-End . 38
3.4 Cycle-Accurate SystemC Model of Run-DMC 43
3.5 Experimental Results . 45
3.6 Summary . 55

4 formal analysis of run-dmc 57
4.1 Related Work . 58
4.2 Formalization of Dynamic Command Scheduling 60
4.3 Worst-Case Initial Bank States . 63
4.4 Worst-Case Execution Time . 66
4.5 Worst-Case Response Time . 73
4.6 Worst-Case Bandwidth . 75
4.7 RTMemController Tool . 75
4.8 Experimental Results . 77
4.9 Summary . 88

5 mode-controlled dataflow (mcdf) modeling of run-dmc 91
5.1 Related Work . 92
5.2 Background of Data�ow Models . 94
5.3 MCDF Model of Run-DMC . 99
5.4 Worst-Case Bandwidth . 107
5.5 Experimental Results . 109
5.6 Summary . 114

6 timed automata (ta) modeling of run-dmc 117
6.1 Background of Timed Automata . 118

ix

x contents

6.2 Modular TA Model of Run-DMC . 120
6.3 Veri�cation with Model Checking . 130
6.4 Related Work . 134
6.5 Experimental Results . 135
6.6 Summary . 143

7 conclusions and future work 145
7.1 Conclusions . 145
7.2 Future Work . 151

bibliography 153

a proof of lemmas 163
a.1 Proof of Lemma 1 . 163
a.2 Proof of Lemma 2 . 164
a.3 Proof of Lemma 3 . 166
a.4 Proof of Lemma 4 . 168
a.5 Proof of Theorem 1 . 170
a.6 Proof of Theorem 2 . 172
a.7 Proof of Lemma 5 . 173

b system declarations for timed automata model 175
b.1 Intuitive Timed Automata Model . 175
b.2 Simpli�ed Timed Automata Model . 176

c scalability of mode-controlled dataflow and timed automata 179

d list of acronyms 183

e list of symbols 185

f about the author 187

list of publications 190

L I S T O F F I G U R E S

Figure 1.1 An example of a multi-core hardware platform. 3
Figure 1.2 An abstracted view on a typical memory controller. 4
Figure 1.3 The development of our dynamically-scheduled memory con-

troller Run-DMC. 9
Figure 2.1 SDRAM architecture . 14
Figure 2.2 Simpli�ed state diagram of scheduling commands. 16
Figure 2.4 The general architecture of a memory controller. 19
Figure 2.6 Bank access number and bank number for Ti and Ti+1. 21
Figure 2.7 An example of illustrating the bank accesses for transactions

T0, T1, and T2. 22
Figure 2.8 Command scheduling dependencies between any two succes-

sive bank accesses corresponding to Ti and Ti
′ 23

Figure 2.9 Dependencies between transactions. 24
Figure 2.11 Timing de�nitions for accessing SDRAM with pipelining. . . . 28
Figure 3.1 The architecture of the front-end and back-end of Run-DMC. 34
Figure 3.2 The worst-case interference delay for requestor r1: (a) TDM

slot allocation; (b) the proposed work-conserving TDM arbiter;
(c) traditional work-conserving TDM arbiter. 38

Figure 3.3 The structure of the cycle-accurate SystemC simulator of Run-
DMC. 43

Figure 3.4 The maximum measured WCET and average execution time (ET)
for DDR3-1600G SDRAM with �xed transaction sizes. 47

Figure 3.5 The improvement of the average execution time (ET) for dif-
ferent DDR3 SDRAMs with �xed transaction sizes. The results
of Run-DMC are compared to the semi-static approach [3] . . 48

Figure 3.6 The measured minimum and average bandwidth for DDR3-
1600G SDRAM with �xed transaction sizes. 49

Figure 3.7 The maximum measured response time (RT) for DDR3-1600G
SDRAM with �xed transaction sizes. 50

Figure 3.8 Comparison to a semi-static approach [3] in average response
time of Mediabench application traces for di�erent DDR3 SDRAMs
with �xed transaction size. 51

Figure 3.9 The maximum measured WCET of both Run-DMC and the
semi-static approach [4] for DDR3-1600G SDRAM with vari-
able transaction sizes. 53

xi

xii list of figures

Figure 3.10 The average bandwidth (BW) of both Run-DMC and the semi-
static approach [4] for DDR3-1600G SDRAM with variable trans-
action sizes. 54

Figure 3.11 The measured response time (RT) of both Run-DMC and the
semi-static approach [4] for DDR3-1600G SDRAM with vari-
able transaction sizes. 55

Figure 3.12 The average response time (RT) improvement gained by Run-
DMC versus the semi-static approach [4] with the best patterns
for DDR3 SDRAMs with variable transaction sizes. 56

Figure 4.1 The timing dependencies of command scheduling for transac-
tion Ti. 62

Figure 4.2 An example of As-Late-As-Possible (ALAP) scheduling with
DDR3-1600G SDRAM for Ti which has BIi = 4 and BCi = 2.
The previous transaction Ti−1 uses BIi−1 = 2 and BCi−1 = 2.
The starting bank for both Ti-1 and Ti is Bank 0. 65

Figure 4.3 An illustration of the ALAP scheduling that provides worst-
case initial bank states for the current transaction Ti. 67

Figure 4.4 An example illustrating that the actual execution time of a
larger transaction (32 Bytes write) can be less than that of a
smaller transaction (16 Bytes write). 72

Figure 4.5 The design �ow of RTMemController, an open-source WCET
and ACET analysis tool for real-time memory controllers [70]. 76

Figure 4.6 The WCET of �xed transaction sizes with DDR3-1600G SDRAM.
Results are compared to a semi-static approach [3]. 80

Figure 4.7 The worst-case bandwidth (WCBW) for a DDR3-1600G SDRAM
using our dynamically-scheduled Run-DMC and the semi-static
approach [3] with �xed transaction sizes. 81

Figure 4.8 The worst-case response time for DDR3-1600G SDRAM with
�xed transaction sizes . 82

Figure 4.9 WCET for DDR3-1600G with variable transaction sizes. 83
Figure 4.10 Worst-Case Bandwidth for DDR3-1600G with variable trans-

action sizes. 84
Figure 4.11 WCET with known/unknown previous transaction size. Re-

questors are allocated to TDM slots in descending order of their
transaction sizes. 85

Figure 4.13 WCRT for DDR3-1600G with variable transaction sizes. 88
Figure 4.14 The monotonicity of scheduled WCET with transaction size

for a requestor. DDR3-1600G is taken as an example. 89
Figure 5.1 A single-rate data�ow graph. 94
Figure 5.2 An MCDF graph and a basic tunnel. 95

list of figures xiii

Figure 5.3 The equivalent SRDF of recurring SMS for the MCDF in Fig-
ure 5.2. 96

Figure 5.4 Merging the equivalent SRDF graphs of SMS0 and SMS1. This
results in the equivalent SRDF graph of [SMS0 | SMS1]∗. . . . 97

Figure 5.5 The execution of the merged equivalent SRDF graph shown in
Figure 5.4. 98

Figure 5.6 An example of data�ow modeling of commands to a bank. . . 100
Figure 5.7 An overview of the MCDF modeling of memory controllers. . 100
Figure 5.8 Mode-controlled data�ow model of memory command sche-

duling. 102
Figure 5.9 A generic mode tunnel with M inputs and N outputs. 105
Figure 5.10 A cascade tunnel structure to support multiple initial tokens

for a speci�c set of modes. 107
Figure 5.11 The WCBW given by di�erent analysis approaches for DDR3-

1600G SDRAM with �xed transaction size. 112
Figure 5.12 The WCBW given by di�erent analysis approaches for DDR3-

1600G SDRAM with known/unknown static order of variable
transaction sizes. 113

Figure 5.13 The WCBW achieved by MCDF model for DDR3 SDRAMs with
known/unknown static order of variable transaction sizes. . . 114

Figure 6.1 A Timed Automata model of producing and consuming trans-
actions. 119

Figure 6.2 Abstracted overview of TA model for the dynamically-scheduled
memory controller Run-DMC. 121

Figure 6.3 The TA templates for intuitively modeling the behavior of dy-
namic command scheduling within the Uppaal toolbox. 123

Figure 6.4 The optimized TA templates for modeling the behavior of dy-
namic command scheduling within the Uppaal toolbox. 128

Figure 6.5 The TA to verify the WCRT and WCBW bounds. 131
Figure 6.6 The WCRT for 4 requestors accessing DDR3-1600G with �xed

transaction sizes. 137
Figure 6.7 The WCBW using di�erent DataSize for �xed transaction sizes

with DDR3-1600G. 139
Figure 6.8 The WCBW for �xed transaction sizes. 140
Figure 6.9 The WCRT for the requestors in a HD video and graphics proc-

essing system [31] with variable transaction sizes. 142
Figure 6.10 The WCBW for variable transaction sizes. 143

L I S T O F TA B L E S

Table 2.1 Timing constraints (TC) for DDR3-1600G SDRAM [53]. 15
Table 3.1 Characterization of memory tra�c with �xed transaction size. 46
Table 3.2 Characterization of memory tra�c with variable transaction

sizes. 52
Table 4.1 Summary of notation. 61
Table 6.1 Comparison between the intuitive and optimized TA model. . 129
Table C.1 Di�erent con�gurations for Run-DMC with variable sizes. . . 180
Table C.2 WCBW (MB/s) and WCRT (cycles) of di�erent DDR3 SDRAMs

with �xed transaction size. 181

xiv

1
I N T R O D U C T I O N

In the 20th century, one of the greatest inventions was the Internet [9], which connects
people and delivers information worldwide. Now, we are in 2016 and what can be ex-
pected for the future is that a massively connected world beyond the Internet will be
built, where everything will be connected, leading to the Internet of Things (IoT) [41].
The connected world will be much more cooperative, productive, and intelligent. Simi-
larly to the Internet where computers are the fundamental components, embedded plat-
forms will be the "heart" of "things", such as our digital watch, mobile phones, naviga-
tion systems, factory controllers, and the computers inside cars and aircraft. Embedded
platforms are designed for a particular purpose and interact with physical mechanical
or electrical systems by running their applications, which often have real-time require-

ments [19], such as a time deadline or a processing throughput requirement. These re-
quirements may be associated with the safety or mission of the system and must hence
be satis�ed.

To satisfy the requirements of the real-time applications, the embedded platform has
to provide guaranteed performance [11], such as a worst-case execution time and/or
a minimum throughput. However, it is challenging to achieve this goal because of the
complexity of embedded platforms, which are composed of an increasing number of re-
sources, such as processing cores, hardware accelerators, memories, I/O interfaces, and
peripherals. Moreover, the platform supports both real-time and non-real-time applica-
tions [2, 16], and the resources in the platform are shared between all the applications.
Guaranteed performance must be given to real-time applications, such that their require-
ments are always satis�ed, while good average performance is needed by non-real-time
applications to feel responsive.
Synchronous Dynamic Random-Access Memory (SDRAM) is one of the most shared re-

sources in an embedded platform and has great impact on satisfying the requirements of
applications [60]. It is accessed by memory requestors, such as cores, hardware accelera-
tors, and direct memory access (DMA) modules, via a memory controller. Since multiple
applications execute concurrently in the platform, the requestors generate diverse traf-

�c for the memory controller, which receives arbitrarily-mixed read/write transactions
with variable sizes. Moreover, the memory addresses of transactions correspond to dif-
ferent internal locations of the SDRAM, resulting in complex interferences between

1

2 introduction

transactions. This thesis focuses on design and formal analysis of real-time memory con-

trollers, which e�ciently deal with the diverse memory tra�c.

This chapter starts with Section 1.1, which introduces real-time embedded systems.
The requirements of applications are discussed, followed by a brief introduction of the
main memory sub-system in an embedded hardware platform. The problems of design-
ing and analyzing of real-time memory controllers are given in Section 1.2. In Section 1.3,
we brie�y discuss how our contributions address the raised issues.

1.1 real-time embedded systems

This section investigates some general trends in the application requirements, modern
multi-core hardware platforms, and main memory subsystems. In particular, the main
memory subsystem is presented in more detail, since it is the basis of the work in this
thesis.

1.1.1 Application Requirements

There is a variety of applications running on modern multi-core embedded platforms,
including hard/soft real-time and non-real-time applications [61]. The hard real-time
applications have deadlines that must always be respected. For example, a longitudinal
�ight controller adjusts the longitude of an aircraft by changing its speed within a given
time period [83]. It is unacceptable to miss a deadline, since it can cause catastrophic
consequences, such as an aircraft crash and the loss of lives. In contrast, soft real-time
applications are not safety critical, and certain deadline misses are tolerable, though
they are highly undesirable. One or more overrun deadlines for soft real-time applica-
tions may result in temporary quality/service degradation, but will not lead to a catas-
trophe. For example, displaying a video stream on mobile devices can accept occasional
dropped frames, which have a little negative e�ect on the Quality of Service (QoS) for the
users [106]. Finally, non-real-time applications, such as web browsing [89], do not have
any timing constraints and can tolerate occasional slow response times. However, they
have to be fast enough to keep the user happy and have a good average performance.

This thesis focuses on how to provide guaranteed performance for the main memory,
such as the worst-case response time and bandwidth. The worst-case response time is the
maximum latency experienced by a transaction in the memory controller. The worst-
case bandwidth represents the minimum data transfer rate of the memory controller
over a long time period. They are used to satisfy the requirements imposed by the hard
real-time applications on the memory subsystem. In this thesis, we do not distinguish
soft real-time and non-real-time applications. The reason is that soft real-time applica-
tions are typically supported by just providing good enough average performance. Note
that this thesis does not address the issues of how to e�ciently allocate resources (e.g.,

1.1 real-time embedded systems 3

SoC

Core Core Core Core SRAM

Hardware

accelerators

I/O

interfaces

Bus or Network-on-Chip

Memory

Controller

SDRAM

(off-chip)

DMA

Figure 1.1: An example of a multi-core hardware platform.

memory space, bandwidth) to the applications, such that their requirements are satis-
�ed. There exist solutions in [8, 46, 77] to solve these issues.

1.1.2 Multi-Core Hardware Platforms

With the advances in semiconductor technology with respect to shrinking transistor di-
mensions, an increasing number of transistors are integrated on a single chip [57]. This
high density of transistors makes it possible to integrate multiple cores in a System-on-

Chip (SoC). As a result, a large amount of o�-chip circuitry can be moved from printed
circuit boards to integrated circuits. This allows manufactures to produce smaller boards,
while simplifying the board layout and routing, reducing power consumption and cost [54].
It also reduces the complexities involved in high-speed board design. Due to the abun-
dant resources on a chip, it allows multiple applications to be executed concurrently.

Multi-core platforms have been widely used in almost all present electronic systems,
such as consumer electronics [60, 103], telecommunication systems [14], and automo-
tive systems [17]. They are also promising for use in avionics [82]. Multi-core platforms
executing multiple applications usually consist of various heterogeneous hardware re-
sources. Figure 1.1 presents an example of a general hardware platform, which can be
used for smart phones [86, 104] for instance. It contains a number of processing cores,
on-chip static random-access memory (SRAM), hardware accelerators, DMAs, I/O inter-
faces, and also the o�-chip memory (i.e., SDRAM), etc. The cores can be either used
to perform general-purpose computation [49] or digital signal processor (DSP) cores for
numerical manipulation of signals [78]. Hardware accelerators are specialized for accel-
erating speci�c functions [102]. For example, video or audio engines are often imple-
mented using hardware accelerators [76]. The on-chip SRAM is fast and used for the
cache or scratchpad. However, the capacity of the SRAM cannot be large, e.g., maxi-
mally a few megabytes, because of the relatively high cost per bit (i.e., 6 transistors for
one bit). The o�-chip SDRAM is used as main memory. It has much larger capacity up
to gigabytes, since only one transistor and one capacitor are needed for one bit, thus
consuming less area. However, SDRAM is slower than SRAM and has to be periodi-
cally refreshed to prevent data loss, as the capacitor su�ers from leakage. The SDRAM
is shared by other resources to read or write data via a memory controller integrated

4 introduction

Back-End Front-End
Requestor

0

Requestor

N-1

Requestor

1
Transaction

Arbitration…

Queue

Queue

Queue

SDRAM
Command

Generation

Command

Scheduler

Figure 1.2: An abstracted view on a typical memory controller.

in the SoC. The on-chip interfaces for I/O devices manage video streams or data from
Ethernet network. These on-chip resources are interconnected by a communication in-
frastructure, such as a bus or a network-on-chip (NoC) [33].

The hardware resources in a platform allow an application to be parallelized by run-
ning tasks on multiple processors simultaneously [94, 99]. Multiple applications can be
deployed in the platform at the same time by sharing the resources. As a result, complex
interferences between applications rise due to shared resources in the platform. When
one application accesses a resource, other applications requiring the same resource have
to wait. This impacts their ability to satisfy the timing constraints. In particular, SDRAM
is a very commonly shared resource by the requestors, such as cores, hardware accelera-
tors, DMAs, which generate diverse memory tra�c. This makes the design and analysis
of memory controllers challenging.

Next, we will focus on the memory subsystem and introduce how a memory con-
troller serves transactions generated by di�erent requestors.

1.1.3 Main Memory Subsystem

The memory subsystem is typically hierarchically organized in a SoC. The on-chip
caches (e.g., L1/L2/L3 caches) are closer to the processor, such that it operates without
su�ering the long latency of reading data from the main memory, i.e., o�-chip SDRAM.
When the required data is not stored in the cache, e.g., a last-level cache miss, the proces-
sor generates a transaction (i.e., memory request) to read data from the SDRAM via the
memory controller. When data must be stored, a write transaction is generated by the
processor and sent to the memory controller, which forwards the data to the SDRAM.
Similarly, other processing elements (e.g., hardware accelerators) may use DMA or spe-
ci�c circuit logic to manage their memory transactions and read/write data from/into
the SDRAM via the memory controller.

SDRAM is a very popular volatile memory and is used for temporary data storage. It
is accessed via the on-chip memory controller, which is typically partitioned into a front-
end and a back-end, as shown in Figure 1.2. The front-end receives transactions from dif-
ferent requestors, and decides in which order to serve them. Its architecture is composed
of queues for transactions per requestor and an arbiter to schedule each transaction to
the back-end. The transaction is then executed by sending instructions (i.e., memory

1.2 problem statement 5

commands) to the SDRAM, such that internal actions are triggered, e.g., reading or
writing. In essence, the back-end translates the transaction into commands with the
command generator, as presented in Figure 1.2. Once commands are generated, they are
scheduled for execution in the SDRAM by a command scheduler, also shown in Figure 1.2.
Note that commands are scheduled through a command bus to the SDRAM, where only
one command can be transferred per clock cycle. Although the front-end and back-end
are conceptually separate, interaction exists between them. For example, the front-end
arbitration between requestors can be triggered by the back-end when a speci�c com-
mand is scheduled. Moreover, depending on the implementation, the transaction-level
arbitration in the front-end can be combined with the command-level scheduling in the
back-end.

The external SDRAM is typically viewed as a black-box to simplify its internal com-
plexities [21, 29, 91, 109]. However, SDRAM is structured with multiple banks (i.e., mem-
ory arrays), which are controlled by memory commands. Commands can be executed
on multiple banks simultaneously. This results in so-called bank parallelism [59], which
supports the pipelining between transactions by executing their commands correspond-
ing to di�erent banks at the same time. The command scheduling is also complex. The
reasons include: 1) it has to respect an internal �nite-state machine that speci�es the
valid orders of executing commands, and 2) commands are executed subject to the tim-

ing constraints, such that the SDRAM can work properly. 3) When multiple commands
are available for execution, e.g., all time constraints are satis�ed for them, the sched-
uler has to choose one of them and sends to the SDRAM via the command bus. This is
called a collision between these executable commands. The occurrence of collisions is
unpredictable, because it is hard to know when the timing constraints are satis�ed for
multiple commands at the same time. Therefore, it is hard to predict the scheduling of
a command, and thus bounding the memory performance is a challenging problem.

1.2 problem statement

This section discusses the two main problems solved in this thesis. The �rst problem is
how to design memory controllers to e�ciently deal with the diverse memory tra�c in
a heterogeneous multi-core hardware platform. The following problem is how to ana-

lyze the timing behavior of the memory controller and provide guaranteed performance
in terms of worst-case response time and bandwidth. These worst-case results can be
further integrated into system-level analysis of the application. For example, the worst-
case response time for the SDRAM can be integrated as the cache miss penalty into the
worst-case execution time estimation tools of applications [11]. In addition, they can
be also integrated into a system-level analysis using data�ow formalism [80]. Although
this is an important topic, the integration of worst-case results into a high-level analysis
of real-time applications is outside the scope of this thesis.

6 introduction

1.2.1 Problem I: Real-Time Memory Controller Design

In modern multi-core systems, we see two relevant trends. 1) Both real-time and non-
real-time applications are deployed at the same time in the same SoC [2, 16]. As dis-
cussed in Section 1.1.1, the former require guaranteed performance, while the latter
should be given good average performance to feel responsive. 2) An increasing number
of heterogeneous hardware resources are integrated in a system. The external SDRAM
is shared by all resources, which result in diverse memory tra�c in terms of arbitrarily-
mixed read and write transactions with variable sizes and di�erent physical addresses,
as discussed in Section 1.1.2. These trends pose the following requirements on a memory
controller: it has to e�ciently deal with the diverse tra�c, while being analyzable to bound

its performance, such that the requirements of real-time applications can be satis�ed. More-

over, the memory controller should also give good average performance to non-real-time

applications.

A memory controller faces diverse memory tra�c from di�erent requestors executing
tasks of real-time and/or non-real-time applications. The front-end of the memory con-
troller needs an arbiter to schedule transactions from di�erent requestors. However, it
is hard to choose a proper arbiter. First, requestors have di�erent requirements in terms
of worst-case response time and/or bandwidth because of the applications being exe-
cuted. The arbiter has to distinguish these di�erences between requestors. As a result,
the widely used round-robin (RR) arbiter [85] is not always applicable, since requestors
are served in a cycle, and each of them is given an equal opportunity to access the
memory. A TDM arbiter [37] can allocate di�erent number of time slots to requestors
based on their requirements. However, a requestor needs many slots to satisfy its tight
response time requirements, while the allocated bandwidth is wasted if the requestor
has a low bandwidth requirement [77]. This problem can be overcome by �xed-priority
based arbiters by giving di�erent priorities to requestors according to their response
time requirements [55, 56]. However, this may result in starvation when a requestor is
always overtaken by a prioritized requestor.

The back-end of a memory controller executes transactions by generating and schedu-
ling commands to SDRAM subject to the timing constraints. There exists state-of-the-
art real-time memory controllers [3, 25, 39, 88], which use pre-computed static com-
mand schedules to execute transactions, such that their analyses are easy. Intuitively,
each transaction is executed by picking up commands from the static schedules and
sequentially sending them to the SDRAM. Since the schedules are statically designed,
they only support a �xed transaction size and cannot exploit the run-time state of the
SDRAM. However, transactions in the diverse tra�c need to be dynamically executed,
since they have variable sizes. Moreover, the run-time state of the SDRAM can be ex-
ploited to achieve good performance. We can imagine that di�erent numbers of com-
mands are needed by the variable-sized transactions, since a read/write command exe-
cuted by SDRAM triggers a data burst of �xed size. Moreover, other commands are also

1.3 thesis contributions 7

needed to manage the banks of SDRAM. Therefore, the question is what kind of com-

mands and how many of them should be generated for each transaction. This question
relies on the mechanisms used by the back-end. For example, a memory transaction
can read/write data bursts from/into multiple banks rather than a single one, resulting
in parallel accesses to di�erent banks.

The scheduling of commands has to enable correct execution of commands based on
the internal �nite-state machine of SDRAM, while satisfying their timing constraints. It
is di�cult for the scheduler to make a decision, because 1) the execution of a command
can be fast or slow depending on the relevant timing constraints and the current state
of the SDRAM. 2) The execution of the current command in�uences future commands,
resulting in command-level interferences. 3) The interferences between transactions are
complex, because their commands to di�erent banks can be scheduled in a pipelined
manner. Therefore, it is challenging to design an e�cient memory controller to deal
with the diverse memory tra�c. Finally, the memory controller must be analyzable,
such that the worst-case response time and bandwidth can be derived. The analysis
challenges will be discussed in the next section.

1.2.2 Problem II: Real-Time Memory Controller Analysis

This thesis focuses on analyzing the worst-case response time and bandwidth for the
SDRAM. However, the main di�culty is the complex interferences between requestors,
transactions, and commands. The response time of a transaction in the memory con-
troller starts when it arrives at the front-end. Then it may experience a delay caused by
other requestors, whose transactions may be executed �rst. The interference between
requestors is highly dependent on the arbitration mechanism used in the front-end of
the memory controller. It can be RR, TDM, or priority-based arbitrations, such as credit-
controlled static-priority arbitration (CCSP) [5] and frame-based static priority (FBSP) [6].
When the transaction is scheduled and is sent to the back-end, it is executed in pipelin-
ing with the previous transaction, resulting in interferences between transactions. Fi-
nally, the data transmission is triggered when the read/write commands are executed by
SDRAM. Hence, it is hard to analyze for how long time a transaction is executed. Within
this time, a �xed amount of data corresponding to the transaction size is transferred. It
is even more di�cult to extend this analysis to a sequence of arbitrary transactions cor-
responding to a larger data volume. As a result, the long-term bandwidth measured by
the execution times of transactions divided by the transferred data is more di�cult to
obtain.

1.3 thesis contributions

This section introduces our solutions to solve the two critical issues of design and anal-
ysis of real-time memory controllers.

8 introduction

1. We design a dynamically-scheduledmemory controller, which e�ciently deals with
the diverse memory tra�c at run-time and o�ers guarantees as well as good average
performance. We refer to this memory controller as Run-DMC and it is introduced
in Chapter 3.

2. To analyze the worst-case response time and bandwidth of Run-DMC, three analysis
approaches are proposed.
• A formal analysis approach uses a mathematical model to compute the time,

at which each command is scheduled by Run-DMC. To address the complex
interferences between transactions, it applies two simplifying assumptions to
provide the worst-case initial bank state for an arbitrary transaction. Then the
bounds on the worst-case response time and bandwidth are computed, and they
are formally proved to be conservative. This formal analysis approach is given
in Chapter 4.

• A data�ow model is proposed to provide better bounds in an easier way than the
formal analysis approach. It naturally captures the dependencies of scheduling
commands by Run-DMC, and an existing analysis tool is used to automatically
derive the bound on worst-case bandwidth. This approach eliminates one of the
assumptions used in the formal analysis approach, resulting in a better bound.
Moreover, the bound is easier to obtain, since it does not rely on complex manual
proofs used by the previous approach. This approach is presented in Chapter 5.

• The third approach continues modeling Run-DMC in Chapter 6, where a timed
automata model is proposed to accurately describe the timing behavior of Run-
DMC without any simplifying assumptions. The bounds on both worst-case re-
sponse time and bandwidth are derived using model checking with an exist-
ing tool. This approach performs equally well as or better than the previous
approaches to derive the bounds.

3. All the three analysis approaches are used to analyze the same memory controller (i.e.,
Run-DMC). This allows us to investigate their strengths and weaknesses in Chap-
ter 7.

4. Finally, the formal analysis approach has been implemented as an open-source tool
RTMemController [70] to evaluate both the average-case and worst-case performance
of Run-DMC. Moreover, the TA model is also publicly available on-line [73].

Figure 1.3 shows an overview of the development of Run-DMC, including its implemen-
tation, simulation, validation, and veri�cation, by using di�erent models and tools. We
proceed by explaining each contribution and Figure 1.3 in more detail in the following
sections.

1.3 thesis contributions 9

Models Worst-Case Analyses Tools

Timed Automata

model (TA)

Mode-controlled

dataflow model

(MCDF)

Mathematical

model

Analytical

approach

(ALAP &

Collision)

Scheduled

approach

(ALAP)

MCDF

Analysis

(Collision)

TA

analysis

RTMemCtrl:

Open source

RTMemCtrl:

Open source

Ericsson

Heracles

Ericsson

Heracles

SystemC

Simulator

SystemC

Simulator

Cycle-accurate

model

Validation Accuracy

equal

low high

Worst-case

witness

Correspondence

Figure 1.3: The development of our dynamically-scheduled memory controller Run-DMC.

1.3.1 Run-DMC: a Dynamically-Scheduled Real-Time Memory Controller

To e�ciently deal with the diverse memory tra�c, we design a memory controller to
execute transactions with variable sizes by dynamically scheduling commands to the
SDRAM according to the run-time SDRAM state and timing constraints. Its architecture
is composed of a front-end and a back-end. The front-end uses a novel TDM arbiter to
serve requestors with variable transaction sizes. The TDM slots hence have variable
lengths. Moreover, it is �exible to meet the requirements of requestors by allocating
di�erent number of time slots to each requestor, while being easy to analyze. The two
novelties to reduce the worst-case response time are that 1) idle slots (i.e., no transac-
tions from the requestor) are skipped rather than being reallocated. This reduces the
interference delay between requestors, since the requestor receiving the slot may have
larger transaction sizes and consume more time. 2) Requestors are served in descending
order of their transaction sizes. The reason is that transactions pipeline better following
a larger transaction than a smaller one.

To avoid complexity while still being e�cient, the back-end dynamically generates
commands based on the transaction type (i.e., either read or write), size, and physi-
cal address. It schedules commands based on an algorithm that uses a �rst-come �rst-

serve (FCFS) scheme to execute transactions in-order, while it supports pipelining be-
tween successive transactions. Moreover, scheduling collisions occurring when multi-
ple commands are executable at the same time are avoided by prioritizing the read/write

10 introduction

commands over others. The reason is that the read/write commands trigger data trans-
mission, and giving higher priorities to them intuitively provides good performance.
The proposed memory controller will be introduced in Chapter 3. It has been imple-
mented as a cycle-accurate SystemC model, as shown in Figure 1.3. It is the basis of
validating the analysis models of Run-DMC.

1.3.2 Formal Analysis of Run-DMC

As discussed in Section 1.2.2, the analysis of a memory controller that pipelines com-
mands across transactions is di�cult because of the complex interferences between re-
questors, transactions, and commands. We propose a formal analysis approach to over-
come this problem by partitioning it into two parts, where 1) interferences between
requestors are analyzed in the front-end of Run-DMC that uses our novel TDM arbiter,
and 2) the analysis of the back-end covers the interferences between commands. In par-
ticular, the back-end analysis bounds the maximum length of each time slot used by the
TDM arbiter. The formal analysis approach will be presented in Chapter 4.

To carry out the worst-case analysis, we �rstly propose a formalization to accurately
capture the scheduling times of commands. This formalization has been implemented as
an open-source C++ tool, named RTMemController [70]. It is validated by the SystemC
simulator, ensuring accurate command scheduling times (see Figure 1.3). Therefore, the
timing behavior of RTMemController is equivalent to the SystemC model of the memory
controller. Due to the equivalence, RTMemController will be used to validate the other
analysis models of Run-DMC.

Based on the formalization, the worst-case execution time experienced by a transac-
tion in the back-end is analyzed. The di�culty is that the execution of the current trans-
action depends on the previously scheduled commands corresponding to earlier transac-
tions. We employ two conservative assumptions to eliminate the impact of these earlier
transactions. The �rst assumption is that the commands of the previous transactions
were scheduled as-late-as-possible (ALAP), resulting in the maximum possible schedu-
ling times of the previous commands. This provides the worst-case initial SDRAM state
for the current transaction. Moreover, Run-DMC prioritizes read/write commands over
others. When there is a collision between them, these commands with lower priority
are delayed. Since the collisions are unpredictable, the analysis has to conservatively as-
sume that they always occur for the low-priority commands. Then the formalization can
compute the maximum scheduling times of commands for the current transaction, re-
sulting in the worst-case execution time in the back-end. This is the so-called analytical

approach, as shown in Figure 1.3. To achieve lower worst-case execution time, RTMem-

Controller is used to actually detect the command collisions for the current transaction,
while the scheduling times of the previous commands are still given using ALAP sche-
duling. As a result, this scheduled approach hence outperforms the analytical approach.
Both of them are included in RTMemController. Finally, we compute the worst-case band-

1.3 thesis contributions 11

width based on the worst-case execution time, with which a �xed amount of data is
transferred. In addition, the worst-case response time in the front-end is calculated ac-
cording to the static TDM slot allocation, where the period of each slot equals to the
relevant worst-case execution time.

1.3.3 Data�ow Modeling of Run-DMC

Run-DMC schedules commands subject to the SDRAM �nite-state machine and the tim-
ing constraints, which result in dependencies between commands. These dependencies
have already been captured by the formalization. However, its worst-case analysis pro-
vides pessimistic results because of the conservative assumptions. Moreover, the anal-
ysis is based on manual proofs that are very time-consuming to make. As a result, it
is di�cult to extend the formal analysis approach to di�erent memory controllers or
SDRAM devices. Data�ow models naturally capture dependencies and existing tools can
be used to derive the worst-case results by automatically analyzing the model. There-
fore, we switch the e�ort from formal analysis to modeling the timing behavior of the

memory controller and derive the worst-case results by analyzing the model with existing

techniques and tools.

We propose a mode-controlled data�ow (MCDF) model that captures the dependencies
of dynamic command scheduling for Run-DMC. Existing data�ow analysis techniques
implemented in the Ericsson’s Heracles tool [79] are used to derive the worst-case re-
sults. The MCDF model will be introduced in Chapter 5. In the MCDF model, memory
commands are represented by actors. The SDRAM timing constraints are captured by
the execution time of actors, while the dependencies are described by edges between
actors. A mode corresponds to a subset of the data�ow graph and the dynamism in
the memory tra�c in terms of di�erent transactions can be captured by dynamically
selecting di�erent modes.

The MCDF model is executable and supports simulation of the memory controller.
We use this to validate the MCDF model with the open-source tool RTMemController,
which provides identical scheduling times of commands for the same transaction traces.
The analysis of the MCDF model provides the minimum throughput of executing trans-
actions after determining the critical sequence of transactions. The minimum through-
put can be converted into the worst-case/minimum bandwidth (WCBW). The WCBW
is determined by analyzing sequences of transactions rather than a single transaction.
The former supports exploiting the pipelining between transactions, while the latter
used by the formal analysis approach does not. Therefore, the MCDF model can pro-
vide better WCBW results in a more convenient way using existing analysis tool. The
experimental results demonstrate that the MCDF model outperforms the formal analy-
sis approach. However, similarly to the analytical approach in the formal analysis, the
MCDF model conservatively assumes command collisions to avoid non-deterministic
variations in the data�ow model. It uses the actual scheduling times of command rather

12 introduction

than the ALAP scheduling, as shown in Figure 1.3. Moreover, the Heracles tool is only
capable of proving the WCBW, as analysis of worst-case response time is not supported.

1.3.4 Timed Automata Modeling of Run-DMC

To overcome the drawbacks of the previous MCDF model, we continue modeling Run-
DMC using a di�erent model, which is based on timed automata (TA) [15]. The open-
source tool Uppaal [13] is used to carry out the modeling, simulation, and veri�cation. In
particular, the worst-case response time and bandwidth can be automatically obtained
by exhaustively exploring the state space via model checking with Uppaal.

We have developed a modular TA model of our dynamically-scheduled memory con-
troller without any simplifying assumptions, as shown in Figure 1.3. The TA model will
be given in Chapter 6. The timing behavior of each component (e.g., TDM arbiter, com-
mand generator, command scheduling) is accurately described by a TA. The accuracy
has been validated by simulating the TA model with given transaction traces using
Uppaal, and also feeding these traces to the open-source RTMemController. Identical
scheduling times of commands are obtained in these two ways, which suggests that the
TA model accurately captures the timing behavior of Run-DMC.

Model checking exhaustively explores the state space, which automatically includes
the complexities of interferences between requestors, transactions, or commands, whether
they occur in the front-end or back-end. Therefore, the proposed TA model is capable
of 1) providing tight worst-case results, which are validated easily. The reason is that
Uppaal provides a diagnostic transaction trace (i.e., witness) for each result. The experi-
mental results demonstrate that the TA model gives better worst-case results than these
previous approaches. 2) It can be easy to extend to other memory controllers, since the
TA of the common components can be reused.

2
B A C K G R O U N D & T E R M I N O L O G Y

This chapter sets the stage on which the following chapters will play out. The SDRAM
is introduced in Section 2.1, including its architecture and memory commands as well
as the timing constraints between commands. SDRAM is connected to the memory con-
troller with the command, address, and data buses. It executes commands scheduled by
the memory controller, which coordinates between the memory requestors (e.g., proces-
sors, GPU, DMA, hardware accelerators) and the SDRAM. Section 2.2 will introduce the
general functionalities of a memory controller, which are partitioned into a front-end
and a back-end. The front-end receives transactions from di�erent requestors, which are
served by an arbiter. When a transaction is sent to the back-end, a number of commands
are generated, and are sequentially scheduled to the SDRAM via the command bus with-
out violating any timing constraints. Finally, to formalize the command scheduling for
an individual transaction, the relevant timings are de�ned in Section 2.3, followed by
the metrics to evaluate the performance of the memory controller. The metrics include
the execution time in the back-end, the response time, and the bandwidth provided by
the memory controller.

2.1 sdram architecture and operation

2.1.1 SDRAM Architecture

The o�-chip SDRAM is a very popular volatile memory and used as temporary data
storage. An SDRAM chip comprises a set of banks, e.g., a contemporary DDR3 SDRAM
chip typically has 8 banks. A bank contains a memory array consisting of elements
arranged in rows and columns [51], as shown in Figure 2.1. The banks can work in
parallel. However, they share the same interface consisting of command, address, and
data buses. As a result, only one command or data word can be sent to one bank at a
time. The command bus transfers a single command per clock cycle, while the data bus
transfers two data words per cycle for a double data rate (DDR) memory. Moreover, the
data bus is bidirectional and used to both read and write data. The address bus transfers
the physical address in terms of bank, row, and column for each command. To issue
a command, several timing constraints have to be satis�ed, as speci�ed by the JEDEC

13

14 background & terminology

SDRAM

Memory array

Row Buffer

B
A

N
K

 0

B
A

N
K

 1

B
A

N
K

 7

Precharge

(PRE)

Activate

(ACT)

Write (WR)Read (RD)

……
data

addr.

cmd

Figure 2.1: SDRAM architecture

DDR3 standard [53]. Timing constraints guarantee that the SDRAM can properly exe-
cute the received commands. Note that although this thesis focuses on DDR3 SDRAMs,
it requires only minor adaptations to work with other types of SDRAMs, such as DDRx,
LPDDRx and Wide I/O.

2.1.2 SDRAM Commands and Timing Constraints

An SDRAM executes commands, which mainly include Activate (ACT), read (RD), write
(WR), precharge (PRE), refresh (REF), and no operation (NOP). The execution of commands
has to satisfy SDRAM timing constraints, as summarized in Table 2.1. The commands
work as follows:

• An ACT command opens a row in a bank, i.e., moves the data in the row into the
row bu�er of the bank (see Figure 2.1). It makes the data available for subsequent
RD or WR command(s). This activation takes tRCD cycles, as indicated in Table 2.1.
The ACT command is accompanied by the addresses of the required bank and row.

• When data is available in the row bu�er, a RD or WR command triggers reading or
writing a burst of data from a range of columns in the open row. The burst length (BL)
is 8 words for DDR3 SDRAMs. The �rst bit of the required data appears on the data
bus tRL cycles after issuing a RD command, while it is after tWL cycles for a WR

command. The DDR3 SDRAM transfers two words per cycle. As a result, a data
burst occupies the data bus for BL/2 cycles. When more data bursts are needed, a
number of RD or WR commands can be issued to SDRAM. Each RD or WR command
is accompanied by the address of the �rst column of the data burst. The address is
aligned with BL, i.e., address (in words) modulo BL = 0.

• Once reading/writing is �nished, a PRE command is issued to close the open row,
i.e., the data in the row bu�er is stored back to the original row in the bank. Sub-
sequently, a di�erent row in the bank may be opened. The timing constraints to

2.1 sdram architecture and operation 15

issue a PRE command include tRAS after an ACT command, tRTP after a RD com-
mand, and tWTP and tWR after a WR command. They are shown in Table 2.1. A
PRE command can be either explicitly issued via the command bus or by adding an
auto-precharge �ag to the previous RD or WR command, such that precharging is
automatically triggered when all timing constraints are satis�ed. The latter is called
an auto-precharge policy. The precharging duration is tRP cycles.

• Since SDRAM is volatile, it has to be periodically refreshed every tREFI cycles to
retain the data. A REF command is issued after all open rows are closed. The period
of refreshing (tRFC) depends on the capacity of the SDRAM and the operating tem-
perature. Table 2.1 assumes a capacity of 2 Gb and a �xed operating temperature
range, i.e., 0 ◦C to 85 ◦C [53].

• Finally, a NOP command is issued when waiting until timing constraints are satis-
�ed, or when no commands have to be executed. NOP does nothing.

Table 2.1: Timing constraints (TC) for DDR3-1600G SDRAM [53].

TC Description Cycles

tCK Clock period 1
tRCD Minimum time between ACT and RD or WR commands to the same bank 8
tRRD Minimum time between ACT commands to di�erent banks 6
tRAS Minimum time between ACT and PRE commands to the same bank 28
tFAW Time window in which at most four banks may be activated 32
tCCD Minimum time between two RD or two WR commands 4
tWL Write latency. Time after a WR command until �rst data is available on the bus 8
tRL Read latency. Time after a RD command until �rst data is available on the bus 8
tRTP Minimum time between a RD and a PRE command to the same bank 6
tRP Precharge duration time 8
tWTR Internal WR command to RD command delay 6
tWR Write recovery time. Minimum time after the last data word has

been written to a bank until a precharge may be issued
12

tRFC Refresh period time 128
tREFI Refresh interval 6240

2.1.3 Command Scheduling

An SDRAM operates on commands, which can be scheduled in various ways by the
memory controller. This section �rstly provides a simpli�ed state diagram, which gives

16 background & terminology

ACT

RD

WR

PRE

REF

Figure 2.2: Simpli�ed state diagram of scheduling commands.

an overview of the possible orders of scheduling commands to a single bank or multi-
ple banks, respectively. Then, we introduce several concepts for command scheduling,
including 1) page policy, 2) command pipelining, and 3) bank interleaving.

2.1.3.1 State Diagram of Scheduling Commands

Following the descriptions of how commands work in the previous section, we can
straightforwardly draw Figure 2.2 that presents a state diagram to show the valid orders
of scheduling commands. To access a single bank, it implies the following situations:

• SDRAM can read/write one or more data bursts only if the row is open. This requires
an ACT command followed by one or multiple RD/WR commands. It is captured by
the transition from the ACT state to the RD/WR state in Figure 2.2. In addition,
RD/WR state has a self-transition, which means multiple RD/WR commands can be
issued in a sequence.

• Precharging is performed after reading or writing is complete, resulting in the tran-
sition from the RD or WR state to the PRE state. The transition from PRE to ACT in
Figure 2.2 shows that opening a new row in the bank is after closing the previous
row.

• Finally, the SDRAM can be refreshed when the row is closed, and thus there is a
transition from PRE to REF in Figure 2.2. Since SDRAM is allowed to execute a
group of refreshes, the REF state consists of a self-transition. It implies that a new
REF command can be scheduled after another one subject to the timing constraints.

In addition to the transitions of scheduling commands to a single bank, additional
transitions in Figure 2.2 illustrate the possible orders of scheduling commands to di�er-
ent banks. For example, two ACT commands can be scheduled to two di�erent banks
successively, since banks work in parallel. This is depicted by the self-transition of the
ACT state in Figure 2.2.

2.1 sdram architecture and operation 17

2.1.3.2 Page Policies

The ACT and PRE commands are scheduled according to the page policy of the memory
controller. With an open-page policy, a row is left open when a RD or WR command has
completed. In contrast, with a close-page policy, an open row is closed as soon as possible
after a RD or WR command has �nished. When an open row is required by a transaction,
a so-called row-hit or page-hit occurs, while a row-miss or page-miss is caused when a
closed row is needed. With a page-hit, only RD and WR commands are scheduled by
the memory controller that uses an open-page policy. When the transaction encounters
a page-miss, the memory controller with an open-page policy has to schedule a PRE

command to close the current row, followed by an ACT command to open the required
row. Then, RD or WR commands can be scheduled. When a close-page policy is used,
the row of a transaction is always closed. As a result, the memory controller has to
schedule an ACT command, followed by a number of RD or WR commands, and �nally
a PRE command. Transactions resulting in a page-hit bene�t from an open-page policy,
while a close-page policy is more e�cient for page-misses. It only needs to open the
required row. In the worst-case, most analyses of real-time memory controllers have
to assume transactions always experience page-misses. The reason is that it is hard to
statically show they will be hits [108]. To achieve better worst-case performance, we
use a close-page policy in this thesis.

2.1.3.3 Command Scheduling Pipelining

SDRAM banks can work in parallel, where one bank is activating or precharging while
another bank is simultaneously reading or writing data. This is the so-called bank par-

allelism. As a result, ACT and PRE commands for one bank can be pipelined with the
RD or WR commands to another bank. To illustrate the bene�t of pipelining, Figure 2.3
shows the command schedules for two transactions with or without pipelining, where
a DDR3-1600G SDRAM is taken as an example. The timing constraints are given in Ta-
ble 2.1. Both transactions need to read two data bursts. Figure 2.3(a) presents the case
where the two transactions access the same bank, e.g., Bank 0. With a close-page policy,
the ACT command for the second transaction has to be scheduled after the PRE com-
mand of the �rst transaction has completed, i.e., a new row in Bank 0 can be opened
after the current row is closed. This takes a long time, i.e., 65 cycles to schedule all the
commands. If the second transaction needs a di�erent bank, e.g., Bank 1, Figure 2.3(b)
shows the pipelined command schedule. The ACT command for the second transaction
is pipelined with the commands of the �rst transaction. As a result, the command sched-
ule for these two transactions is shorter, requiring only 36 cycles. However, due to the
command scheduling pipelining, a collision may occur on the command bus when tim-
ing constraints are satis�ed for more than one command at the same time. The reason
is that the command bus only transfers one command per cycle. The memory controller
needs to resolve command collisions.

18 background & terminology

CMD

Bus

Data

Bus

NOPs ACT RD RD PRE

0D 1D

tRLtRCD
tCCD tRTP

tRAS

ACT

tRP

RD RD PRE

0D 1D

Transaction 0 (Bank 0) Transaction 1 (Bank 0)

tRLtRCD
tCCD tRTP

tRAS tRP

BL/2 BL/2

7 ×

NOPS

3 ×

NOPS

15 ×

NOPS

7 ×

NOPS

7 ×

NOPS

3 ×

NOPS

15 ×

NOPS

7 ×

NOPS

65 cycles

(a) No pipelining between transactions (65 cycles)

ACT PREACT

0D 1D 2D 3D

NOPs
CMD

Bus

Data

Bus

tRRD
tRCD

tCCD
tRL

BL/2

tRAS
tRTP

tRP

PRERD RD RD RD

Transaction 0 (Bank 0)

Transaction 1 (Bank 1)

5 ×

NOPS
NOP

3 ×

NOPS

3 ×

NOPS

3 ×

NOPS

7 ×

NOPS

6 ×

NOPS
NOP

36 cycles

(b) Pipelining between transactions (36 cycles)

Figure 2.3: Command scheduling: no pipelining vs. pipelining

2.1.3.4 Bank Interleaving

The previous section discussed pipelining between transactions. This section introduces
the pipelining within a transaction, which is interleaved over multiple banks while sev-
eral data bursts are transferred per bank. Two parameters have been introduced to �ex-
ibly exploit the command pipelining for a transaction [7, 36]:

1. Bank interleaving (BI): the number of consecutive banks that are accessed to read or
write the required data of a single transaction;

2. Burst count (BC): the number of continuous data bursts per bank for a single trans-
action.

As a result, the data size of a transaction equals BI × BC × BL words, where BL is the
burst length. The width of a word is determined by the width of the data bus.

2.2 real-time memory controllers

In modern multi-core platforms, memory requestors, such as processors, DMAs, and
hardware accelerators, access the o�-chip SDRAM via a memory controller. A general
real-time memory controller architecture is shown in Figure 2.4. Its front-end and back-
end will be introduced in Section 2.2.1 and Section 2.2.2, respectively.

2.2 real-time memory controllers 19

Memory Controller

Back-End

Cmd Arbiter

Memory

Map

Command

Generator

Timing

Counters

Data

Physical address

Cmd

T
ra

n
s

Front-End

R
e

s
o

u
rc

e
 b

u
s

Requestor 0

Requestor N-1

Requestor 1

Trans

Arbiter

…

Req & Resp

Req & Resp

Req & Resp

SDRAM

Figure 2.4: The general architecture of a memory controller.

2.2.1 Memory Controller Front-End

The front-end receives transactions from the requestors through a bus or a NoC. In real-
time systems, the interconnect must o�er performance guarantees, e.g., as done by the
dAElite NoC [96]. The received transactions are bu�ered in a queue per requestor, as
shown in Figure 2.4. One of these transactions is then selected by the arbiter according to
an arbitration policy, such as TDM [37], RR [85] or CCSP [5], and is sent to the back-end.
Note that a write transaction is sent to the back-end without transferring its associated
data, which still stays in the bu�er in the front-end. The data will be transferred to the
SDRAM via the data bus based on scheduling theWR in the back-end. Figure 2.4 shows a
general front-end architecture, which is suitable for contemporary multi-core platforms.
For many-core platforms with a very large number of requestors, techniques such as
coupling NoC and memory controller [23], distributed arbitration [32] and multiple
memory channels [30] can be used. However, they are outside the scope of this thesis.

2.2.2 Memory Controller Back-End

The back-end receives each transaction sent by the front-end and translates the transac-

tion into a sequence of commands, which are scheduled to the SDRAM via the command

bus. To achieve this goal, the logical address of a transaction is translated into a phys-
ical address in terms of bank, row, and column according to the memory map, which
determines the location of data in the SDRAM. The memory map also speci�es how
a transaction is split over the memory banks and thus the degree of bank parallelism
used when serving it. This is captured by the two parameters: BI and BC, as previously
described.
BI and BC are limited to powers of two for e�cient address decoding. Thus, the BI

consecutive banks of a transaction must start on a bank aligned with BI [39]. Memory
mapping with BI and BC is a trade-o� between execution time, bandwidth, and power
consumption, as shown in [36, 39, 40]. This thesis focuses on the lowest possible execu-

20 background & terminology

ACT RD PRERD

ACT RD PRERD

Cmd queue: Bank 0

Cmd queue: Bank 1

(a) Close-page policy

RD RD

RD RD

Cmd queue: Bank 0

Cmd queue: Bank 1

(b) Open-page policy and page-hit

RDPRE RD

RDPRE RD

ACT

ACT

Cmd queue: Bank 0

Cmd queue: Bank 1

(c) Open-page policy and page miss

Figure 2.5: Command generation for a read transaction with BI = 2 and BC = 2.

tion time. As a result, the largest possible BI is chosen to increase the exploited bank par-
allelism. However, interleaving over all 8 banks (i.e., BI = 8) of a DDR3 SDRAM cannot be
helpful to achieve the lowest execution time because of the tFAW timing constraint (see
Table 2.1) [39]. Moreover, this con�guration increases the power consumption, since
there are more banks working in parallel. In fact, various memory mapping strategies
can be supported by specifying di�erent BI and BC combinations. For example, a small
BI and a large BC support a block-oriented memory mapping that increases the row hit
rate by mapping consecutive data bursts to the same row of a bank [43]. In contrast,
stripe-oriented mapping with a relatively large BI and a small BC allocates data bursts
to di�erent banks and exploits bank parallelism [74].

The command generator translates a transaction into a sequence of commands that
are stored in command queues for each bank. The required commands of a transac-
tion depend on BI, BC, and also the page-policy, i.e., either open-page or close-page, as
previously introduced in Section 2.1.3. A transaction is interleaved over BI number of
banks, each with BC number of data bursts. With a close-page policy, it requires an
ACT command followed by BC number of RD or WR commands and a PRE command
at the end for each bank. Figure 2.5(a) shows the generated commands for a read trans-
action to access each bank, where the starting bank is assumed to be Bank 0. Note that
if an auto-precharge policy is used, no explicit PRE commands are needed, but instead
a �ag is attached to the last RD or WR command of a bank to trigger the precharging
when timing constraints are satis�ed. With an open-page policy, Figure 2.5(b) and Fig-
ure 2.5(c) present the required commands, when a transaction experiences page-hit and
page-miss, respectively.

Finally, the command arbiter schedules commands to SDRAM, subject to the timing
constraints, and data transmission on the data bus automatically follows a RD or WR

command after a �xed time. The data is transferred directly between the bu�er in the
front-end and the SDRAM via the data bus. Consequently, the analysis of a real-time
memory controller only needs to focus on scheduling commands for each transaction.

2.3 analysis of real-time memory controllers 21

Bank Bank Bank… Bank Bank Bank…

iT 1iT 

() ij i
b BS

() 1j i
b

 () 1
i

j i BI
b

  (1) ()
i

j i j i BI
b b

 


() 1
i

j i BI
b

 
1

() 1
i i

j i BI BI
b


  

Bank

number

Bank

access

number

() 1j i  () 1
i

j i BI ()j i (1) () ij i j i BI   () 1
i

j i BI 
1

() 1
i i

j i BI BI


  … …

… …

Figure 2.6: Bank access number and bank number for Ti and Ti+1.

2.3 analysis of real-time memory controllers

This section introduces the terminology and de�nitions to formalize the execution of
transactions by a memory controller. They will be used throughout this thesis.

2.3.1 Bank Accesses for Transactions

A transaction is de�ned in De�nition 1 based on its characteristics in terms of size, type,
and the parameters (i.e., BI and BC) for memory mapping. An arbitrary transaction is
denoted by Ti and it uses BIi and BCi. Since Ti interleaves over consecutive banks, we
only need to know its starting bank number (BS) for the analysis, while the physical
addresses of row and column can be ignored for analysis purposes. Note that i is the
arrival number of the transaction in the back-end rather than in the front-end, since the
analysis of the front-end in this thesis does not require the arrival number.

De�nition 1 (Transaction). A transaction is de�ned as a tuple Ti = (S(Ti), Type(Ti), BIi,

BCi, BSi), where:

1. i represents the arrival number of the transaction in the back-end and ∀i ≥ 0.

2. S(Ti) is the size of Ti in bytes.

3. Type(Ti) denotes the type of Ti and is either read or write.

4. BIi is the number of banks that Ti interleaves over.

5. The number of the read or write bursts per bank for Ti is BCi.

6. The starting bank number of Ti is denoted by BSi.

Each transaction accesses one or more banks. From the analysis perspective, we often
only care about successive bank accesses, but not which transactions they belong to. For
example, the �rst transaction T0 has the bank access number from 0 to BI0 − 1, and T1

continues with the bank access number from BI0 to BI0 + BI1 − 1, and so on. Generally,
the j

th(∀j ≥ 0) bank access uses bank bj, which is the bank number. We assume the
�rst bank access number for an arbitrary transaction Ti is j, which is a function of i as

22 background & terminology

ACT RWACTNOPsCMD Bus RW RW RWNOPs NOPs NOPs NOPs NOPs NOPs

Bank 2

Bank 3

Bank 0

ACT NOPs ACT NOPs

ACT RW

ACT RW

RWACT

RWACT0
T

0b

1b

2b 1
T

3b 2
T

0
T

Bank

number

Bank access

number
0 1 2 3

0 2b  1 3b  2 0b 
3 2b 

Transaction
0T 1T 2T

Figure 2.7: An example of illustrating the bank accesses for transactions T0, T1, and T2.

denoted by j(i). It can be calculated with Eq. (2.1) based on the BI used by all previous
transactions. Figure 2.6 illustrates the execution of two successive transactions Ti and
Ti+1 accessing BIi and BIi+1 banks, respectively, where the bank access number and bank
number are explicitly shown. For legibility, we use j instead of j(i) and bj instead of bj(i)

throughout this thesis. Therefore, j should be syntactically replaced by j(i) and bj by bj(i)

everywhere. Note that bj is also the starting bank of Ti, thus bj = BSi.

∀i ≥ 0, j(i) =
i−1∑
k=0

BIk (2.1)

Using the numbering method of bank accesses, Figure 2.7 presents an example of
executing three successive transactions T0, T1, and T2 by sequentially scheduling com-
mands through the command bus subject to the SDRAM timing constraints. Note that
a RD or WR command is denoted by RW in Figure 2.7, where an auto-precharge policy
is assumed and there are no explicit PRE commands. T0 uses BI0 = 2 and BC0 = 1, while
both T1 and T2 only need one data burst, leading to BI1 = BI2 = 1 and BC1 = BC2 = 1.
T0 starts with Bank 2, i.e., BS0 = 2. T1 and T2 start with Bank 0 and Bank 2, respectively,
and hence BS1 = 0 and BS2 = 2. T0 is the �rst transaction executed in the memory
controller back-end. Its bank access number starts with 0 (i.e., j(0) = 0) and increases
for the following transactions. The corresponding bank number is Bank 2, resulting in
bj(0) = b0 = 2. In the same way, b1 = 3, bj(1) = b2 = 0, and bj(2) = b3 = 2.

Next, we formalize the general scheduling dependencies of commands to any two
successive banks in Section 2.3.2. Then, the timings of commands and transactions are
de�ned in Section 2.3.3, followed by de�nitions of the performance metrics (worst-case)
response/execution time and bandwidth.

2.3 analysis of real-time memory controllers 23

jACT 0

jRW
[0, 1]iBC 

1iBC

jRW
tCCD

jPRE
tRCD tRWTP

tRAS

1jACT 

0

1jRW 
'[0, 1]iBC 

' 1

1
iBC

j
RW





tCCD
1jPRE 

tRAS

mPRE
tRP

tRRD

tRP

tRRD

tRRD

tRP

nPRE
tRP

4jACT  tFAW

3jACT  tFAW

1
1jACT  jBank b

1 jBank b 

tRWTP

tRWTP

tRWTP

tSwitch

tSwitch

tSwitch

tRCD

1

thj

 1
th

j

Figure 2.8: Command scheduling dependencies between any two successive bank accesses corre-
sponding to Ti and T

i
′ .

2.3.2 Command Scheduling Dependencies

This section focuses on formalizing the scheduling of commands to banks. Dependen-
cies exist between commands when they are scheduled to the SDRAM. For example, af-
ter anACT command is scheduled to open a row in a bank, the memory controller has to
wait at least tRCD cycles (see Table 2.1) to schedule the following RD or WR command.
As a result, the scheduling of the RD or WR command depends on the ACT command.
The dependencies are also a�ected by the command scheduling algorithm, which spec-
i�es the order of commands. The timing constraints can be classi�ed into inter-bank

and intra-bank. The former apply for scheduling commands to di�erent banks, while
the latter are used for the same bank. This section generally formalizes the scheduling
dependencies of commands to two successively accessed banks.

Figure 2.8 illustrates the scheduling dependencies of commands to two banks bj and
bj+1 for one or two transactions. j and j+1 are the bank access numbers. It is possible to
have bj = bj+1, representing that the same bank is successively accessed twice. The j

th

bank access needs an ACT command followed by BCi RD or WR (i.e., RW) commands
and a PRE command at the end (or an auto-precharge �ag). These commands are repre-
sented by ACTj, RWk

j
(k ∈ [0,BCi − 1]) , and PREj, respectively, where BCi is the burst

count of transaction Ti that bank access j belongs to. In particular, RWk

j
is the k

th
RW

command to the bank.
Figure 2.8 uses dotted and solid arrows to depict the command scheduling dependen-

cies, which are caused by the inter- and intra-bank timing constraints, respectively. The
scheduling of a command depends on previous commands, which are speci�ed by the
input arrows. The labels near the arrows denote the timing constraints, i.e., the number
of cycles that the following command has to wait before it can be scheduled. For ex-
ample, the timing constraints for scheduling an ACT command include tRRD, tRP and

24 background & terminology

𝑇0 𝑇0 𝑇1 𝑇1 𝑇𝑖−1 𝑇𝑖−1 𝑇𝑖 𝑇𝑖

Figure 2.9: Dependencies between transactions.

tFAW, previously described in Table 2.1. Therefore, the ACT command (see Figure 2.8)
has three input arrows. Moreover, a collision may occur on the command bus. To resolve
the collision, only one command is scheduled while others have to be postponed and
re-arbitrated in the next cycle. Figure 2.8 uses the solid circles to represent the collisions.
As an example, the collisions delay ACT commands by one cycle. The scheduling of the
�rst RD or WR command for a bank access has to satisfy the timing constraints tRCD
and tSwitch. The following RD or WR commands to the same bank only need to satisfy
the tCCD timing constraint. Note that tSwitch represents the timing constraints from
RD to WR and vice versa, and it will be later de�ned by Eq. (3.2) based on the JEDEC-
speci�ed timing constraints [53]. Finally, an (auto-)precharge has to satisfy the timing
constraints tRAS and tRWTP, where tRAS is given in Table 2.1 while tRWTP is later de-
�ned by Eq. (3.1). Note that refresh commands are not depicted because their impact on
WCET can be easily analyzed, as presented in Section 4.5. Moreover, the e�ect of REF
is small (approximately 3%) in terms of bandwidth or the WCET of an application, and
it is not a main concern in this thesis.

Due to the dependencies between commands and hence the bank accesses, there exist
dependencies between transactions that the bank accesses belong to. As illustrated in
Figure 2.9, the execution of the current transaction Ti relies on the previous transaction
Ti-1. Intuitively, to evaluate the maximum time to execute Ti by scheduling commands,
all the previous transactions have to be taken into account. Therefore, it is di�cult to
analyze the worst-case bounds of serving transactions, especially with the arbitrary
read or write transactions with variable sizes and requiring di�erent sets of SDRAM
banks.

2.3.3 Performance Metrics & De�nitions

To evaluate the performance of a memory controller, two metrics are used in this thesis:
the response time (RT) of an individual transaction and the bandwidth. The response
time measures the total time experienced by a transaction, while the bandwidth is the
long-term rate of transferring data. Figure 2.10(a) provides the architecture view of the
RT, where the front-end of a memory controller is split into transactions arriving in the
request (i.e., req) bu�er and the responses returning to the response (i.e., resp) bu�er.
The RT covers all the processes experienced by a transaction in the memory controller,
including transaction arrival and scheduling in the front-end, commands scheduling
in the back-end, executing commands in the SDRAM, and �nally returning response

2.3 analysis of real-time memory controllers 25

MC Front-EndMC Front-End

R
e

s
o

u
rc

e
 b

u
s

Requestor

0

Requestor

N-1

Requestor

1

Trans

Arbiter

…

Req buffer

Req buffer

Req buffer MC

Back-End
SDRAM

R
e

s
o

u
rc

e
 b

u
s

Requestor

0

Requestor

N-1

Requestor

1…

Resp buffer

Resp buffer

Resp buffer

Trans

Arbiter

RT

(a) Architecture view of response time

Arrival:

Front-end

Execution

(ACT, RD/WR)

Execution

(ACT, RD/WR)

Execution

(ACT, RD/WR)

Wait

Wait

Wait

RT…

…

1i
T


i
T

1i
T


Start:

Back-end

Finish:

Front-end

Finish:

Back-end

ET

Data

(b) Temporal view on execution time in the back-end and re-
sponse time in the front-end for transaction Ti.

Figure 2.10: Terminology of performance metrics

to the front-end. A transaction experiences the execution time (ET) in the back-end.
Figure 2.10(b) gives a temporal view on RT and ET of a transaction Ti, which is pipelined
with other transactions. The unusual de�nition of ET is explained next.

The ET is the time spent by the memory controller back-end exclusively on behalf of
the current transaction, though the commands (i.e., ACT or PRE) of other transaction(s)
are pipelined. The purpose of de�ning ET in this way is that when adding the execution
times of a sequence of pipelined transactions, we never count any cycle twice. This is
helpful when computing the response time and bandwidth. The ET includes waiting
for timing constraints to be satis�ed (e.g. an ACT of transaction Ti may have to wait
after commands of Ti−1), and executing ACT and RW commands. PRE commands are
ignored because auto-precharge is used. AnyACT commands that can be pipelined with
the previous transaction do not count towards the ET. Note that RD and WR commands
of di�erent transactions can never be pipelined, because they trigger data transmission
on the shared data bus. Moreover, if the memory controller is idle when transaction
Ti arrives, then all of its ACT commands do count toward its ET, because there is no
previous transaction to overlap with, and to hide the time spent on executing them. As

26 background & terminology

illustrated in Figure 2.10(b), the execution of ACT commands of a transaction in the
back-end may start before the previous transaction �nishes.

With this de�nition of ET, the bandwidth is the transaction size divided by the ET,
since a �xed amount of data is transferred. The RT of a transaction is the time from
its arrival in the front-end until the response is returned, as shown in Figure 2.10(b). It
covers the interference delay of executing other transactions and its own ET. In addition,
the response of a read transaction to the front-end is �nished when the last data word
is returned through the data bus. This is later than the �nishing of the execution in
the back-end, i.e., scheduling the last RD or WR command. The worst-case response time

(WCRT) is the maximum RT of a transaction, while the worst-case bandwidth (WCBW) is
the minimum long-term data transmission rate guaranteed by the memory controller.
To de�ne these two metrics, we begin with the following de�nitions.

An arbitrary transaction Ti from a requestor arrives at the interface of a memory
controller front-end and its arrival time is given by De�nition 2. Then, it experiences
interferences from other requestors. When the transaction is selected by the arbiter and
sent to the back-end, as shown in Figure 2.4, its arrival time in the back-end is de�ned
by De�nition 3. In the back-end, Ti is executed by scheduling its commands to the BIi

consecutive banks, where each of them receives BCi number of RD or WR commands.

De�nition 2 (Arrival time of transaction Ti in the front-end). t
fe

a
(T

i
) is de�ned as the

time at which Ti has arrived at the request queue of the front-end. In case of a write trans-

action, all data must have arrived.

De�nition 3 (Arrival time of transaction Ti in the back-end). t
a
(T

i
) is de�ned as the

time at which Ti has arrived at the interface of the back-end. In case Ti is write, ta
(T

i
) does

not relate to the data, which is stored in the front-end.

The execution of Ti �nishes when its last RW command is scheduled, which is de-
noted by RW

BCi−1
j+BIi−1. It represents the (BCi − 1)th RW command scheduled for the (j +

BIi − 1)th bank access. The scheduling time of a command is de�ned by De�nition 4.
For the last RW command, its scheduling time is denoted by t (RWBCi -1

j+BIi -1
). The �nishing

time of Ti in the back-end is de�ned as the scheduling time of its last command, as given
by De�nition 5. The back-end starts executing Ti either immediately when it arrives or af-

ter �nishing the previous transaction Ti-1. The starting time of Ti is given by De�nition 6,
where t

f
(T

-1
) = −∞ indicating the initial transaction T-1 �nished a long time ago, leav-

ing all banks closed and imposing no timing constraints on T0. Finally, the execution
time of Ti in the back-end is de�ned as the time between its starting time and its �nish-
ing time, as given by De�nition 7. The worst-case execution time (WCET) is de�ned as the
maximum execution time, as denoted by t̂ET (Ti). It is worth noting that this ET does not
cover the time of the data transmission for the purpose of giving a convenient analysis.
RT does need to cover the data transmission, since it accounts for the total delay from
arrival to �nish of a transaction in the memory controller.

2.3 analysis of real-time memory controllers 27

De�nition 4 (Scheduling time of a command). t(CMD) is de�ned as the time, at which

the command CMD is put on the command bus of the SDRAM.

De�nition 5 (Finishing time of transaction Ti in the back-end).

∀i ≥ 0, t
f
(T

i
) = t (RWBCi -1

j+BIi -1
)

De�nition 6 (Starting time of transaction Ti in the back-end).

∀i ≥ 0, t
s
(T

i
) = max{t

a
(T

i
), t

f
(T

i-1
) + 1}, where t

f
(T

-1
) = −∞

De�nition 7 (Execution time of transaction Ti in the back-end).

∀i ≥ 0, t
ET
(T

i
) = t

f
(T

i
) − t

s
(T

i
) + 1

Figure 2.11 shows an example of the command scheduling for three successive trans-
actions Ti-1, Ti, and Ti+1, where BIi-1 = BIi = BIi+1 = 2 and BCi-1 = BCi = BCi+1 = 1. We
also assume the starting bank of Ti-1 and Ti+1 is Bank 0, while Ti starts with Bank 2, i.e.,
BSi-1 = BSi+1 = 0 and BSi = 2. The arrival time of Ti in the front-end is tfe

a
(T

i
). In this

example, Ti arrives at the back-end at t
a
(T

i
), which is after the scheduling of the last

(i.e., second) ACT command of Ti-1. This allows pipelining between Ti and Ti-1, as shown
in Figure 2.11. As a result, the back-end starts executing Ti after Ti-1 �nishes when the
last RD or WR command is scheduled to Bank 1, i.e., t

s
(T

i
) = t

f
(T

i-1
) + 1 (see Case 1 in

Figure 2.11). In this case, Ti starts just after t
f
(T

i-1
) and not with t

a
(T

i
). Ti �nishes in the

back-end when its last RD orWR command is scheduled to Bank 3. Finally, the execution
time of Ti is computed, which is from t

s
(T

i
) to t

f
(T

i
). Ti+1 arrives when Ti has already

�nished, and there is no pipelining between them. In this case, t
s
(T

i+1
) = t

a
(T

i+1
), as

shown in Figure 2.11.
Transaction Ti is �nished in the front-end when all data is returned from the SDRAM

if Ti is a read or the last WR command is scheduled in case Ti is a write. The time
between a RD command and the �rst corresponding data word is constant (i.e., the
JEDEC-speci�ed read latency tRL). Each data burst consumes BL/2 cycles on the data
bus, because of the double data rate. We can de�ne the �nishing time of Ti in the front-
end by De�nition 8 on the basis of its �nishing time in the back-end. Note that each RD

or WR command triggers the transfer of a data burst. The response time of Ti is hence
de�ned as the time between its arrival time and the �nishing time in the front-end, as
given by De�nition 9. Figure 2.11 shows the response time t

RT
(T

i
) for a read and a write,

respectively. The longest response time represents the worst-case response time of a
transaction, as denoted by t̂RT (Ti).

De�nition 8 (Finishing time of transaction Ti in the front-end).

t
fe

f
(T

i
) =




t
f
(T

i
) + tRL + BL/2 Read transaction

t
f
(T

i
) Write transaction

28 background & terminology

C
M

D
 B

u
s

D
ata B

u
s

A
C
T

R
W

A
C
T

N
O
P
s


R
W

R
W

R
W

N
O
P
s


N
O
P
s


N
O
P
s


N
O
P
s


N
O
P
s


N
O
P
s


A
C
T

N
O
P
s


A
C
T

N
O
P
s



1
D

0
D

3
D

2
D

A
C
T

B
an

k
 0

A
C
T

B
an

k
 1

A
C
T

B
an

k
 2

A
C
T

B
an

k
 3

R
W

R
W

R
W

R
W

A
C
T

R
W

A
C
T

N
O
P
s


N
O
P
s


N
O
P
s


R
W

A
C
T

R
W

A
C
T

R
W

N
O
P
s



T
im

e (clk
)

1
i
T


1
i
T


i
T




fe
a

i
t
T


1

f
i

t
T





a

i
t
T


1

a
i

t
T





f

i
t
T


1

i
f
t
T





s

i
t
T







1
1

a
s

i
i

t
T

t
T







i

E
T
t

T



:
 w

rite
i

R
T
t

T

4
D



:
 read

i
R
T
t

T




fef
i

t
T

N
O
P
s


N
O
P
s




1

E
T

i
t

T






1

1
C

ase 1
:

f
s

i
i

t
T

t
T











1

1
C

ase 2
:

a
s

i
i

t
T

t
T






Figure
2.11:Tim

ing
de�nitionsforaccessing

SD
RA

M
w

ith
pipelining.

2.3 analysis of real-time memory controllers 29

De�nition 9 (Response time of transaction Ti). t
RT
(T

i
) = t

fe

f
(T

i
) − t

fe

a
(T

i
) + 1

The memory bandwidth is the long-term rate of data transmission from/into the
SDRAM. It is mainly determined by the execution of transactions, i.e., the scheduling
of their memory commands. In addition, the refresh of SDRAM can interrupt the com-
mand scheduling of transactions. A refresh is regularly needed every tREFI cycles, i.e.,
a relatively long time period of 7.8µs for DDR3 SDRAMs [53]. When a refresh is needed,
it has to wait for the end of the current transaction. The refresh time tref consists of
the time to precharge all the currently open banks and the time to complete the refresh
itself [72]. Speci�cally, tref is given by Eq. (2.2), consisting of the time tRWTP between
the last RD or WR command of the current transaction and the associated PRE and the
precharge period tRP, as well as the refresh period tRFC.

tref = tRWTP + tRP + tRFC (2.2)

The bandwidth can be evaluated based on executing a transaction trace T that con-
sists of a sequence of transactions. De�nition 10 de�nes the bandwidth of a transaction
trace based on the total transferred data and the total execution time of the trace. For an
arbitrary transaction Ti ∈ T (∀i ≥ 0), its size is S(Ti) that denotes the amount of trans-
ferred data, while t

ET
(T

i
) is the execution time of Ti. Since the total execution times are

measured in cycles, the SDRAM clock frequency denoted by f
mem

is applied to compute
the bandwidth in bytes per second (i.e., B/s). Moreover, the refresh e�ciency e

ref given
by Eq. (2.3) causes a reduction of the bandwidth. As a result, it is included to capture the
impact of refresh on the bandwidth. Finally, the bandwidth representing the long-term
data rate is achieved when the transaction trace is in�nitely long, i.e., |T | = ∞.

De�nition 10 (Bandwidth of a transaction trace T).

bw(T) =

∑
∀Ti∈T S (Ti)∑
∀Ti∈T tET (Ti)

× f
mem
× eref

e
ref = 1 −

tref

tREFI
(2.3)

The worst-case bandwidth (WCBW) denoted by ˆ
bw is the minimum bandwidth of all

in�nite transaction traces. It is de�ned by De�nition 11.

De�nition 11 (Worst-Case Bandwidth).

ˆ
bw = Min

∀T , |T |=∞
bw(T)

3
R U N - D M C : A R E A L -T I M E M E M O R Y C O N T R O L L E R W I T H
D Y N A M I C C O M M A N D S C H E D U L I N G

The previous chapter introduced the background and design space of real-time memory
controllers in general, which are required as the basis for understanding the memory
controller presented in this chapter. Our memory controller is designed to deal with
the diverse memory tra�c generated in heterogeneous multi-core systems, which fea-
tures transactions with variable sizes. On the other hand, the memory controller must
be analyzable, such that the worst-case response time (WCRT) of transactions and/or
the worst-case bandwidth (WCBW) are provided to meet the requirements of real-time
applications. Meanwhile, the lowest average response time and maximum average band-
width should be given to non-real-time applications. This chapter focuses on designing
a real-time memory controller to achieve these goals, while its worst-case analysis will
be achieved by three means, i.e., a formal analysis approach in Chapter 4 and two mod-
eling methods in terms of mode-controlled data�ow [79] and timed automata [15] in
Chapter 5 and Chapter 6, respectively.

This chapter summarizes the existing real-time memory controllers in Section 3.1,
followed by introducing the design and evaluation of a real-time memory controller,
named Run-DMC, which executes transactions with variable sizes by dynamically sche-
duling commands at run-time. Run-DMC achieves good performance by pipelining suc-
cessive transactions and exploiting di�erent bank parallelisms for variable transaction
sizes, while being analyzable. Following the general memory controller architecture,
Run-DMC is composed of a front-end and a back-end. The front-end shown in Sec-
tion 3.2.1 provides arbitration between di�erent requestors with variable transaction
sizes using a novel work-conserving TDM arbiter. This TDM arbiter can reduce the
worst-case response time of transactions. In Section 3.3, the back-end generates ap-
propriate commands for transactions based on the memory mapping and dynamically
schedules them to the SDRAM according to a priority-based algorithm. This enables
pipelining between successive transactions, leading to smaller average response time
and hence higher bandwidth. Finally, a cycle-accurate SystemC model of Run-DMC is
built in Section 3.4, leading to a simulator to evaluate its performance in terms of aver-
age and measured worst-case response time and bandwidth. In addition, these results
are compared to a state-of-the-art semi-static real-time memory controller [4] in Sec-
tion 3.5. The results demonstrate that Run-DMC has much better average performance,

31

32 run-dmc: a real-time memory controller with dynamic command scheduling

where non-real-time applications can bene�t, while the measured maximum execu-
tion/response times are comparable between these approaches for systems with �xed
transaction sizes. However, for variable transaction sizes, Run-DMC provides smaller
measured maximum execution/response times.

3.1 related work

Several types of real-time memory controller designs have been proposed in the past
decade. Static [12] or semi-static [3, 25, 88] controller designs are used to achieve a
bounded execution time of memory transactions. In [12], an application-speci�c static
command schedule is constructed using a local search method. However, it requires a
known static sequence of transactions, which is not available in a system with multi-
ple applications. A semi-static method is proposed in [3] that generates static memory
patterns, which are shorter sub-schedules of SDRAM commands computed at design
time, and schedules them dynamically based on incoming transactions at run time. The
drawback of this solution is that it cannot e�ciently handle variable transaction sizes
as the patterns are statically computed for a particular size. When it is employed by
transactions with variable sizes in a system, larger transactions use the pattern mul-
tiple times, but smaller transactions use the pattern and discard unneeded data. This
problem also applies to the semi-static controller in [37, 39], which uses a conservative
open-page policy to improve the average performance of [3]. [88] presents a semi-static
predictable DRAM controller that partitions sets of banks into virtual private resources
with independent repeatable actual timing behavior. However, it requires constant du-
ration for accessing the virtual resources. Thus, the actual or average case execution
time is equal to the worst-case execution time.

Dynamic command scheduling is used because it more �exibly copes with variable
transaction sizes and it does not require schedules or patterns to be stored in hardware.
Several dynamically scheduled memory controllers have been proposed in the context
of high-performance computing, e.g., [48, 50, 58]. These controllers aim at maximizing
average performance and do not provide any bounds on execution times, making them
unsuitable for real-time systems. Paolieri et al. [85] propose an analyzable memory con-
troller, which uses dynamic command scheduling based on a modi�ed version of the
DRAMSim memory controller simulator [105], although the modi�cations to the origi-
nal scheduling algorithm are not speci�ed. However, it is limited to a �xed transaction
size and a single memory map con�guration. This also applies to [92], where trans-
actions with �xed size are executed on an FPGA instance of a dynamically scheduled
Altera SDRAM controller and analyzed using an on-chip logic analyzer. In [63, 107], a
dynamically scheduled controller is presented that combines the notion of bank privati-
zation with an open-page policy, which results in both low worst-case and average-case
execution times. The memory controller in [26] employs several private banks to create
a virtual device, which is shared by a single client requiring guaranteed throughput (GT)

3.2 memory controller front-end 33

and multiple clients with best-e�ort (BE) service. The GT client is prioritized over the BE
client. However, these controllers cannot directly support variable transaction sizes and
di�erent memory map con�gurations. In addition, privatization assumes that the num-
ber of memory requestors is not greater than the number of memory banks. The number
of banks is at most 32 supported by a DIMM with maximally 4 ranks, where each of them
is composed of a DDR3 SDRAM with typically 8 banks. However, complex heteroge-
neous systems, such as [60], have more memory requestors. This limitation also applies
to [25, 52] that employ bank privatization. The memory controller in [55] employs a
First-Ready First-come First-Serve (FR-FCFS) policy to dynamically schedule commands
for transactions with di�erent priorities. This policy is also analyzed by [110], which
considers the prioritization of read over write and multiple outstanding transactions.
However, their worst-case analysis is pessimistic because of the conservative interfer-
ence delay among di�erent memory commands. For example, the maximum switching
delay between write and read is always taken as the maximum delay for a read or write
command. The analysis is also limited to a single transaction size and memory map con-
�guration. This limitation also applies to [24], where the memory controller reorders
RD and WR commands to reduce the number of data bus turn around.

In short, current real-time memory controllers do not e�ciently address the dynamic
memory tra�c in complex heterogeneous systems because of the limitations either in
architecture or in analysis with respect to variable transaction sizes and memory map
con�gurations, or both. To �ll this gap, this chapter presents a dynamically scheduled
memory controller architecture supporting di�erent transaction sizes and memory map
con�gurations and the corresponding analyses will later be given in the following three
chapters.

3.2 memory controller front-end

This section introduces the hardware architecture of the Run-DMC front-end, which re-
ceives transactions with variable sizes from memory requestors and schedules them to
the back-end according to a novel work-conserving TDM arbiter, o�ering lower inter-
ference delay. The back-end that executes each transaction by dynamically scheduling
commands to the SDRAM is later introduced in Section 3.3.

3.2.1 Front-End Architecture

The front-end receives memory transactions on its ports from di�erent requestors ei-
ther directly or via a bus or a network-on-chip. Transactions are queued in the "trans"
bu�ers per requestor, as illustrated in Figure 3.1, while the data read from or written
into the SDRAM is stored in separate queues (i.e., read/write data queues). Typically,
requestors generate memory transactions with �xed size, e.g., CPU cache misses [97].
Therefore, each requestor is assumed to have a �xed transaction size, while it varies

34 run-dmc: a real-time memory controller with dynamic command scheduling

MC Front-end

trans buffer

write data buffer

read data buffer

trans buffer

write data buffer

read data buffer

trans buffer

write data buffer

read data buffer

Requestor

0

Requestor

N

Requestor

1

R
eso

u
rce B

u
s

Trans

Arbiter

RRTDMCCSP
cfg

C
o

n
fig

u
ratio

n

b
u

s

Data

MC Back-End

Lookup

Table

Command

Generator

BI

BC

Memory

Map

Trans

Size

Logical Address
Physical Address

ARR
CMD

CMD Queues
CMD

tCCD

tSwitch

tRRD

tFAW

tRP

tRCD

tRWTP

tRAS

L
o

ca
l

T
C

C
G

lo
b

al
 T

C
C

ACT

RD/WR

M
U

X

8

CMD

8888

BI

BC

Bank 0

Bank 1

Bank 7

PQ

BI

BC

sb

all_cmds_done

C
o

n
strain

ts_
satisfied

cm
d

_
ty

p
e

PQ_head

&

PQ_tail

T
im

in
g

S
el

ec
to

r

act_cmds_done

MC Front-end

Trans

Read response

Write transfer

Cmd

Arbiter

Data

Resp cmd & Write ack

Figure 3.1: The architecture of the front-end and back-end of Run-DMC.

between di�erent requestors. Note that this assumption is relaxed later in Section 4.4.5,
where a safe WCRT is guaranteed by using the largest transaction size of a requestor
when it actually generates variable transaction sizes. The size of a trans bu�er is de-
termined by the maximum number of outstanding transactions from the requestor. To
avoid arbitrarily high self-interference when computing the WCRT, we assume each
requestor has at most one outstanding transaction. This is common in a fully timing-
compositional architecture [11]. The delay caused by the shared SDRAM is additive to
the application execution time. After sending a read transaction, a requestor cannot
schedule the next transaction before receiving the response, i.e., the data is returned.
For a write transaction, an acknowledgment is sent back to the requestor after the data
is written into the SDRAM memory, and then the requestor sends the next transaction.
The read data bu�er per requestor receives the data from the memory for a read trans-
action. Note that the read data bu�er must have enough space when a read transaction
is executed.

The front-end in Figure 3.1 supports any predictable arbiter chosen at design time.
We have implemented CCSP [5], TDM [37, 72], and Round Robin [1], which can be
chosen at design time and be con�gured via the con�guration bus. The arbiter selects
one transaction queue and sends the �rst transaction to the back-end. A novel TDM
arbiter introduced in the next section is designed to e�ciently deal with diverse memory
tra�c with variable transaction sizes. It exploits static information of the TDM schedule
of requestors with di�erent transactions sizes, resulting in lower worst-case response

3.2 memory controller front-end 35

time. The arbiter makes a scheduling decision when triggered by the back-end via the
arbitration signal act_cmds_done in Figure 3.1.

3.2.2 Work-Conserving TDM Arbitration for Variable-Sized Transactions

We proceed by introducing a new work-conserving TDM arbiter for transactions with
variable sizes. By exploiting the order of requestors based on their (largest) transaction
size, the work-conserving TDM has a lower WCRT than traditional work-conserving
TDM. We �rst discuss the issues of supporting variable transaction sizes and then spec-
ify the algorithm, before illustrating its operation with an example.

3.2.2.1 TDM Arbitration Issues for Variable-Sized Transactions

TDM arbiters employ time slots to serve requestors, each of which only receives the ser-
vice within its allocated slots durations (i.e., the time period of the slots). All the slots
constitute a TDM frame, which is periodically used by the TDM arbiter. Requestors
are allocated either continuous or distributed slots in the frame. To simplify the WCRT
analysis latter in Section 4.5, our TDM arbiter allocates continuous slots to each re-
questor. The non-preemptive TDM arbiter, shown in the front-end in Figure 3.1, serves
requestors with di�erent transaction sizes, which results in variable execution time for
transactions and hence di�erent time slot durations. The execution time is de�ned by
De�nition 7 as the scheduling time of the last command of the transaction minus the
starting time of the transaction, and it depends on both the size of the transaction and
the initial bank states when it arrives at the back-end. In particular, the size of the pre-
vious transaction a�ects the bank states, and a smaller previous transaction results in
a larger WCET of the current transaction. The reason is that larger successive transac-
tions pipeline more e�ciently, as discussed later in Section 4.4. It hence follows that the
order of serving requestors with di�erent transaction sizes, i.e., their order in the TDM
table in�uences the WCET of their transactions. From this discussion, we conclude that
the duration of TDM slots varies and depends on several di�erent factors. This is an
issue that should be considered when using TDM arbiter for variable transaction sizes.

For a non-work-conserving non-preemptive TDM arbiter, each slot is statically allo-
cated to a requestor. The slot therefore has the maximum duration equal to the WCET
of transactions of that �xed size. Traditional work-conserving non-preemptive TDM
dynamically reallocates unused slots to a requestor with pending transactions, accord-
ing to some slack management policy. Unfortunately, this may increase the worst-case
slot duration from the WCET of the (smallest) transactions of the idle slot owner, to
the WCET of the transactions of any requestor receiving the slot (which may be the
requestor with the largest transactions). Traditional work-conservation therefore has a
negative e�ect on the WCRT in presence of variable-sized transactions by increasing
the worst-case slot duration, which is another issue that needs to be addressed.

36 run-dmc: a real-time memory controller with dynamic command scheduling

To solve these two issues, we �rstly propose a new work-conserving policy for non-
preemptive TDM arbiters used by requestors with variable transaction sizes. This policy
has two innovations, which will be latter experimentally validated in Section 4.8.

1. When a requestor r that is allocated the current TDM slot has no pending transac-
tions, the current slot becomes idle and we specify that this idle slot and the following
continuous slots belonging to r in the frame are skipped by the arbiter. Instead, the next
requestor with pending transaction(s) is served. As a result, idle slots are skipped,
instead of being reallocated to another requestor (with larger transactions perhaps).
Therefore, the maximum interference experienced by a requestor is always smaller
than when its slots would have been reused by another requestor. Moreover, skipped
slots reduce the waiting time for all other requestors.

2. We con�gure the TDM arbiter to serve requestors in descending order of their trans-

action sizes, such that their WCET and hence slot durations are smaller. This takes
advantage of the fact that a transaction has a smaller WCET when preceded by a
larger transaction. Note that the largest transaction is preceded by the smallest one
because the TDM schedule repeats periodically. However, the approach still results
in the minimum total length of all slots.

3.2.2.2 Transaction Scheduling Algorithm

Algorithm 1 presents the proposed work-conserving TDM arbitration. The inputs of Al-
gorithm 1 include the arbitration signal act_cmds_done in Figure 3.1, which triggers the
front-end to arbitrate as the back-end is ready to accept a new transaction. Another in-
put is the information whether or not a transaction queue corresponding to a requestor
has a pending transaction, and it is denoted by RQueues[], e.g., RQueues[r] == true
implies that requestor r has a pending transaction. The third input is the TDM slot allo-
cation, which is con�gured in a table TDM_Table[]. It speci�es the order of serving re-
questors and the number of continuous slots per requestor. For example, TDM_Table[r]
represents the number of slots allocated to requestor r. The TDM arbiter is con�gured
to serve requestors in descending order of their transaction sizes, which is the second in-
novation presented previously. The transaction sizes of requestors hence decrease from
requestor 0 to requestors N -1, and the requestors are served in this order. In a word,
requestor 0 has the largest transaction size while requestor N -1 has the smallest size.
Finally, the output of Algorithm 1 is the number of the transaction queue, denoted by
Q_ID, whose head transaction is scheduled to the back-end.

To obtain Q_ID, Algorithm 1 uses two internal variables r_index and s_index that are
the index of a requestor (associated with a transaction queue) and the index of its allo-
cated slots, respectively. Algorithm 1 begins with initializing Q_ID to be invalid (line 5),
and it ends when Q_ID becomes valid (line 16). However, the exploration of a valid Q_ID

(between line 7 and 17) starts only if act_cmds_done is true and there exists at least one
transaction queue with a pending transaction, as shown on line 6. If there are no queues

3.2 memory controller front-end 37

Algorithm 1 Transaction scheduling with work-conserving TDM
1: Inputs: act_cmds_done, RQueues[], TDM_Table[]
2: Internal state: r_index, Q_ID, s_index
3: Initialization: act_cmds_done← true; r_index ← 0; s_index ← 0;
4: Begin:
5: Q_ID← invalid; /*No requestor is selected.*/
6: if act_cmds_done = true && ∃i, RQueues[i] has a transaction then

7: Repeat:
8: if RQueues[r_index] has a transaction then

9: Q_ID← r_index; /*Serve requestor r_index, and update the index of its slots.*/
10: s_index ← (s_index + 1) mod TDM_Table[r];
11: if s_index = 0 then /*The �nal slot is taken by requestor r_index.*/
12: r_index ← (r_index + 1) mod N ; /*Update the requestor index.*/
13: else /*The requestor has no transaction, skip forward to the next one. */
14: r_index ← (r_index + 1) mod N ; /*Update the index for next requestor.*/
15: s_index ← 0; /*Initialize the slot index for the next requestor r_index.*/
16: Until Q_ID is valid.
17: End
18: Output: Q_ID

with pending transactions, this algorithm restarts the following clock cycle until a new
transaction arrives at the front-end. The algorithm �rstly checks whether the request
queue indexed by r_index has a transaction (line 8). If not, then its allocated slots be-
come idle and are skipped by setting r_index to the next transaction queue, and s_index

to 0 (line 14 to 15). This is di�erent from traditional work-conserving TDM arbitration,
where the idle slots are reallocated to another arbitrary requestor with pending trans-
action(s). This is the �rst innovation as discussed previously. If the transaction queue
r_index has a pending transaction (line 8), the algorithm behaves the same as normal
TDM arbitration.

Note that round robin is a special case of TDM when each requestor is only allocated a
single slot in the table. In TDM, requestors can have more than one slot and the allocated
slots can be placed in any order in the TDM table [8]. In our case, we allocate continuous
slots to a requestor, and the slots of di�erent requestors are placed in descending order
of their transaction sizes.

3.2.2.3 Example

Take four requestors r0, r1, r2, and r3 with di�erent transaction sizes as an example to
illustrate the bene�ts of the proposed work-conserving TDM arbitration. As previously
stated, we assume the transaction sizes decrease from r0 to r3. Each of them is allocated
one slot in the TDM table, as shown in Figure 3.2 (a). The slot duration of each requestor
is the WCET of its transactions experienced in the back-end. The larger transactions

38 run-dmc: a real-time memory controller with dynamic command scheduling

0r 1r 2r 3r

0r 0r2r 3r

(a)

(c)

2r 3r 0r 1r

1r

(b)

interft

interft

Figure 3.2: The worst-case interference delay for requestor r1: (a) TDM slot allocation; (b) the
proposed work-conserving TDM arbiter; (c) traditional work-conserving TDM arbiter.

have larger WCET, as later shown in Section 4.4.5. As a result, the slot duration of r0 is
the largest while it is the smallest for r3 (see Figure 3.2 (a)). Moreover, the TDM arbiter
is con�gured to serve requestors in descending order of their transaction sizes. As a
result, the requestors are served in the order from r0 to r3.

Take requestor r1 as an example. In the worst case, a transaction from r1 arrives just
as it misses its slot. This idle slot is hence skipped according to the proposed work-
conserving TDM arbitration, and the following requestors r2, r3 and r0 use their al-
located slots. This leads to the maximum interference delay tinterf for r1, as shown in
Figure 3.2 (b). A traditional work-conserving TDM arbiter could reallocate this idle slot
to another requestor, e.g., r0 as a bonus, according to some slack-management policies.
Then, the following requestors r2, r3, and r0 consume their allocated slots (Figure 3.2(c)),
leading to interference delay t

′
interf
> tinterf. The di�erence between them is actually the

duration of the idle slot that was given as a bonus to requestor r0. Hence, the proposed
work-conserving TDM arbiter is capable of providing smaller WCRT for transactions
with variable sizes. Moreover, this bene�t also applies to transactions with �xed size,
since it is a special case when all these four requestors in the example have the same
transaction size.

3.3 memory controller back-end

The memory controller back-end receives scheduled transactions from the front-end,
as shown in Figure 3.1. However, it is a general component that could be used without
the front-end, for example by connecting to a memory tree NoC [32] that plays the ar-
bitration role to schedule transactions from di�erent requestors to the back-end. Each
arrived transaction is translated into a number of memory commands that are sched-
uled to a number of consecutive banks subject to the timing constraints of the memory.
The basic idea underlying the back-end architecture (Section 3.3.1) and command ar-
biter (Section 3.3.2) is that each transaction (i.e., Ti, ∀i ≥ 0) generates an ACT command
followed by BCi times RD or WR commands, the last one with an auto-precharge. This
commences with the starting bank BSi and is repeated BIi times for all the required

3.3 memory controller back-end 39

banks. Commands are generated one per cycle, but are usually scheduled more slowly,
due to timing constraints. Commands are therefore bu�ered per bank (see Figure 3.1,
and discussed below). To limit the size of the command queues per bank while still en-
abling pipelining between transactions, a new transaction is sent by the front-end and
hence new commands are admitted to the queues only when all the ACT commands of
the current transaction have been issued to the memory. This is enforced by the com-
mand arbiter via the act_cmds_done signal in Figure 3.1 that triggers a new scheduling
decision in the front-end. To avoid read/write hazards or read-response reorder bu�ers,
the RD/WR commands of Ti are scheduled before those of the next transaction Ti+1. This
order (as a (BIi, BCi, BSi) tuple) of each transaction is stored in the parameter queue (PQ),
and used by the command arbiter to guarantee in-order execution of transactions. This
results in an e�cient pipelined back-end.

3.3.1 Back-End Architecture

We proceed by introducing the main components in the back-end, which include the
Lookup Table, parameter queue (PQ), Command Generator and the Cmd Arbiter,
as shown in Figure 3.1. In addition, other common components used by existing mem-
ory controllers are also brie�y introduced to show how these components constitute a
dynamically scheduled back-end.

As shown in Figure 3.1, 1) the Lookup table translates the transaction size to the
bank interleaving number (BI) and burst count (BC), which are needed by the command
generation. They are determined at design time when the memory map con�guration
is chosen and are programmed via a con�guration interface (cfg) when the system is
initialized. If there is no (BI, BC) corresponding to a transaction size in the Lookup
Table, the (BI, BC) related to the next larger size is used with the additional data being
masked out. An important (usually unstated) assumption on the translation from size
to (BI,BC) is that it must be monotone, as given by De�nition 12, where S(Tm) and
S(Tn) are the sizes of transaction Tm and Tn, respectively, where ∀m ≥ 0 and ∀n ≥ 0. A
methodology to choose the memory map con�guration based on the requirements of
bandwidth, execution time and power consumption has been presented in [36]. 2) With
the BI and BC, the widely used MemoryMap module in Figure 3.1 translates the logical
address of the transaction into the starting physical address that consists of the starting
bank BS, row, and column. 3) Then (BI, BC, BS) of the transaction is inserted at the back
of the parameter queue (PQ). This queue keeps track of the order of transactions in the
back-end and is used by the command scheduling algorithm in Section 3.3.2.

De�nition 12 (Monotone memory mapping). For ∀m ≥ 0 and ∀n ≥ 0, S(Tm) ≤
S(Tn) =⇒ BIm ≤ BIn ∧ BCm ≤ BCn.

Based on (BI, BC) and the physical address, 4) the Command Generator generates
memory commands for each bank according to the rules introduced at the beginning

40 run-dmc: a real-time memory controller with dynamic command scheduling

of this section. It generates an ACT command followed by BC RD or WR commands,
which are sequentially inserted into the command queue (i.e., FIFO) per bank. The last
command attaches an auto-precharge �ag. This is repeated for each of the BI banks.
Note that a new transaction can be sent by the front-end when the arbitration signal
act_cmds_done is true, which happens only if all the ACT commands of the currently
executed transaction are no longer in the command queue, i.e., have been issued to the
memory.

To keep track of the timing constraints of the commands, 5) timing counters are
commonly used by dynamically scheduled memory controllers. Each counter tracks one
timing constraint speci�ed by the JEDEC DDR3 standard [53]. We classify the timing

constraint counters (TCC) into local TCC and global TCC, which constrain the command
scheduling for the same bank and di�erent banks, respectively. Most timing constraints
shown in Figure 3.1 are directly provided by JEDEC, while tRWTP and tSwitch are de-
rived from the JEDEC speci�cation and are given by Eq. (3.1) and (3.2), respectively.
tRWTP is the time between a RD or WR command and the precharging to the same
bank, while tSwitch limits the time between two successive RD and/or WR commands.
Due to the double data rate of DDR SDRAM, BL/2 is the time consumed transferring a
burst of data associated with a RD or WR command.

tRWTP =



tRTP PRE follows RD
tWL + BL/2 + tWR PRE follows WR

(3.1)

tSwitch =




tRL + tCCD + 2tCK − tWL WR follows RD
tWL + BL/2 + tWTR RD follows WR
tCCD otherwise

(3.2)

A command that is at the head of the command queue can be issued only if its tim-
ing constraints are satis�ed in the current cycle. It is then called a valid command. As
shown in Figure 3.1, the 6) Timing Selector of the bank shows whether the timing
constraints for the head command are satis�ed. Multiple command queues may have a
valid command simultaneously. This implies command scheduling collisions, since only
one command can be issued per cycle on the command bus. Therefore, an arbiter is
required to select a valid command, which is the 7) Cmd Arbiter shown in Figure 3.1.
It has to guarantee in-order execution of transactions to avoid the architectural and
analysis complexity of re-ordering. Moreover, it provides the valid arbitration signal
act_cmds_done to the front-end when all the ACT commands of the current transac-
tion have been scheduled, such that the front-end schedules a new transaction to enable
pipelining of transactions. To achieve these goals, it uses the command scheduling algo-
rithm presented in Section 3.3.2. Finally, the chosen command is removed from the com-
mand queue and is passed to the memory. When a RD or WR command is scheduled, the
Read response and Write transferring modules in Figure 3.1 are enabled to transfer data

3.3 memory controller back-end 41

from/into the memory via the data bus. Moreover, both the local and global TCC associ-
ated with the scheduled command are reset. This is shown by the feedback wires from
the output of the arbiter to the TCC in Figure 3.1. Lastly, a refresh command needs to
be scheduled every tREFI cycles. Once triggered, it is scheduled after the data transmis-
sion of the currently executing transaction to prevent unnecessary interference, while
still ensuring that no refresh command is delayed more than 9 × tREFI clock cycles, as
speci�ed by the DDR3 standard [53]. Refresh is also implemented by timing counters,
which are not depicted in Figure 3.1 for simplicity.

3.3.2 Dynamic Command Scheduling Algorithm

After memory commands are generated and stored in the command queues by the Com-
mand Generator in Figure 3.1, the arbiter has to decide which command to schedule
every clock cycle for transactions in the back-end. It has to solve three critical issues,
namely:

1. a single command must be chosen from the set of valid commands;

2. transactions must be executed in �rst-come-�rst-serve (FCFS) order to avoid reorder
bu�ers for the responses;

3. to simplify logical-to-physical address translation [39], successive banks of a single
transaction have to be accessed in ascending order.

These issues are not independent from each other, and we proceed by explaining how
they are addressed by the arbiter. To guarantee the FCFS, the valid commands of a
transaction have higher priority than the valid commands of the following transactions.
Moreover, to transfer data as quickly as possible to/from the memory, valid RD/WR

commands have higher priority than ACT commands, resulting in lower execution time.
Within a transaction, the command queue corresponding to a bank with a lower num-
ber has higher priority, forcing banks to be served in ascending order. Though these
priorities cannot guarantee an optimal command scheduling algorithm, they solve the
three critical issues.

These priorities form the basis of Algorithm 2 that is used by the arbiter to select a
command from the multiple valid commands in every cycle. Note that a NOP is sched-
uled when there is no valid command in a cycle. As shown in Figure 3.1, the inputs of
the arbiter include the outputs of the Timing Selectors, the type (ACT, RD or WR) of
each command at the head of the command queues, and the head and tail elements of
the parameter queue. These inputs are taken by Algorithm 2 and represented by con-
straint_satis�ed, cmd_type, and PQ_head and PQ_tail, respectively. constraint_satis�ed
and cmd_type are arrays with sizes equal to the number of command queues. The out-
puts of Algorithm 2 are bank_id, all_cmds_done and act_cmds_done, where bank_id
indicates the command queue whose head command can be scheduled to bank bank_id.

42 run-dmc: a real-time memory controller with dynamic command scheduling

all_cmds_done is true when all commands of the current transaction have been issued to
the memory. The (BI,BC,BS) triple at the head of the parameter queue is then removed.
act_cmds_done indicates whether all ACT commands of the current transaction have
been sent to the memory. When true, this triggers the front-end to arbitrate for a new
transaction, even though RD/WR commands of current and past transactions are (likely
to be) pending.

Algorithm 2 Dynamic command scheduling
1: Inputs: PQ, constraint_satis�ed, cmd_type
2: Internal state: rw_bank, act_bank
3: Initialization: bank_id← null; act_bank← null; rw_bank← null;

act_cmds_done← true; all_cmds_done← false;
4: if act_bank = null then act_bank← PQ_tail.bs; act_cmds_done← false;
5: if rw_bank = null then rw_bank← PQ_head.bs;
6: if cmd_type[rw_bank] = RD/WR and constraint_satis�ed[rw_bank] = true then

7: bank_id← rw_bank;
8: if last RD/WR of PQ_head transaction then

9: rw_bank← null;
10: all_cmds_done← true;
11: else if last RD/WR of PQ_head transaction to bank bank_id
12: then rw_bank← rw_bank+1;
13: else if act_bank != null and then
14: if cmd_type[act_bank] = ACT and constraint_satis�ed[act_bank] = true then

15: bank_id← act_bank;
16: if last ACT of PQ_tail transaction then

17: act_bank← null; act_cmds_done← true;
18: else act_bank← act_bank+1;
19: Outputs: bank_id, act_cmds_done, all_cmds_done

In Algorithm 2, line 6 checks whether there is a valid RD/WR command for the cur-
rent bank (rw_bank) for reading/writing. Otherwise, line 14 checks whether there is a
valid ACT command. This guarantees that a valid RD or WR command has higher prior-
ity than a valid ACT command. act_bank and rw_bank indicate the number of the bank
to which an ACT or a RD/WR command can be scheduled, respectively. act_bank is
increased by one after an ACT command has been selected (line 18), while rw_bank in-
creases by one when BC number of RD/WR commands of the current transaction have
been scheduled to bank bank_id (line 12). This update scheme ensures the banks are
accessed in ascending order for each transaction. act_bank and rw_bank are initialized
with the starting bank BS of the transactions associated with the tail and head of the
parameter queue, respectively (line 4, 5). A new transaction can only be sent to the back-
end if all the ACT commands of the current transaction have been issued, as indicated
by act_cmds_done (line 17). As a result, only one transaction has ACT commands in the
command queues, namely the one at the tail of the parameter queue (PQ_tail). Hence,

3.4 cycle-accurate systemc model of run-dmc 43

Initiator: Blocks, Modules, & Connections

Traffic

Generator

Traffic

Generator

Traffic

Generator

Communication

XML

Architecture

XML
Requestor

queues

Requestor

queues

Requestor

queues

R
e

s
o

u
rc

e
 B

u
s

Trans

Data

Trans

Data

Trans

Data

MC Back-End Memory

Cmd

Data

Trans

Receiver

Mem

Mapping

Cmd

Generation

Refresh timer Refresh cmd
C

m
d

S
c
h

e
d

u
le

r
Timing Constraint Counters

Data transmission

Mem State

Monitor

Mem

Storage

RTMemController
Validation

…

MC Front-End

Trans

Data

SystemC port: SystemC module: SystemC block: SystemC channel:

Figure 3.3: The structure of the cycle-accurate SystemC simulator of Run-DMC.

transactions are served in FCFS order, the banks of each transaction are served in as-
cending order, and command priorities ensure that only a single command is scheduled
per cycle. Algorithm 2 thus addresses all three critical issues mentioned previously. Al-
though command priorities are used, there is no livelock or starvation since transactions
are executed in FCFS order.

Regarding the hardware cost, our memory controller is comparable to existing mem-
ory controllers, such as the one based on First-Ready First-Come First-Serve (FR-FCFS)
policy [55], the ROC [63] and the cadence DDR controller [20]. Our memory controller
has common components with these existing memory controllers, such as the request/re-
sponse bu�ers in the front-end and the memory map, command queues, command gen-
erator, and the timing constraint counters in the back-end. The additional components
of our memory controller are the lookup table and the parameter queue, which have
a limited number of entries. Moreover, the arbiters in the front-end and back-end use
Algorithms 1 and 2, respectively. They are similar to existing arbiters, such as the work-
conserving TDM [38] and the 3-level arbitrations of ROC [63]. We therefore expect our
memory controller to be similar in area and speed to existing designs.

3.4 cycle-accurate systemc model of run-dmc

Run-DMC is implemented as a cycle-accurate SystemC model, where the functional
components shown in Figure 3.1 are captured as SystemC blocks with ports and the
connections between di�erent components are modeled by SystemC channels. This
cycle-accurate model has been implemented as a SystemC simulator and its structure
is shown in Figure 3.3. The simulator takes the XML speci�cations of the architecture
and communication of the memory controller as its inputs. These speci�cations provide
abstract descriptions of the memory controller, such as the arbiter in the front-end and
the requestors with di�erent requirements in terms of latency and bandwidth, etc. Then,
the particular blocks, ports, and connections are instantiated (see Figure 3.3).

The SystemC simulator adds tra�c generators, which behave as the sources to pro-
vide the arrived tra�c generated by requestors. The tra�c are generated either in a

44 run-dmc: a real-time memory controller with dynamic command scheduling

synthetic way, e.g., the transaction arrival follows a normal distribution, or according
to the memory traces of benchmark applications. The tra�c consists of read and/or
write transactions along with the data from/into the memory. They are enqueued into
the Requestor queues, which are included in a SystemC block, as shown in Figure 3.3.
Each of these blocks has two ports for transferring transactions and data to the Resource
Bus block, respectively. Note that the data port can also receive data from the Resource
Bus for read transactions. The Resource Bus presented in Figure 3.3 implements the arbi-
tration between di�erent requestors and also forwards the transactions to the back-end
of Run-DMC or transfers data from/into the memory via the back-end. Therefore, the
Requestor queues and the Resource Bus in Figure 3.3 model the front-end of Run-DMC,
which has been illustrated in Figure 3.1.

The back-end of Run-DMC is captured by a single SystemC block, as shown in Fig-
ure 3.3. It receives transactions from the Resource Bus via one of its input ports, while
the other port is used to transfer data. Transactions are received by the TransReceiver
SystemC thread, followed by translating the logical address of a transaction to the
physical address by the MemMapping function. The CmdGeneration thread generates
commands for each transaction and enqueues them into the corresponding command
queues. Next, the CmdScheduler thread schedules each command based on Algorithm 2.
Its inputs include the pending commands of the transaction and the refresh command.
The latter is generated by the RefreshCmd function according to the RefreshTimer
thread that tracks the refresh period timing constraint tREFI (see Table 2.1). Moreover,
CmdScheduler has the input from the thread Timing Constraint Counters, which tracks
the timing constraints for scheduling commands of transactions, while feedback is given
in the other direction to reset the counters when a command is scheduled. Finally,
when a command is scheduled by the CmdScheduler, it is also validated by our open-
source tool RTMemController [70], which computes the scheduling time of each com-
mand based on the scheduling dependencies. RTMemController is later presented in
Section 4.7. In addition, the scheduling of a RD/WR command also triggers the Data
transmission thread, resulting in data transfer from/into the memory via the back-end.

The SDRAM device has been modeled by the Memory block shown in Figure 3.3.
When it receives a command from the back-end, the memory state monitor that is a
SystemC thread checks whether all timing constraints are satis�ed for the received com-
mand. It ensures that no timing constraint is violated for the SDRAM device. Note that
this should never happen and it is used to debug the memory controller. If a command is
successfully received, memory state monitor is updated to track the timing constraints
for a new command. In addition, the memory storage thread is triggered to receive or
send a burst of data for a WR or RD command, respectively. At the end, data is trans-
ferred between the Requestor queues in the front-end and the memory through the
back-end, as indicated in Figure 3.3.

3.5 experimental results 45

3.5 experimental results

This section experimentally evaluates our memory controller Run-DMC, which is im-
plemented as a cycle-accurate SystemC simulation model. The experimental setup is
presented and it will be used throughout this thesis to validate the bounds derived with
di�erent techniques in the following chapters. In addition, our SystemC simulator is
debugged using an open-source tool RTMemController, which formally captures the
timing behavior of Run-DMC and will be latter introduced in Chapter 4. As a result, the
SystemC is ensured to provide accurate command scheduling results, which are the pre-
requisite to derive accurate response/execution time and bandwidth. Experiments are
carried out for requestors with the same transaction sizes or variable sizes, respectively.
We collect the average and maximum measured results in terms of response/execution
time and bandwidth. Moreover, these results are compared to a state-of-the-art semi-
static approach [3], which is the only existing approach supporting di�erent memory
map con�gurations.

3.5.1 Experimental Setup

The cycle-accurate SystemC simulation model of Run-DMC runs on a 64-bit Ubuntu
12.04.5 LTS system with 8 Intel(R) Core(TM) i7 CPU running at 3.07 GHz and with
24 GB RAM. The experiments use a combination of independent real application traces
and/or synthetic tra�c. Each of them generates one transaction stream and they result
in a mixed stream in the memory controller back-end after the arbitration in the front-
end, which is assumed to have four requestors for most experiments in this thesis. Note
that the TDM arbiter in the front-end uses continuously allocated slots and most exper-
iments assume one slot per requestor for simplicity. The allocation of TDM slots per
requestor to meet the latency and/or bandwidth requirements is out of the scope of this
thesis. Please refer to [8, 77] for this issue. We use application traces generated by run-
ning applications from the MediaBench benchmark suite [65] on the SimpleScalar 3.0
processor simulator [10], which uses separate L1 data and instruction caches, each with
a size of 16 KB. The L2 caches are private uni�ed 128 KB caches where the cache-line
size varies depending on the experiments. Synthetic tra�c is generated using a nor-
mal distribution with very low variance, resulting in near-periodic tra�c inspired by
e.g., some hardware accelerators and display controllers in the multimedia domain. For
each transaction size in the experiments, we have chosen the memory map con�gura-
tion that provides the lowest execution time for transactions by interleaving more banks
to exploit bank parallelism. The con�gured (BI, BC) for transaction sizes of 16 bytes,
32 bytes, 64 bytes 128 bytes, and 256 bytes are hence (1, 1), (2, 1), (4, 1), (4, 2), and (4,
4) respectively [36]. (4, 2) and (4, 4) are used by 128 byte and 256 bytes transactions
instead of (8, 1) and (8, 2) because of tFAW that causes a longer execution time with (8,
1) and (8, 2). Experiments have been done with three JEDEC-compliant DDR3 SDRAMs,

46 run-dmc: a real-time memory controller with dynamic command scheduling

DDR3-800D, DDR3-1600G, DDR3-2133K, all with interface widths of 16 bits and a ca-
pacity of 2 Gb [53]. Refresh is manually scheduled according to the schema described in
Section 3.3.1, where a refresh starts to be scheduled after the �nishing of the currently
executed transaction, i.e., the last RD or WR is scheduled. Since refresh is periodically
needed with a relatively long time period tREFI, its e�ect on the application results in
a slight increase in the overall execution time. Therefore, we collect the measured max-
imum execution/response times of a transaction without taking refresh into account.
However, when collecting average execution/response times, the e�ect of refresh is in-
cluded.

3.5.2 Fixed Transaction Size

This experiment evaluates our approach for systems with �xed transaction size, and
compares the results to a semi-static approach [3]. Moreover, this experiment also col-
lects the measured worst-case results, which are the maximum results obtained from the
simulation. Note that the analytical worst-case bounds will be derived in latter chap-
ters using di�erent approaches. Four memory requestors are used, corresponding to
four processors executing di�erent MediaBench applications (gsmdecode, epic, unepic
and jpegencode), which generate a large number of transactions. The TDM arbiter in
the front-end allocates one slot per requestor. For each application, the total number
of transactions (TransN) and the ratio (or percentage) of read transactions (RRatio) are
shown in Table 3.1. The processors access the memory through their L2 caches and have
the same cache-line size. The experiment is executed for four di�erent cache-line sizes
of 32 bytes, 64 bytes, 128 bytes, and 256 bytes with di�erent memory map con�gurations,
respectively.

Table 3.1: Characterization of memory tra�c with �xed transaction size.

Size

gsmdecode epic unepic jpegencode

(bytes) TransN RRatio TransN RRatio TransN RRatio TransN RRatio

32 19734 64.4% 182957 69.7% 129145 61.0% 173995 87.4%
64 10104 64.3% 96984 69.3% 67664 61.0% 92905 87.8%
128 5216 64.1% 55644 69.8% 36540 60.9% 55192 89.1%
256 2626 64.5% 24577 70.5% 12675 61.2% 25159 88.9%

3.5.2.1 Execution Time

The execution time of a transaction is the time required by the back-end to schedule com-
mands to the memory. This experiment hence only evaluates the dynamically scheduled
back-end of Run-DMC. The front-end will be included later when evaluating response

3.5 experimental results 47

32 64 128 256
Transaction Sizes (Bytes)

0

10

20

30

40

50

60

70

80

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

measured ET (Run-DMC)
measured ET (semi-static)
average ET (Run-DMC)
average ET (semi-static)

Figure 3.4: The maximum measured WCET and average execution time (ET) for DDR3-1600G
SDRAM with �xed transaction sizes.

times. Note that the back-end can be independently used in a system or can be used with
di�erent front-ends. In addition, the back-end is a key component when determining
response times. As a result, it is necessary to provide the execution time in the back-end.
The maximum measured WCET and the average execution times of transactions with
�xed size accessing a DDR3-1600G memory are presented in Figure 3.4. The results for
other memories are similar and not shown. We can observe that:

1. The maximum measured WCET of our Run-DMC is the same as the semi-static
approach [3] with only a few exceptions, where the WCET of 32 bytes and 128 bytes
are 1 cycle larger, as shown in Figure 3.4. However, these exceptions rarely occur for
all the DDR3 SDRAMs, because they rely on the particular JEDEC timing constraints
and the speci�c sequence of previously executed transactions.

2. Run-DMC achieves signi�cantly better average execution time than the semi-static
approach for all these transaction sizes with di�erent DDR3 memories, as shown
in Figure 3.4, where DDR3-1600G is taken as an example. This is because dynamic
command scheduling monitors the actual state of the required banks and issues com-
mands earlier for a transaction that requires a di�erent set of banks from that of the
previous transaction. In contrast, the semi-static scheduling [3] uses pre-computed
schedules that always assume worst-case initial bank state for every transaction.
Figure 3.5 shows the improvement in average ET, which is de�ned as 100% × (1 −
t̄d
ET

/t̄ s
ET
). t̄d

ET
and t̄ s

ET
denote the average ET of our dynamic approach and the semi-

static approach, respectively.

48 run-dmc: a real-time memory controller with dynamic command scheduling

DDR3-800D DDR3-1600G DDR3-2133K
0

5

10

15

20

25

30

35

40

45

Av
er

ag
eE

T
Im

pr
ov

em
en

t (
%

)

32 Bytes
64 Bytes
128 Bytes
256 Bytes

Figure 3.5: The improvement of the average execution time (ET) for di�erent DDR3 SDRAMs
with �xed transaction sizes. The results of Run-DMC are compared to the semi-static
approach [3]

3. Moreover, we see that smaller transactions bene�t more from dynamic command
scheduling. For example with DDR3-800D, 32 byte transactions gain 40.2% while
256 byte transactions gain 4.7%. The reason is that smaller transactions require fewer
banks, increasing the chance that the next transaction accesses di�erent banks and
thus be scheduled earlier.

3.5.2.2 Bandwidth

Bandwidth is another metric to evaluate the performance of a memory controller. It
represents the long-term rate of transferring data from/into the SDRAM. It is a main
concern for memory-intensive applications with a high throughput requirement. As de-
�ned by De�nition 10 in Chapter 2, bandwidth is computed based on the transaction size
and its execution time. As a result, we can obtain the measured minimum (i.e., worst-
case) and the average bandwidth based on the measured WCET and average ET. For
example, the bandwidth results for DDR3-1600G SDRAM with �xed transaction sizes
are illustrated in Figure 3.6. We can draw the same conclusions as for execution time,
where 1) the measured worst-case bandwidth provided by our Run-DMC is compara-
ble with the semi-static approach, while 2) signi�cantly better average bandwidth is
achieved, as shown in Figure 3.6. Moreover, 3) smaller transaction sizes bene�t more
from the dynamic command scheduling to achieve better average bandwidth. These
conclusions are expected because the bandwidth is calculated based on the execution
time according to De�nition 10. We can also observe that 4) larger bandwidth is given
using larger transaction sizes. It is for the reason that more consecutive data bursts are
transferred for each bank activation, resulting in higher e�ciency of transferring data.
These conclusions are also observed from the results of other DDR3 SDRAM memories,
although they are not shown for brevity.

3.5 experimental results 49

32 64 128 256
Transaction Sizes (Bytes)

0

500

1000

1500

2000

2500

3000

B
an

dw
id

th
 (M

B
/s

)

measured BW (Run-DMC)
measured BW (semi-static)
average BW (Run-DMC)
average BW (semi-static)

Figure 3.6: The measured minimum and average bandwidth for DDR3-1600G SDRAM with �xed
transaction sizes.

3.5.2.3 Response Time

The response time of a requestor is essentially determined by accumulating the execu-
tion time of transactions from each requestor, which are executed within their allocated
TDM slots. However, the random arrival of transactions makes the response time of a
requestor varying, which depends on the number of interfering transactions from other
requestors and the initial bank states when executing its own transaction. This experi-
ment collects the maximum measured response time (RT) of read and write transactions,
respectively. Figure 3.7 presents the measured RT obtained from both our dynamically-
scheduled memory controller and its semi-static counterpart for �xed transaction sizes,
where DDR3-1600G SDRAM is taken as an example. We can see that 1) the response
time of read transactions is larger than that of write transactions. The reason is that a
read �nishes when its last data word is returned, while a write transaction is done when
its last WR command is scheduled, as given by De�nition 9 determining the response
time of the memory controller. 2) Comparing to the semi-static approach, Run-DMC
achieves smaller RT for all �xed transaction sizes except 256 bytes, as shown in Fig-
ure 3.7.

For small transaction sizes (i.e., 32 bytes, 64 bytes, and 128 bytes), Run-DMC provides
smaller measured RT because it dynamically exploits bank parallelism, since small trans-
actions typically access di�erent sets of banks. However, the semi-static approach can-
not exploit this bank parallelism across transactions requiring di�erent banks. For large
transaction size of 256 byte, the measured RT of semi-static approach is smaller than
that given by Run-DMC, as shown in Figure 3.7. On one hand, 256-byte transactions
have a fewer sets of banks to use. As a result, these two approaches perform closely. On

50 run-dmc: a real-time memory controller with dynamic command scheduling

32 (R
D)

32 (W
R)

64 (R
D)

64 (W
R)

128(RD)

128(WR)

256(RD)

256(WR)

Transaction Sizes (Bytes)

0

50

100

150

200

250

300

350

R
es

po
ns

e
Ti

m
e

(c
yc

le
s)

measured RT (Run-DMC)
measured RT (semi-static)

Figure 3.7: The maximum measured response time (RT) for DDR3-1600G SDRAM with �xed trans-
action sizes.

the other hand, to support the pipelining between successive transactions, Run-DMC
speci�es that a new transaction can be sent to the back-end when all theACT commands
of the current transaction are scheduled. This further enables the front-end to receive
the next transaction. In contrast, the semi-static approach does not support pipelining
between successive transactions. As a result, a transaction is sent to the back-end when
the current transaction is �nished, i.e., the last RD or WR command is scheduled. As a
result, the front-end becomes available to receive the next transaction latter than that of
Run-DMC, since ACT commands of the current transaction are scheduled earlier than
the RD or WR commands. Therefore, the next transaction received by the front-end of
Run-DMC may experience longer response time than that of the semi-static approach.
To conclude, it is hard to say whether our Run-DMC always outperforms the semi-
static approach in the worst-case according to these experimental results (e.g., measured
ET/RT). The reason is that the worst-case scenario may not be covered by running these
MediaBench application traces. We will later formally compare these two approaches
in Chapter 4, 5, 6.

Our dynamically-scheduled memory controller achieves better average performance,
as demonstrated by the execution time in Figure 3.4. We further explore this bene�t by
deriving the improvement in average RT for each MediaBench application trace when
comparing Run-DMC to the semi-static approach. The improvement is shown in Fig-
ure 3.8, and its de�nition is similar to that of the average ET in Figure 3.5. Figure 3.8
demonstrates that the average RT of each MediaBench application trace is greatly im-
proved, e.g., 43.7% improvement is achieved to access a DDR3-1600G SDRAM for jpe-
gencode with 32-byte transactions. Moreover, smaller transaction sizes can bene�t more
from our dynamically-scheduled memory controller.

3.5 experimental results 51

jpegencode_32

unepic_32
epic_32

gsm
decode_32

jpegencode_64

unepic_64
epic_64

gsm
decode_64

jpegencode_128

unepic_128

epic_128

gsm
decode_128

jpegencode_256

unepic_256

epic_256

gsm
decode_256

MediaBench Application Traces

0

5

10

15

20

25

30

35

40

45
Av

er
ag

e
R

T
Im

pr
ov

em
en

t (
%

)
DDR3-800D
DDR3-1600G
DDR3-2133K

Figure 3.8: Comparison to a semi-static approach [3] in average response time of Mediabench
application traces for di�erent DDR3 SDRAMs with �xed transaction size.

3.5.3 Variable Transaction Sizes

The last experiment evaluates Run-DMC with variable transaction sizes. The setup is
loosely inspired by a High-De�nition video and graphics processing system [31] featur-
ing a number of CPU, GPU, hardware accelerators and peripherals with variable trans-
action sizes. This system has 4 requestors with the transaction sizes of 16 bytes, 32 bytes,
64 bytes and 128 bytes, respectively. The �rst requestor Req_1 represents a GPU with
128 byte cache line size, executing a Mediabench application jpegdecode. A video en-
gine corresponding to the second requestor, Req_2, runs mpeg2decode and generates
memory transactions of 64 bytes. The Mediabench application epic is executed by a pro-
cessor denoted Req_3 with a cache-line size of 32 bytes. A synthetic memory trace is
used by a CPU with a 16 byte cache-line size, resulting in read and write transactions of
16 bytes. This is requestor Req_4. The characterization of these memory traces is given
by Table 3.2. Note that a requestor stops when the whole trace is executed. The TDM
arbiter in the front-end of our Run-DMC allocates one slot per requestor and serves
these requestors from Req_1 to Req_4 in descending order of their transaction sizes. In
contrast, the semi-static approach uses memory patterns (i.e., static schedules of com-
mands) to serve transactions with a �xed size. When it is used for variable transaction
sizes, larger transactions have to be split into several pieces served by multiple patterns,
while smaller transactions are directly served by the pattern, discarding the unneeded
data. Therefore, we have to investigate the best transaction size of the patterns, i.e., pro-

52 run-dmc: a real-time memory controller with dynamic command scheduling

viding the lowest execution/response times of all requestors or the maximum overall
bandwidth. In this way, a fair comparison can be carried out between Run-DMC and
the semi-static approach.

Table 3.2: Characterization of memory tra�c with variable transaction sizes.

Tra�c jpegdecode mpeg2decode epic synthetic

Size (bytes) 128 64 32 16
TransN 11385 37320 182957 990151
RRatio 63.1% 77.0% 69.7% 50.0%

3.5.3.1 Execution Time

The execution time of a transaction executed by Run-DMC starts either from the �nish-
ing time of the preceding transaction or its own arrival time, whichever is larger, accord-
ing to De�nition 7. Due to the command scheduling dependencies on the SDRAM banks,
the measured WCET must be obtained when the transaction starts immediately when
the preceding transaction �nishes. In contrast, the execution time given by the semi-
static approach [3] equals to the length of the pattern used by the transaction. Since the
semi-static approach only uses static command scheduling patterns with a particular
transaction size at run-time, we have done separate experiments by con�guring pat-
terns with four di�erent transaction sizes at design time, respectively. Note that smaller
transactions are executed using the pattern and the unneeded data is masked out, re-
sulting in low data e�ciency. While larger transactions are executed by continuously
employing multiple patterns.

The measured maximum execution times of the variable transaction sizes are illus-
trated in Figure 3.9 for our dynamically-scheduled and the semi-static approaches, where
DDR3-1600G SDRAM device is taken as an example. We can see that the measured ET
has great di�erences for the semi-static approach using patterns with di�erent trans-
action sizes. Since the semi-static approach only uses patterns with a particular size at
run-time, we can observe from Figure 3.9 that the best pattern size is 128 bytes, such
that the total (measured) execution time is minimized when the semi-static approach
executes transactions with 16 bytes, 32 bytes, 64 bytes, and 128 bytes for DDR3-1600G.
This best pattern size ensures that the semi-static approach achieves the smallest worst-
case response time. Therefore, we can fairly compare Run-DMC with the semi-static
approach. Experiments also show that the best pattern size for DDR3-800D and DDR3-
2133K is 64 bytes and 128 bytes, respectively.

The purpose of this experiment is to �nd the best pattern size, such that Run-DMC
can fairly compare its response time and bandwidth in the following sections rather
than compare the measured execution time. The reason is that the de�nitions of ET are

3.5 experimental results 53

16 32 64 128
Transaction Sizes (Bytes)

0

50

100

150

200

250

300

350

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

measured ET (Run-DMC)
measured ET (semi-static, 16)
measured ET (semi-static, 32)
measured ET (semi-static, 64)
measured ET (semi-static, 128)

Figure 3.9: The maximum measured WCET of both Run-DMC and the semi-static approach [4]
for DDR3-1600G SDRAM with variable transaction sizes.

di�erent for these two approaches. We �nd from the experiments that the measured ET
of Run-DMC is achieved when the preceding transaction is always the smallest 16-byte
transaction, which uses only a single bank. Therefore, the measured (maximum) ET is
caused for a transaction that has to reactivate the same bank. This reactivation takes
long time. However, the semi-static approach executes 16-byte transactions with the
pattern of 128 bytes, which interleaves over more banks. As a result, the reactivation
time taken by Run-DMC for the new transaction can be pipelined in the pattern for the
preceding 16-byte transaction with the semi-static approach, although the unneeded
112-byte data has to be discarded. In other words, Run-DMC computes the ET of a
transaction by taking the reactivation time into account, while the semi-static approach
puts this time to the preceding transaction instead of the current one.

3.5.3.2 Bandwidth

The bandwidth obtained by executing transactions with variable sizes can be computed
based on the execution time and the corresponding transaction size (see De�nition 10).
For the semi-static approach applying for variable transaction sizes, the data e�ciency
has to be considered by the bandwidth. For example, to achieve the lowest execution
time of transactions for DDR3-1600G SDRAM, the semi-static approach uses patterns
with 128 bytes for all transaction sizes. As a result, the data e�ciencies for transactions
with 16-bytes, 32 bytes and 64 bytes are 12.5%, 25% and 50%, respectively. Figure 3.10
shows the average bandwidth of Run-DMC and the semi-static approach with di�erent
patterns. These results are computed based on the average ET obtained by di�erent
approaches. We can see that Run-DMC can always provide more bandwidth than the semi-

static approach using di�erent patterns. The reasons are that 1) Run-DMC e�ciently

54 run-dmc: a real-time memory controller with dynamic command scheduling

16 32 64 128
Transaction Sizes (Bytes)

0

500

1000

1500

2000

2500

3000

B
an

dw
id

th
 (M

B
/s

)

average BW (Run-DMC)
average BW (semi-static, 16)
average BW (semi-static, 32)
average BW (semi-static, 64)
average BW (semi-static, 128)

Figure 3.10: The average bandwidth (BW) of both Run-DMC and the semi-static approach [4] for
DDR3-1600G SDRAM with variable transaction sizes.

deals with variable transaction sizes by dynamically exploiting the bank states, and 2)
the static patterns used by the semi-static approach result in low data e�ciency when
applying for variable transaction sizes. Note that this observation also holds for other
DDR3 SDRAMs.

3.5.3.3 Response Time

The response times of the four requestors in our experiments can be fairly compared be-
tween our dynamically-scheduled memory controller and the semi-static approach. As
shown in Figure 3.11, Run-DMC always gives lower measured maximum response times

to requestors with variable sizes compared to the semi-static approach using patterns with

di�erent transaction sizes. In particular, the latter with 16-byte patterns provides much
larger response time, e.g., 587 cycles for read transactions with 128 bytes, and the results
are too large to be included in Figure 3.11. The reasons that Run-DMC outperforms the
semi-static approach for variable transaction sizes include 1) Run-DMC exploits the dy-
namism of the memory tra�c that the semi-static approach cannot, i.e., variable-sized
transactions to di�erent banks, and 2) even using the best patterns to achieve the low-
est response time, the semi-static approach is still not e�cient for all the transaction
sizes, e.g., discarding data for smaller sizes or being used multiple times for large ones.
The former results in low data e�ciency. The latter repeats the same pattern for a large
transaction multiple times. With close-page policy, the same bank required by the large
transaction is therefore reactivated/precharged multiple times, leading to longer execu-
tion time.

Our dynamically-scheduled memory controller provides signi�cantly better average
response time for the application traces, which are used in our experiments. Figure 3.12

3.6 summary 55

16 (RD) 16 (WR) 32 (RD) 32 (WR) 64 (RD) 64 (WR) 128(RD) 128(WR)
Transaction Sizes (bytes)

0

50

100

150

200

250

300

R
es

po
ns

e
Ti

m
e

(c
yc

le
s)

measuredRT (Run-DMC)
measuredRT (semi-static, 32)
measuredRT (semi-static, 64)
measuredRT (semi-static, 128)

Figure 3.11: The measured response time (RT) of both Run-DMC and the semi-static approach [4]
for DDR3-1600G SDRAM with variable transaction sizes.

presents the improvement of the average RT, which is gained by Run-DMC when com-
paring to the semi-static approach with the best patterns for DDR3-800D, DDR3-1600G
and DDR3-2133K SDRAM memories, respectively. We can see that the average RT is
improved from 16.2% for jpegdecode_128 with DDR-800D to 79% for synthetic_16 with
DDR3-1600G. Again, it shows that smaller transaction sizes bene�t more from our dynamically-
scheduled memory controller.

3.6 summary

Design of real-time memory controller can use various mechanisms (e.g., priority-based
arbitrations and re-ordering) to achieve di�erent functionalities and performance. More-
over, the memory controller must be analyzable, i.e., being capable of providing the
bounds on the worst-case response time and bandwidth. This chapter introduces the ar-
chitecture and algorithms of our memory controller, Run-DMC, which is capable of ef-
�ciently dealing with diverse memory tra�c with variable transaction sizes. Moreover,
Run-DMC serves requestors with a novel work-conserving TDM arbiter in the front-
end, and the back-end executes each transaction by dynamically scheduling commands
to the required SDRAM banks in a pipelined manner according to a priority-based algo-
rithm. The novel TDM arbiter is designed to achieve better/smaller worst-case response
time by skipping idle slots for reducing the interference and con�guring the service or-
der of requestors in the descending of their transaction sizes, where the latter results in
smaller execution time. Therefore, it can e�ciently deal with the variable transaction
sizes.

56 run-dmc: a real-time memory controller with dynamic command scheduling

synthetic_16 epic_32 mpeg2decode_64 jpegdecode_128
Application Traces

0

10

20

30

40

50

60

70

80

Av
er

ag
e

R
T

Im
pr

ov
em

en
t (

%
)

DDR3-800D
DDR3-1600G
DDR3-2133K

Figure 3.12: The average response time (RT) improvement gained by Run-DMC versus the semi-
static approach [4] with the best patterns for DDR3 SDRAMs with variable transac-
tion sizes.

Run-DMC is implemented as a cycle-accurate SystemC model, which is used to eval-
uate its performance in terms of measured maximum and average execution/response
time as well as the bandwidth. The experimental results demonstrate that our dynamically-
scheduled memory controller signi�cantly outperforms a semi-static approach in the
average case, while they are comparable in the worst-case according to the measured
maximum/minimum response time/bandwidth for �xed transaction sizes. For variable
transaction sizes, Run-DMC provides smaller measured maximum RT and larger av-
erage bandwidth than the semi-static approach using the best command scheduling
patterns for di�erent DDR3 SDRAMs. Moreover, smaller transaction sizes bene�t more
from the dynamically-scheduled memory controller in terms of average performance,
which is bene�cial for non-real-time applications.

4
F O R M A L A N A LY S I S O F R U N - D M C

The analysis of real-time (RT) memory controllers provides the worst-case execution/re-
sponse time for each memory transaction and/or derives the worst-case (i.e., guaran-
teed) bandwidth to the memory requestors. These analysis results can be further inte-
grated into a system-level analysis that ensures application requirements in terms of
latency or throughput are satis�ed [11]. However, the worst-case analysis of RT mem-
ory controllers is challenging because of 1) the interferences between di�erent memory
requestors, 2) the complex dependencies between SDRAM commands subject to the
inter- and intra-bank timing constraints, and �nally 3) the diverse memory tra�c of
arbitrarily mixed read and write transactions with variable sizes that require di�erent
SDRAM banks.

This chapter proposes a formal analysis of our dynamically-scheduled memory con-
troller, Run-DMC, which was previously introduced in Chapter 3. Run-DMC can e�-
ciently address the diverse memory tra�c with variable transaction sizes. Its front-end
uses a novel TDM arbiter to serve requestors, while the back-end executes each trans-
action via dynamically scheduling commands to the required banks according to their
run-time states. The formal analysis in this chapter follows the same way used by ex-
isting analyses, which are based on analyzing the command scheduling dependencies
and �guring out which ones dominate in the scheduling process and determine the
worst-case results. The advantage of these formal analyses is that they are easy to use
when the formal worst-case bounds are derived. However, the analysis of the complex
scheduling dependencies is di�cult. When applying for a new memory controller using
di�erent mechanisms, the analysis has to be repeated, which is time-consuming. More-
over, the analyzed worst-case results may be pessimistic, since the analysis has to use
conservative assumptions, such that the complexity is manageable.

To overcome the shortcomings of formal analysis, we switch the e�ort from analyzing
the complex command scheduling dependencies to modeling the memory controller
and obtaining the worst-case results by analyzing the models with existing techniques.
Toward this goal, Chapter 5 will later introduce a data�ow model of our Run-DMC,
where commands are represented by the nodes and dependencies are captured by the
edges between nodes in a data�ow graph. The analysis of data�ow model is easy to
derive the minimum throughput of executing the graph, which is converted into the
worst-case/minimum bandwidth (WCBW). However, obtaining the worst-case response

57

58 formal analysis of run-dmc

time (WCRT) is di�cult due to the dynamism of executing the data�ow graph. Finally,
Chapter 6 will give a timed automata (TA) model of our dynamically-scheduled memory
controller. The behavior of the dynamic command scheduling can be precisely captured
by the states and the transitions of the TA model. With model checking of the TA model,
we derive the bounds of both WCBW and WCRT.

This chapter introduces a formal analysis of our Run-DMC, which consists of three
steps. First, the command scheduling dependencies of an arbitrary transaction are for-
malized, followed a derivation of the worst-case initial bank states for the transactions,
such that the worst-case execution time (WCET) in the back-end can be computed. The
worst-case initial bank states are derived by scheduling commands for the preceding
transactions as-late-as-possible. This results in the maximum scheduling times of com-
mands for the current transaction subject to the constant timing constraints, leading
to a bound on the WCET. Thirdly, with the bounded WCET of each transaction in the
back-end, the WCBW is obtained based on De�nition 10. Moreover, the WCRT of a trans-
action experienced in the front-end is therefore obtained by accumulating the WCET
of the interfering transactions executed within their allocated slots and the WCET of
the transaction itself. The formalization of the generic command scheduling dependen-
cies and the corresponding WCET analysis are implemented in an open-source tool,
named RTMemController [70]. Finally, the worst-case bounds given by the proposed
formal analysis are experimentally validated. We also compare the worst-case results to
those given by the semi-static approach [4], which is the only other memory controller
supporting di�erent memory con�gurations.

In the remainder of this chapter, Section 4.1 summarizes the related work of worst-
case analysis of RT memory controllers. The formalization of the generic command
scheduling dependencies is given in Section 4.2, followed by determining the worst-
case initial bank states in Section 4.3. The WCET is bounded in Section 4.4 and a bound
on the WCRT is derived in Section 4.5. The bound on the WCBW is given in Section 4.6
and it is based on the WCET. Section 4.7 introduces the open-source tool. Finally, the
results are presented in Section 4.8, before the summary of this chapter in Section 4.9.

4.1 related work

The analysis of real-time memory controllers is challenging because of the complex
scheduling dependencies between commands of memory transactions. The scheduling
dependencies are caused by the intra- and inter-bank timing constraints of SDRAM
memories. To ease the analysis, static and semi-static memory controllers are designed,
where the complex dependencies are resolved o�-line when generating static command
schedules of an application or transactions at design time. During run-time, commands
are scheduled according to these static schedules. Therefore, the worst-case execution/re-
sponse time and bandwidth can be statically calculated based on inspecting these com-
mand schedules. For example, an application-speci�c SDRAM memory controller [12]

4.1 related work 59

uses a static command schedule for a particular application, and the total WCET of all
the memory transactions is hence statically known. However, this SDRAM controller is
not scalable to support other applications running in a di�erent platform, e.g., a multi-
core system. To overcome this limitation, semi-static memory controllers [4, 25, 37, 46,
84, 85, 88] use pre-computed short command schedules corresponding to transactions
with a �xed size instead of an entire application. As a result, they can dynamically select
the static schedules for particular transactions, such that di�erent applications are sup-
ported. Since the number of these static schedules is limited, it is easy to determine the
valid combination of schedules, which leads to the worst-case results. However, these
semi-static memory controllers cannot e�ciently execute transactions with variable
sizes due to the limited number of schedules. The reason is that the variable-sized trans-
actions access di�erent sets of the SDRAM banks, which require more static schedules.
However, these schedules will consume more hardware resources of the memory con-
troller and also result in the complexity of worst-case analysis. This con�icts the whole
point of the semi-static approach.

Dynamic command scheduling is promising to e�ciently address transactions with
variable sizes, where commands are generated and scheduled to the required sets of
banks at run-time. As a result, it can dynamically exploit the SDRAM bank parallelism.
However, its worst-case analysis is much more di�cult than those of static and semi-
static memory controllers. The formal analyses of dynamic command scheduling are
based on analyzing the complex scheduling dependencies of commands. Therefore, con-
servative assumptions are employed by the state-of-the-art analyses to compute the
time interval between any two commands. The assumptions include that 1) the switch-
ing from write to read is always assumed to be the interval between two RD and/or
WR commands, and 2) the tFAW constraint dominates in the scheduling of each ACT
command. For example, these consumptions have been used by [52, 55, 63, 107] to de-
rive conservative worst-case results. Though these memory controllers schedule com-
mand dynamically, they only support a �xed transaction size, such that their analysis is
simpli�ed. Our dynamically-scheduled memory controller Run-DMC [69, 72] supports
variable sizes directly and the formal analysis presented in this chapter will provide
the worst-case results in terms of WCET, WCBW, and WCRT. The two assumptions
mentioned above also apply to our analysis technique. However, the switching timing
constraint from write to read is only used to compute the scheduling time of the �rst RD
command of a transaction and not for all the RD commands. Similarly, when the tFAW

constraint applies to an ACT command of the transaction, it cannot dominate in the
scheduling of the next consecutive ACT command. These are captured by our analysis
technique. Moreover, existing analyses of real-time memory controllers always assume
scheduling collisions on the command bus. However, our analysis shows that this is not
always true. Therefore, we can derive better worst-case results.

60 formal analysis of run-dmc

4.2 formalization of dynamic command scheduling

In this section, we introduce standard notation and de�nitions to formalize the timing
behavior of the back-end architecture and the dynamic command scheduling of trans-
actions, as speci�ed by Algorithm 2 in Section 3.3.2. As introduced in Section 3.3.1, a
transaction is translated into a series of BI bank accesses. Each bank access activates a
bank, and then reads or writes BC times, the last time with auto-precharge. A command
can only be scheduled and executed at its scheduling time when the timing constraints
from previous commands are satis�ed. Timing constraints therefore result in schedu-
ling dependencies. A bank access is a natural self-contained group of commands, and
each transaction is made up of one or more bank accesses. As discussed in Section 2.3.2,
the command scheduling dependencies of two successively accessed banks bj and bj+1
are depicted by Figure 2.8. Our analysis in this section is based on the scheduling depen-
dencies of an individual transactionTi that generates BIi successive bank accesses. The
notation used in this section is summarized in Table 4.1. Note that the formalization of
dynamic command scheduling and the analysis in this chapter are the novelties and not
the mathematical analysis techniques.

4.2.1 Formalization

In dynamic command scheduling, the order of command execution is decided at run
time on the basis of the timing constraints between commands. In addition, the com-
mand scheduling in Algorithm 2 speci�es that 1) RD/WR is prioritized over ACT com-
mands of di�erent banks, resulting in that an ACT can be blocked; 2) Commands are
scheduled in ascending order of their targeted banks, and 3) the same kind of commands
(i.e., RD/WR or ACT) of a later transaction cannot be scheduled earlier, such that trans-
actions are served in FCFS manner. Recall that the commands to the same bank are
enqueued in the FIFO queue, where the ACT command is enqueued before the RD/WR

commands for the same transaction. We therefore obtain the command scheduling de-
pendencies of a transaction by extending the dependencies between commands of suc-
cessively accessed banks, as depicted in Figure 2.8. We analyze the execution time of a
transaction by computing the actual scheduling time of commands under our dynamic
scheduling algorithm. We later compute the worst-case execution time in Section 4.4.

When an arbitrary transaction Ti (∀i ≥ 0) arrives at the back-end with the arrival time
de�ned by De�nition 3, it is executed by scheduling commands to a number of banks.
Note that T-1 is a transaction assumed to be �nished long time ago, i.e., tf (T-1) = −∞.
T-1 is only used to provide the initial bank states for analyzing the following arbitrary
transactions. We assume Ti uses BIi and BCi, and the starting bank is bj. j is the num-
ber of the �rst bank access of Ti and it is a function of i, as given by Eq. (2.1). It is
the total number of bank accesses by previous transactions. Expanding Figure 2.8 to an
entire transaction Ti, Figure 4.1 illustrates the scheduling dependencies between all its

4.2 formalization of dynamic command scheduling 61

Table 4.1: Summary of notation.

Variables Descriptions

i The number of an arbitrary transaction arrived at the back-end.
i ≥ 0.

Ti The i
th transaction received by the back-end

S(Ti) The size of transaction Ti

j(i) The �rst bank access number for the current transaction Ti. j(i) ≥
0 is de�ned by Eq. (2.1).

j The shorthand for j(i)
BIi, BCi The bank interleaving number (BI) and burst count (BC) of Ti
bj(i) The bank number that is targeted by the j

th bank access, which
is also the starting bank of Ti. bj ∈ [0, 7] is one of the 8 banks in
DDR3 SDRAMs.

bj Shorthand for bj(i)
ACTj The ACT command of the j

th bank access
t(ACTj) The scheduling time of ACTj
C(j) The delay in scheduling ACTj due to a collision; and it is either 1

or 0 cycle depending on whether the collision exists or not.
RW

k

j
The k

th (∀k ∈ [0,BCi − 1]) RD or WR command of the j
th bank

access
t(RWk

j
) The scheduling time of RWk

j

PREj The PRE command for the j
th bank access

t(PREj) The scheduling time of PREj
ts(Ti) The starting time of Ti in the back-end
t̂s(Ti) The worst-case starting time of Ti in the back-end
tf(Ti) The �nishing time of Ti in the back-end
t̂f(Ti) The worst-case �nishing time of Ti in the back-end
tET(Ti) The execution time of Ti in the back-end
l Used to index the banks of a transaction Ti and ∀l ∈ [0,BIi − 1]
k Used to index the bursts of a bank for Ti, and ∀k ∈ [0,BCi − 1]

62 formal analysis of run-dmc

0

jRW 1iBC

jRW
tCCDtRCDtRP tRWTP tRP

[0, 1]iBC 

tRP

tRRD

1

1
iBC

jRW  



tFAW

tRP

tRAS

0

1ij BIRW  

1

1
i

i

BC

j BIRW


 

0

1jRW 

1

1
iBC

jRW




tFAW

tFAW

tSwitch

()i i iT

 

()i i iT


 

iT

 sBank b

1 sBank b 

1 s iBIBank b  

tSwitch

tRCD

tRRD

tRWTP

tRWTP

tCCD

1

1

tRAS

tRAS

[0, 1]iBC 

[0, 1]iBC 

tCCD

tCCDtRCD

tRRD

tRRD

tCCD
tCCD

tRP

tRP

tRRD
1jACT 

mPRE

4jACT 

nPRE

3jACT 

qPRE

5ij BIACT  

jACT jPRE

1jACT 

1ij BIACT  

1jPRE 

1ij BIPRE  

1

Figure 4.1: The timing dependencies of command scheduling for transaction Ti.

commands. The command scheduling for Ti depends on zero or more previous trans-
action(s) Ti′ . For ∀l ∈ [0,BIi − 1], the (j + l)th bank access comprises ACTj+l and several
RD or WR commands to bank bj+l. The RD or WR commands are denoted by RW

k

j+l
,

where ∀k ∈ [0,BCi − 1]. Moreover, an auto-precharge PREj+l is issued after the access
of bank bj+l, and it is speci�ed by an auto-precharge �ag issued together with RW

BCi−1
j+l

.
For BIi > 4, the scheduling of some ACT commands also depends on the previous ACT
commands of the current transaction Ti because of the four-activate window (tFAW).

For Ti, Eq. (4.1) computes the scheduling time of ACTj+l where m = maxk<j {k |bk =

bj+l } is the previous bank access to bank bj+l. The max function in Eq. (4.1) guaran-
tees that all the timing constraints for scheduling ACTj+l are satis�ed. In addition, the
scheduling time of ACTj+l is after Ti arrives. In case of a command scheduling collision
where ACTj+l is blocked by a RD or WR command, C(j+l) is equal to 1 and 0 otherwise.
Similarly, the scheduling time of RWk

j+l
is given by Eq. (4.2) and (4.3). Eq. (4.2) provides

the scheduling time of the �rst RD or WR command of Ti to bank bj+l. It depends on
t (RWBCi−1

j+l−1), which is the scheduling time of the last RD or WR to bj+l−1, and the schedu-
ling time of ACTj+l. Note that for l = 0, t (RWBCi−1

j−1) is de�ned as the �nishing time of Ti−1.
The scheduling time of the remaining RD or WR commands (k ∈ [1,BCi − 1]) to bank
bj+l only depend on the previous RD or WR command, and is given by Eq. (4.3). Finally,
the precharging time of the auto-precharge for bank bj+l is given by Eq. (4.4). This is the
time at which the precharge actually happens, although it was issued earlier as an auto-
precharge �ag appended to the last RD or WR command to the same bank. We de�ne
the �nish time of the initial transaction as tf (T−1) = −∞, such that the ACT of the �rst

4.3 worst-case initial bank states 63

transaction T0 can be scheduled at time 0. These equations have been implemented in
our open source tool [70] to provide the scheduling time of commands.

t (ACTj+l) = max{t (ACTj+l−1) + tRRD, t (PREm) + tRP,
t (ACTj+l−4) + tFAW, ta (Ti)} + C(j+l)

(4.1)

t (RW0
j+l
) = max{t (RWBCi−1

j+l−1) + tSwitch, t (ACTj+l) + tRCD} (4.2)

t (RWk

j+l
) = t (RW0

j+l
) + k × tCCD (4.3)

t (PREj+l) = max{t (ACTj+l) + tRAS, t (RWBCi−1
j+l

) + tRWTP} (4.4)

Based on Eq. (4.1) to (4.4), it is possible to determine the �nishing time of Ti by only
looking at the �nishing time of Ti−1 and the scheduling time of its ACT commands. As
shown in Figure 4.1, only the �rst RD or WR commands and the ACT to each bank have
dependencies on previous transactions. The other RD or WR commands can be sched-
uled with the dependencies directly or indirectly originating from those commands.
Intuitively, the �nishing time of Ti is determined only by the scheduling time of all its

ACT commands, the �nishing time of the previous transaction and JEDEC-de�ned tim-

ing constraints. This intuition is formalized by Lemma 1 and the proof is included in
Appendix A.1.

Lemma 1. For ∀i ≥ 0 and tf (T-1) = −∞,

tf (Ti) = Max
0≤l≤BIi−1

{tf (Ti−1) + tSwitch + (BIi × BCi − 1) × tCCD,

t(ACTj+l) + tRCD + [(BIi − l) × BCi − 1] × tCCD}

4.3 worst-case initial bank states

The command scheduling for the current transaction Ti is highly dependent on the
initial bank states resulting from when the commands of the previous transactions (e.g.,
Ti−1 and Ti−2) were scheduled. Intuitively, given that the minimum starting time of Ti is
�xed by the �nishing time of Ti−1, the worst-case �nishing time of Ti occurs when all the
commands of Ti−1 were scheduled as late as possible (ALAP), because this maximizes the
timing dependencies. In this section, we formalize the ALAP scheduling of Ti−1, which
de�nes the worst-case initial bank states for Ti. Later Section 4.4.2 computes the worst-
case �nishing time of Ti based on these worst-case initial bank states. The WCET of Ti
is �nally given in Section 4.4.3.

64 formal analysis of run-dmc

4.3.1 Worst-Case Starting Time

From De�nition 7, it follows that the execution time, tET (Ti), is maximized if the starting
time is minimum while the �nishing time is maximum. According to De�nition 6, the
starting time ts (Ti) is determined by its arrival time ta (Ti) and the �nishing time tf (Ti−1)
of the previous transaction Ti−1. In the worst-case situation, Ti has arrived before the
�nishing of Ti−1, such that the commands for Ti have to wait longer time for their timing
constraints to be satis�ed. Therefore, the worst-case starting time of Ti is only one cycle
after the �nishing time of Ti−1 and is given by Eq. (4.5).

t̂s (Ti) = tf (Ti−1) + 1 = t(RWBCi−1−1
j−1) + 1 (4.5)

To derive the maximum �nishing time of Ti, denoted by t̂f (Ti), the scheduling time of
its ACT commands should be maximized according to Lemma 1. Eq. (4.1) indicates that
the scheduling of an ACT command depends on the previous PRE to the same bank, the
previous ACT commands and the possible collision caused by a RD or WR command.
Therefore, the worst-case �nishing time of Ti is achieved by maximizing the scheduling
time of the previous PRE and ACT commands as well as assuming there is always a
command collision for every ACT command.

The preceding transaction Ti−1 has many possibilities, since it is not statically known.
For example, it may be a read or a write with variable sizes and requiring di�erent
sets of banks, and its commands were scheduled based on its initial bank states that
were determined by even earlier transactions. Therefore, it is hard to statically know
which Ti−1 provides the worst-case initial bank states for Ti. However, the worst-case
starting time given by Eq. (4.5) de�nes the �nishing time t(RWBCi−1−1

j−1) of Ti−1 and we can

conservatively assume all the commands of Ti−1 were scheduled as late as possible (ALAP)
with respect to the �xed �nishing time of Ti−1, subject to the timing constraints of the

memory. This ALAP scheduling ensures the latest (i.e., maximum) possible scheduling
time of the previous commands, which are the worst-case initial bank states for Ti.

4.3.2 ALAP Scheduling

This section shows how to formalize the ALAP scheduling by computing the worst-
case (latest possible) scheduling time of all the commands for the previous transaction.
According to ALAP scheduling, the scheduling time of the previous ACT, RD or WR

commands and PRE can be obtained by calculating backwards from the scheduling time
of the last RD or WR command at t(RWBCi−1−1

j−1). Speci�cally, the time between any suc-
cessive commands must be minimal while satisfying the timing constraints, thereby
ensuring an ALAP schedule of the previous commands. Therefore, the minimum time

interval between any two commands is signi�cant to formalize the ALAP scheduling.
Recall that Ti−1 has BIi−1 and BCi−1. First, as stated in Table 2.1, the minimum time be-

4.3 worst-case initial bank states 65

3 NOP3 NOP3 NOP

3 NOP
1

1jWR 

0

1jWR 1jACT 

1

2jWR 

0

2jWR 2jACT 
3 NOP 0Bank

 1Bank

1BC tCCDi 

 1max BC tCCD, tRRDi 

CMD

Bus

tCCD

1

1jWR 

0

1jWR 

1

2jWR 

1jACT 

0

2jWR 2jACT 

7 NOP

 1f it T 

7 NOP

7 NOP

Figure 4.2: An example of As-Late-As-Possible (ALAP) scheduling with DDR3-1600G SDRAM for
Ti which has BIi = 4 and BCi = 2. The previous transaction Ti−1 uses BIi−1 = 2 and
BCi−1 = 2. The starting bank for both Ti-1 and Ti is Bank 0.

tween two RD or WR commands is tCCD. Since RD or WR commands targeting the
same bank are scheduled sequentially, the minimum time between the �rst RD or WR

commands to consecutive banks is BCi−1 × tCCD. Second, an ACT command is followed
by a RD or WR command to the same bank, and their minimum time interval is tRCD
(see Table 2.1). This implies that an ACT command must be scheduled at least tRCD
cycles before the �rst RD or WR command to the same bank. To calculate backwards,
the time interval between two successive ACT commands to di�erent banks has to be
at least BCi−1 × tCCD. In addition, Table 2.1 also states that the minimum time between
two ACT commands to di�erent banks is tRRD. Hence, the minimum time interval be-
tween two successive ACT commands to di�erent banks without violating any timing
constraints is max{tRRD,BCi−1 × tCCD}.

Figure 4.2 illustrates an example ofALAP scheduling for a DDR3-1600G SDRAM. This
example assumes the current transaction Ti and the previous write transaction Ti−1 have
the same starting bank Bank 0. Ti has BIi = 4 and BCi = 2, while Ti−1 uses BIi−1 = 2
and BCi−1 = 2. With the �xed �nishing time t(RW1

j−1) of Ti−1, the scheduling time of
all the previous commands is computed backwards with the minimum time interval
between them. Figure 4.2 shows the ALAP scheduling of the previous commands for
Ti−1 to Banks 0 and 1. In this way, some ACT commands have the same scheduling time
as some WR commands, which indicates command scheduling collisions. However, we
conservatively ignore these collisions so that larger scheduling time of the previous
ACT and WR commands for Ti−1 is achieved, which provide the initial bank states for
the new transaction Ti.

Next, ALAP scheduling is formalized to provide the scheduling time of previous com-
mands. First, the preceding transaction Ti−1 must have banks in common with Ti, be-
cause the reactivation of a bank for Ti needs more time if it was accessed by Ti−1. To
obtain larger �nishing time, the starting bank bj of Ti must have been accessed by Ti−1,
and the last bank bj−1 of Ti−1 is also required by Ti. Since the banks of a transaction
are accessed in ascending order according to Algorithm 2, there must be bj ≤ bj−1. As
a result, the set of common banks is [bj, bj−1]. We introduce the short hand notation
bcom = bj−1 − bj and the number of common banks is hence bcom + 1. For example, the
set of common banks between Ti−1 and Ti in Figure 4.2 is [0, 1], and the number of com-

66 formal analysis of run-dmc

mon banks is 2. With the minimum time interval between commands, for ∀l ∈ [0, bcom]
and ∀k ∈ [0,BCi−1 − 1], the scheduling time of the RD or WR commands to a common
bank bj + l is given by Eq. (4.6). Note that t̂s (Ti) − 1 is the �nishing time of Ti−1 according
to Eq. (4.5). Eq. (4.6) can be used to conservatively determine the ALAP scheduling time
of all RD or WR commands of Ti−1.

t̂(RWk
j−1−(bcom−l)) =t̂s (Ti) − 1 − (BCi−1 − 1 − k) × tCCD

− (bcom − l) × BCi−1 × tCCD
(4.6)

Given a �nishing time of Ti−1, the scheduling time of its last ACT command is ob-
tained since the minimum time interval between an ACT command and the �rst RD or
WR command to the same bank is tRCD (see Table 2.1). Thus, with the minimum time
interval between ACT commands, the scheduling time of the previous ACT commands
is calculated by Eq. (4.7). Based on Eq. (4.4), the time of the previous PRE is obtained by
using the worst-case scheduling time for RD or WR and ACT commands from Eq. (4.6)
and (4.7), respectively. It is given by Eq. (4.8) based on two observations of the timing
constraints in JEDEC DDR3 standard [53], namely: 1) tRWTP is larger for a write trans-
action than for a read transaction, and 2) there is tRWTP > tRAS − tRCD for a write
transaction. In a word, the second term in the max of Eq. (4.8) dominates in the worst-
case. Therefore, the worst-case initial states for Ti is that Ti−1 is write rather than read, and
Eq. (4.8) is further simpli�ed.

t̂(ACTj−1−(bcom−l)) = t̂s (Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD
− (bcom − l) ×max{tRRD,BCi−1 × tCCD}

(4.7)

t̂(PREj−1−(bcom−l))

= max{t̂(ACTj−1−(bcom−l)) + tRAS, t̂(RWBCi−1−1
j−1−(bcom−l)) + tRWTP}

= t̂s (Ti) − 1 + tRWTP − (bcom − l) × BCi−1 × tCCD

(4.8)

Note that Eq. (4.6), (4.7) and (4.8) formalize ALAP command scheduling for Ti−1, lead-
ing to the worst-case initial bank states for Ti. This formalization is parameterized to
BIi−1 and BCi−1 used by Ti−1. If more is known about Ti−1, e.g., its accessed banks, the
ALAP scheduling can be specialized to obtain better analysis results. For example, bank
privatization is employed by the memory controllers in [24–26, 52, 56, 63, 88, 107] for dif-
ferent requestors. We leave the exploitation of this static knowledge to obtain a tighter
WCET as future work.

4.4 worst-case execution time

Based on the worst-case initial bank states given by the ALAP scheduling in Section 4.3,
we can compute the maximum scheduling time of commands for Ti, resulting in the

4.4 worst-case execution time 67

1jACT 

1 1

2
iBC

jWR
 

2jACT  jACT

1 1

1
iBC

jWR
 

 1jACT 

3jACT 

2jACT 
2 1

3
iBC

jWR
 



3 1

4
iBC

jWR
 



3jACT 

4jACT 

time(cycles)

 0Bank

 1Bank

 2Bank

 3Bank

2i
T
 1i

T
 i

T
3i

T


Worst-case initial state
ALAP Scheduling

…
…

…
… Common

banks

Non-Common

banks

L
em

m
a 2

Lemma 3

Figure 4.3: An illustration of the ALAP scheduling that provides worst-case initial bank states for
the current transaction Ti.

worst-case �nishing time t̂f (Ti). Before deriving t̂f (Ti), we �rstly prove that the o�-line
ALAP scheduling of the preceding transaction Ti−1 indeed guarantees a conservative
t̂f (Ti). This is achieved by introducing Lemma 2 and Lemma 3 that demonstrate the
maximum scheduling times of the ACT commands for Ti only rely on the ALAP com-
mand scheduling of Ti−1. Lemma 4 gives t̂f (Ti) that is computed based on Lemma 1. Af-
ter deriving the worst-case �nishing time, the WCET de�ned as the time between the
worst-case starting time and the worst-case �nishing time is computed in Section 4.4.3.
A generic parameterized WCET is �rst derived (see Theorem 1), followed by two inter-
esting special cases, �xed transaction size and variable transaction sizes, respectively,
which are given by Corollary 1 and Corollary 2.

4.4.1 Conservative t̂f (Ti) Based on ALAP Scheduling

Intuitively, ALAP scheduling of commands for the previous write transaction Ti−1 pro-
vides the worst-case initial bank states for Ti. However, the actual command scheduling
for Ti may not only depend on Ti−1 but also earlier transactions. Figure 4.3 shows an ex-
ample where Ti uses 4 banks from Bank 0 to Bank 3. Ti−1 has the common banks Bank 0
and Bank 1 with Ti. Ti−2 and Ti−3 accessed Bank 2 and Bank 3, respectively. We can see
that the ACT commands for Ti to the common banks Bank 0 and Bank 1 have to follow
the constraints from the previous WR commands of Ti−1. For the non-common banks
Bank 2 and Bank 3, the ACT commands of Ti may be scheduled according to the WR

commands of earlier transactions Ti−2 and Ti−3 to the same bank. Moreover, tFAW must
be satis�ed between ACTj of Ti and ACTj−4 of Ti−3.

We proceed by formally proving that the ALAP command scheduling of Ti−1 guaran-
tees a conservative t̂f (Ti), even though earlier transactions (e.g., Ti−2, Ti−3) may actually
have constraints that dominate in the command scheduling for Ti. Note that the ALAP

command scheduling of Ti−1 provides conservative worst-case initial bank states for Ti,
and it is therefore not necessary to consider these earlier transactions in the worst-case
analysis. This proof is achieved by three steps. As shown in Figure 4.3, the �rst step is

68 formal analysis of run-dmc

given by Lemma 2 stating that the scheduling of ACT commands of Ti to non-common

banks with Ti−1 is only determined by the ACT commands to the common banks in the
worst-case. This indicates that the constraints from earlier transactions Ti−2 and Ti−3,
as depicted by the green arrows in Figure 4.3, cannot dominate in the scheduling of
these ACT commands when using the ALAP command scheduling of Ti−1. The second
step given by Lemma 3 guarantees that the ACT commands of Ti to common banks with
Ti−1 can be scheduled only dependent on the ALAP scheduling of commands of Ti−1,
as shown in Figure 4.3. As a result of Lemma 2 and Lemma 3, the scheduling of ACT
commands of Ti only depends on Ti−1 in the worst-case. Finally, the third step computes
the t̂f (Ti) based on the ALAP command scheduling of Ti−1 in Lemma 4. All the proofs
are included in Appendix A.

The idea of Lemma 2 and Lemma 3 is to eliminate all the dependencies that can-
not dominate in the scheduling of the ACT commands of Ti according to the worst-
case initial bank states formalized by the ALAP scheduling. Lemma 2 states that the
worst-case scheduling times of the ACT command to any non-common bank bj+l (∀l ∈
(bcom,BIi − 1]) are determined by t̂(ACTj+bcom), which is the worst-case scheduling time
of the ACT command to the last common bank bj+bcom . Note that t̂(ACTj+bcom) essen-
tially depends on the previous transaction Ti−1. We can observe that a smaller bcom

provides larger t̂(ACTj+l) for the particular non-common bank bj+l (i.e., �xed l). Since
bcom = bj−1 − bj, the smallest bcom is achieved only if bj−1 is as close as possible to bj,
implying that Ti starts with a bank bj that is very close to the �nishing bank bj−1 of Ti−1.
Note that this gap is determined by the size of Ti−1 or Ti, whichever is smaller. As a
result, bcom = min{BIi−1,BIi} − 1 leads to the worst-case scheduling times of these ACT

commands of Ti to non-common banks.

Lemma 2. For ∀l ∈ (bcom,BIi − 1],

t̂(ACTj+l) = t̂(ACTj+bcom) + [l − bcom] × tRRD +
l∑

l
′=bcom+1

C(j + l′)

Lemma 3 states that the worst-case scheduling of an ACT command to a common
bank bj+l (∀l ∈ [0, bcom]) is either dominated by t̂(ACTj−1) (l=0) or the ALAP scheduling
time of the PRE commands to the common banks of Ti−1. Note that ACTj−1 is the last
ACT command of Ti−1.

Lemma 3. For ∀l ∈ [0, bcom],

t̂(ACTj+l) =max{t̂(ACTj+l−1) + tRRD, t̂(PREj−1−(bcom−l)) + tRP} + C(j + l)

From Lemma 2 and Lemma 3, we can therefore conclude that all the ACT commands

of Ti are scheduled based on the ALAP scheduling of commands for Ti−1 in the worst-case.

4.4 worst-case execution time 69

4.4.2 Worst-Case Finishing Time

We proceed by deriving the worst-case �nishing time based on the worst-case initial
bank states provided by the ALAP scheduling. Lemma 1 states that the �nishing time of
Ti is determined by the �nishing time of the previous transaction Ti−1 and the scheduling
time t(ACTj+l) (∀l ∈ [0,BIi − 1]) of each ACT command for Ti. Therefore, the worst-
case �nishing time t̂f (Ti) is obtained by using t̂f (Ti−1) = t̂s (Ti) − 1 and t̂(ACTj+l) that is
obtained by substituting the ALAP formalization into Lemma 2 and Lemma 3.

Lemma 3 shows that t̂(ACTj+l) is determined by either the scheduling time t̂(ACTj+l−1)
of the previous ACT command or the last precharge time t̂(PREj−1−(bcom−l)) to the same
bank, where l ∈ [0, bcom]. t̂(PREj−1−(bcom−l)) is given by Eq. (4.8) according to the ALAP

command scheduling for the previous write transaction Ti−1. Moreover, Lemma 2 shows
that the scheduling time t̂(ACTj+l) (l ∈ (bcom,BIi − 1]) ofACT commands to non-common
banks is determined by t̂(ACTj+bcom), which is the scheduling time of the ACT to the last
common bank and can be computed with Lemma 3. As a result, t̂(ACTj+l) can be ob-
tained by iteratively using Eq. (4.8), Lemma 2 and Lemma 3. We proceed by introducing
Lemma 4, which gives the worst-case �nishing time of Ti. The proof is presented in
Appendix A.4. Intuitively, the worst-case �nishing time of Ti is the worst-case starting
time of Ti plus the maximum of all relevant timing dependencies (assuming an ALAP

schedule for Ti−1).

Lemma 4. For ∀i ≥ 0, ∀l′ ∈ [0, bcom] and ∀l ∈ [l′,BIi − 1], bcom = bj−1 − bj,

t̂f (Ti) = t̂s (Ti) − 1+max{(l + 1) × tRRD − (BCi−1 − 1) × tCCD

+ [(BIi − l) × BCi − 1] × tCCD +
l∑

h=0
C(j + h),

tRWTP + tRP + tRCD − (bcom − l
′) × BCi−1 × tCCD

+ (l − l′) × tRRD + [(BIi − l) × BCi − 1] × tCCD

+

l∑
h=l′

C(j + h),

tSwitch + (BIi × BCi − 1) × tCCD}

4.4.3 Generic Worst-Case Execution Time

According to De�nition 7, the WCET is the di�erence between the worst-case starting
time and the worst-case �nishing time, which are both included in Lemma 4. Therefore,
the WCET is obtained by rewriting Lemma 4. We observe that the expressions in the
max{} of Lemma 4 either linearly increase or decrease with l and l

′. As a result, these
expressions can be simpli�ed to give the worst-case �nishing time t̂f (Ti) and hence
the WCET t̂ET (Ti). We proceed by introducing Theorem 1, which shows that t̂ET (Ti) is

70 formal analysis of run-dmc

only determined by the JEDEC DDR3 timing constraints [53], and the sizes of Ti and
Ti−1 via (BIi−1,BCi−1) and (BIi,BCi) according to the chosen memory map con�gurations.
Therefore, Theorem 1 provides a WCET parameterized by the sizes of Ti and Ti−1. The
proof of Theorem 1 is presented in Appendix A.5.

Theorem 1. (Generic Worst-case execution time) For ∀i ≥ 0,

t̂ET (Ti) =max{(BCi − BCi−1) × tCCD + BIi × (tRRD + 1),
tRWTP + tRP + tRCD

+ [BIi × BCi − 1 − (min{BIi−1,BIi} − 1) × BCi−1] × tCCD + 1,
tRWTP + tRP + tRCD

+ [(BIi − (min{BIi−1,BIi} − 1)) × BCi − 1] × tCCD + 1,
tRWTP + tRP + tRCD + (BIi − 1) × (tRRD + 1) + 1
+ [BCi − 1 − (min{BIi−1,BIi} − 1) × BCi−1] × tCCD,
tRWTP + tRP + tRCD + (BCi − 1) × tCCD
+ [BIi −min{BIi−1,BIi}] × (tRRD + 1) + 1,
tSwitch + (BIi × BCi − 1) × tCCD}

In general systems with variable transaction sizes, the speci�c size of the previous
transaction that leads to WCET is unknown. We have found that the smallest previous
transaction size must be assumed to derive a conservative WCET. This is later captured
by Corollary 1. However, in the special case of the TDM arbitration presented in Sec-
tion 3.2.2, the previous transaction size is known in the worst-case due to the static map-
ping of requestors to TDM slots. Therefore, less pessimistic WCET is obtained based on
the known size of the previous transaction. A special case is that a system has a single
�xed transaction size, such as 64-byte cache lines. As a result, the previous transaction
size is statically known. The WCET for this special case is given by Corollary 2 in the
next section. Note that the analysis of these two special cases only needs to instantiate
Theorem 1 that is generic to any preceding and current transaction sizes.

Theorem 1 de�nes that t̂ET (Ti) is parameterized by the sizes of Ti and Ti−1. We can
observe that t̂ET (Ti) increases when BIi−1 and BCi−1 decrease. By taking both of them to
be 1, i.e., Ti−1 is the smallest transaction, we obtain Corollary 1, which is conservative
for any (unknown) preceding transaction. Intuitively, Ti experiences the WCET when
the previous transaction is a small write that has only one burst to the starting bank
of Ti. Moreover, it is not necessary to assume a collision for the �rst ACT command of
Ti. The reason is that the �nishing bank of Ti−1 is the starting bank of Ti, and no WR

commands of Ti−1 collide with the �rstACT of Ti. Therefore, t̂ET (Ti) given by Corollary 1
is tighter than Theorem 1.

4.4 worst-case execution time 71

Corollary 1. (Analytical WCET for variable transaction sizes)

For ∀i ≥ 0,

t̂ET (Ti) = max{tRWTP + tRP + tRCD + (BIi × BCi − 1) × tCCD,
tRWTP + tRP + tRCD + (BCi − 1) × tCCD
+ (BIi − 1) × (tRRD + 1)}

Another common situation is that all transactions have the same size. For example,
a homogeneous multi-core system may have a single memory transaction size, since
the cache-line size of all the cores is the same. Transactions with the same size use the
same BI and BC. So, BIi−1 = BIi = BI and BCi−1 = BCi = BC. According to Theorem 1,
we can derive Corollary 2 that provides the WCET to transactions with the same size.
The intuition of Corollary 2 is that a transaction su�ers the WCET when its previous
transaction is a write that accessed the same set of banks.

Corollary 2. (Analytical WCET for fixed transaction size)

For ∀i ≥ 0, BIi−1 = BIi = BI and BCi−1 = BCi = BC,

t̂ET (Ti) = max{tRWTP + tRP + tRCD + (BC − 1) × tCCD + 1,
tRWTP + tRP + tRCD + (BC − 1) × tCCD
+ (BI − 1) × (tRRD + 1 − BC × tCCD) + 1,
tSwitch + (BI × BC − 1) × tCCD}

The WCET given by Corollary 1 and Corollary 2 for variable and �xed transaction
sizes are parameterized withBI andBC. Many existing real-time memory controllers [24–
26, 52, 56, 63, 107] execute transactions with a single data burst, i.e., BI = BC = 1. We
explicitly provide the analytical WCET for this particular case by introducing Corol-
lary 3. It can be obtained by using either Corollary 1 or Corollary 2 with BI = BC = 1.
However, Corollary 1 is used to derive Corollary 3, because the collision assumption to
the �rst ACT command is not needed in this case. The reason has been discussed when
deriving Corollary 1.

Corollary 3. (Analytical WCET for a single data burst)

For ∀i ≥ 0, BIi−1 = BIi = 1 and BCi−1 = BCi = 1,

t̂ET (Ti) = tRWTP + tRP + tRCD

4.4.4 Scheduled Worst-Case Execution Time

The analytical WCET given by Corollaries 1 and 2 have the bene�t of being simple
equations that bound the WCET by just inserting the timings of the particular mem-
ory device and the chosen memory map con�guration for a transaction. However, they
are somewhat pessimistic, since they conservatively assume that there is a command

72 formal analysis of run-dmc

 0Bank

 2Bank

 3Bank

WR ACT WR

ACT

ACT

WR

WR

tRWTP+tRP

tCCD

tCCD

tRCDPrevious

trans.

32 Bytes Write

16 Bytes

Write

Previous transactions Current transaction

Figure 4.4: An example illustrating that the actual execution time of a larger transaction (32 Bytes
write) can be less than that of a smaller transaction (16 Bytes write).

collision for every ACT command. Here, we present a second approach that builds on
the presented formalism and ALAP schedule to overcome this limitation and derive a
tighter bound.

The idea is to derive the worst-case initial bank state for a transaction based on the
ALAP schedule as presented in Section 4.3.2, followed by actually scheduling the com-
mands of the transaction o�-line. This has the advantage of only accounting for the actual
number of command collisions and knowing exactly how many cycles the WCET increases

due to these collisions. The drawback of the approach is that it is no longer a simple
equation, but requires a software implementation of the scheduling algorithm. To this
end, the formalization of the timing behavior of the proposed scheduling algorithm,
previously presented in Section 4.2, has been implemented as an open-source o�-line
scheduling tool [70]. For the remainder of this article, we will refer to this approach as
the scheduled WCET and the bounds obtained from Corollaries 1 and 2 as the analytical
WCET. Both of them can be obtained from our open-source tool [70].

4.4.5 Monotonicity of Worst-Case Execution Time

Intuitively, a transaction with a smaller size should have lower execution time than a
larger one. However, it is not always true in the actual execution of transactions. The
reason is that the execution time is highly dependent on the initial bank states for the
current transaction, i.e., the bank accesses by previous transactions. Figure 4.4 shows
a counter example. The 32-Byte write transaction uses bank 2 and bank 3 and the cor-
responding ACT commands can be scheduled in a pipelined manner with the previous
write transaction that uses bank 0. As a result, the scheduling of the WR commands is
dominated by the tCCD constraint. In contrast, the 16-Byte write transaction accesses
bank 0. It has to wait longer (tRWTP+tRP) to precharge bank 0 and then activate it. This
shows that a smaller transaction may have a longer actual execution time.

However, the WCET of a smaller transaction cannot be larger than that of a larger
transaction. This is guaranteed by Theorem 1 that shows the WCET of an arbitrary trans-
action Ti monotonically increases with BIi and BCi. Moreover, De�nition 12 states that

4.5 worst-case response time 73

the transaction size is monotone with its BI and BC. Theorem 2 states that the WCET
monotonically increases with transaction size. The proof is included in Appendix A.6.

Theorem 2. For ∀T, T′, S(T) ≤ S(T′) =⇒ t̂ET (T) ≤ t̂ET (T
′).

Theorem 2 allows us to use the WCET of the largest transaction that a requestor can
issue as an upper bound for all its transactions. This is especially useful to relax the
requirement of �xed transaction size per requestor in the front-end (see Section 3.2.1)
by conservatively using the largest transaction size from the requestor.

4.5 worst-case response time

The worst-case response time (WCRT) of a transaction represents the maximum time
consumed to access the shared memory, including time spent in both front-end and
back-end. It is based on the WCET computed in Section 4.4. This section introduces the
analysis of the WCRT based on the proposed front-end that uses a work-conserving
TDM arbiter for requestors with variable transaction sizes, previously presented in Sec-
tion 3.2.1.

As de�ned by De�nition 9 in Section 2.3.3, the response time of a transaction is the
time from it arrives at the front-end of the memory controller until it is �nished, i.e.,
the last data word is returned for a read transaction or the last WR command is issued
to the SDRAM for a write transaction. The front-end of the memory controller shown
in Figure 3.1 uses a TDM arbiter to serve transactions from di�erent requestors. We
assume the number of requestors is N. For an arbitrary requestor r ∈ [0,N− 1], the TDM
arbiter allocatesNr consecutive TDM slots to it. Moreover, the TDM arbiter is con�gured
to serve requestors in descending order of their transaction sizes to achieve smaller
WCET, as discussed in Section 3.2.2. We assume the TDM arbiter serves requestors in
the order from Requestor 0 to Requestor N − 1, where Requestor 0 has the largest and
Requestor N − 1 has the smallest transactions.

The response time of a transaction from a requestor r actually consists of the interfer-
ence delay that is caused by other requestors in the front-end, its own execution time in
the back-end, and the time to return read data. As a result, the transaction experiences
the WCRT only if its interference delay is maximum, after which it su�ers its WCET
in the back-end. With the proposed work-conserving TDM arbitration in Section 3.2.2,
the maximum interference delay for a transaction occurs only if it misses any of its
slots, causing all its following consecutive slots to be skipped by the arbiter, while the
following requestors use all their allocated slots. Moreover, we have to conservatively
assume that each transaction from requestor r is executed with the worst-case execution
time t̂

r

ET
in the back-end. Since the size of the previous transaction size is known when

using TDM arbitration, we use Theorem 1 to compute t̂
r

ET
. As a result, t̂r

ET
is less pes-

simistic than using Corollary 1, leading to a shorter TDM slot length. The TDM frame

size (FS), which is the sum of all slot lengths in the TDM table (given by De�nition 13),

74 formal analysis of run-dmc

is hence smaller. We will later experimentally show the bene�ts of this approach in
Section 4.8.4.4.

De�nition 13 (Frame size of the TDM table). The frame size FS =
∑

N−1
r=0 Nr × t̂

r

ET
.

The worst-case response time t̂
r

RP
of a transaction from requestor r comprises three

parts, as shown in Eq. (4.9). t̂r
interf

is the maximum interference delay for requestor r,
which is given by Eq. (4.10). It is the sum of the WCET of transactions from all other
requestors that are executed within their slots. The WCET results of these transactions
are given by Theorem 1 with known previous transaction sizes. For the �rst interfering
transaction, its WCET is computed assuming its preceding transaction has the mini-
mum size in the TDM table. This results in conservative WCET of the �rst interfering
transaction, since its previous transaction may be from any requestor and is hence un-
known. The second part of Eq. (4.9) is the worst-case execution time of the transaction.
Since the execution time of a transaction �nishes when the last RD or WR command is
scheduled, the ∆t (the third part of Eq. (4.9)) represents the extra time spent on return-
ing the data of the last RD command to the response bu�er and is given by Eq. (4.11)
that only comprises JEDEC-speci�ed timings.

t̂
r

RP
= t̂

r

interf
+ t̂

r

ET
+ ∆t (4.9)

t̂
r

interf
=

∑
∀r′∈[0,N−1],r′,r

t̂
r
′

ET
×Nr

′ (4.10)

∆t =



tRL + BL/2, Read transaction
0, Write transaction

(4.11)

Finally, the transaction may be delayed by a refresh. The maximum refresh delay can
be obtained from Eq. (2.2) by assuming the preceeding transaction is write rather than
read. It consists of the time between the last WR command of the previous transaction
and the associated PRE and the precharge period as well as the refresh period. However,
a refresh is regularly needed every tREFI cycles, i.e. a relatively long period of 7.8µs.
Therefore, the penalty caused by refreshing depends on the refresh e�ciency, as given
by Eq. (2.3). For example, the refresh leads to only about 3% increase in the total delay
of accessing DDR3-1600G SDRAM for an application. As a result, it is not added to
the WCRT of each transaction to avoid pessimism, but added as an overall cost in the
system-level analysis of the application.

4.6 worst-case bandwidth 75

4.6 worst-case bandwidth

The bandwidth provided by a memory controller represents the long-term average data
transfer rate of executing transactions by dynamically scheduling commands to the
SDRAM. The worst-case bandwidth (WCBW) is the minimum long-term bandwidth.
However, it is di�cult to manually analyze the exact sequence of transactions, which
leads to the minimum bandwidth. This is because transactions with variable sizes arrive
at the front-end of the memory controller randomly, resulting in huge number of trans-
action sequences. To derive a conservative bound, we can compute the WCBW based on
the WCET of an individual transaction rather than a sequence of transactions. Based on
De�nition 10 that de�nes the bandwidth, we derive Eq. (4.12) to compute a conservative
WCBW, which is the minimum one achieved by di�erent transaction sizes. We assume
the total number of di�erent transaction sizes in the system isK and Sk represents one of
the transaction sizes, where ∀k ∈ [1,K]. In Eq. (4.12), the WCBW is denoted by ˆbw . S(T)
represents the size of the transaction T while its WCET is t̂ET (T). In addition, f

mem
is the

frequency of the memory and e
ref denotes the refresh e�ciency as de�ned by Eq. (2.3).

Note that the WCBW is always achieved by the smallest transaction size according to
the experimental results that will be later shown in Section 4.8. The reason is that the
smallest transaction cannot exploit the bank parallelism as well as a larger transaction
that interleaves over more banks. For a system with �xed transaction size, K equals 1,
and the WCBW is computed based on this �xed size and its WCET.

ˆbw = Min
∀k∈[1,K], S(T)=Sk

S(T)

t̂ET (T)
× f

mem
× eref (4.12)

4.7 rtmemcontroller tool

The formalization of dynamic command scheduling presented in Section 4.2 can be
used to precisely compute the scheduling times of memory transactions. As a result,
the formalization is implemented as a C++ tool, named RTMemController. It is capable
of validating the scheduling times provided by the cycle-accurate SystemC simulator, as
described in Section 3.4. Moreover, this tool can also collect the statistic results, such as
the average-case execution time (ACET) of transactions and the maximum measured ex-
ecution time. By integrating Theorem 1, Corollary 1 and Corollary 2, RTMemController

provides the analytical WCET for �xed and variable transaction sizes, respectively. The
scheduled approach given in Section 4.4.4 is also included in this tool and the sched-
uled WCET is provided. Finally, both the scheduled and analytical WCET bounds are
validated by the maximum measured WCET, i.e., the latter cannot be larger than the
former. Note that RTMemController is an open-source tool [70].

Figure 4.5 shows the design �ow of RTMemController. Its inputs consist of the mem-
ory speci�cations and the memory transaction traces. The former describe the targeted

76 formal analysis of run-dmc

Memory

Specifications

Memory

Specifications

Transaction

trace 0

Transaction

trace 0

DynamicCmdScheduler DynamicCmdScheduler

MemArchitecture

Spec

MemArchitecture

Spec

MemTiming

Spec

MemTiming

Spec

WCmdScheduler WCmdScheduler

Address

Decoder

Address

Decoder

MemCtrl

Config

MemCtrl

Config

Average & Worst-Case

Execution Time

Average & Worst-Case

Execution Time

Transaction

trace 1

Transaction

trace 1

Transaction

trace N

Transaction

trace N ⋯

AnalyticalCmdScheduler AnalyticalCmdScheduler

WC

Validation

WC

Validation

Trace Merger (Python Script) Trace Merger (Python Script)

SDRAM

architecture &

timing constraints

Trans info

SDRAM

Architecture

Timing

Constraints

Configuration BI&BC

Trans

info

Bounds on

ET

Measured

ET

Command

Schedules

Command

Schedules

Command

Timings

Figure 4.5: The design �ow of RTMemController, an open-source WCET and ACET analysis tool
for real-time memory controllers [70].

SDRAM devices in terms of their architectures (e.g., number of banks, rows, and columns)
and the timing constraints corresponding to inter-/intra-bank and refresh. Each mem-
ory transaction trace provides the tra�c from a requestor. We provide the transaction
traces generated by running applications from the MediaBench benchmark suite [65] on
the SimpleScalar 3.0 processor simulator [10], which uses separate data and instruction
caches, each with a size of 16 KB. The L2 caches are private uni�ed 128 KB caches where
the cache-line size varies depending on the experiments. These traces are the same as
used by the experiments in Section 3.5. Therefore, the Trace Merger shown in Figure 4.5
is used to combine the traces from di�erent requestors. Note that the Trace Merger is
implemented as Python Scripts, which are convenient to read/write data from/into a
�le. The combined trace contains a sequence of transactions that arrive sequentially
and they are later executed in order.

The DynamicCmdScheduler shown in Figure 4.5 is enabled when both the memory
speci�cation is chosen and the combined trace is generated. Next, the memory speci�-
cation is extracted by MemArchitectureSpec and MemTimingSpec for the architecture
and the timing constraints of the selected SDRAM, respectively. Moreover, the MemC-
trlCon�g provides the con�guration (i.e., BI and BC per transaction size) of the mem-
ory controller when it executes �xed or variable transaction sizes. The AddressDecoder
takes the memory map con�guration in terms of BI and BC per transaction size as the

4.8 experimental results 77

input and translates the logical address of each transaction into the physical address
in terms of bank, row, and column. The next step of this design �ow is the command
scheduling. The WCmdScheduler is only triggered once and it computes the analytical
based on Theorem 1, Corollary 1 and Corollary 2. Moreover, the scheduled WCET is
also calculated by WCmdScheduler for all possible transaction sizes when the memory
controller receives transactions with �xed size or variable sizes, respectively. These re-
sults are stored in a table and are later validated by the AnalyticalCmdScheduler. For
each transaction, the AnalyticalCmdScheduler computes the scheduling times of all its
commands based on the proposed formalization in Section 4.2. These scheduling times
constitute the Command Schedules (see Figure 4.5), which are used to validate the cycle-
accurate SystemC simulator when it uses the same traces. Moreover, the execution time
of each transaction is collected, where the maximum ET is recorded as the measured
WCET while the ACET is obtained by averaging the ET of all transactions. The mea-
sured WCET validates our analytical and scheduled WCET and guarantees that our
WCET bound is conservative. Finally, the WCET, ACET and the scheduling times of
commands constitute the output of this tool.

4.8 experimental results

This section experimentally evaluates the formal analysis and presents the analytical
and scheduled worst-case execution/response time and worst-case bandwidth. These
worst-case results are validated by comparing to the measured ones given in Section 3.5,
where our memory controller Run-DMC has been evaluated. Therefore, we carry out ex-
periments with the same setup as given in Section 3.5. Three experiments are presented
in this section. The �rst experiment shows that the formalization accurately describes
the timing behavior of the memory controller back-end. The last two experiments eval-
uate our analysis for �xed transaction size and variable transaction sizes, respectively.
The results in terms of WCET, WCRT, and WCBW are analyzed and also compared to
a state-of-the-art semi-static approach [3].

4.8.1 Experimental Setup

Our open-source tool RTMemController is implemented with C++ and it has been tested
on a 64-bit Ubuntu 14.04.1 LTS system with 2 Intel(R) Core(TM) i7 CPU running at
2.8GHz and with 2 GB RAM. Please refer to [70] for the detailed usage of RTMemCon-

troller. We reuse the experimental setup given in Section 3.5.1, where four requestors
are served by the front-end of Run-DMC using a novel TDM arbiter. Each requestor is
allocated a TDM slot and produces a memory trace. The characterizations of these Medi-
aBench or synthesis traces used in the experiments are given in Table 3.1 and Table 3.2.
The transaction sizes include 16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes, and
their memory con�gurations in terms of (BI, BC) are (1, 1,), (2, 1), (4, 1), (4, 2), and (4,

78 formal analysis of run-dmc

4), respectively. These con�gurations ensure the lowest execution time of transactions
with each size. The order of serving requestors with variable sizes will also be inves-
tigated to show that the descending service order of transaction sizes can achieve the
lowest TDM frame size, resulting in the lowest WCRT. Toward this goal, we investigate
the cases of 4 and 8 requestors, respectively. Note that experiments have been done
with three JEDEC-compliant DDR3 SDRAMs, DDR3-800D, DDR3-1600G, DDR3-2133K,
all with interface widths of 16 bits and a capacity of 2 Gb [53].

4.8.2 Experimental Validation of the Formalization

The purpose of our �rst experiment is to validate the formalization of the timing behav-
ior of the dynamic command scheduling in Algorithm 2 by verifying that the scheduling
time of each command is the same as given by the cycle-accurate SystemC simulator.
To this end, the open-source o�-line scheduling tool RTMemController [70] that imple-
ments the formalism has been provided with the same inputs as the SystemC imple-
mentation for all experiments in this chapter, covering a wide range of read and write
transactions with di�erent sizes and inter-arrival time under di�erent memory map con-
�gurations. The results of this experiment are that all commands of all transactions are
scheduled identically, indicating that the formalization accurately captures the imple-
mentation. This is important since the formalization forms the base for both the analyt-
ical and the scheduled WCET bounds. Moreover, it suggests the SystemC implementa-
tion is correct. This proven relation between the formal model and the implementation is

an important result of our work and a distinguishing feature compared to the related work.

4.8.3 Fixed Transaction Sizes

This experiment evaluates our formal analysis approach for the dynamically-scheduled
memory controller Run-DMC with �xed transaction sizes. The worst-case bounds on
execution time, response time and bandwidth are obtained using Corollary 2, Eq. (4.9)
and Eq. (4.12), respectively. With the same experiment setup used in Section 3.5.2, those
worst-case bounds are validated by comparing to the measured worst-case results. Re-
call that this experiment tests four memory requestors corresponding to four processors,
which execute di�erent Mediabench applications (gsmdecode, epic, unepic and jpegen-

code). The TDM arbiter in the front-end of Run-DMC allocates one slot per requestor.
Moreover, our formal analysis of Run-DMC is also compared to the semi-static ap-
proach [3], the only other approach that supports di�erent memory map con�gurations.

4.8.3.1 Worst-Case Execution Time

The execution time of a transaction is spent on scheduling commands to the SDRAM
in the back-end of our memory controller. This section evaluates the back-end in terms

4.8 experimental results 79

of the worst-case execution time (WCET). Figure 4.6 shows the WCET results of our
dynamically-scheduled memory controller Run-DMC given by the formal analysis and
the measured maximum execution time by running the MediaBench application traces.
These results are compared to the semi-static approach [3]. The results in Figure 4.6
demonstrate that

1. The maximum measured WCET from the experiments is equal to or slightly smaller
than the scheduled WCET. This indicates that the proposed analysis provides a tight
WCET bound. The scheduled WCET is a little too conservative for some transaction
sizes, e.g., 32 bytes and 64 bytes for DDR3-1600G that use BC = 1. This is caused
by the worst-case initial states determined by the ALAP scheduling in Section 4.3.2,
which is pessimistic since tCCD is always used as the time interval between two
RD or WR commands. However, for BC = 1, the actual interval is larger than tCCD

because ACT command dominates in the scheduling of a RD or WR command. This
pessimism is eliminated for 128-byte and 256-byte transactions that use (BI = 4,
BC = 2) and (BI = 4, BC = 4), where the ALAP scheduling accurately determines
the worst-case initial states.

2. The analytical WCET derived from Corollary 2 is equal to or slightly larger than
the scheduled WCET. The di�erence is because Theorem 1 conservatively assumes
a collision per ACT command, which may not actually be the case and all collisions
do not necessarily lead to an increased execution time, since the ACT command
does not always dominate in the computation of the �nishing time (see Lemma 1).
The maximum di�erence is BI cycles. However, the analytical WCET is much easier
to obtain, since it can be computed based on an equation. In contrast, a tool (i.e.,
RTMemController) is needed to derive the scheduled WCET.

3. The WCET given by the semi-static approach is identical to the measured WCET
of our approach. There is a single exception for 32 byte transactions, where the
measured WCET given by Run-DMC is 41 cycles, while it is 40 cycles for the semi-
static approach. Since this exception is highly dependent on the values of timing
constraints, it does not occur for most DDR3 SDRAMs. For example, there is no
such exception for DDR3-800D whose results are not presented here for brevity. The
interested reader can refer to [69]. It is worth noting that Run-DMC achieves signif-
icantly better average ET than the semi-static approach, as previously discussed in
Section 3.5.2.1. The improvement on the average ET bene�ts the non-real-time ap-
plications, which are simultaneously supported with real-time applications [72].

4.8.3.2 Worst-Case Bandwidth

The worst-case bandwidth (WCBW) represents the minimum long-term data transfer-
ring rate, and it is the lower bound on bandwidth. In Section 4.6, Eq. (4.12) is given to

80 formal analysis of run-dmc

32 64 128 256
Transaction Sizes (bytes)

0

10

20

30

40

50

60

70

80

W
or

st
-C

as
e

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

measured ET (Run-DMC)
Scheduled WCET (Run-DMC)
Analytical WCET (Run-DMC)
WCET (semi-static)

Figure 4.6: The WCET of �xed transaction sizes with DDR3-1600G SDRAM. Results are compared
to a semi-static approach [3].

compute the WCBW based on the transaction size and the corresponding WCET. There-
fore, we can derive scheduled and analytical WCBW based on the scheduled and ana-
lytical WCET. First, these WCBW bounds are conservative for bandwidth provided by
Run-DMC, since they are not larger than the measured minimum bandwidth, as shown
in Figure 4.7, where DDR3-1600G SDRAM is taken as an example. When comparing to
the semi-static approach (see Figure 4.7), we can draw similar conclusions as the WCET
in the previous Section 4.8.3.1 that 1) the measured WCBW of our Run-DMC is identi-
cal to the WCBW of the semi-static approach for all these transaction sizes except 32
bytes, where Run-DMC achieves slightly smaller measured WCBW. The reason is that
the WCET of 32-byte transactions is slightly larger than that of the semi-static approach
because of the particular timing constraints. 2) The scheduled and analytical WCBW are
the same as the semi-static approach for large transaction sizes (e.g., 256 bytes) but not
the smaller ones, such as 32 bytes, 64 bytes, and 128 bytes. It is because these transac-
tions use smaller BC (BC = 1 or BC = 2), i.e., a fewer RD or WR data bursts per bank,
and the formal analysis has to assume conservative time interval between two succes-
sive RD or WR commands, resulting in pessimistic initial bank states and hence larger
WCET and smaller WCBW. However, our formal analysis only provides slightly less
WCBW for these small sizes than the semi-static approach. As shown in Figure 4.7, it
has maximally 20% less WCBW than the semi-static approach for 64-byte transactions,
while it is only 2.2% for 128-byte transactions. Moreover, Figure 4.7 shows that higher
WCBW is achieved with larger transaction sizes. The reason is that larger transactions
transfer more data bursts from an individual bank, while it pays the activation penalty
only once, i.e., the required bank is opened by issuing an ACT command. As a result, it
is more e�cient.

4.8 experimental results 81

32 64 128 256
Transaction Sizes (bytes)

0

500

1000

1500

2000

2500

3000

W
or

st
-C

as
e

B
an

dw
id

th
 (M

B
/s

)

measured BW (Run-DMC)
Scheduled WCBW (Run-DMC)
Analytical WCBW (Run-DMC)
WCBW (semi-static)

Figure 4.7: The worst-case bandwidth (WCBW) for a DDR3-1600G SDRAM using our
dynamically-scheduled Run-DMC and the semi-static approach [3] with �xed transac-
tion sizes.

4.8.3.3 Worst-Case Response Time

The WCRT of a transaction is given by Eq. (4.9). It is essentially determined by accu-
mulating the WCET of transactions from each requestor. This experiment shows the
worst-case response time of transactions with �xed sizes. Figure 4.8 presents the WCRT
for DDR3-1600G with �xed transaction sizes. The results are derived on the basis of
the WCET shown in Figure 4.6, and new observations from Figure 4.8 include: 1) the
response times of transactions are bounded. The measured WCRT is smaller than the
bound in terms of scheduled and analytical WCRT. The di�erence between them is be-
cause the worst-case situation is unlikely to occur in both the front-end and back-end
simultaneously, which requires transactions from all requestors competing in the front-
end, while each transaction in the back-end experiences worst-case initial bank state.
2) The analytical WCRT is more pessimistic than the scheduled WCRT, because the an-
alytical WCRT is derived by accumulating the analytical WCET of transactions from
each requestor. This exaggerates the conservative assumption of a collision per ACT
command for computing the analytical WCET. These observations also hold for other
DDR3 SDRAMs, although their WCRT results are not presented for brevity.

4.8.4 Variable Transaction Sizes

The last experiment evaluates our approach with variable transaction size. First, the
WCET of a transaction is evaluated without any a priori information, e.g., the size of
the previous transaction, where the worst-case is assumed. Second, we experiment with
the case when the size of the previous transaction is statically known, which is guaran-

82 formal analysis of run-dmc

32 (RD) 32 (WR) 64 (RD) 64 (WR) 128(RD) 128(WR) 256(RD) 256(WR)
Transaction Sizes (bytes)

0

50

100

150

200

250

300

350

W
or

st
-C

as
e

R
es

po
ns

e
Ti

m
e

(c
yc

le
s)

measured RT (Run-DMC)
Scheduled WCRT (Run-DMC)
Analytical WCRT (Run-DMC)
WCRT (semi-static)

Figure 4.8: The worst-case response time for DDR3-1600G SDRAM with �xed transaction sizes

teed by the TDM arbiter. Then, the impact of the service order of requestors with their
transaction sizes on the WCET is evaluated, based on which the WCRT are evaluated.
The setup is loosely inspired by a High-De�nition video and graphics processing system
featuring a number of CPU, GPU, hardware accelerators and peripherals with variable
transaction sizes. This setup has been used in Section 3.5.3. So, recall that the system has
4 requestors with transaction sizes of 16 bytes, 32 bytes, 64 bytes and 128 bytes, respec-
tively. The �rst requestor Req_1 represents a GPU with 128 byte cache line size, execut-
ing a Mediabench application jpegdecode. A video engine corresponding to requestor,
Req_2, is used for mpeg2decode and it generates memory transactions of 64 bytes. The
Mediabench application epic is executed by a processor with a cache-line size of 32 bytes,
which is denoted Req_3. A synthetic memory trace is used by a CPU which has a 16 byte
cache-line size, resulting in read and write transactions with 16 bytes. This is requestor
Req_4. The characterizations of these memory traces are given in Table 3.2. The TDM
arbiter in the front-end allocates one slot per requestor and it serves these requestors
from Req_1 to Req_4 in descending order of their transaction sizes.

4.8.4.1 Worst-Case Execution Time

Corollary 1 is used to compute the WCET of transactions with variable size, and the
results for DDR3-1600G are shown in Figure 4.9. It also shows the WCET results given
by the semi-static approach for particular sizes, including 16 bytes, 32 bytes, 64 bytes
and 128 bytes, respectively. Note that the static command schedules (also named pat-
terns) used by the semi-static approach are computed at design time for a particular
transaction size, and are con�gured before the system is running. We get similar con-
clusions as previously presented in Section 4.8.3.1. New interesting observations are:

4.8 experimental results 83

16 32 64 128
Transaction Sizes (bytes)

0

50

100

150

200

250

300

350

W
or

st
-C

as
e

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

measuredET (Run-DMC)
Scheduled-WCET (Run-DMC)
Analytical-WCET (Run-DMC)
WCET (semi-static, 16)
WCET (semi-static, 32)
WCET (semi-static, 64)
WCET (semi-static, 128)

Figure 4.9: WCET for DDR3-1600G with variable transaction sizes.

1. the scheduled WCET bound is perfectly tight, since the worst-case situation for a
transaction is accurately captured by Corollary 1 for variable sizes, and actually
occurs during simulation. The situation is that the previous transaction is a write
and its �nishing bank is the starting bank of the new transaction.

2. when the semi-static approach is used for variable transaction sizes, it has to choose
a particular pattern size such that the total WCET of all requestors is minimum, lead-
ing to smaller WCRT. For a particular pattern size, transactions with larger sizes
have to be split into several pieces that are served in consecutive TDM slots. If the
transaction size is smaller than the pattern size, it will fetch the data and throw the
unnecessary part away. This has two consequences. First, the WCET of transactions
with variable sizes highly depend on the chosen pattern size. For example, the 16-
byte pattern provides very high WCET for larger transaction sizes, as shown in Fig-
ure 4.9. Second, since data is discarded, it wastes power and reduces the bandwidth
provided by the SDRAM, which is a scarce resource. The best pattern size depends
on the mix of the transaction sizes and the timing constraints of the memory. For
example, the best pattern size used in our experiments for DDR3-1600G is 128 bytes,
while it is 64 bytes and 128 bytes for DDR3-800D and DDR3-2133K, respectively.

3. the WCET for each transaction obtained from our approach is less than or equal to
that of the semi-static approach. This demonstrates that our dynamically scheduled
memory controller outperforms the semi-static approach in the worst case with
variable sizes.

84 formal analysis of run-dmc

16 32 64 128
Transaction Sizes (bytes)

0

200

400

600

800

1000

1200

1400

1600

W
or

st
-C

as
e

B
an

dw
id

th
 (M

B
/s

)

measured BW (Run-DMC)
Scheduled WCBW (Run-DMC)
Analytical WCBW (Run-DMC)
WCBW (semi-static, 128)

Figure 4.10: Worst-Case Bandwidth for DDR3-1600G with variable transaction sizes.

4.8.4.2 Worst-Case Bandwidth

The worst-case bandwidth (WCBW) is computed based on the transaction size and the
corresponding worst-case execution time (WCET), as given by Eq. (4.12). For variable
transaction sizes, the WCET per size was previously presented in Section 4.8.4.1. In par-
ticular, to achieve the lowest WCRT with variable sizes, the semi-static approach can use
the best patterns designed for 128-byte transactions for DDR3-1600G SDRAM. There-
fore, we can derive the WCBW, as shown in Figure 4.10. We can draw similar conclu-
sions as in Section 4.8.4.1 for the WCET of variable transaction sizes. For example, both
the scheduled and analytical WCBW bounds are valid, since they are not larger than
the measured minimum bandwidth. Moreover, the scheduled WCBW are tight bounds
because they are identical to the measured bandwidth, while the analytical WCBW are
conservative. In addition to these conclusions, Figure 4.10 shows that our dynamically-
scheduled memory controller Run-DMC always provides more WCBW with variable
transaction sizes than the semi-static approach. The reason is that the semi-static ap-
proach has poor data e�ciency for small transaction sizes (e.g., 16 bytes, 32 bytes, and
64 bytes) when it uses the best pattern (i.e., for 128-byte transactions) to achieve the
lowest WCRT. Though the data e�ciency is 100% for 128-byte using the semi-static
approach, its WCET is larger than that given by Run-DMC, as previously discussed in
Section 4.8.4.1.

4.8.4.3 WCET with Known/Unknown Previous Transaction Size

The WCET of a transaction is given by Corollary 1 for unknown previous transaction
size, denoted as pre-size, while it is provided by Theorem 1 for known pre-size. As dis-
cussed in Section 4.4, if there is no static information about the size of the previous trans-
action, we have to assume the worst case, i.e., that its starting bank was the �nishing

4.8 experimental results 85

16 32 64 128
Transaction Sizes (bytes)

0

10

20

30

40

50

60

70

80

90
W

or
st

-C
as

e
E

xe
cu

tio
n

Ti
m

e
(c

yc
le

s)
DDR3-800D (known pre-size)
DDR3-800D (unknown pre-size)
DDR3-1600G (known pre-size)
DDR3-1600G (unknown pre-size)
DDR3-2133K (known pre-size)
DDR3-2133K (unknown pre-size)

Figure 4.11: WCET with known/unknown previous transaction size. Requestors are allocated to
TDM slots in descending order of their transaction sizes.

bank of the previous write transaction. This results in pessimism for the WCET given
by Corollary 1. The TDM arbiter in the front-end provides static information about the
slot allocation per requestor. Therefore, the size of the previous transaction is statically
known in the worst case. In this experiment, four requestors have transaction sizes of
128 bytes, 64 bytes, 32 bytes and 16 bytes, respectively. The TDM arbiter allocates one
slot per requestor and serves them in descending order of sizes, e.g., from 128 bytes to
16 bytes. Figure 4.11 shows the WCET of a transaction with known and unknown size
of the previous transaction for DDR3 SDRAMs, respectively. We can see that the WCET
with unknown previous transaction size is greater than or equal to the case with known
size. For example, a 128 byte transaction is preceded by a 16 byte transaction consist-
ing of one burst, leading to no di�erence for its WCET if the previous size is known
or unknown. In contrast, a 64 byte transaction is preceded by a 128 byte transaction.
Its starting bank cannot be the �nishing bank of the 128 byte transaction for aligned
transactions, resulting in much better WCET with known previous transaction size (see
Figure 4.11). Therefore, shorter worst-case frame size is obtained if the size of previous
transaction is known. This leads to smaller WCRT, as presented in the following section.

4.8.4.4 TDM Service Order of Requestors

Besides known size of the previous transaction, lower WCET is obtained if transactions
are executed in descending order of their sizes because of improved pipelining between
successive transactions, as previously discussed in Section 3.2.2. This results in a shorter

86 formal analysis of run-dmc

frame size. An experiment is carried out to explore all the possible orders of serving 4
and 8 requestors with transaction sizes of 16 byte, 32 byte, 64 byte and 128 byte, respec-
tively. For the case of 8 requestors, there are two requestors with each transaction size.
Each requestor has one slot in the TDM table. All the possible orders of serving these re-
questors have been evaluated, although only frame sizes for descending, ascending and
the worst possible order are shown in Figure 4.12 (a). The best way to serve requestors
is descending order of their transaction sizes. The worst order is the one that results in
the maximum frame size. The experiment shows that the minimum frame size is always
obtained using the descending order. Compared to the worst order, the improved per-
centage of frame size by using descending order is given by Figure 4.12 (b). It indicates
that a system with a larger number of requrestors bene�ts more from the descending
order, e.g., 13.4% is gained for 8 requestors with DDR3-800D. Note that this is a free
improvement by using our analysis in Section 4.4.3, which provides the WCET by ex-
ploiting more detailed information about the bank state when the size of the previous
transaction is known. This has not been considered by existing work.

4.8.4.5 Worst-Case Response Time

The WCRT for the four requestors is derived from Eq. (4.9) and the results for DDR3-
1600G are shown in Figure 4.13. They are obtained on the basis of the WCET by using
Theorem 1. In addition, to fairly compare with the semi-static approach, we choose the
best pattern size, e.g., 128 byte for DDR3-1600G. As can be seen from Figure 4.13, it also
supports the conclusion given by Figure 4.9 that our dynamically scheduled memory
controller outperforms the semi-static approach in the worst case, where our scheduled
approach is always better or equal and the analytical approach is worse than the semi-
static approach only for 128-byte transactions. As the observation also holds for the
other DDR3 SDRAMs, their results are not shown. It is worth to recall that our approach
signi�cantly reduces the total time for each application to access the memory, which has
been presented in Section 3.5.3.3. For example, compared to the semi-static approach,
53.8% reduction of the average response time for accessing DDR3-1600G is achieved
by the Mediabench application epic that has 32 byte memory transactions. In addition,
the average improvement is 47.6% for all the Mediabench application traces with DDR3-
1600G.

4.8.5 Monotonicity of Worst-Case Execution Time

Theorem 2 states that the analytical WCET monotonically increases with the transac-
tion size, and it is based on the WCET given by Theorem 1. However, we cannot prove
this for the scheduled WCET, as mentioned in Section 4.4.4. We proceed by providing
experimental evidence to show that the monotonicity property also holds for the sched-
uled approach.

4.8 experimental results 87

DDR3-800D DDR3-1600G DDR3-2133K
0

100

200

300

400

500

600

Fr
am

e
si

ze
 (c

yc
le

s)

4 requestors (descending)
4 requestors (ascending)
4 requestors (worst order)

8 requestors (descending)
8 requestors (ascending)
8 requestors (worst order)

(a) The worst-case frame size

DDR3-800D DDR3-1600G DDR3-2133K
0

2

4

6

8

10

12

14

Im
pr

ov
em

en
t o

f f
ra

m
e

si
ze

 (%
)

4 requestors (descending vs. worst-order)
8 requestors (descending vs. worst-order)
4 requestors (descending vs. ascending)
8 requestors (descending vs. ascending)

(b) The reduction of frame size

Figure 4.12: The worst-case frame size of a TDM table for di�erent number of requestors, and the
improvement by serving requestors in descending order of their transaction sizes.

88 formal analysis of run-dmc

Req_1 (128-byte) R
D

Req_1 (128-byte) W
R

Req_2 (64-byte) R
D

Req_2 (64-byte) W
R

Req_3 (32-byte) R
D

Req_3 (32-byte) W
R

Req_4 (16-byte) R
D

Req_4 (16-byte) W
R

0

50

100

150

200

250

W
or

st
-C

as
e

R
es

po
ns

e
Ti

m
e

(c
yc

le
s)

measuredRT Scheduled-WCRT Analytical-WCRT Semi-static-WCRT

Figure 4.13: WCRT for DDR3-1600G with variable transaction sizes.

Experiments have been done with DDR3-800D, DDR3-1600G and DDR3-2133K to
collect the scheduled WCET of transactions. All pair-wise combinations of 16, 32, 64,
128, and 256 bytes transactions have been tested. Figure 4.14 shows the scheduled WCET
results of transactions with di�erent sizes under di�erent preceding transaction sizes for
DDR3-1600G. The results show that the scheduled WCET appear to be monotonic with
the transaction size. This experimental observation also holds for the other memories,
and the results are not presented for brevity. We conclude that the scheduled WCET

monotonically increases with the transaction size for DDR3-800D/1600G/2133K memories.

4.9 summary

The chapter proposes a formal analysis approach to analyze the worst-case execution/re-
sponse time and the worst-case bandwidth of our dynamically-scheduled memory con-
troller, previously presented in Chapter 3. This formal analysis approach is based on
the formalization of the dynamic command scheduling. The scheduling times of com-
mands can be precisely calculated based on the formalization, which is implemented
to be an open-source C++ tool RTMemController. On one hand, this tool is validated
by the cycle-accurate SystemC simulator (see Section 3.4), where identical scheduling
times of commands for the same transaction traces are obtained. On the other hand,
RTMemController is used to debug the SystemC simulator. With this formalization, the
worst-case execution time of a transaction is analyzed based on the worst-case initial
bank states, which are derived by scheduling the commands of the previous transac-
tion as-late-as-possible (ALAP). The ALAP scheduling maximizes the scheduling times
of these previous commands. Due to the constant JEDEC timing constraints between
commands, the commands of the current transaction are scheduled at their maximum

4.9 summary 89

0

20

40

60

80

100

16 32 64 128 256

W
C

E
T

 (
c
yc

le
s
)

Transaction size (bytes)

pre-16 bytes pre-32 bytes pre-64 bytes

pre-128 bytes pre-256 bytes

Figure 4.14: The monotonicity of scheduled WCET with transaction size for a requestor. DDR3-
1600G is taken as an example.

times. As a result, the maximum execution time (i.e., WCET) is guaranteed. Based on
the analysis, two techniques are presented to bound the WCET. The �rst technique is
an equation that computes the WCET for a given transaction size and memory map
con�guration, while the second technique provides a tighter bound by using an o�-line
implementation of the dynamic command scheduling to compute actual command colli-
sions. Both of these techniques are included in RTMemController. We formally prove that
the analytical WCET monotonically increases with the transaction size, and we provide
experimental evidence for DDR3-800D/1600G/2133K SDRAMs that this also holds for
the scheduled approach. With the WCET of transactions, the lowest WCRT is derived
based on the new work-conserving TDM arbiter that schedules transactions from dif-
ferent requestors in the descending order of transaction sizes. Comparison with a state-
of-the-art semi-static scheduling approach shows that our approach performs equally
well or better in the worst-case with only a few exceptions. Note that our approach sig-
ni�cantly reduces the average response times by 79% at most while 44.9% on average,
implying shorter time for each application to access the memory. This was previously
concluded in Chapter 3.

5
M O D E - C O N T R O L L E D D ATA F L O W (M C D F) M O D E L I N G O F
R U N - D M C

The analysis of real-time memory controllers is di�cult, and the reasons have been
previously discussed in Chapter 4, including: i) the interferences between memory re-
questors, ii) the complex dependencies between SDRAM commands due to the inter-
and intra-bank timing constraints, and iii) the diverse memory tra�c with variable
transaction sizes. These di�culties have been solved by the formal analysis approach
in Chapter 4 by assuming that 1) the worst-case bank states for a transaction are given
by as-late-as-possible (ALAP) scheduling, and 2) each ACT command is always collided
with a RD or RD command. These assumptions make the worst-case bounds pessimistic.
Moreover, the formal analysis approach provides the bounds based on analyzing each
individual transaction rather than a sequence of transactions, where the pipelining can-
not be exploited. In particular, the formal analysis approach cannot provide tight bounds
on worst-case bandwidth. The reason is that the bandwidth evaluates the long-term av-
erage data transferring rate of executing an in�nite number of transactions according to
De�nition 10. On the other hand, the formal analysis approach is time-consuming and
huge e�ort is needed when analyzing a memory controller with di�erent mechanisms,
implying a portability issue.

This chapter introduces a novel approach to derive the lower bound on the worst-
case bandwidth (WCBW) by exploiting the pipelining between successive transactions,
which are executed by our dynamically-scheduled memory controller (i.e., Run-DMC).
As previously presented in Chapter 3, Run-DMC is capable of e�ciently dealing with the
diverse memory tra�c with variable transaction sizes using dynamic command schedu-
ling. The proposed approach captures the complex command scheduling dependencies
of transactions with a data�ow model, where SDRAM commands and inter-/intra-bank
timing constraints are represented by nodes with speci�ed execution times in a data�ow
graph, while the dependencies between commands are represented by the edges of the
graph. By using existing analysis tools of data�ow models, such as SDF3 [98] and Hera-
cles [79], the WCBW bounds can be automatically obtained based on iteratively execut-
ing the data�ow graph. This corresponds to the execution of a sequence of transactions.
Therefore, the WCBW bounds are derived based on exploiting the pipelining between
transactions. Comparing to the formal analysis approach in Chapter 4, the analysis of

91

92 mode-controlled dataflow (mcdf) modeling of run-dmc

the data�ow model does not need to assume the worst-case initial bank states given by
the ALAP scheduling, ensuring tighter bounds.

A MCDF model [68, 79, 90] is used to capture the command scheduling dependen-
cies of Run-DMC. It supports dynamism by selecting di�erent sub-graphs, which cor-
respond to di�erent modes. As a result, the dynamism caused by executing the trans-
actions is captured by creating modes and specifying the mode transitions. Finally, the
Heracles [79] tool is used to analyze the WCBW. The advantages of the MCDF model
include: 1) it leverages standard data�ow analysis techniques and tools to analyze the
bound on the worst-case bandwidth of memory command scheduling without the need
to manually develop new complex static analyses. 2) It can easily exploit static informa-
tion, such as the transaction sequence given by the application or static arbitration of
memory requestors (e.g., time-division multiplexing), through generating proper mode
sequences. In contrast, the formal analysis approach in Chapter 4 can only exploit the
static order of transaction sizes rather than the types and physical addresses contained
in the static transaction sequence. 3) The analysis of the MCDF model returns the se-
quence of commands (corresponding to transactions) that limit the worst-case band-
width, which is beyond the capability of existing analyses. This information is useful
when designing scheduling algorithms, such that the critical sequence of transactions
is avoided and hence a better worst-case bandwidth is obtained. 4) The validation of
the MCDF model is easier than existing analyses because the formal model is also exe-
cutable. 5) The MCDF model can be easily adapted to cover other memory controllers
with di�erent scheduling policies, which can be captured by mode sequences. 6) Finally,
the worst-case bandwidth bounds are better than both the scheduled and analytical
approaches introduced in Section 4.6 for Run-DMC and the Predator controller using
a semi-static approach [3]. The maximum improvement is 22% while the average im-
provement is 6.3%. We also experimentally show that exploiting static sequences of
transactions achieves up to 77% higher worst-case bandwidth bound, while the average
improvement is around 63.2%.

In the remainder of this chapter, Section 5.1 summarizes the related work of analyz-
ing the worst-case bandwidth. The background of data�ow model and mode-controlled
data�ow (MCDF) model is given in Section 5.2. The proposed MCDF model of Run-DMC
is presented in Section 5.3, followed by introducing the method of deriving the WCBW
based on analyzing the MCDF model in Section 5.4. Finally, experimental results are
shown in Section 5.5, before summarizing this chapter in Section 5.6.

5.1 related work

The worst-case memory bandwidth is challenging to analyze because of the command
scheduling dependencies based on the complex internal states of SDRAM [53] and the
diverse memory tra�c. Most existing approaches for computing memory bandwidth
abstract away the complexity of SDRAM internal states. A memory access control ap-

5.1 related work 93

proach has been proposed in [109] to allocate enough bandwidth to a critical core that
runs a real-time application. However, it uses constant memory access time to compute
the bandwidth, which is pessimistic for variable transaction sizes with di�erent exe-
cution time. This drawback also applies to the bandwidth sharing scheme in [87] that
treats every memory access as a constant delay. The worst-case bandwidth can be ana-
lyzed when a memory controller has statically periodic behavior of command schedu-
ling. For example, the mixed-criticality memory controller in [25] repeats a �xed TDM
schedule of command scheduling. This is similar to the memory controllers in [3, 46]
that use static command schedules. The PRET DRAM controller [88] does not directly
use static command schedules, while it provides conservative periodic cycles of issu-
ing commands. A similar memory controller presented in [26] uses virtual devices,
each of which is composed of several private banks and uses a �xed sequence of com-
mands to serve a read/write transaction with �xed size. The virtual devices are peri-
odically accessed in a TDM manner. However, these memory controllers only directly
support transactions with �xed sizes to ease their worst-case analysis. They cannot
e�ciently deal with the variable sizes in diverse memory tra�c. In contrast, our mem-
ory controller (i.e., Run-DMC [69, 72]) introduced in Chapter 3 dynamically schedules
commands for transactions with variable sizes. It is capable of exploiting the run-time
SDRAM states. However, the formal analysis approach of Run-DMC given Chapter 4
is complicated and its WCBW bounds are pessimistic due to the assumptions. In this
chapter, we tackle this complexity by modeling the command scheduling of Run-DMC
with a data�ow model [79], where existing analysis techniques and tools can be used to
analyze a tighter WCBW bounds.

Data�ow models have been widely used to model shared resources in modern multi-
core systems and provide guaranteed performance. For example, the behavior of an
on-chip network is captured by a data�ow model [45] that is used to compute the re-
quired bu�er size of a network interface, such that the performance of an application
is guaranteed. Another example is the data�ow modeling of TDM arbitration [67], that
enables an optimized TDM slot allocation to meet the requirements of concurrent appli-
cations. The data�ow models of these two examples actually describe the dependencies
of resource sharing, and existing data�ow analysis techniques are employed to provide
the worst-case results. Nelson et al. shows in [80] how a streaming application mapped
on a multi-core platform with several shared resources can be modeled using data�ow.
However, the modeling of the resource sharing is quite abstract and does not capture the
internals of the resources in detail. This chapter proposes to capture the complex dependen-

cies of dynamic command scheduling by a data�ow model, where we extend an analysis

tool to address these complexities and provide the WCBW. To the best of our knowledge,

this work provides the �rst data�ow model of a memory controller in detail.

94 mode-controlled dataflow (mcdf) modeling of run-dmc

A, 1 B, 2 C, 4

Figure 5.1: A single-rate data�ow graph.

5.2 background of dataflow models

This section introduces background information about data�ow models, such as the
single-rate data�ow (SRDF), followed by presenting the basic concepts and structures
of mode-controlled data�ow model in details.

5.2.1 Single-Rate Data�ow Model

Data�ow models are popular to describe concurrent processes with unidirectional graphs,
where a process is represented by a node (i.e., actor), while an edge between two nodes
is a FIFO communication channel between the corresponding processes [66]. An actor
�res or executes immediately when all its input tokens (i.e., data) are available. The �ring
of an actor consumes tokens from all inputs and produces a number of output tokens
that are transfered to the next actors. The number of these consumed/produced tokens
is the consumption/production rate. For single rate data�ow (SRDF), each actor has a �xed
execution time and communicates with other actors using a single token through each
channel. Initial tokens are speci�ed on some edges of the SRDF graph, such that the
graph starts �ring with particular actor(s). Since the �ring of an actor is triggered once
all its input tokens arrive, the dependencies between concurrent processes are captured
by transmitting tokens between actors. Moreover, the execution of the processes is cap-
tured by the iterative �rings of the SRDF graph. An iteration of an SRDF graph is de�ned
as a set of actor �rings, such that all the initial tokens return to their initial edges, i.e.,
the SRDF graph returns to the initial state. SRDF model expresses the dependencies be-
tween concurrent processes while provides good analytical properties that guarantee
the performance in terms of latency and throughput [27].

Figure 5.1 shows an SRDF that has three actors A, B and C with the execution time
of 1, 2, and 4, respectively. Their consumption and production rates are 1, which is not
shown in Figure 5.1 for brevity. The edges between the actors denote the dependencies.
There is one initial token on the edge from actor C to actor A, such that A starts at
the beginning, followed by actor B and C once their input tokens become available.
For example, actor C starts immediately when both the input tokens from actor A and
B are produced. When the data�ow graph depicted by Figure 5.1 executes iteratively
with each actor running in a pipelining manner, it is obvious that the critical cycle that

5.2 background of dataflow models 95

Tunnel

s
w

itc
h

0

1

A, 10

s
e

le
c
t

B, 2

Tunnel

0

1

Src,

2

MC

switch

a, 0

select

Data inData in

Ctrl inCtrl in

Data outData out

00 11

00 11

b, 0

M0M0

M1M1

Figure 5.2: An MCDF graph and a basic tunnel.

determines the execution speed of the graph is from A to B to C. This cycle repeats with
the time interval of 7 that is the total execution times of the actors on the critical cycle
divided by the number of initial tokens on its edges, which is de�ned as the maximum

cycle mean (MCM) in tokens/second.

5.2.2 Mode-controlled Data�ow Model

Mode-controlled data�ow (MCDF) [79] is a restricted variant of Boolean data�ow [18]
that supports dynamism by selecting di�erent sub-graphs of the MCDF graph to �re
for each graph iteration, where Figure 5.2 shows a simple example of an MCDF model.
These sub-graphs, called modes, are actually smaller data�ow graphs. MCDF features
single rate data�ow (SRDF) actors and two types of special actors, named select and
switch, which conditionally produce/consume tokens on/from speci�c edges depend-
ing on the mode selected for that �ring, which is de�ned by the value of the token
consumed from its mode control input. In addition, a special single-rate actor is marked
as model controller (MC) and produces all tokens consumed through the control ports of
all switches and selects in the MCDF graph. For each �ring of MC, one token with the
same mode value is produced by MC on all control inputs of all switches and selects,
which are enabled to �re exactly once in an iteration. The actors of switches, selects,
and mode controller �re once per iteration, while the rest actors only �re if their mode
is chosen. This means that the actors corresponding to the non-selected modes do not
�re. The control tokens drive all the switch and select actors via their control input
ports to select di�erent modes. A tunnel constructed with switch and select provides
a convenient way to communicate tokens between two modes. It behaves as a register

and is also driven by control tokens.
The construction rules of an MCDF model are that 1) it uses a single MC actor and

an arbitrary number of switch, select and tunnel actors. These actors always �re for
any chosen mode. 2) MC selects a mode by sending a control token. The switch and
select activate the actors of the selected mode to �re. The actors of unselected modes
cannot �re. 3) An actor is not allowed to belong to more than one mode. With these

96 mode-controlled dataflow (mcdf) modeling of run-dmc

Src

MC

SW A SL

aTsw Tsl

(a) SRDF for SMS0=[M0]∗

Src

MC

SW B SL

bTsw Tsl

(b) SRDF for SMS1=[M1]∗

Src_1

MC_1

SW_1 A_1 SL_1

a_1Tsw_1 Tsl_1

Src_2

MC_2

SW_2 B_1 SL_2

b_1Tsw_2 Tsl_2

(c) SRDF for SMS2=[M0, M1]∗ by unrolling the MCDF graph

Figure 5.3: The equivalent SRDF of recurring SMS for the MCDF in Figure 5.2.

rules, the MCDF model has strong expressiveness to capture the dynamism of a system
by dynamically choosing modes.

Figure 5.2 shows a simple MCDF graph that consists of two modes, M0 and M1, where
the former consists of actor A and latter actor B. All other actors do not belong to any
mode, as they �re once per iteration, independently from the values of the mode con-
trol tokens. The MC produces control tokens that are sent to the control input port of
the switch (SW), select (SL), and tunnel. Tunnel actors encapsulate an MCDF construct
enabling well-de�ned communication between di�erent modes, as explained below. Be-
sides the control input port, a SW has a data input port and a number of output ports
that connect to actors belonging to di�erent modes. The SW consumes both the data to-
ken sent by the source (Src) actor and the control token given by MC, and produces the
same data token on the output port that connects to the mode speci�ed by the control
token. Conversely, a SL consumes the control token and the input data token associated
with the mode indicated by its received control token, and produces the same data token
on the output port. Figure 5.2 also shows a tunnel constructed by a switch (Tsw) and
a select (Tsl). It has an internal (initial) token that is always replaced by its input data
token. This is achieved when Tsw and Tsl receive the same control token indicating a
mode that connects to the data input of the tunnel, e.g., M0 in Figure 5.2. As a result, it
always passes the latest token from the input mode to the output mode via the data out
port.

5.2 background of dataflow models 97

Time

Src_1

MC_1

SW_1

A_1

SL_1

a_1

Tsw_

1

Tsl_1

Src_2

MC_2

SW_2

B_1

SL_2

b_1

Tsw_

2

Tsl_2

Figure 5.4: Merging the equivalent SRDF graphs of SMS0 and SMS1. This results in the equivalent
SRDF graph of [SMS0 | SMS1]∗.

The execution of the MCDF graph is highly dependent on how modes are chosen.
To capture the static behavior of a system, a pre-de�ned static mode sequence (SMS)

that speci�es a static order of modes to �re can be used. Moreover, multiple SMSs can
be used dynamically in any random order. In addition, MC can repeat an SMS, result-
ing in recurring SMS. By choosing modes according to pre-de�ned SMSs, a worst-case

throughput analysis of the MCDF model can be based on the SMSs. Each SMS speci-
�es a static �ring order of modes. The �ring dependencies of a recurring SMS are hence

equivalently described by a static data�ow graph, which is obtained by eliminating the

actors and edges (i.e., dependencies) of the modes that are not chosen by the SMS. We sim-
ply assume that SMS0 only contains mode M0 and SMS1 has mode M1 in our example
in Figure 5.2, i.e., SMS0=[M0] and SMS1=[M1]. When SMS0 or SMS1 is repeatedly used
by MC, recurring mode sequences are brought and are represented by [M0]∗ and [M1]∗
for SMS0 and SMS1, respectively. The equivalent SRDF graphs are shown in 5.3(a) and
5.3(b) for SMS0=[M0]∗ and SMS1=[M1]∗, respectively. For a recurring SMS3=[M0, M1]∗,
its equivalent SRDF is shown in 5.3(c) that is obtained by unrolling the MCDF model in
Figure 5.2, where M0 is always followed by M1 and the transitions are denoted by the
red dashed edges. Therefore, to analyze the worst-case throughput of a given SMS, we
only need to analyze its equivalent static data�ow graph with existing data�ow analysis
techniques [79].

The transitions across multiple SMSs are usually not known apriori, since they are
dynamically executed. All the possible transitions can be described by a �nite-state ma-
chine (FSM), where each SMS is represented by a state that is able to transit to any states
including itself. By assuming the total number of SMSs to be NS (NS > 0), this case is
described by [SMS0 | SMS1 | ... | SMSNS−1]∗, where the transitions are given by the FSM.

98 mode-controlled dataflow (mcdf) modeling of run-dmc

Time

Actors

Src_1

MC_1
SW_1
Tsw_1

A

SL_1

Tsl_1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Src_2

MC_2
SW_2

Tsw_2

B
SL_2

Tsl_2
First Iteration Second Iteration

S
M

S
0

S
M

S
1

Figure 5.5: The execution of the merged equivalent SRDF graph shown in Figure 5.4.

The worst-case analysis approach in [68] actually does not need to explore all the tran-
sitions of the FSM to obtain the worst-case results of [SMS0 | SMS1 | ... | SMSNS−1]∗
for an MCDF model. Instead, it merges all the equivalent static data�ow graphs of each
individual recurring SMS (e.g., SMSi , ∀i ∈ [0,NS − 1]), resulting in a larger equivalent
static data�ow graph that captures all the dependencies of dynamically executing an
arbitrary SMSi . As a result, the worst-case throughput analysis only needs to focus on
a single giant/merged graph, where the existing data�ow analysis techniques can be ef-
�ciently employed. This merging is achieved by adding all the dependencies (i.e., edges
with initial token(s)) between the actors chosen by di�erent SMSs. For example, Fig-
ure 5.4 shows the merging of the SRDF graphs of SMS0=[M0]∗ and SMS1=[M1]∗, which
are shown in 5.3(a) and 5.3(b). The added dependencies are denoted by red dashed edges,
where each of them is given an initial token. The merged graph is the equivalent SRDF
of executing [SMS0 | SMS1]∗. Therefore, it only requires to equivalently analyze the
merged static data�ow graph to derive the worst-case results.

Figure 5.5 illustrates the execution of each actor in Figure 5.4 during two iterations.
The execution trace in Figure 5.5 shows that the actor �rings of each SMS in a new
iteration depend on the slowest SMS executed in the previous iteration. Therefore, the
worst-case situation is guaranteed for any SMS that is dynamically executed. As high-
lighted by the red dashed arrows in Figure 5.5, the �ring of both SMS0 and SMS1 in the
second iteration starts after the �nishing of SMS0 in the �rst iteration. The reason is
that actor A has the longest execution time (i.e., 3) in the MCDF graph in Figure 5.2,
resulting in the critical path (shown by the red dashed arrows) of executing SMS0 in the
�rst iteration. Therefore, in this case, the repeated SMS0, i.e., [SMS0]∗, is the dominate
mode sequence that leads to the worst-case results.

5.3 mcdf model of run-dmc 99

5.3 mcdf model of run-dmc

This section �rstly discusses the general principles of modeling memory command sche-
duling in data�ow, followed by introducing the MCDF model of command scheduling
for DDR3 SDRAMs, which includes a generalization of the tunnels used by the MCDF
model and a description of how memory transactions are supported by using static
mode sequences.

5.3.1 Data�ow Modeling of Command Scheduling

The timing dependencies of command scheduling are essentially the same as the data
dependencies described by data�ow graphs. A command can be scheduled only if all its
timing constraints are satis�ed, while a data�ow actor �res when all its input tokens
are available. For example, the timing dependencies between commands are depicted
in Figure 2.8, where a command can be scheduled only if all its inputs become valid,
i.e., the timing constraints from previous commands are satis�ed. The scheduling time
of a command is computed based on the relevant timing constraints, whichever is the
largest. For example, Eq. (4.1) computes the scheduling time of an arbitrary ACT com-
mand. Principally, Eq. (4.1) represents a form of max-plus algebra [47], which has been
used in the data�ow throughput analysis [22, 28]. Essentially, we can model the mem-
ory controller with data�ow, and the existing analysis tools can be used to analyze the
worst-case results. The data�ow modeling of a memory controller actually captures the
command scheduling dependencies by means of 1) modeling each command as an ac-
tor and setting its execution time as the time spent on the command bus; 2) tracking
the timing constraints by using delay (DL) actors, whose execution times are equal to
the constant values of the DDR3 JEDEC-speci�ed timing constraints [53]. Note that the
model can be easily used for di�erent generations of DDR SDRAM and also for di�erent
devices of the same generation [39] by replacing the constant values of the timing con-
straints; 3) capturing the command scheduling dependencies by adding edges between
the actors of commands and timing constraints. For example, Figure 5.6 illustrates an
example of modeling a simple periodic schedule of an ACT, RD, and PRE to a bank (Fig-
ure 5.6(a)) with a static data�ow graph (Figure 5.6(b)) according to the above scheme.

A memory transaction is executed by interleaving it over BI banks, each of which
requires an ACT, followed by BC times of RD or WR and �nally a PRE, according to
the close-page policy. The command scheduling of a particular transaction in terms of
speci�c type (read or write), BI, BC, and physical address (starting bank) can be mod-
eled by a speci�c static data�ow graph, such as the simple example shown in Figure 5.6.
However, di�erent static data�ow graphs are needed to capture the command schedu-
ling of transactions with di�erent types, sizes, and physical addresses. We propose an

MCDF model capturing the command scheduling dependencies of various transactions by

specifying static mode sequences (SMSs), where a mode sequence is equivalent to a static

100 mode-controlled dataflow (mcdf) modeling of run-dmc

ACT RD PRE
tRCD

tRAS

tRTP

tRP

(a) Cmd scheduling of a bank

ACT, 1

DL,

tRCD
RD, 1

PRE, 1
DL,

tRAS

DL,

tRTP

DL,

tRP

(b) The data�ow graph

Figure 5.6: An example of data�ow modeling of commands to a bank.

ActorsActors

Cmds
Timing

constraints

tRCD...

ACT,

1

Mode_0 SMS0

Trans

Trace

ACT...

DL,

tRCD

Mode_1

Mode_18

SMS1

SMSNS

T0

T1

TNS

…

…

MCDF Graph
Cmd

Scheduling
Memory traffic

Figure 5.7: An overview of the MCDF modeling of memory controllers.

data�ow graph representing the execution of a transaction with the given type, size, and

starting bank. Finally, the MCDF graph must be strongly connected to restrict the �ring
rate of actors, such that the timing behavior of the memory controller can be correctly
captured. In fact, the strongly connected MCDF graph captures the limited speed of
command scheduling because of the timing constraints.

Figure 5.7 shows a high-level overview of the MCDF modeling of memory controllers.
As previously mentioned, memory commands and the SDRAM timing constraints are
modeled by actors, which further constitute each individual mode (shown in Figure 5.8).
The scheduling of commands per transaction is captured by using a proper pre-computed
static mode sequence (SMS), which has been discussed in the previous Section 5.2.2. The
generation of proper SMSs for transactions will be later presented in Section 5.3.2.1.
These SMSs are dynamically employed to model the memory tra�c. A fully connected
FSM can describe the transitions among all kinds of transactions associated with the
SMSs (NS denotes the total number) if there is no apriori information about the traf-
�c (discussed in Section 5.4). Overall, the MCDF graph naturally captures commands
and timing constraints of SDRAM and can be generally used by various memory con-
trollers and memory devices by computing their corresponding SMSs. When static knowl-
edge about the tra�c is provided, e.g., the known transaction sequence given by the
application or by memory arbiter (e.g., TDM), the FSM is simply restricted to keep the
known sequence.

5.3 mcdf model of run-dmc 101

5.3.2 MCDF Modeling of Command Scheduling

We proceed by generally modeling command scheduling of transactions with an MCDF
graph based on the previously mentioned principles. There are four di�erent commands
that are used to execute each transaction, ACT, RD, WR, and PRE. Note that the re-
fresh (REF) command is not modeled explicitly because it is only needed for a large
interval of tREFI and reduces the bandwidth by approximately 3% [55]. Its e�ect will be
taken into account later when computing the worst-case bandwidth in Section 5.4. The
commands can be dynamically scheduled to the required banks according to various
scheduling algorithms subject to the inter/intra-bank timing constraints. To generally
support any command scheduling algorithm for transactions, the scheduling of a com-

mand to each bank can be modeled by creating a mode that has actors representing the

command and the inter/intra-bank timing constraints. In particular, the actors of inter-
bank timing constraints are used to support the transitions across modes. Finally, the
execution of a transaction is modeled by using a mode sequence that speci�es the order of

modes corresponding to the required commands. In this way, various command schedu-
ling algorithms for transactions can be supported by specifying their mode sequences.

Figure 5.8 shows the MCDF model of command scheduling. It consists of 18 modes,
representing the scheduling of di�erent memory commands to any of the 8 banks. Each
mode consists of a command (ACT, RD, WR, or PRE) actor and several delay (DL) actors
that track the relevant timing constraints. The edges between actors in Figure 5.8 show
the dependencies. Since the command bus transfers one command per cycle, the execu-
tion time of all the command actors is 1 cycle except for ACT actors where it is 2 cycles.
This is because an ACT has lower priority than a RD or a WR as stated in Section 3.3.2.
We hence conservatively assume an ACT always collides with a RD or WR, resulting in
one cycle additional delay. The execution times of DL actors in Figure 5.8 are con�gured
to be the values of the JEDEC timing constraints in Table 2.1.

The ACT and PRE commands to di�erent banks have to be modeled by di�erent
modes because of the intra-bank timing constraints. For example, the scheduling of
an ACT has to satisfy the tRP constraint from the previous PRE to the same bank, as
shown in Figure 2.8. Mode_0 to Mode_7 in Figure 5.8 model the ACT to a bank from
Bank 0 to Bank 7, respectively. While Mode_8 to Mode_15 capture the PRE to a bank
from Bank 0 to Bank 7, respectively. For ∀i ∈ [0, 7], the transition between Mode_i and
Mode_(i+8) captures the timing constraints (e.g., tRAS and tRP) between the ACT and
PRE to the same bank. Note that the transition between modes is supported by tunnels.
A basic tunnel is shown in Figure 5.2 that only supports transition from one mode to
another. The proposed MCDF model in Figure 5.8 requires a general M ×N tunnel that
supports the transition from M modes to N modes, where M > 0 and N > 0. In the
same way, the timing constraints between ACT commands are also captured, such as
the tRRD and tFAW. Finally, RD or WR commands are sequentially scheduled due to
the the shared data bus of transferring their associated data, and it is hence not nec-

102 mode-controlled dataflow (mcdf) modeling of run-dmc

…

M
o

d
e

 s
e

le
c
t

Mode_16

Mode_17

Mode tunnel:

RTW

Mode tunnel:

WTR

Mode

tunnel: CCD

Mode

tunnel: CCD

RD, 1

WR, 1

Mode_8

Mode tunnel: FAW

M
o

d
e

 s
w

itc
h

Mode

controller

Source, 1

Mode_7

Mode_1

Mode_0

…

Mode tunnel: RRD

Mode tunnel: RCD Mode tunnel: RAS

Mode_9

Mode_15

Mode tunnel: RWTP

…
Mode

tunnel: RP

Mode

tunnel: RP

Mode

tunnel: RP

ACT, 2

ACT, 2

ACT, 2

PRE, 1

PRE, 1

PRE, 1

DL,

RCD

DL,

RCD

DL,

RCD

DL,

RAS

DL,

RAS

DL,

RAS

DL,

RTP

DL,

WTP

DL, RP

DL, RP

DL, RP

DL,

RRD

DL,

RRD

DL,

RRD

DL,

FAW

DL,

FAW

DL,

FAW

DL,

WTR

DL,

RTW

DL,

CCD

DL,

CCD

…
…

Figure 5.8: Mode-controlled data�ow model of memory command scheduling.

5.3 mcdf model of run-dmc 103

essary to distinguish di�erent banks. Therefore, RD and WR are modeled by Mode_16
and Mode_17, respectively, where all the relevant timing constraints are captured by
tunnels. For example, the RCD Tunnel keeps the tRCD constraint from an ACT to a
RD or WR, as shown in Figure 5.8. The general M × N tunnel will be detailed later in
Section 5.3.2.2.

The Source actor in Figure 5.8 triggers the command scheduling each clock cycle by
producing a token on the input port of the Mode switch, and its execution time is 1.
This models the worst-case behavior, where pending transactions are backlogged, i.e.,
enough commands ensure the scheduler is always busy. The Mode controller (MC) de-
termines which mode to choose, i.e., which command to schedule, by specifying the
mode sequence corresponding to a transaction. Therefore, when the Source actor pro-
duces a token to trigger a mode, it also gives a token to MC that produces a control
token based on the mode sequence for all the switch, select, and tunnel actors to choose
the mode. The translation from transactions to mode sequences will be detailed later in
Section 5.3.2.1.

The memory controller schedules commands with limited speed due to the timing
constraints. This is captured by a feedback edge from the Mode select to the Source
actor (see Figure 5.8), which makes the proposed MCDF model strongly connected. The
token on this edge is produced by the Mode select that is triggered after the �ring of each
command actor per mode, and the token is then consumed by the Source to produce a
new token to trigger the next command actor, i.e., schedule a new command. Note that
the initial tokens on this edge must guarantee that commands are scheduled as soon
as all timing constraints are satis�ed. The proper number of the initial tokens will be
obtained from experiments.

5.3.2.1 Mode Sequences

The MCDF model in Figure 5.8 is able to capture the dependencies of di�erent command
scheduling mechanisms, e.g., close/open-page policy, bank privatization/interleaving,
and priorities. The reason is that the proposed MCDF model captures the JEDEC-speci�ed
timing constraints of an SDRAM. In addition, the execution of transactions by a mem-

ory controller using particular mechanisms is captured by creating the appropriate mode

sequences, which specify the �ring order of modes, and hence the order of commands. To
create a mode sequence for executing a transaction with speci�c size, type, and physical
address, we �rstly create a mode sequence per bank, and then combine these per-bank
mode sequences for the transaction according to its required banks.

Take the scheduling algorithm (i.e., Algorithm 2) of dynamic command scheduling
as an example. We show next how mode sequences are created for it. The dynamic
command scheduling is discussed in Section 3.3, where a transaction interleaves over BI
banks and there are BC data bursts per bank. This requires commands to be scheduled
to all BI banks, where each of them receives an ACT, followed by BC number of RD
or WR commands and �nally a PRE (see Figure 2.8). Therefore, the mode sequence for

104 mode-controlled dataflow (mcdf) modeling of run-dmc

each bank must be an ACT mode, BC times of RD or WR mode and a PRE mode. This is
given by De�nition 14 that de�nes the mode sequence ms(k, BC) for an arbitrary bank
k (∀k ∈ [0, 7]). As shown in Figure 5.8, Mode_k captures the ACT command to bank k

and the mode for the PRE command to the same bank is Mode_(k+8). The mode number
for the BC number of RD orWR commands is Mode_16 or Mode_17, as given by Eq. (5.1).

De�nition 14 (Mode sequence per bank). For ∀k ∈ [0, 7] and ∀l ∈ [0,BC − 1], ms(k, BC)

= [Mode_k, RW0, ..., RWl, ..., RWBC-1, Mode_(k+8)].

RWl =



Mode_16, RD command

Mode_17, WR command
(5.1)

For an arbitrary transaction Ti (∀i ≥ 0) that uses BIi and BCi, its corresponding mode
sequence MS(Ti) is given by De�nition 15, which is a sequential combination of the BIi

number of mode sequences per bank.

De�nition 15 (Mode sequence per transaction). For ∀i ≥ 0 and ∀j ∈ [0,BIi − 1], MS(Ti)

= [ms(bs, BCi), ..., ms(bs+j, BCi), ..., ms(bs+BIi − 1, BCi)], where bs is the starting bank of

Ti.

For example, a read transaction has BI=2 and BC=1, and its starting bank is Bank 0, i.e.,
bs=0. The mode sequences for the two banks Bank 0 and Bank 1 are [Mode_0, Mode_16,
Mode_8] and [Mode_1, Mode_16, Mode_9], respectively. Therefore, the mode sequence
for the transaction is the combination of these two mode sequences per bank, which is
[Mode_0, Mode_16, Mode_8, Mode_1, Mode_16, Mode_9]. Note that the mode sequence
is only used by the MC to trigger di�erent modes sequentially, while the actual �rings
of the command actors may occur in a di�erent order, since the �rings rely on the
dependencies between actors. Therefore, this enables command scheduling pipelining.

5.3.2.2 General Tunnels

The tunnels of the MCDF model, previously shown in Figure 5.8, are used to support
the transitions between modes, and they need multiple data inputs and data outputs.
For example, tRCD is the timing constraint from an ACT to a RD or WR command
to the same bank. So, the RCD tunnel has to support transition from one of the ACT
modes (i.e., Mode_0 to Mode_7) to either Mode_16 or Mode_17 corresponding to RD

or WR commands. As a result, the basic tunnel shown in Figure 5.2 has to be extended,
since it only has a single data input and output. We generalize these tunnels to an M×N

tunnel that has M data inputs and N data outputs, as depicted in Figure 5.9. In addition,
it consists of a single internal token. This generic tunnel is instantiated to support all the
tunnels in Figure 5.8 except the FAW tunnel that captures the tFAW constraint to restrict
the scheduling of at most fourACT commands within the time window. A single internal

5.3 mcdf model of run-dmc 105

Mode tunnel: M×N

Data in:

0

Data in:

0

Data in:

M-1

Data in:

M-1

DEF,

0

DEF,

0

MEG,

0

M
o

d
e

 s
e

le
c
t

00

11

ii

M
o

d
e

 s
w

itc
h

SPL, 0

Control

in

Control

in

Data out:

0

Data out:

0

Data out:

N-1

Data out:

N-1

00

11

ii

i+M-1i+M-1

1717 1717

jj

j+N-1j+N-1

i+M-1i+M-1

jj

j+N-1j+N-1

MEG,

0

SPL, 0

DEF,

0

Figure 5.9: A generic mode tunnel with M inputs and N outputs.

token cannot support tFAW. The FAW tunnel is designed with a cascade structure of four
internal tokens, as shown in Figure 5.10.

The generic tunnel presented in Figure 5.9 consists of a switch and a select, and the
edge between them has an initial token (i.e., internal state). The switch has 18 inputs
while the select contains 18 outputs corresponding to all the 18 modes in the MCDF
model. For an arbitrary input/output of the select/switch m (∀m ∈ [0, 17]), the corre-
sponding mode is Mode_m in Figure 5.8. The tunnel is instantiated to support M data
inputs and N data outputs, where ∀M,N ∈ [1, 18]. It also has one control input that de-
livers control tokens sent by the MC to the switch and select. The M inputs correspond
to the modes from Mode_i to Mode_(i+M-1), while the N outputs are associated with
Mode_j to Mode_(j+N -1), where ∀i ∈ [0, 18 −M] and ∀j ∈ [0, 18 −N].

Each data input of the generic tunnel �rstly connects to an actor with 0 execution
time, called merger (MEG), and it consumes both the input data token and the internal
token and produces the same data token. Note that the internal token is forwarded by
the switch (see Figure 5.9). The token produced by the MEG is consumed by the select
when the control token indicates the mode corresponding to this data input, and the
select produces the same token that becomes the new internal token. In this way, the
internal state is updated. For a data output of the generic tunnel in Figure 5.9, the output
token is provided by an actor, namely splitter (SPL) that is connected by the output of
the switch corresponding to the same mode as the data output. The execution time of a

106 mode-controlled dataflow (mcdf) modeling of run-dmc

SPL is 0. The output of the switch forwards the internal token to the SPL that produces
the data output token and also returns it to the internal state via the select.

The select and switch of a tunnel �re by consuming both the input token and the
control token. They may receive a control token that is not associated with any data
input or output of the tunnel, since the MC produces each control token for all select
and switch actors. A default actor (DEF) with the mode indicated by this control token
is used to connect the output of the switch to the input of the select, which correspond
to the same mode. The execution time of DEF is 0. The DEF enables both the switch and
select to consume the control tokens not associated with the M inputs and N outputs.

We proceed by introducing the connections of the M data inputs and the N data out-
puts. For an arbitrary data input k (∀k ∈ [0,M− 1]) with the corresponding Mode_(i+k),
it connects to a MEG that further connects to the (i + k)th input of the select in Fig-
ure 5.9. An output of the select connects to a SPL that connects to an arbitrary data
output h (∀h ∈ [0,N − 1]) corresponding to Mode_(j+h). If ∃h such that j+h = i+k (i.e.,
the same mode), an output of the SPL connects to the input of the MEG. Otherwise, the
(i + k)th output of the switch connects to the input of the MEG. In addition, one of the
outputs of the SPL goes back to the (j + h)th input of the select.

5.3.2.3 Cascade FAW Tunnel

The FAW tunnel in Figure 5.8 captures the tFAW constraint (in Table 2.1) that allows
maximally 4ACT commands to be scheduled within the rolling time window. It supports
any transitions amongst Mode_0 to Mode_7. As a result, the FAW tunnel consists of 8
data inputs and 8 data outputs, which connect Mode_0 to Mode_7. Note that we cannot
simply add four internal tokens to the generic tunnel in Figure 5.9 to support tFAW. It
is because all the four internal tokens may be consumed when the modes indicated by
control tokens are not between Mode_0 to Mode_7, which correspond to the scheduling
of ACT commands. Therefore, when a control token for a mode between Mode_0 to
Mode_7 arrives, it cannot be consumed by the select since the four internal tokens have
already been consumed. To overcome this problem, a cascade tunnel with four pairs of
select and switch is designed, as shown in Figure 5.10, where the internal state of each
pair contains an initial token. These four initial tokens allow at most 4 di�erent ACT
modes execute within the tFAW time window. When one of them is triggered, an initial
token of the FAW tunnel is consumed by its ACT command actor and a new token will
be produced by its DL actor with the execution time of tFAW. This new token goes to
one of the data inputs of the FAW tunnel to update the internal state.

The execution of an ACT mode requires one internal token of the FAW tunnel (see
Figure 5.8). After tFAW cycles, the FAW DL actor of the ACT mode produces a token
to update the internal state, such that new ACT mode can be triggered. The four initial
tokens of the FAW tunnel are able to trigger four ACT modes, while the �fth one has to
wait for an internal token that is updated by the �rst ACT mode after tFAW cycles. In
this way, the rolling tFAW constraint is captured. When the FAW tunnel receives control

5.4 worst-case bandwidth 107

Data in:

0

Data in:

0

Data in:

1

Data in:

1

Data in:

7

Data in:

7

DL, 0

DL, 0

DL, 0

M
o

d
e

 s
e

le
c
t

00

11

77

M
o

d
e

 s
w

itc
h

DL, 0

DL, 0

DL, 0

Control

in

Control

in

Data out:

0

Data out:

0

Data out:
1

Data out:
1

Data out:
7

Data out:
7

00

11

77

M
o

d
e

 s
w

itc
h

00

11

77

M
o

d
e

 s
e

le
c
t

00

11

77

M
o

d
e

 s
w

itc
h

00

11

77

M
o

d
e

 s
e

le
c
t00

11

77

M
o

d
e

 s
w

itc
h

00

11

77

M
o

d
e

 s
e

le
c
t

00

11

77

DEF,

0

DEF,

0

DEF,

0
DEF,

0

Figure 5.10: A cascade tunnel structure to support multiple initial tokens for a speci�c set of
modes.

tokens for modes from Mode 8 to Mode 17, they are consumed by each pair of switch
and select through the default connection, i.e., the edge with a DEF actor, as shown in
Figure 5.10. Note that an internal token can be transferred to the next pair of select and
switch or the data output of the FAW tunnel only if a control token for Mode 0 to Mode 7
is received. So, the �ring of an ACT mode either gets an internal token or waits for the
update of the internal state when the tFAW constraint is met.

The tunnels previously discussed in Section 5.3.2.2 and Section 5.3.2.3 are composed
of normal actors, switch and select, as shown in Figure 5.9 and Figure 5.10. It is time-
consuming when manually specifying all the tunnels in the MCDF model shown in Fig-
ure 5.8. As a part of this work, a tool is developed to automatically decompose a tunnel to
normal actors, switch, and select, which are connected by relevant edges. Consequently,
a MCDF graph can be easily described with nodes and edges, where each tunnel is rep-
resented by a node. The MCDF graph is then decomposed by the tool into a graph with
only normal actors, switch, and select.

5.4 worst-case bandwidth

Bandwidth is de�ned by De�nition 10 to be the long-term data transferring rate of exe-
cuting transactions. The lower bound on the worst-case (minimum) bandwidth (WCBW)
has been computed based on the worst-case execution time of an individual transaction,
as given in Section 4.6. However, this bound is pessimistic, because it cannot exploit
the pipelining between transactions. This section analyzes the WCBW bound using the
MCDF analysis technique [68], which essentially transfers the MCDF model with the
speci�c mode sequences to equivalent SRDF model, as brie�y introduced in Section 5.2.2.
Note that the analysis of an SRDF model is algorithmically easy. The typical analyses of
data�ow models provide the MCM (tokens/second) of iteratively executing the graphs.
Instead, we use worst-case bandwidth (bytes/second) to de�ne the critical cycle path
of executing the MCDF graph, resulting in a WCBW bound rather than the typical
MCM. Note that MCM is de�ned as the maximum of the total execution time of the
critical cycle divided by the total number of initial tokens on the critical cycle. Hence,

108 mode-controlled dataflow (mcdf) modeling of run-dmc

the minimum throughput (transactions per second) of the memory controller is 1/MCM.
However, the minimum throughput is not always equivalent to the WCBW (bytes/sec-
ond). For example, the critical cycle can be obtained based on large transactions that
consume more time than small ones, but carry more data. Since the critical cycle can be
repeated for an in�nitely long time, i.e., executing an in�nite number of transactions,
the obtained WCBW bound is obtained exploiting the pipelining between a sequence
of transactions. In addition, it is the bound on the long-term worst-case bandwidth.

The proposed MCDF model can capture the command scheduling behavior of the
memory controller by specifying static mode sequences (SMSs) for all kinds of transac-
tions in terms of read or write, sizes and di�erent sets of banks. To analyze the WCBW of
[SMS1 | SMS2 | ... | SMSNS]∗ by using the analysis technique introduced in Section 5.2.2,
the key issue is to obtain all these NS number of SMSs.

De�nition 15 previously de�ned the method to derive the mode sequence for a trans-
action, which requires information about the transaction type, size, and physical address.
The type determines whether RD or WR commands are needed, and hence the corre-
sponding Mode_16 or Mode_17 in Figure 5.8. The size is mapped to BI and BC, while
the physical address gives the starting bank (bs). For example, when a system only gen-
erates 64-byte read and write transactions, e.g., the L2 cache line size is 64 bytes for
all cores, the most e�cient con�guration of BI=4 and BC=1 is used to access a DDR3
SDRAM with a 16-bit data bus [39]. Since DDR3 SDRAMs have 8 banks, the transactions
may either interleave consecutively over Bank 0 to Bank 3 or Bank 4 to Bank 7 for align-
ment reasons [39]. Therefore, four SMSs ([SMS1 | SMS2 | SMS3 | SMS4]∗) are needed, two
for reads and write, respectively, to each possible starting bank. Take a read transaction
interleaving over Bank 0 to Bank 3 as an example. The SMS1 is [Mode_0, Mode_16,
Mode_8, Mode_1, Mode_16, Mode_9, Mode_2, Mode_16, Mode_10, Mode_3, Mode_16,
Mode_11]. Similarly, the rest of the SMSs can be obtained. When a static transaction
sequence is known, e.g., by using a TDM arbiter in the front-end (c.f., Section 3.2.2),
a larger SMS can be obtained by sequentially concatenating the SMS of each transac-
tion with the sequence. The WCBW is hence analyzed based on the combined SMS that
guarantees the static transaction sequence. Note that a tool is developed to automati-
cally generate all the mode sequences for transactions served in speci�ed orders.

As introduced in Section 5.2.2, the analysis of the MCDF model is performed by
merging the equivalent static data�ow graphs of each SMS, resulting in a larger static
data�ow graph that captures the dependencies of executing [SMS1 | SMS2 | ... | SMSNS]∗.
The critical cycle de�ned by the MCM is obtained when executing the merged static
data�ow graph, and it consists of a number of actors belonging to a single mode or dif-
ferent modes, which are speci�ed in one or more SMS(s). As a result, these SMSs lead
to the worst-case situation, i.e., the corresponding transactions experience a maximum
average time (i.e., MCM) to execute each of them. It is worth noting that these critical
transactions are automatically obtained from the analysis of the MCDF model, while
the formal analysis approach in Chapter 4 is unable to manually �gure them out.

5.5 experimental results 109

According to De�nition 10, the bandwidth of the memory controller depends on the
sizes of the transactions and their execution times. The critical cycle of the merged static
data�ow graph must be de�ned as the cycle that provides WCBW rather than MCM.
Similarly to the de�nition of MCM, the WCBW (ˆbw) is de�ned by Eq. (5.2). For every
cycle C of the MCDF graph G, the total execution time of the actors on C is denoted
by |C|, while the total number of initial tokens (or delays) on the edges of C is ω(C).
In addition, the total number of SMSs associated with C is NS(C). Each SMS is used by
a transaction and its size is Si (∀i ∈ [1,NS(C)]). However, it is not guaranteed that the
Heracles analysis tool [79] of MCDF model can handle the WCBW de�ned by Eq. (5.2),
since both ω (C) and Si vary with C. As a result, we simply assume ω (C) = 1, such
that conservative WCBW can be provided by Heracles, which will be later used in our
experiments.

ˆbw = min
∀C∈G

ω (C) ×
∑NS (C)

i=1 Si

|C|
× f

mem
× eref (5.2)

The WCBW given by Eq. (5.2) is a new notion for de�ning the critical cycle of the
merged static data�ow graph to provide the WCBW. We can extract the worst-case order
of transactions from the critical cycle, which can be used to design better scheduling
algorithms to eliminate this bottleneck and obtain a better WCBW bound.

5.5 experimental results

This section proceeds by experimentally showing the WCBW of a dynamically sched-
uled memory controller, analyzed based on the proposed MCDF model. The experimen-
tal setup is given, followed by validating the MCDF model for �xed transaction size
and variable sizes, respectively. The results are compared to state-of-the-art analysis
approaches.

5.5.1 Experimental Setup

The proposed MCDF model has been veri�ed and analyzed with Heracles [79], a tempo-
rary analysis tool developed at Ericsson. It runs on a 64-bit Ubuntu 14.04.3 LTS system
with 8 Intel(R) Core(TM) i7 CPUs running at 1.6 GHz and with 24 GB RAM. We use sim-
ilar experimental setups as previously in Chapter 3 and Chapter 4. The transaction sizes
used by the experiments include 16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes.
We have chosen the memory map con�guration (i.e., BI and BC) for each size that pro-
vides the lowest execution time (i.e., higher memory bandwidth) by interleaving over
more banks to exploit bank parallelism. The con�gured (BI, BC) for these transaction
sizes are hence (1, 1), (2, 1), (4, 1), (4, 2), and (4, 4) [39]. Note that (4, 2) and (4, 4) are
used by 128 Byte and 256 Byte transactions instead of (8, 1) and (8, 2), because of tFAW

110 mode-controlled dataflow (mcdf) modeling of run-dmc

that causes a larger execution time with BI=8. We do not specify the number of re-
questors in the front-end of Run-DMC, since the total bandwidth is determined by the
execution of transactions in the back-end. The allocation of bandwidth per requestor
depends on the arbitration in the front-end and is not a main concern throughout this
thesis. Experiments have been done with JEDEC-compliant, DDR3-800D, DDR3-1600G,
and DDR3-2133K, all with interface widths of 16 bit and a capacity of 2 Gb [53].

5.5.2 Validation of MCDF Model

This experiment validates that the proposed MCDF model conservatively captures the
command scheduling behavior of a dynamically scheduled memory controller. This is
achieved by comparing the scheduling time of each command obtained by executing
the MCDF model to that given by the open-source scheduling tool RTMemController

previously presented in Section 4.7, which implements the timing behavior of Run-DMC.
First, we have to �nd the proper number of initial tokens on the feedback edge of the
MCDF model in Figure 5.8. This is achieved by experimentally increasing the initial
tokens until the feedback edge cannot dominate in any command scheduling. This is
achieved by simulating the MCDF graph for the given SMSs. In addition, the feedback
edge is also ensured to exclude from the critical cycle. This is achieved by manually
increasing the number of initial tokens until the feedback edge is not included in the
critical cycle. The experimental results show that 20 initial tokens are enough for DDR3
SDRAMs and they are used by the following experiments. This experimental method is
a quick, safe, and easy way to derive the proper number of initial tokens, such that the
proposed MCDF model accurately captures the command scheduling of the memory
controller. For new memory devices, we can derive the proper number of initial tokens
on the feedback edge in the same way.

The �ve transaction sizes have been tested by specifying all possible mode sequences.
The MCDF model executes every mode sequence independently during 40,000 cycles
and all the command scheduling times are obtained. This experiment repeats the mode
sequence, i.e., simulates the execution of the same transactions using the scheduling
tool. Note that we also apply the collision assumption for each ACT command to the
scheduling tool, such that it runs under the same assumption as the MCDF model. The
scheduling times given by these two approaches are identical for all commands. This
observation also holds for other experiments, where we have mixed the mode sequences
corresponding to di�erent transactions in terms of di�erent sizes, read or write, and
di�erent banks. We hence conclude that the proposed MCDFmodel conservatively captures

the timing behavior of the memory controller.

5.5 experimental results 111

5.5.3 Worst-Case Bandwidth

This section presents the WCBW given by the analysis of the MCDF model. The re-
sults are also compared to those given by the scheduled and analytical approaches of
dynamic command scheduling in Chapter 4 and the semi-static approach in [3]. Those
approaches compute the WCBW based on their WCET of transactions. Remember that
the collisions forACT commands are actually detected by the scheduled approach, while
collisions are always assumed by the analytical approach. The semi-static approach uses
pre-computed command schedules with �xed lengths in cycles, and the WCBW is ob-
tained based on them.

5.5.3.1 Fixed Transaction Size

This experiment is carried out to evaluate the WCBW provided by the memory con-
troller when it only executes transactions with �xed size, such as when all cores have
the same cache-line size. The experiment is executed for �ve di�erent cache-line sizes
of 16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes with di�erent memory map
con�gurations, respectively.

Figure 5.11 gives the WCBW results obtained from the MCDF model. They are com-
pared to that given by the analytical, scheduled, and semi-static approaches, respec-
tively. We can observe that 1) the MCDF model always outperforms the analytical ap-
proach, where the maximum improvement is 22.0% for 64 byte transactions and the av-
erage improvement reaches 6.3% for all the sizes. The improvement is achieved because
the MCDF analysis technique provides WCBW results without assuming the worst-case
initial bank states that are needed by the analytical approach. 2) It is also better than the
scheduled approach with a single exception for 16 bytes, where it is 2.4% less. The reason
is that the MCDF model only conservatively assumes a collision per ACT command. In
contrast, the scheduled approach has to assume the worst-case initial bank states, lead-
ing to pessimistic WCBW bounds. However, it can actually detect the collisions for ACT
commands. As a result, the scheduled approach provides slightly better bound for 16-
byte transactions, which only use a bank and there is no collision for the ACT command
in the worst-case situation. 3) This exception also applies when comparing to the semi-
static approach that statically resolves command collisions at design time. However, for
large transaction sizes (e.g., 256 bytes), the MCDF model provides higher WCBW. The
reason is that the semi-static approach uses pre-computed static command schedules,
which have to be repeatedly used for transactions, resulting in ine�cient pipelining of
ACT commands across transactions. In contrast, the dynamically-scheduled memory
controller e�ciently hides the latency of issuing ACT commands in pipelining with
large number of RD or WR commands of large transactions. These observations also
hold for other DDR3 SDRAMs, although the results are not shown for brevity.

112 mode-controlled dataflow (mcdf) modeling of run-dmc

16 32 64 128 256
Transaction Sizes (bytes)

0

500

1000

1500

2000

2500

3000
W

or
st

-C
as

e
B

an
dw

id
th

 (M
B

/s
)

Analytical WCBW (Run-DMC)
Scheduled WCBW (Run-DMC)
WCBW (semi-static)
WCBW (MCDF)

Figure 5.11: The WCBW given by di�erent analysis approaches for DDR3-1600G SDRAM with
�xed transaction size.

5.5.3.2 Variable Transaction Sizes

In this experiment, the memory controller receives transactions with variable sizes,
which are generated by di�erent requestors in a heterogeneous system, such as a High-
De�nition video and graphics processing system featuring a CPU, hardware accelera-
tors and peripherals with variable transaction sizes [31]. If there is no static information
about the transactions, e.g., the execution order of di�erent transaction sizes, we have
to conservatively analyze the WCBW results by assuming any possible transaction or-
der. However, when requestors with di�erent transaction sizes are served by an arbiter
using static schedules, such as the time-division multiplexing (TDM) proposed in Chap-
ter 3, the static order of transactions with variable sizes is known. This static order of
transaction sizes can be exploited to give less pessimistic (but still conservative) WCBW
results.

This experiment considers mixed transactions with sizes of 64 bytes and 128 bytes,
arriving at the memory controller with statically known or unknown order, respectively.
The static order used in this experiment is that a 128 byte transaction is always followed
by a 64 byte transaction and they are alternately executed by the memory controller. For
instance, this can be enforced by the TDM arbiter in Chapter 3. For unknown transac-
tion order, transactions with these two sizes may be executed in any possible order.
Figure 5.12 shows the WCBW results for DDR3-1600G SDRAM given by di�erent anal-
ysis approaches. We can see that the WCBW given by the MCDF model is always better
than other approaches for both known and unknown transaction order. This indicates
that the MCDF model outperforms these existing approaches because the scheduled

5.5 experimental results 113

Analytical Scheduled semi-static MCDF
0

200

400

600

800

1000

1200

1400

1600

1800

W
or

st
-C

as
e

B
an

dw
id

th
 (M

B
/s

)
transaction order (unknown)
transaction order (known)

Figure 5.12: The WCBW given by di�erent analysis approaches for DDR3-1600G SDRAM with
known/unknown static order of variable transaction sizes.

and analytical approaches use conservative assumptions while the semi-static approach
cannot e�ciently deal with variable transaction sizes. The maximum improvement is
14% compared to the analytical approach with known transaction order. The average
improvement is around 10.1% and 4.4% for known and unknown transaction order, re-
spectively, when comparing to all these approaches. These observations also hold for
other DDR3 SDRAMs.

Another experiment compares the WCBW results with known and unknown trans-
action order. They are analyzed by the MCDF model when applied to di�erent DDR3
SDRAMs. The results are shown in Figure 5.13, which demonstrate that much better
WCBW is consistently obtained by exploiting the static order of transactions. It achieves
maximally 77.2% improvement of WCBW for DDR3-800D SDRAM, while the average
improvement is 63.2% for these three tested memories.

Besides these WCBW results provided by the MCDF model, we can also obtain the
worst-case situation that causes the WCBW from the critical cycle. Take DDR3-800D as
an example, without knowing the static order of 64-byte and 128-byte transactions, the
WCBW is provided when the memory controller repeatedly executes the transaction in
the order of a 128 byte read, 64 byte write, 128 byte write, and 64 byte write. In addition,
all these transactions access the same set of consecutive banks from bank 0 to bank 3.
When scheduling decision is made to avoid this transaction order, better WCBW can be
obtained.

114 mode-controlled dataflow (mcdf) modeling of run-dmc

DDR3-800D DDR3-1600G DDR3-2133K
0

500

1000

1500

2000
W

or
st

-C
as

e
B

an
dw

id
th

 (M
B

/s
)

transaction order (unknown)
transaction order (known)

Figure 5.13: The WCBW achieved by MCDF model for DDR3 SDRAMs with known/unknown
static order of variable transaction sizes.

5.6 summary

The worst-case memory bandwidth is critical to satisfy the requirements of memory-
intensive real-time streaming applications in modern multi-core systems. This chapter
introduces a new mode-controlled data�ow (MCDF) model to capture the scheduling de-
pendencies of commands due to the JEDEC-speci�ed timing constraints. The command
scheduling algorithm of Run-DMC in Chapter 3 is modeled by specifying the mode se-
quences corresponding to transactions with di�erent types, sizes, and addresses. Finally,
the worst-case bandwidth (WCBW) is analyzed using an existing analysis technique,
where a new notion (i.e., the WCBW) of the critical cycle is introduced for iteratively
executing the MCDF graph.

The advantages of the proposed MCDF model are that: 1) the proposed MCDF model
is general for DDR3 SDRAMs, and it is also easy to adapt to other SDRAMs, e.g., DDR4.
2) The MCDF model supports other memory controllers using di�erent command sche-
duling algorithms by creating the corresponding mode sequences. The analysis is achieved
by automatically using existing tools. 3) Moreover, the proposed MCDF model can eas-
ily exploit the static order of di�erent transaction sizes based on the TDM arbitration
of Run-DMC in Chapter 3. This is achieved by creating the speci�c mode sequences
capturing the static order. As a result, much better WCBW results are obtained com-
pared to the case with unknown order. 4) The analysis of the MCDF model provides the
WCBW bounds based on the critical cycle of iteratively executing the MCDF graph. The
critical cycle corresponds to a sequence of transactions, where the pipelining between
them is exploited. As discussed in Section 4.6, the exploitation of pipelining is di�cult

5.6 summary 115

for the formal analysis approach. Moreover, the critical cycle can be repeated in�nitely,
resulting in a long-term lower bound on WCBW. 5) It also provides information about
how transactions are executed/scheduled in the worst case, because the critical cycle
corresponds to a sequence of transactions. This static information is useful for making
a scheduling decision to avoid the worst-case transaction sequence, such that better
WCBW is obtained. 6) Experiments have been carried out to validate the MCDF model
using the open-source tool RTMemController given in Section 4.7. The experimental
results demonstrate that the MCDF model outperforms the scheduled and analytical ap-
proaches given in Chapter 4 and also the semi-static approach [3]. Finally, it provides
larger/tighter bounds on WCBW.

The proposed MCDF model has the limitations that 1) existing analysis technique of
the data�ow model cannot accept the unpredictable collisions on the command bus. As
a result, the data�ow model conservatively assumes that each ACT command collides
with a RD/WR command, resulting in pessimism in the worst-case results. 2) It is capable
of providing the long-term WCBW bounds. However, it is di�cult to derive the worst-
case execution/response time of individual transactions. The reason is that the analysis
technique of MCDF models computes the worst-case latency based on a stable reference
actor of executing the MCDF graph [68, 90]. However, it is di�cult to �nd the reference
actor when executing the proposed MCDF model for dynamic command scheduling.
As a result, the existing analysis technique must be extended to deal with latency (e.g.,
WCET, WCRT) aspects of dynamic command scheduling.

6
T I M E D A U T O M ATA (TA) M O D E L I N G O F R U N - D M C

This chapter continues the modeling of real-time memory controllers, where the worst-
case bounds on the response time (WCRT) of transactions and the bandwidth (WCBW)
can be derived using existing techniques to automatically analyze the model. Chapter 4
presented a formal analysis approach to derive the bounds on WCRT and WCBW based
on analyzing each individual transaction executed by the dynamically-scheduled mem-
ory controller Run-DMC. However, it is a approach with complex manual proofs and
the bounds are pessimistic because of the collision assumption for each ACT command
and the initial bank states obtained from as-late-as-possible (ALAP) command schedu-
ling. Moreover, the formal analysis approach cannot be easily adapted to memory con-
troller with di�erent mechanisms. Chapter 5 previously introduced a mode-controlled
data�ow (MCDF) model of Run-DMC, and the worst-case bandwidth (WCBW) bounds
have been analyzed. However, the MCDF model has two limitations, where i) it also as-
sumes a collision for each ACT command, resulting in pessimistic WCBW bounds, and
ii) it is only capable of providing the bounds on WCBW rather than WCRT. Moreover,
the MCDF model cannot be directly integrated into a system model, such as the data�ow
formalization [80] of streaming applications running on a multi-processor system-on-
chip (CompSOC) [35]. The reason is that the MCDF model of Run-DMC interacts with
other resources (e.g., NoC, SRAM, DMA, and processor) in the system by specifying
static mode sequences (SMS). However, the behavior of these resource may not be accu-
rately captured by static mode sequences. To overcome these limitations of the formal
analysis approach and the mode-controlled data�ow model, this chapter proceeds by
modeling Run-DMC using Timed Automata, where model checking is applied for anal-
ysis.

Timed automata (TA) are a theory for modeling and veri�cation of real-time sys-
tems [15]. A timed automaton is essentially a non-deterministic �nite-state machine
extended with real-valued variables that model the logical clocks in the system. There-
fore, the timing behavior of a hardware resource can be described by a timed automaton
represented by a graph containing a �nite set of nodes or locations and a �nite set of
labeled edges. Our TA model is modular and accurately captures the behavior of Run-
DMC. It models the behavior of each functional component of Run-DMC or the timing
constraints of DDR3 SDRAM device with an automaton. Our TA model does not employ
any simplifying abstractions as the formal analysis in Chapter 4 and the MCDF model

117

118 timed automata (ta) modeling of run-dmc

in Chapter 5, resulting in tighter worst-case bounds. The highlights of the TA model
include: 1) a modular publicly available TA model

1
of the DDR3 SDRAM device and the

memory controller. The former captures all SDRAM timing constraints, while the latter
models the timing behavior of the memory controller architecture. The TA model can be
easily extended or reused for di�erent memory controllers or di�erent DDR3 SDRAM
devices. 2) We validate our TAmodel with the open-source RTMemController tool [70], pre-
viously introduced in Section 4.7. We execute random transaction traces with around
1200 commands using both the TA model and RTMemController, resulting in identical

scheduling times of each command. This gives evidence that our TA model accurately
captures the command timings of the memory controller with dynamic command sche-
duling. 3) The bounds on worst-case response time and worst-case bandwidth are derived
by verifying properties of the TA model with the Uppaal model checker [13]. Uppaal
provides diagnostic traces that lead to the worst-case bounds. Executing these traces
with the cycle-accurate simulator provides identical WCRT and WCBW results as Up-
paal, which speaks for the accuracy of our model. 4) Finally, the proposed TA analysis
of Run-DMC reduce the WCRT bound by up to 20% and improve the WCBW bound by
up to 25% compared to the analytical and scheduled approaches in Chapter 4 and the
MCDF model in Chapter 5. The average improvements of the bounds on WCRT and
WCBW are 7.7% and 13.6%, respectively.

In the remainder of this chapter, the background of TA is given in Section 6.1. Sec-
tion 6.2 presents our TA model of the memory controller with dynamic command sche-
duling. Section 6.3 shows how the WCRT and WCBW bounds can be derived by verify-
ing properties of the TA model. We then review related work in Section 6.4 before the
experiments in Section 6.5. Finally, we conclude in Section 6.6.

6.1 background of timed automata

Timed Automata (TA) are a formal way of modeling and reasoning about the behavior
of timed systems. They have been successfully used for a variety of tasks, such as con-
formance testing of automatic implementation of systems via code synthesis [62], and
quantitative analysis of timed systems via model checking through explicit state space
exploration [81]. TA essentially model a timed system based on non-deterministic state
machines extended with variables. The logical clocks in the system are captured by vari-
ables, which synchronously increase. A timed automaton is described by a graph, where
its nodes or locations represent the states and the edges between locations capture the
transitions between states based on the conditions denoted by labels on the edges.

The Uppaal toolbox [13] implements TA as �nite state machines extended with clocks
and variables. Uppaal models a system as a network of several TA in parallel. States are
denoted by locations. In this sense, a state of a TA is a set of active locations and a value
for each clock and variable. Figure 6.1 (a) shows a TA that periodically produces memory

1 The TA model of Run-DMC is publicly available at http://www.es.ele.tue.nl/rtmemcontroller/TA.zip

6.1 background of timed automata 119

(a) (b)

Figure 6.1: A Timed Automata model of producing and consuming transactions.

transactions. It consists of an initial location (Init), and two other locations labeled Timer
and Prod that are used to guard a minimal time between any two successive memory
transactions of 10 cycles.

An edge connecting two locations can be traversed only if its guard evaluates to true.
For example, the edge from location Timer to location Prod in Figure 6.1 (a) is traversed
when the guard clk == 10 becomes true. Similarly, locations have invariants that have
to be true while the location is marked active. Otherwise, the TA cannot reside in this
location. As shown in Figure 6.1 (a), the invariant clk ≤ 10 of location Timer guarantees
that the clock variable clk does not exceed 10 when location Timer is marked active. All
clocks in the TA are real-valued and increase their value at the same rate. Clocks and
variables can only be inspected and reset upon the traversal of an edge. In our model
clocks are only reset to 0 or 1.

In this chapter, we heavily exploit the concepts of urgent and committed locations
o�ered by Uppaal. Urgent locations are marked with U and committed locations are
marked with C. For example, location Prod in Figure 6.1 (a) is a committed location.
Urgent and committed locations need to be left without time progress, i.e, clocks do not
progress when urgent or committed locations are marked active. Contrary to urgent
locations, any of the active committed location has to be left immediately on the next
transition. This gives their outgoing edges a higher priority and thereby reduces the
non-determinism in the model. As a result, using committed locations greatly reduces
the state space for model checking.

In networks of TA, the component TA interact via shared variables and synchroniza-
tion labels. The communication through synchronization labels is realized as a synchro-
nized edge traversal of a sending edge (label with !) and receiving edge (label with ?).
This atomic step includes the manipulation of associated variables and reset of associ-
ated clocks. Updates on sending edges are performed before the receiving edges. Since
pairs of sending and receiving edges that synchronize are selected non-deterministically,
all synchronization pairs emanating from active locations need to be generated when
analyzing a TA. Besides binary synchronization, Uppaal also features 1:n synchroniza-
tion for modeling broadcasts. Please refer to the Uppaal manual [13] for more details.

The originally in�nite transition system generated from a network of TA can be re-
duced to a �nite quotient system. Instead of tracking individual values of clocks, the
domain of each clock is partitioned into �nitely many intervals, denoted as clock re-

120 timed automata (ta) modeling of run-dmc

gions or their conjunction denoted as clock zones. Therefore, timed reachability queries
formulated in a temporary logic, e.g., Timed CTL can be veri�ed with a TA in a �nite
number of steps, as only �nitely many combinations of clock regions need to be tra-
versed. However, this number can be huge in practice.

6.2 modular ta model of run-dmc

This section presents the TA model of the real-time memory controller with dynamic
command scheduling, i.e., Run-DMC introduced in Chapter 3. A high-level overview of
the model is shown, followed by introducing an intuitive model in Section 6.2.2 and an
optimized model in Section 6.2.3, respectively. The former is easy to understand. How-
ever, it consists of too many locations, clocks, variables, and synchronizations, resulting
in a large state space to be explored. Therefore, the latter simpli�es the intuitive model
using optimizations observed from the SDRAM timing constraints. These two TA mod-
els are available as open-source software on-line [73].

6.2.1 An Overview of the TA Model

A memory controller arbitrates between requestors. The selected transaction from a re-
questor is executed by dynamically scheduling its commands to consecutive banks of
the SDRAM. To capture the behavior of the memory controller, we model the compo-
nents shown in Figure 3.1, including the source of memory tra�c, the TDM arbiter in
the front-end, and the back-end including the memory mapping, command scheduler,
and timing-constraint counters.

Figure 6.2 presents the components in our TA model of the RT memory controller to-
gether with their communication dependencies. Each of the components in Figure 6.2
is implemented by its own template TA. Communication between them is realized by
synchronization labels. Our TA model: 1) Accurately describes the functionalities of the
memory controller, without any simplifying over-approximations, cf. Section 6.4. This is
a key to derive tight WCRT and WCBW bounds. 2) Scalably models transactions with
di�erent sizes and starting banks, in the sense that the size of the model is independent
of the number of sizes and starting banks. 3) Is modular, i.e., each memory-controller
component is modeled by a corresponding TA. Since memory controllers have common
components, e.g., the timing constraint counters and command bus, the corresponding
TA can be reused when modeling other memory controllers. 4) Is easily adapted to dif-
ferent memory generations (e.g., DDR3 and LPDDR3) by replacing the timing constraint
values for the speci�c memory device [39].

The Source in Figure 6.2 generates read and write transactions for the requestors shar-
ing a bus with a TDM arbiter (i.e., TDM Bus) that decides which memory requestor is
served. TDM Bus also speci�es the transaction size corresponding to the requestor and
sends it to the back-end via the TDMArb synchronization label. As previously stated

6.2 modular ta model of run-dmc 121

Source

Memory

Mapping

ACT

Scheduler

RW

Scheduler

Cmd

BusTCC:

RCD

Trans

TDMArb AddrMap

NextTrans

ACTBus

NrTrans++

NrTrans> 0
RWCmd

TCC:

RRD

TCC:

FAW & RAS

ValidRRD

ValidRP

ValidFAW

ACTCmd

ValidRCD

Auto-PRE

TCC: RW

ValidSwitch

TCC:

CCD

ValidCCD

: Bus : Commands

: Timing Constraint

 Counter (TCC)

ValidRAS

TDM

Bus

Figure 6.2: Abstracted overview of TA model for the dynamically-scheduled memory controller
Run-DMC.

in Section 3.3.1, to capture the pipelining between successive transactions, the back-
end accepts the next transaction when all ACT commands of the current transaction
are scheduled [69, 72]. This is accurately captured by the Source that generates a new
transaction when it is noti�ed by the ACT Scheduler in the back-end via the NextTrans
synchronization label. Note that this Source component makes the memory controller
busy, i.e., there is always a transaction ready when the back-end can accept a new trans-
action. This ensures that each requestor has pending transactions to be executed within
its allocated slots [72]. This results in maximum interference between requestors, lead-
ing to the worst-case scenario. Remember that the work-conserving TDM arbitration
previously stated in Section 3.2.2 skips idle slots rather than reallocates them. As a re-
sult, a transaction experiences the worst-case response time when all other requestors
have pending transactions.

The Memory Mapping in Figure 6.2 speci�es the BI, BC and the starting bank ad-
dress (BS) for a transaction sent by the TDM Bus through the TDMArb synchronization
label. These parameters are required by the ACT Scheduler and RW Scheduler, which ac-
curately capture the dynamic command scheduling algorithm in Section 3.3.2 for ACT
and RD/WR commands, respectively. In particular, the ACT Scheduler issues an ACT

command for the BI consecutive banks on the command bus (Cmd Bus), subject to the
timing constraints of the memory. Timing counters (TCC) are used to track these con-
straints. Since the scheduling of an ACT command has to satisfy the tRRD, tFAW, and
tRP constraints shown in Figure 2.8, the ACT Scheduler is noti�ed via the ValidRRD,
ValidFAW, and ValidRP synchronization labels when the timing constraints are satis�ed,
allowing for a new ACT command to be scheduled. Then, the ACT Scheduler synchro-
nizes with the Cmd Bus using the ACTBus label. In the same way, RD andWR commands
are scheduled by RW Scheduler according to the relevant timing constraints, e.g., tCCD,
tRCD, and the read and write switching constraint captured by RW Counter. It also syn-

122 timed automata (ta) modeling of run-dmc

chronizes with the Cmd Bus using the RWCmd label when all these timing constraints
are satis�ed. Note that the RW Scheduler starts when NrTrans > 0, indicating there is
at least one transaction in the back-end. However, the RD/WR command is issued by
the RW Scheduler subject to the relevant timing constraints, such as the tRCD from the
ACT command to the same bank. The ACT Scheduler is triggered by Memory Mapping
through synchronization via the AddrMap label. Since the RW Scheduler and the ACT
Scheduler work in parallel, the TA model captures the pipelining between scheduling
ACT commands for the next transaction and scheduling RD or WR commands for the
current transaction.

The Cmd Bus accurately models collisions between ACT and RD or WR commands
by prioritizing the latter. As a result, the ACT command is delayed by 1 cycle when
a collision occurs. After scheduling an ACT command, the relevant timing constraint
counters are reset through broadcast synchronization using the ACTCmd label. Sim-
ilarly, the timing constraint counters related to RD and WR commands are reset via
broadcast synchronization labeled as RWCmd. Finally, the Auto-PRE describes the be-
havior of auto-precharging, which is triggered by RWCmd. These timing constraints
are explicitly shown in Table 2.1 except tRTW and tWTP, which have been de�ned by
Eq. (3.1). When the precharging of a bank is �nished, the ACT Scheduler is noti�ed
by synchronizing with the ValidRP label. Note that all the synchronizations of our TA
model are urgent, since commands are scheduled as soon as timing constraints are met.

Our TA model does not include the scheduling of refresh, which is required periodi-
cally with a relatively large time interval tREFI. The reason is that the WCRT bound of
each transaction is too pessimistic if the refresh period is included. Alternatively, the
refresh penalty can be taken into the analysis of the application rather than individual
transactions [93]. Moreover, the elimination of refresh also simpli�es the TA model and
reduces the state space for model checking. However, it is not di�cult to model the
refresh mechanism. Our model only needs to use an extra TA template to trigger the
refresh every tREFI cycles, while it also interacts with the ACT/RW scheduler, such that
the ACT, RD, and WR commands can be scheduled subject to all timing constraints.

6.2.2 Intuitive TA Model of Command Scheduling

This section introduces how to intuitively model the behavior of Run-DMC, where each
of its components and the intra-/inter-bank timing constraints is described by an au-
tomaton. The intuitive model is shown in Figure 6.3 and its system declaration in Up-
paal is given in Appendix B.1. Note that the system declaration speci�es the instances
of these TA templates, resulting in a TA network capturing the behavior of a speci�c
memory controller. The system declaration for the intuitive TA model is given in Ap-
pendix B.1.

6.2 modular ta model of run-dmc 123

(a) Source of memory
tra�c

(b) Counter of tCCD (c) Counter of tRCD (d) Counter of tRRD

(e) TDM Bus (f) RW Switch (g) Counter of tRWTP

(h) ACT Scheduler (i) Memory Mapping

(j) Cmd Bus (k) RW Scheduler

(l) Counter of tRAS (m) Counter of tFAW (n) Precharging

Figure 6.3: The TA templates for intuitively modeling the behavior of dynamic command schedu-
ling within the Uppaal toolbox.

124 timed automata (ta) modeling of run-dmc

6.2.2.1 Automata Templates of the Requestors and Front-End

Requestors are modeled by the Source TA, shown in Figure 6.3(a). It non-deterministically
generates an in�nite sequence of read and write transactions. Note that this Source TA
always makes the memory controller busy, leading to maximum interference between
requestors and hence resulting in the worst-case results. It generates a transaction when
the back-end of the memory controller is ready to accept the next transaction. This is
noti�ed using the label NextTrans. The type of each transaction is de�ned by the global
variable TransType, which is either READ or WRITE. The Source TA synchronizes with
the TDM Bus TA using the Trans label. Note that the TDM bus uses Algorithm 1 for
variable transaction sizes. The TDM Bus TA, shown in Figure 6.3(e), models a TDM bus
instance with, as an example, �ve requestors, each of which has one TDM slot. Note
that this TDM behaves the same as the round-robin (RR) scheme, since they have the
same worst-case behavior when each requestor has only one slot. The guard on each
edge speci�es the slot and the requestor, and the corresponding transaction size Trans-
Size is speci�ed upon the edge traversal. The TDM Bus TA then synchronizes with the
Memory Mapping TA (see Figure 6.3(i)) using the TDMArb label. Finally, only one in-
stance of the Source TA and TDM Bus TA is needed, which is declared in the system
declaration.

6.2.2.2 Automata Template of the Memory Mapping

The Memory Mapping TA in Figure 6.3(i) determines the memory mapping con�gura-
tion in terms of BI and BC based on the TransSize, while the starting bank (BS) is given
by non-deterministically selecting one outgoing edge. For each transaction size, BI and
BC are con�gured to achieve the lowest execution time [72]. Recall that BS is aligned
with BI to simplify the physical address decoding [39]. In addition, a transaction may
use multiple BS, as shown in Figure 6.3(i). The reason is that we do not specify particu-
lar memory address allocations to requestors, which are out of the scope of this thesis.
When the memory mapping is �nished, the number (i.e., NrTrans) of transactions in
the back-end is increased and command scheduling is triggered. PARQueue contains
the information (i.e., TransType, BI, BC, BS) of the active transactions, cf. Figure 3.1 and
Algorithm 2. The Memory Mapping TA is instantiated in the system declaration.

6.2.2.3 Automata Template of the ACT Scheduler

The ACT Scheduler TA, shown in Figure 6.3(h), starts scheduling ACT commands of a
transaction after synchronizing with the Memory Mapping TA through the AddrMap
label. An ACT command is scheduled to each of the BI consecutive banks, starting at
bank BS. This is achieved by repeatedly scheduling each ACT command subject to the
timing constraints tRRD, tFAW, and tRP, as given in Table 2.1. These constraints are
tracked by TA, which are illustrated in Figure 6.3(d), Figure 6.3(m) and Figure 6.3(g) for
the tRRD, tFAW, and tRP constraints, respectively. The ACT Scheduler TA waits for each

6.2 modular ta model of run-dmc 125

timing constraint to be met. It advances through locations RRD, FAW, and RP when the
relevant TA indicates that timing constraint is met through the ValidRRD, ValidFAW,
and ValidRP labels, respectively. The ACT Scheduler TA and Cmd Bus TA synchronize
using the ACTBus and ACTCmd labels. The former noti�es the Cmd Bus TA to schedule
the ACT command, while the latter triggers the ACT Scheduler TA to schedule the next
ACT command once the previous one has been scheduled by the Cmd Bus TA. Finally,
we only need a single instance of the ACT Scheduler TA to schedule ACT commands
to each bank.

6.2.2.4 Automata Template of the RW Scheduler

The RW Scheduler TA, shown in Figure 6.3(k), always schedules RD or WR commands
when there are transactions in the back-end, i.e., NrTrans > 0. It works similarly to the
ACT Scheduler, where BC RD or WR commands are repeatedly scheduled in sequence
to each of the BI consecutive banks subject to the timing constraints. The relevant tim-
ing constraints are tCCD and tRCD, which are tracked by the TA shown in Figure 6.3(b)
and Figure 6.3(c), respectively. Note that the �rst RD/WR command of a transaction ad-
ditionally has to satisfy the switching timing constraint when the previous transaction
is write/read. This is identi�ed by the boolean variable RWSW that is determined by
RWSwitch() when RW Scheduler starts a new transaction. The switching timing con-
straints tRTW and tWTR are captured by TA shown in Figure 6.3(f).

When a RD/WR command is scheduled, the RW Scheduler TA synchronizes with
the Cmd Bus TA using the RWCmd label, such that collisions are resolved in the com-
mand bus. Recall that a RD or WR command has higher priority than an ACT command
that may have its timing constraints satis�ed at the same time. As explained below, the
Cmd Bus TA then ensures that the colliding ACT command is scheduled one cycle later,
thus solving the command collision. Finally, the broadcast synchronization using the
RWCmd label tells the relevant timing constraint TA to reset their counters. Note that
the RW Scheduler TA is instantiated with a single instance when being declared in the
system declaration.

6.2.2.5 Automata Templates of the Command Bus

The command bus is modeled by the TA shown in Figure 6.3(j), which detects and solves
command bus collisions. The Cmd Bus TA synchronizes with the ACT Scheduler and
RW Scheduler TA using the ACTBus and RWCmd labels, respectively. Although these
two TA run in parallel, the synchronizations labeled RWCmd and ACTBus are received
sequentially. The ACTRW and RWACT locations in Figure 6.3(j) ensure that these ac-
tions can be received in either order. This is achieved by the transitions from the Idle lo-
cation to either ACTRW or RWACT depending on the signals from the synchronization
channels labeled as ACTBus or RWCmd. After synchronizing through either a RWCmd
label or an ACTBus label, the Cmd Bus TA waits until the end of the cycle to see if

126 timed automata (ta) modeling of run-dmc

the other synchronization arrives within this time. If so, a command collision has to be
resolved by postponing the ACT to the next cycle.

A collision is identi�ed by the Boolean variables C1RW, C1ACT, and C2ACT that
indicate the presence of a RD/WR or an ACT command within the same cycle (i.e., C1)
or in the second cycle (C2). If there is a collision, i.e., both C1RW and C1ACT are true,
the ACT has to be delayed by one cycle. When there is no collision, the ACT command
can be scheduled immediately. This includes two cases where 1) the ACT command
arrives in the second cycle (i.e., both C1RW and C2ACT are true) or 2) it arrives in the
�rst cycle when there is no RD/WR command in the same cycle, i.e., C1ACT is true while
C1RW is false. For the former, the ACT command has to be scheduled immediately by
broadcasting synchronization using the ACTCmd label, and the corresponding timing
constraint counters are reset, e.g., tRCD, tRAS, tRRD, tFAW. For the latter, it has already
waited for one cycle when broadcasting the ACTCmd label. So, theACT related counters
are reset to start counting from 1 instead of 0 as normal. This is achieved by setting the
global variable InitCount to be 1, which is the initial value for all the relevant timing
constraint counters. Since there is only one command bus, a single instance of Cmd Bus
TA is declared in the system declaration.

6.2.2.6 Automata Templates of Timing Constraint Counters and Precharging

Timing constraints are tracked by counters, where each of them counts from zero to
the JEDEC-speci�ed value [53]. For example, the timing constraint tRAS (see Table 2.1)
is modeled by the TA shown in Figure 6.3(l). It uses a clock variable tRAS, which is
initialized to InitCount (0 or 1, see the previous paragraph) after an ACT command
was scheduled, as indicated by the ACTCmd label. This counter counts to the constant
V_RAS of tRAS provided by JEDEC DDR3 standard [53]. When the timing constraint
is satis�ed, i.e., tRAS == V_RAS, it immediately synchronizes using the ValidRAS la-
bel. Other timing constraints are tracked in the same way, where tCCD, tRCD, tRRD,
tRTW /tWTR, tRWTP, and tFAW are modeled by the TA shown in Figure 6.3(b), Fig-
ure 6.3(c), Figure 6.3(d), Figure 6.3(f), Figure 6.3(g) and Figure 6.3(m), respectively.

In particular, the RW Switch TA in Figure 6.3(f) tracks both the tRTW and tWTR

timing constraint for switching between a read and a write transaction, where a single
clock variable tRW is used. It is reset when a transaction �nishes the command sche-
duling, i.e., the last RD or WR command is scheduled. As a result, the RW Switch TA is
synchronized using label RWCmd on the condition that LRWCmd is true. The boolean
variable LRWCmd becomes true when the last RD or WR command is scheduled by the
RW Scheduler TA. Note that LRWCmd is included in LastBank() in Figure 6.3(k). The
RW Switch TA chooses to wait in location RTW or WTR depending on the type of the
current transaction (see Figure 6.3(f)). As a result, both tRTW and tWTR are tracked.
Similarly, the timing constraints tRTP and tWTP are tracked by the tRWTP TA given by
Figure 6.3(g). It uses a single clock variable tRWTP and is reset when the last RD or WR

command is scheduled to a bank, i.e., BCIndex == 0. Note that BCIndex is updated by

6.2 modular ta model of run-dmc 127

the RW Scheduler TA. Finally, the auto-precharging scheme is captured by a TA shown
in Figure 6.3(n). It is synchronized using the labels ValidRWTP and ValidRAS, since the
precharging of a bank is enabled when both tRWTP and tRAS are met. Moreover, the
precharging time period tRP is tracked using the clock variable tRP.

The SDRAM timing constraints are classi�ed into inter- and intra-bank. Intuitively,
an inter-bank constraint can be tracked by a single counter while an intra-bank con-
straint should be tracked by a counter per bank. For example, the intra-bank timing
constraint tRAS is captured by 8 instances of the TA shown in Figure 6.3(l), since a
DDR3 SDRAM device typically consists of 8 banks. This also applies to tRCD, tRWTP,
and tRP. For the inter-bank timing constraint tCCD, tRRD and tRTW /tWTR, only a sin-
gle instance of the corresponding TA is needed. The tFAW is captured by four instances
of the FAW TA, shown in Figure 6.3(m), such that mostly 4 ACT commands can be
scheduled within tFAW. All these instances are presented in the system declaration in
Appendix B.1. It is worth noting that di�erent memory devices can be supported by
using their timing constraint values in these counters [39].

6.2.3 Optimized TA Model of Command Scheduling

The intuitive TA model of Run-DMC presented in the previous Section 6.2.2 is easy
to understand, since it models each functional component and the timing constraint
counter by an automaton. However, it has a large state space, resulting in long time and
high memory usage when verifying properties of the TA model with model checking.
To reduce the state space, the number of states, clocks, variables, and edges must be
reduced. Therefore, we introduce two optimizations to derive an optimized TA model.
Whenever possible, 1) we model multiple timing constraints with a single TA instead of
modeling them with separate TA. 2) We reuse counters for di�erent timing constraints.
The �rst optimization enables a clock variable being shared when tracking multiple
timing constraints with a single TA. In addition, the number of locations and synchro-
nizations of the single TA can be reduced compared to the intuitive model that uses
multiple TA. The second optimization reduces the number of TA instances, leading to
fewer locations, variables, edges, and synchronizations.

The above optimizations are used to obtain an optimized TA model, which uses sev-
eral di�erent TA templates (see Figure 6.4) based on the intuitive model shown in Fig-
ure 6.3. Most of the TA templates in Figure 6.4 are the same as the Figure 6.3. The
di�erences are given below.
i) The TA template shown in Figure 6.4(j) tracks both the tRAS and tFAW constraints.
Note that an instance of the TA template models a counter tracking the relevant timing
constraint(s). The JEDEC [53] standard guarantees that tFAW ≥ tRAS, and thus the tClk
in Figure 6.4(j) counts �rst until tRAS, and then until tFAW. The inter-bank four activate
window constraint tFAW can be tracked by using four counters (i.e., instances) for four
ACT commands. The intra-bank tRAS constraint can be implemented with 8 counters,

128 timed automata (ta) modeling of run-dmc

(a) Source of memory
tra�c

(b) Counter of tCCD (c) Counter of tRCD (d) Counter of tRRD

(e) TDM Bus (f) RW Switch (g) Precharging

(h) ACT Scheduler (i) Memory Mapping (j) Counter of tFAW/tRAS

(k) Cmd Bus (l) RW Scheduler

Figure 6.4: The optimized TA templates for modeling the behavior of dynamic command schedu-
ling within the Uppaal toolbox.

6.2 modular ta model of run-dmc 129

Table 6.1: Comparison between the intuitive and optimized TA model.

Models TA in-

stances

clocks variables locations synchroni-

zations

edges

Intuitive TA 45 40 41 186 46 226
Optimized TA 23 18 55 137 39 186

one for each bank of DDR3 SDRAM. However, using the aforementioned inequality,
four counters su�ce to track tRAS for all 8 banks. The �fth ACT has to wait until tFAW
before it can be scheduled. By then, it is guaranteed that at least one counter has passed
tRAS because tFAW ≥ tRAS. Therefore, the counter for the �fth ACT command can be
eliminated. It is also the same case for the next three ACT commands. Four instances of
the TA shown in Figure 6.4(j) are declared in the system declaration of the optimized
TA model, which is given in Appendix B.2.
ii) The TA shown in Figure 6.4(g) captures both the constraints from a RD/WR command
to an auto-precharge, and the precharge period tRP. It still requires 8 instances of this
TA capturing the timing constraints and precharging of each bank. These instances are
declared in Appendix B.2.
iii) Finally, we can observe from JEDEC-speci�ed DDR3 timing constraints that tRCD ≤
2 × tRRD. tRRD is the minimum time between two successive ACT commands. Within
2 × tRRD cycles, at most three ACT commands can be scheduled. When the third ACT

command is scheduled, the counter triggered by the �rst ACT command is guaranteed
to be larger than tRCD and hence can be reused. Therefore, only two counters are needed
to track the intra-bank timing constraint tRCD, shown in Figure 6.4(c), resulting in two
instances of the tRCD TA. Moreover, the RW Scheduler TA is updated to deal with the
changes to the tRCD TA. The new RW Scheduler TA is given by Figure 6.4(l). These
optimizations rely on particular relations between timing constraints, but they hold for
all DDR3 and LPDDR3 devices.

The optimized TA model of Run-DMC, shown in Figure 6.4, has a smaller state space
than the intuitive TA model in Figure 6.4. This is helpful when verifying properties via
model checking. Table 6.1 summarizes the number of TA instances, clocks, variables,
locations, edges, and synchronizations used by these two models. It shows that the op-
timized TA model uses less of these elements, which have big impact on the memory
usage and time consumption for model checking. The only exception is the number of
variables, where the optimized TA model uses more. The reason is that the optimized
TA model uses variables to indicate whether a timing constraint (e.g., tRAS) is satis�ed.
In contrast, the intuitive TA model uses synchronization labels to indicate that timing
constraints are satis�ed. However, the synchronizations cause dependencies and result
in longer time of verifying a property. As a result, it is easier to derive the worst-case

130 timed automata (ta) modeling of run-dmc

bounds by verifying properties of the optimized TA model. The veri�cation with model
checking will be discussed in the next section.

6.2.4 Re�ection

Although the TA model of the RT memory controller is involved, its structure mirrors
that of the memory controller hardware architecture and algorithm (see Chapter 3). We
accurately model all timing constraints, without having to resort to conservative, but
pessimistic assumptions, such as a worst-case initial state used by the formal analysis
in Chapter 4. Moreover, the collision on the command bus is resolved when happened,
rather than conservatively assumed to always happen for each ACT command. So, the
TA model is able to provide better worst-case bounds than existing analyses, which
employ these pessimistic assumptions. Finally, to speed up veri�cation of the model,
timing counters were eliminated, although at the cost of model simplicity.

6.3 verification with model checking

This section proceeds by showing how to derive bounds on the worst-case response
time (WCRT) and worst-case bandwidth (WCBW) by verifying properties of our TA
model with model checking.

6.3.1 Veri�cation of Worst-Case Response Time

According to De�nition 9, a transaction experiences the worst-case response time (WCRT)
when the maximum number of interfering transactions must be executed before the exe-
cution of this new transaction. Moreover, it assumes that the execution of all these trans-
actions needs the maximum time to schedule their commands in a pipelining manner.
Essentially, the WCRT bound is the summation of the maximum total execution times
of these transactions caused by scheduling commands and the o�set of transferring a
burst of data for the last RD/WR command. Note that Run-DMC uses a TDM arbiter
in the front-end to serve requestors with pending transactions, as shown in Figure 3.1.
Recall that each requestor is assumed to have at most one outstanding transaction to
avoid arbitrarily high self-interference in the WCRT [11]. Therefore, to derive the bound
on the WCRT of a requestor, it is equivalent to verify the longest time of executing these

maximum number of interfering transactions and the transaction from the requestor itself.

This is achieved by using model checking of the proposed TA model.
An observer TA is designed to track the response time of each transaction from a

particular requestor, as shown in Figure 6.5(a). Note that NMax denotes the maximum
number of interfering transactions and the transaction from the requestor itself. It can
be computed based on the TDM slot con�guration. This observer counts the number
of executed transactions (totalTrans), and the end of a transaction is signaled by the

6.3 verification with model checking 131

(a) The observer of WCRT (b) The observer of WCBW

Figure 6.5: The TA to verify the WCRT and WCBW bounds.

TransEnd synchronization label when its last RD or WR command is scheduled. The end
of a transaction indicates the �nishing time given by De�nition 5 in the back-end, and
it is further used to compute the execution time de�ned by De�nition 7. Meanwhile,
the clock variable WCRT in Figure 6.5(a) tracks the total time of executing transactions.
By specifying the maximum number (i.e., NMax) of transactions to be observed, we use
standard reachability queries to verify the clock WCRT with the veri�er module of the
Uppaal tool suite. By manually executing a binary search on the bound of the clock
WCRT, it directly translates into the maximum time of executing these NMax transac-
tions. The observer records this maximum time when the last RD or WR command of a
transaction is scheduled. For read transactions, we need to add the constant data o�set,
which is tRL + BL/dataRate as given by the JEDEC timing constraints [53]. It is worth
noting that the Uppaal model checker explores the full state space for all the possible
NMax successive transactions and derives the WCRT bound. As a consequence, our ob-
server only needs to cycle through every NMax successive transactions rather than uses
a sliding window for any NMax transactions.

To derive the bound on the WCRT, we have to verify the maximum value of the clock
variable WCRT in Figure 6.5(a) via binary searching. Uppaal allows users to specify a
query for verifying a property. For example, Query 1 and Query 2 are used to verify the
maximum WCRT in the Observer for a read or a write transaction, respectively.

Query 1 (WCRT property for write transaction). A[] (Observer.start == true and Cur-

rType == WRITE) imply Observer.WCRT <= Estimate_Bound

Query 2 (WCRT property for read transaction). A[] (Observer.start == true and CurrType
== READ) imply Observer.WCRT <= Estimate_Bound

A[] indicates that it searches all paths in the state space to verify whether the latter
expression (i.e., the property) is true. The expression states that the WCRT collected
by the Observer cannot be larger than a manually speci�ed value, i.e., Estimate_Bound,

132 timed automata (ta) modeling of run-dmc

when the current transaction is a write/read and the Observer has started the observa-
tion. By increasing/decreasing Estimate_Bound, the maximum WCRT is obtained when
the veri�cation of the query becomes true from false or vice versa. Therefore, a proper
value of Estimate_Bound makes this process faster. Practically, we can obtain a proper
Estimate_Bound by simulating the TA model for NMax transactions, since the simula-
tion provides an actual execution time of these transactions. However, this actual exe-
cution time may be far from the worst-case bound, leading to a long manual procedure
in the binary search. A more e�cient way of predicting Estimate_Bound is based on the
worst-case execution time (WCET) of an individual transaction. Note that the WCET
of a transaction equals the maximum WCRT in the Observer when NMax == 1. Then
Estimate_Bound for any NMax is set to be the summation of the WCET of these NMax
transactions. This computed Estimate_Bound actually overestimates the bound, because
the pipelining between the NMax transactions is not exploited. However, it is an e�-
cient experimental approach to derive a relatively proper Estimate_Bound to start the
query veri�cation.

6.3.2 Veri�cation of Worst-Case Bandwidth

With De�nition 11, the worst-case bandwidth (WCBW) is the minimum bandwidth for
all in�nitely-long transaction traces. However, practically, we can only compute the
time to transfer a �nite number of bytes. We therefore use an observer TA (see Fig-
ure 6.5(b)) to verify the maximum time for transferring DataSize data for any possible
traces that can generate DataSize bytes. In a word, for ∀T , ∑

∀T∈T S (T) = DataSize. The
WCBW bound can be computed based on this maximum time, as given by Eq. (6.1). This
bound is conservative for the long-term WCBW given by De�nition 11. The reason is
that it is observed based on transferring a �xed amount of data, and the pipelining be-
tween a limited number of transactions is exploited. In contrast, the long-term WCBW
exploits the pipelining between in�nite transactions and it cannot be smaller than the
derived bound in Eq. (6.1). Intuitively, the minimum rate observed in a long time period
of repeatedly transferring a �xed amount of data cannot be larger than the average rate
of transferring the total amount of data in the whole time period, where the former
corresponds to repeating a limited number of transactions while the latter is achieved
by executing an in�nite number of any transactions. Lemma 5 captures this intuition
and states that any ˆbw (DataSize) is a conservative lower bound for the WCBW (i.e., ˆbw)
de�ned by De�nition 11. The former is the minimum rate of transferring DataSize data,

6.3 verification with model checking 133

while the latter is the long-term (minimum) average rate of transferring data from/into
the SDRAM for in�nitely-long traces. The proof is given in Appendix A.7.

ˆbw (DataSize) =
DataSize

Max
∀T
∑
∀T∈T tET (T)

× f
mem
× eref,

where DataSize =
∑
∀T∈T

S (T)
(6.1)

Lemma 5.

∀DataSize > 0, ˆbw (DataSize) ≤ ˆbw

Figure 6.5(b) shows the observer TA that tracks the total time for transferring Data-

Size data. Time is tracked by reusing the clock variable WCRT, while dataSize accumu-
lates the transferred data when a transaction is �nished, as noti�ed by the TransEnd
synchronization label. We manually execute a binary search on the bound of the clock
WCRT with Uppaal. This bound is the maximum time of transferring DataSize data.
Multiplying the result by fmem × e

ref returns a conservative lower bound for the WCBW,
as described above by Eq. (6.1). Moreover, Lemma 5 implies that the WCBW bound is
always conservative for any �nite DataSize.

To verify the maximum time of transferring DataSize data with the Observer in Fig-
ure 6.5(b), we use Query 3 with Uppaal. By manually increasing/decreasing the value
of Estimate_Bound, the bound on the clock variable WCRT for the speci�ed DataSize is
obtained when the expression of Query 3 becomes true from false or vice versa. This
bound is a function of DataSize and is denoted by ET_Bound(DataSize). The WCBW
bound is then given by Eq. (6.2).

ˆbw (DataSize) =
DataSize

ET_Bound (DataSize) (6.2)

Query 3 (WCBW property). A[] (Observer.start == true and Observer.dataSize == Ob-

server.DataSize) imply Observer.WCRT <= Estimate_Bound

By specifying larger DataSize in the Observer (see Figure 6.5(b)), better (i.e., larger)
lower bound on WCBW can be obtained, because of exploiting more pipelining between
successive transactions. However, we can only practically verify properties with a �nite
number of di�erent DataSize, where Lemma 5 guarantees that the derived bound is con-
servative for the actual long-term WCBW. On one hand, larger DataSize corresponding
to longer transaction traces may result in longer time and higher memory usage when
verifying the property of the TA model. On the other hand, it is also not necessary to use
a very large DataSize to derive a tighter WCBW bound. The reason is that an increas-
ing DataSize cannot improve the WCBW bound dramatically. Therefore, we have to

134 timed automata (ta) modeling of run-dmc

manually increase DataSize until WCBW (DataSize) cannot improve signi�cantly. This
poses a trade-o� between the tightness of the bound and the time/memory consumed
to successfully verify the property.

It is critical to specify a proper Estimate_Bound for Query 3, such that we can quickly
derive ET_Bound(DataSize). Since we start with the smallest DataSize (i.e., DataSize0)
corresponding to the smallest size of a transaction, ET_Bound(DataSize0) equals the
WCET of this transaction. The WCET can be obtained in the way of deriving the WCRT
bound, as previously discussed in Section 6.3.1. For an arbitrary large DataSizei (∀i > 0),
it is composed of smaller DataSizes, denoted by DataSizem and DataSizen, such that
DataSizei = DataSizem+DataSizen. Therefore, a good upper Estimate_Bound forDataSizei
is given by Eq.(6.3), where ET_Bound (DataSizem) and ET_Bound (DataSizen) are the
maximum times of transferring DataSizem and DataSizen bytes data, respectively. As a
result, the summation cannot be smaller than ET_Bound (DataSizei), leading to conserva-
tive Estimate_Bound(DataSizei). The reason is that a larger DataSizei ensures that more
pipelining between transactions can be exploited and hence ET_Bound (DataSizei) ≤
Estimate_Bound(DataSizei), resulting in a larger bound ˆbw (DataSizei).

Estimate_Bound(DataSizei) =

Min
∀m,n,DataSizei=DataSizem+DataSizen

(ET_Bound (DataSizem) + ET_Bound (DataSizen)) (6.3)

6.4 related work

Existing analyses of semi-static RT memory controllers [3, 39, 46, 88] provide WCRT
and/or WCBW by dynamically using a set of pre-computed static command sched-
ules for transactions. As discussed in Section 4.1 and Section 5.1 and experimentally
shown in previous chapters, the drawbacks of using static command schedules are that
1) they cannot exploit dynamic information about the SDRAM state caused by timing
constraints and the exact SDRAM banks required by individual transactions. 2) These
command schedules transfer a �xed amount of data. When the transaction size varies,
unwanted data is discarded, resulting in low data e�ciency.

To overcome the ine�ciency of semi-static command schedules, dynamic command
scheduling can be used, where commands are scheduled by some dynamic algorithms
when the SDRAM timing constraints are satis�ed. However, analysis of dynamic sche-
duling constrained by timing dependencies is di�cult. The analytical approach [72]
presented in Chapter 4 abstracts the state of previous transactions to a worst-case ini-
tial state, by pessimistically assuming that their commands were scheduled as late as
possible (ALAP). This results in conservative command scheduling times for the current
transaction. In addition, it assumes that every ACT command collides on the command
bus. The data�ow model [71] presented in Chapter 5 provides the WCBW of dynamic
command scheduling. It also assumes that ACT commands always have command-bus

6.5 experimental results 135

collisions, but does not require the ALAP assumption. Conversely, the scheduled ap-
proach [72], given in Chapter 4, accurately models command-bus con�icts, but assumes
ALAP schedules. The analyses in [55, 56, 63] assume that the RW to RD switching timing
constraint and the four-activate window constraint are always incurred, even though
these constraints do not always dominate in the command schedule. These analysis
approaches may not be easy to manually adapt to memory controllers with di�erent
mechanisms or memories. Similarly to the data�ow model in Chapter 5, we shift the
manual e�ort to derive performance bounds from analysis to modeling. In other words,
rather than providing a specialized WCRT/WCBW analysis of a memory controller, a
specialized model of a memory controller is de�ned, which is analyzed automatically
using state-of-the-art tools. Chapter 5 uses data�ow, while this chapter uses TA, which
is more expressive and results in better bounds.

TA have been extensively used to address the complexity of sharing resources. Yi et
al. [81] were the �rst to use TA to represent a system resource (CPU or communication
element) as a scheduler model together with a notion of discrete events that trigger the
execution of RT tasks on this scheduler. In [75], the basic idea has been extended to ana-
lyze multi-core architectures and di�erent memory access policies. A similar approach
is also presented by Gustavsson et al. [42]. Lampka et al. [64] present an approach that
abstracts from individual core-local workloads by modeling access requests to a shared
resource with an aggregated access request curve fed into a network of TA. These works
intend to bound the worst-case execution time of applications rather than individual
memory accesses/transactions. In contrast, we focus on the e�ect of sharing on the tim-
ing of individual memory transactions in order to �nd a tight bound. Our WCRT and
WCBW bounds can be used by the cited works for more accurate modeling and analysis.

6.5 experimental results

This section experimentally validates the proposed intuitive and optimized TA models
of dynamic command scheduling, and then analyzes the WCRT and WCBW bounds for
�xed and variable transaction sizes, respectively. First, the command scheduling results
obtained with Uppaal are validated with the open-source RTMemController tool [70],
which has been introduced in Section 4.7 and has been proven to be equivalent to a
cycle-accurate SystemC simulator in Section 4.8.2 for capturing the timing behavior of
the memory controller. Next, the results are compared to the analysis results of the
same memory controller design using a) the analytical and scheduled approaches pre-
sented in Chapter 4, and b) the mode-controlled data�ow (MCDF) model introduced in
Chapter 5. These techniques were discussed in Section 6.4. Note that the WCRT/WCBW
bounds are obtained using the optimized TA model, since the veri�cation of the intuitive
model takes more time and consumes more memory on the host server.

136 timed automata (ta) modeling of run-dmc

6.5.1 Experimental Setup

The proposed TA model is simulated and veri�ed with Uppaal v4.1.19 on a 64-bit Cen-
tOS 6.6 system with 24 Intel Xeon(R) CPUs running at 2.10 GHz and with 125 GB us-
able RAM. Experiments have been done with a JEDEC-compliant DDR3-1600G SDRAM
memory with interface width of 16 bits and a capacity of 2 Gb [53]. The memory con-
troller front-end uses a TDM arbiter with one slot per memory requestor, which is as-
sumed to have one outstanding transaction to avoid self-interference. The transaction
sizes used by the experiments are 16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes,
respectively. Similarly to the previous experimental setup in Section 3.5.1, Section 4.8.1,
and Section 5.5.1, the memory map con�guration (i.e., BI and BC) of each transaction
size is chosen to achieve the lowest execution time and the highest memory bandwidth,
where more banks are interleaved when possible to exploit bank parallelism. The con�g-
ured (BI, BC) for these sizes are hence (1, 1), (2, 1), (4, 1), (4, 2), and (4, 4) [39], respectively.
Note that transactions with 128 bytes and 256 bytes use (4, 2) and (4, 4) instead of (8, 1)
and (8, 2) because of the tFAW constraint that leads to larger execution time with BI =
8. Finally, we always verify the property "A[] not deadlock" to be true for the TA model.
This guarantees that there is no deadlock in the TA model, e.g., an automaton cannot
resign in a committed location without an immediate transition.

6.5.2 Validation of TA Model

The �rst experiment shows that the proposed TA model can accurately capture the tim-
ing behavior of the memory controller with dynamic command scheduling for selected
traces. We compare the scheduling time of each command in every trace obtained with
Uppaal to that of the RTMemController tool [70], which is equivalent to a cycle-accurate
SystemC simulator of the memory controller under consideration [69]. We simulate the
TA model for 1200 commands corresponding to random read and write transactions
with any possible physical addresses that are re�ected by using all the possible start-
ing banks. The transactions are generated by the Source and TDM Bus TA shown in
Figure 6.4(a) and Figure 6.4(e). We execute RTMemController with the same transac-
tions to obtain the scheduling time of each command. The same experiment is repeated
for the 5 transaction sizes and for a random mix of them. From the experimental re-
sults, we observe that the scheduling time is always identical for each command. This
suggests that our TA model correctly and accurately captures the timing behavior of
the dynamic command scheduling. For the given traces, the TA model is equivalent to

the cycle-accurate implementation of the dynamic command scheduling. In the same way,
the intuitive model is also validated.

For all experiments in the following sections, Uppaal generates a witness that leads
to the WCRT/WCBW bound, i.e., the diagnostic trace of transactions. Again, we have
fed all diagnostic traces to the RTMemController tool, and it always shows exactly the

6.5 experimental results 137

16 (RD) 16 (WR) 32 (RD) 32 (WR) 64 (RD) 64 (WR) 128(RD) 128(WR) 256(RD) 256(WR)
Transaction Sizes (bytes)

0

50

100

150

200

250

300

350
W

or
st

-C
as

e
R

es
po

ns
e

Ti
m

e
(c

yc
le

s)
Analytical WCRT (Run-DMC)
Scheduled WCRT (Run-DMC)
WCRT (semi-static)
TA WCRT (Run-DMC)

Figure 6.6: The WCRT for 4 requestors accessing DDR3-1600G with �xed transaction sizes.

same results as Uppaal. This validates the correctness of the TA model, and gives strong

reason to believe that the analysis results derived from our TA model are tight.

6.5.3 Fixed Transaction Size

This experiment uses Uppaal to test the optimized TA model and to obtain the WCRT
and WCBW Bounds for �xed transaction sizes. Four memory requestors are employed,
corresponding to, e.g., four cores that have the same cache-line size. This experiment
tests an arbitrary read/write mix, for the �ve di�erent transaction sizes. The model
checker explores the full state space for each size, except for 16 bytes that uses BI=1.
For the purpose of worst-case analysis, it is not necessary to explore all 8 banks. Trans-
actions with 16 bytes only access a single bank. It hence only matters if transactions
access the same bank or a di�erent bank. As a result, we arbitrarily select 2 banks (e.g.,
Bank 0, Bank 1) to be tested by Uppaal. The trace is an arbitrary read/write mix, but we
show the WCRT for read (RD) and write (WR) transactions separately in Figure 6.6. They
are also compared to those given by the existing analytical and scheduled approaches
in Chapter 4 for Run-DMC and the results of the semi-static approach [3]. Note that we
do not compare with the MCDF model previously presented in Chapter 5 as it does not
analyze the WCRT. Moreover, each result is validated by executing the diagnostic trace
from Uppaal with RTMemController, where the same results are obtained from these
two tools.

138 timed automata (ta) modeling of run-dmc

We observe that the WCRT results from the TA model are better than or equal to those

given by either the scheduled or analytical approaches. This also holds when comparing to
the semi-static approach except for 32-byte transactions, where the WCRT of the semi-
static approach is only 1 cycle smaller than the results of the TA model. This is because
Run-DMC schedules commands dynamically and may lead to larger WCRT than the
semi-static approach that uses the pre-computed command schedules. However, this ex-
ception only occurs when a particular (and rare) sequence of transactions are executed
by Run-DMC. The maximum improvement is 20% for write transactions with 64 bytes,
while the average improvement over all these experiments is 7.7%. The improvement
is achieved for the following reasons. 1) The TA model accurately models scheduling
collisions on the command bus, just like the scheduled approach. Conversely, the analyt-
ical approach always conservatively assumes a collision for each ACT command. 2) The
TA model accurately captures the worst-case initial values of the timing counters for
an arbitrary transaction according to the exact JEDEC timing constraint values. In con-
trast, both the analytical and scheduled approaches conservatively assume as-late-as-
possible (ALAP) scheduling of the previous commands to provide the worst-case initial
values of timing counters, which is pessimistic. 3) Run-DMC performs closely to the
semi-static approach for these small transaction sizes. When executing large transac-
tion sizes, e.g., 128 bytes or 256 bytes, Run-DMC can dynamically exploit the pipelining
between successive transactions. In contrast, the static command schedules used by the
semi-static approach cannot e�ciently pipeline commands across successive transac-
tions.

An experiment is carried out to test the intuitive TA model, which provides the same
WCRT bounds as the optimized TA model. However, verifying a property of the intuitive
TA model takes longer time and consumes more RAM of the host server. For example,
for 128-byte transactions from four requestors, the veri�cation speedup reaches 2.4x
when deriving the WCRT bound. Moreover, the RAM usage is decreased by 31%. These
results demonstrate that it is easier to derive a bound with the optimized TA model.

The bound on the worst-case bandwidth (WCBW) depends on the DataSize used by
the Observer shown in Figure 6.5(b). As discussed in Section 6.3.2, better WCBW bound
can be obtained when increasing DataSize, since more pipelining between successive
transactions can be exploited. However, the improvement on the WCBW bound is not
always signi�cant with larger DataSize. This is demonstrated in Figure 6.7(a), which
takes 32-byte transactions as an example. As a result, we derive a su�cientWCBW bound

when it cannot increase dramatically with DataSize. For example, we provide the best
practical WCBW bounds when they cannot increase with more than 1%, and the re-
sults will be shown in Figure 6.8. Moreover, the WCBW bound does not increase for
certain transaction sizes with DDR3-1600G, such as 16 bytes and 64 bytes. Figure 6.7(b)
shows the veri�ed WCBW bound for 16-byte transactions when increasing DataSize.
Note that 16-byte transactions only use one bank (BI = 1). This bound is obtained when
the transactions are write and they use the same bank. In this case, there is no pipelin-

6.5 experimental results 139

32 64 96 128 160 192 224 256 320 480
DataSize (bytes)

608

610

612

614

616

618

620

622

624

W
or

st
-C

as
e

B
an

dw
id

th
 (M

B
/s

)

(a) 32 Bytes

16 32 48 64 80 96 112 128
DataSize (bytes)

295

300

305

310

315

320

325

330

W
or

st
-C

as
e

B
an

dw
id

th
 (M

B
/s

)

(b) 16 Bytes

Figure 6.7: The WCBW using di�erent DataSize for �xed transaction sizes with DDR3-1600G.

140 timed automata (ta) modeling of run-dmc

16 32 64 128 256
Transaction Sizes (bytes)

0

500

1000

1500

2000

2500

3000
W

or
st

-C
as

e
B

an
dw

id
th

 (M
B

/s
)

Analytical WCBW (Run-DMC)
Scheduled WCBW (Run-DMC)
WCBW (MCDF)
WCBW (semi-static)
WCBW (TA)

Figure 6.8: The WCBW for �xed transaction sizes.

ing between successive transactions. As a result, the bound can be veri�ed with the
minimum DataSize corresponding to a single transaction. In addition, it is not only the
su�cient bound, but also the best bound that can be given by verifying properties of
the TA model. The reason is that the bound is constant for di�erent DataSize. Figure 6.7
only shows the results for 32-byte and 16-byte transactions, respectively, while the re-
sults for other transaction sizes are not given for brevity, since we can draw the same
conclusions and derive su�cient WCBW bounds.

Figure 6.8 shows either the su�cient or the best WCBW bounds for �xed transaction
sizes with DDR3-1600G, and they are compared to existing approaches. Compared to the
analytical approach, the improvement reaches up to 25% for 64-byte transactions. The
average improvement on the WCBW bounds when comparing to these approaches is
13.6% for all these experiments. The reasons for obtaining better WCBW than analytical
and scheduled approaches are the same as those for WCRT. Our TA model is better than
or performs equally well as the MCDF model previously presented in Chapter 5 because
the latter conservatively assumes a collision per ACT command. Larger improvements
are obtained for small transactions, while the same WCBW is obtained for large trans-
action sizes, e.g., 256 bytes. This is because larger transactions have more RD or WR

commands, which dominate the command scheduling. As a result, the collisions with
ACT commands have no in�uence on the WCBW, and the MCDF can perform equally
well as the TA model for large transaction sizes. Finally, we compare the WCBW bounds
of Run-DMC to the semi-static memory controller [3]. Figure 6.8 illustrates that Run-
DMC provides larger WCBW bounds for all the transaction sizes. The only exception is

6.5 experimental results 141

caused by 32-byte transactions, where the bound given by the semi-static memory con-
troller is 0.2% higher than Run-DMC, because its static command schedules are slightly
more e�cient in the worst-case for 32-byte transactions. In contrast, Run-DMC sched-
ules command dynamically and it may lead to initial bank states that make the execution
of a 32-byte transaction experiences longer time than the semi-static approach. Recall
from Chapter 3 that Run-DMC has much better average performance, which can bene�t
non-real-time applications.

We evaluate the run time and memory usage of Uppaal in our experiments. Uppaal
takes at most 1221 seconds and consumes up to 7 GB to successfully verify properties
for �xed transaction sizes. This occurs when verifying a property to derive the WCRT
of 16-byte write transactions. Note that this experiment explores two di�erent starting
banks for 16-byte transactions. If more starting banks (e.g., 4 banks) are explored, it
takes around 30 hours before running out of the 125 GB usable RAM. Due to the limited
RAM memory, we alternatively carry out this experiment on a server with 1 TB RAM
and an Intel(R) Xeon(R) CPU E7-4850 running at 2.0 GHz. Note that this server is re-
motely provided by SURFsara [100], a Dutch Cooperative providing high-performance
computing and data infrastructure for science and industry. The model checking �nally
takes around 241.1 hours and consumes 557.9 GB RAM memory to provide the same
results as when only exploring 2 banks. We have observed that larger transaction sizes
need less time and RAM to verify a property. The reasons include: 1) Larger trans-
actions use larger BI that have a fewer possible starting banks, resulting in a smaller
state space. 2) The scheduling algorithm schedules more commands sequentially (i.e.,
deterministically) for larger transactions. In contrast, smaller transactions have fewer
commands and transactions arrive randomly. As a result, the TA model performs more
deterministic state transitions. Recall that the scheduling of commands is modeled by
state transitions, e.g., the RW Scheduler TA in Figure 6.4(l).

6.5.4 Variable Transaction Sizes

Ideally, the TA model is used to analyze the WCRT and WCBW of any mix of trans-
actions, e.g., resulting from di�erent requestors, with di�erent transaction sizes and
starting banks. Due to the state space explosion, it is not possible to obtain general
WCRT and WCBW for all combinations of transactions by model checking, because
Uppaal fails to verify a property after consuming all the RAM (e.g., 125GB) of the
host server. However, system designers are usually less interested in general WCRT
and WCBW bounds than in response-time and bandwidth bounds for a particular sys-

tem under design. By taking into account system-speci�c information, “design-speci�c
bounds” can be expected to be closer to the true worst case that can occur in the design
than “general bounds” that necessarily include traces that cannot occur in the partic-
ular system. System-speci�c information includes transaction sequences and sizes per

142 timed automata (ta) modeling of run-dmc

0

50

100

150

200

250

300

RD WR RD WR RD WR RD WR RD WR

HDLCD (128 bytes) GPU (128 bytes) VE (128 bytes) IP (64 bytes) CPU (64 bytes)

W
o

rs
t-

C
a

s
e

 R
e

s
p

o
n

s
e

 T
im

e
 (

c
y
c
le

s
)

Scheduled WCRT Analytical WCRT TA WCRT

Figure 6.9: The WCRT for the requestors in a HD video and graphics processing system [31] with
variable transaction sizes.

requestor, TDM allocations, etc. With this information, the analysis is less pessimistic,
allowing for tighter bounds or lower system cost.

To illustrate this e�ect, we perform a case study of the HD video and graphics proc-
essing system of [31]. It consists of 5 requestors representing CPU, GPU, input proces-
sor (IP), video engine (VE), and HDLCD DMA controller. [31] focuses on a multi-channel
memory controller with 256-byte transactions that are interleaved over multiple chan-
nels. Since our memory controller has a single channel, we use smaller transaction sizes,
which are also current practice in today’s systems [34, 44]. CPU and IP have cache-
lines of 64 bytes, while those of the GPU are 128 bytes. The VE and the HDLCD DMA
use transactions of 128 bytes. All produce an arbitrary read/write mix of transactions.
The �ve requestors have one TDM slot each, and are served in descending order of
their transaction sizes. This ordering increases the bank parallelism between successive
transactions [72], improving performance. Figure 6.9 separately shows the WCRT of
read/write transactions, for each requestor. The results show that our TA model out-
performs the analytical and scheduled approaches for WCRT, for the same reasons as
discussed in Section 6.5.3. For example, our TA model improves the WCRT of 128-byte
transactions of analytical and scheduled approaches by 10.4% and 8.5%, respectively. As
before, all bounds have been validated to be identical to the cycle-accurate timings of
the RTMemController tool.

The WCBW bounds obtained from di�erent approaches are shown in Figure 6.10.
Note that these results are the su�cient WCBW bounds, which are derived in the same
way as those for the �xed transaction sizes in Section 6.5.3. For example, Run-DMC
uses the TDM arbiter presented in Section 3.2.2 to serve the �ve requestors in the HD

6.6 summary 143

0

500

1000

1500

2000

Analytical Scheduled TA MCDF

W
o
rs

t-
C

a
s
e
 B

a
n
d
w

id
th

 (
M

B
/s

)

TDM Arbitration

Unknown Arbitration

Figure 6.10: The WCBW for variable transaction sizes.

video and graphics processing system. The su�cient WCBW bound derived from our
TA model is shown in Figure 6.10. It is obtained when the Observer (see Figure 6.5(b))
uses DataSize = 2048 bytes , which corresponds to 20 successive transactions executed
according to the TDM schedule. Moreover, the Uppaal veri�er takes around 6.8 hours
and consumes 30.3 GB RAM to provide this su�cient WCBW bound. The results in Fig-
ure 6.10 show that our TA model outperforms the analytical and scheduled approaches
by 11.2% and 8.9%, respectively. We cannot compare to the MCDF model [71], as its anal-
ysis tool does not support our use-case. Instead, we compare all approaches for a system
with �ve requestors with arbitrary read/write transactions of 64 or 128 bytes. The arbi-
tration is unknown (not speci�ed). The WCBW results are shown in Figure 6.10. The
TA model outperforms the analytical, scheduled, and MCDF approaches by 24.6%, 14.6%,
and 12.1%, respectively. The average improvement from all our experiments reaches to
14%.

6.6 summary

This chapter proposes a modular Timed Automata (TA) model of the Run-DMC memory
controller, which has been previously introduced in Chapter 3. Bounds on worst-case
response time (WCRT) and bandwidth (WCBW) are automatically derived by verifying
properties of the TA model using model checking. The TA model is based on instantiat-
ing multiple TA templates, each of which describes either the timing behavior of a com-
ponent used by Run-DMC or a JEDEC-speci�ed DDR3 timing constraint. An intuitive
TA model is given, followed by an optimized version. The former describes each mem-
ory controller component and timing constraint with a timed automaton, leading to a

144 timed automata (ta) modeling of run-dmc

straightforward model of Run-DMC. However, the veri�cation of the intuitive TA model
has to explore a large state-space, resulting in long veri�cation time and high memory
usage of the host server. In contrast, the latter optimized TA model captures the timing
behavior of several components with a single automaton. In the same way, multiple tim-
ing constraints are tracked with a single automaton as well. Therefore, the optimized TA
model provides the WCRT/WCBW bounds through model checking faster (e.g., 2.4x).

The proposed TA model is bene�cial for analyzing real-time memory controllers,
because: 1) it can easily capture the behavior of new memory controllers, since the
automata templates used by our TA model can either be reused for common compo-
nents or be easily extended. 2) The WCRT/WCBW bounds are provided automatically
via model checking, as opposed to repeating a time-consuming manual analytical ef-
fort. 3) The TA model accurately captures the timing behavior of a memory controller
without any abstractions, such as conservatively assuming a collision for each ACT

command or the static maximum timing interval between commands. This is a pre-
requisite for tight WCRT and WCBW bounds. 4) The TA model not only provides the
WCRT/WCBW bounds, but is also an executable model for simulating the memory con-
troller. As a result, the TA model is easily validated by comparing the timings of each
command from the simulation to those given by existing cycle-accurate simulators of
the memory controller. 5) The veri�cation of the TA model with Uppaal provides a wit-
ness of the worst-case results, i.e., the diagnostic traces of commands/transactions. By
feeding the traces to the open-source RTMemController tool that is equivalent to a cycle-
accurate SystemC simulator, identical timings of commands are obtained. This demon-
strates that the TA is indeed without any abstraction and the bound is tight for the
encountered traces. 6) Finally, the experimental results demonstrate that the proposed
TA model outperforms three state-of-the-art analysis approaches of dynamic command
scheduling for real-time memory controllers, by up to 25%. The reason is that the TA
model accurately captures both the scheduling collisions on the command bus and the
initial timing states of SDRAM for each transaction.

7
C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter, we conclude this thesis by brie�y discussing the problems of design and
analysis of real-time memory controllers, and summarizing our contributions presented
in the previous chapters. Then, we provide possible extensions of the work in this thesis.

7.1 conclusions

The o�-chip SDRAM is shared by other on-chip resources to read or write data via a
memory controller integrated in the SoC, where both real-time and non-real-time ap-
plications are concurrently executed. These resources generate diverse tra�c for the
memory controller, which receives arbitrary read/write transactions with variable sizes
and di�erent physical addresses. The memory controller must provide guaranteed per-
formance for real-time applications to meet their requirements, while giving the best
possible average performance to make the non-real-time applications feel responsive.
The di�culty with achieving this goal is the complex interferences, which are caused
by 1) di�erent requestors that contend for the SDRAM, 2) the pipelining between trans-
actions with variable sizes, since commands are scheduled to multiple banks in parallel
subject to the JEDEC-speci�ed timing constraints.

Next, Section 7.1.1 presents our contribution of designing a memory controller that
e�ciently deals with the diverse memory tra�c. The proposed analysis approaches are
summarized in Section 7.1.2, along with a discussion about their respective strengths
and weaknesses.

7.1.1 Design of Real-Time Memory controllers

To e�ciently deal with the diverse memory tra�c, Chapter 3 proposes a memory con-
troller named Run-DMC, which generates appropriate commands for transactions with
variable sizes. The commands are dynamically scheduled according to the run-time
SDRAM state and the timing constraints. It meets the design and analysis requirements
posed on a real-time memory controller that must provide guaranteed performance to
meet the requirements of real-time applications and good average performance to the
non-real-time applications to feel responsive. Run-DMC outperforms a state-of-the-art

145

146 conclusions and future work

semi-static memory controller [3], because it uses the following mechanisms: 1) Run-
DMC employs a novel TDM arbiter in the front-end to enable the worst-case response
time (WCRT) and the worst-case bandwidth (WCBW) for requestors to be bounded.
Requestors can be allocated a di�erent number of time slots with variable lengths ac-
cording to their requirements. Moreover, it skips idle slots to reduce the interference be-
tween requestors and con�gures the service order of requestors in descending of their
transaction sizes. The latter results in a smaller execution time of a transaction, and has
been experimentally demonstrated to achieve the minimum WCRT. 2) In the back-end,
each transaction is executed with the con�gured bank interleaving number (BI) and
burst count (BC) per bank. These two parameters provide the �exibility of exploiting
di�erent levels of bank parallelism. 3) To achieve better worst-case performance, a close-
page policy is used by Run-DMC. This also eliminates the complexity of distinguishing
page-hits and page-misses, resulting in a simpler analysis. 4) Transactions are executed
by the back-end in a FCFS manner, such that the hardware overhead and analysis dif-
�culty of transaction re-ordering are eliminated. 5) Finally, commands are dynamically
scheduled as soon as the timing constraints are satis�ed. This leads to e�cient pipelin-
ing between successive transactions. In addition, the run-time state of the SDRAM is
exploited to achieve good average performance.

Run-DMC has been implemented as a cycle-accurate SystemC model to measure the
worst-case observed performance and the average behavior. Experimental results show
that Run-DMC signi�cantly outperforms an existing semi-static memory controller [3]
in the average case, while they are comparable in the worst-case. For �xed transac-
tion sizes with di�erent DDR3 SDRAMs, the overall improvement reaches 17.3%. For
variable transaction sizes, it achieves 44.9% smaller average RT according to the ex-
periments. We have also observed that smaller transaction sizes bene�t more from our
dynamically-scheduled memory controller. For example, with variable transaction sizes,
79% improvement is achieved by 16-byte transactions to access a DDR3-1600G device,
while it is 18.8% for 128-byte transactions. The reason is that smaller transactions re-
quire fewer banks, resulting in that the next transaction has higher chance to access
di�erent banks and thus be executed earlier. Finally, Run-DMC provides 16.7% more
average bandwidth than the semi-static approach. In addition, higher bandwidth is ob-
tained with larger transaction sizes. The reason is that more consecutive data bursts are
transferred for each bank activation, resulting in higher e�ciency of transferring data.

7.1.2 Analysis Techniques for Real-Time Memory Controllers

This thesis has proposed three approaches to analyze real-time memory controllers,
based on a formal analysis, a mode-controlled data�ow (MCDF) model, and a timed
automata (TA) model, respectively. These approaches have been used to analyze our
memory controller with dynamic command scheduling, and provide the WCRT and/or
WCBW. To the best of our knowledge, this is the �rst work to analyze a real-time mem-

7.1 conclusions 147

ory controller with di�erent techniques. Therefore, we discuss their strengths and weak-
nesses in the following sections.

7.1.2.1 Analysis vs. Modeling

The formal analysis approach accurately formalizes the command scheduling dependen-
cies. This formalization has been implemented as an open-source tool called RTMem-

Controller [70]. Then, conservative worst-case results are obtained by assuming that 1)
the commands of the preceding transaction are scheduled as-late-as-possible (ALAP),
resulting in the worst-case initial SDRAM state, and 2) each ACT command always col-
lides with a RD or WR command. However, the obtained results are guaranteed to be
conservative based on manual proofs, which are complex and very time-consuming to
develop. In contrast, this problem has been resolved by two other approaches, which
model the timing behavior of Run-DMC and employ existing tools to analyze these
models, resulting in the WCRT and/or WCBW. The second approach is based on an
MCDF model that analyzes the WCBW using the Heracles tool [79], which does not
support analyzing the WCRT. The third approach captures the timing behavior of Run-
DMC with a TA model, and the Uppaal tool suite [13] is used to provide both the WCRT
and WCBW via model checking. However, the formal analysis approach has formally
proved that the execution time of a transaction monotonically increases with its size,
as shown in Theorem 2. Note that the formal analysis approach assumes that each re-
questor has a �xed transaction size (i.e., the maximum size from the requestor), while
requestors have di�erent sizes. Theorem 2 guarantees that the analysis results based on
the maximum transaction size of a requestor are safe to use even if it generates transac-
tions with variable sizes. For the MCDF model, Heracles cannot provide the worst-case
response/execution time, and hence cannot derive Theorem 2. In contrast, the TA model
would have to enumerate all the transaction sizes and obtain the bound for each of them
individually. As a result, Theorem 2 can be experimentally obtained based on all these
bounds. However, this takes a long time or even is not possible for some transaction
sizes, such as 16-byte.

7.1.2.2 Accuracy of Worst-Case Bound

The bounds on the WCRT and WCBW vary between the approaches based on the formal
analysis, the MCDF model, and the TA model. The accuracy of the bound depends on the

number of simplifying assumptions used by these approaches. As explained in Chapter 4,
our formal analysis results in an analytical approach and a scheduled approach with
di�erent assumptions in terms of 1) ALAP command scheduling and 2) conservative col-

lision per ACT command. More speci�cally, the scheduled approach only assumes ALAP
command scheduling and eliminates the collision assumption by actually detecting the
collisions with a tool. The MCDF model does not assume ALAP scheduling. However, it
conservatively assumes a collision for each ACT command to avoid the unpredictable

148 conclusions and future work

collisions in the model. A collision occurs when all the timing constraints are satis-
�ed for scheduling an ACT and a RD/WR command at the same time. Since data�ow
models only capture the data dependent behavior, they cannot accurately model the
collisions that depend on time. In contrast, the TA model does not apply any assump-
tions, since it can dynamically detect the collisions, based on which state transitions
are enabled. Therefore, the TA model provides the tightest bounds. The MCDF model
is slightly worse than the TA model, although it provides tighter WCBW bounds than
both the scheduled and analytical approaches. Finally, the scheduled approach gives
tighter bounds than the analytical approach. Another reason for the varied bounds
achieved by these approaches is the exploitation of di�erent degrees of pipelining be-
tween transactions. The formal analysis (i.e., analytical and scheduled) approach only
captures pipelining with the previous transaction. However, the MCDF model and the
TA model can exploit pipelining within a sequence of transactions.

These approaches have been experimentally compared in Section 6.5. For �xed trans-
action sizes, TA provides a WCRT that is maximally 20% smaller than the analytical
approach for 64-byte write transactions. The average improvement is 7.7% according to
the experiments. The improvement of the WCBW is up to 25% for 64-byte transactions,
compared to the analytical approach. The total average improvement on WCBW reaches
10%, 6.5%, and 1.9% compared to the analytical, scheduled, and the MCDF approaches,
respectively. For variable transaction sizes, the TA model gives a smaller WCRT than
the analytical and scheduled approaches, and the total average improvement is 7.1%.
The WCBW results show that the TA model outperforms the analytical, scheduled, and
MCDF approaches by 24.6%, 14.6%, and 12.1%, respectively.

7.1.2.3 Portability for New Memory Controllers

When extending the proposed analysis approaches to new memory controllers using
di�erent mechanisms (e.g., open-page policy, di�erent command-level priorities) and/or
di�erent memory devices, varied e�orts are needed. Toward this issue, the TA model
is superior to others. The reason is that the TA model is more expressive and can accu-
rately capture the dynamic behavior of a memory controller. It is a network of timed
automata, where each automaton describes the behavior of a component in the memory
controller, resulting in a modular model. In contrast, to model a memory controller with
MCDF, proper modes must be created, followed by determining the transitions between
modes. Then, static mode sequences are needed to capture some dynamic behaviors. All
these cannot be easily done on a per-component basis. The MCDF model follows the
structure of the memory controller less, instead follows the resulting behavior more.
Therefore, the MCDF model requires more e�ort than the TA model for a new memory
controller or SDRAM device. The most di�cult approach is the formal analysis, which
is based on a formalization of the command scheduling dependencies. Although the
proposed formalization is parameterized based on the transaction size and the timing
constraints of DDR3 SDRAMs, it is tailored for a close-page policy and the FCFS sche-

7.1 conclusions 149

duling algorithm. When an open-page policy and/or reordering scheme are used, the
command scheduling dependencies are changed. Since the dependencies are complex,
it needs signi�cant e�ort to extend the formalization. For the same reason, the formal
analysis approach takes much e�ort to adapt to new memory controllers.

7.1.2.4 Scalability

The scalability of the proposed analysis approaches varies when the memory controller
is con�gured to support di�erent number of requestors with �xed or variable transac-
tion sizes. The formal analysis approach is parameterized to the transaction size and
number of requestors. As a result, it is scalable to deal with di�erent con�gurations of
the memory controller, though it sacri�ces the accuracy of the worst-case bounds. The
approaches based on the MCDF model and the TA model cannot easily scale with dif-
ferent con�gurations. The veri�cation of the TA model takes a long time and consumes
a lot of RAM on the host server to derive the results, when exploring the state space via
model checking with Uppaal. The MCDF model is slightly better in this regard. The rea-
son is that each mode of the MCDF model is a smaller single-rate data�ow (SRDF) graph
that has a deterministic execution behavior, and the transitions between modes are stat-
ically prede�ned. As a result, the state space explored by the MCDF model is smaller
than the TA model. The Heracles [79] tool is used to analyze the WCBW bounds by
converting the MCDF graph into its equivalent SRDF, where the critical cycle is easily
obtained. However, Heracles cannot analyze the WCRT. Moreover, it is an Ericsson in-
ternal tool that is not publicly available to the research community. However, it is worth
noting that MCDF model is very similar to the scenario-aware data�ow (SADF) [95, 101],
which can be analyzed by the open-source tool SDF3 [98].

The veri�cation of the TA model may experience the state-space explosion problem,
and the data�ow graph may be too large to be analyzed. This limits the scalability
of these models. With di�erent con�gurations of our dynamically-scheduled memory
controller, Table C.2 presented in Appendix C collects the time and RAM consumed
by analyzing the MCDF model with Heracles and the veri�cation of the TA model us-
ing Uppaal, respectively. The results demonstrate that on average, the analysis of the
MCDF model is 1150.3 times faster and consumes 97.1% less RAM than the veri�ca-
tion of the TA model. However, Heracles cannot analyze a large number of static mode
sequences (SMSs) capturing the behavior of executing transactions interleaved over dif-
ferent number of banks. As a result, it cannot analyze the case when requestors are
served in a static order, e.g., a TDM manner, which is captured by more speci�c SMSs.
In contrast, the veri�cation of the TA model can easily address the static service order,
since this reduces the size of the state-space. When the arbitration between requestors
is unknown, the state-space is larger and the veri�cation can easily fail, i.e., terminate
when all the RAM of the host server is consumed. In this case, the MCDF model needs
fewer SMSs, and it can analyze the WCBW. The MCDF and TA models thus behave con-
versely. The MCDF model is large (e.g., consisting of around 500 actors and 990 edges)

150 conclusions and future work

but it reduces the state space, resulting in fast run-time; whereas the TA model is com-
pact (e.g., 137 nodes and 186 edges) because of its good expressiveness. However, the
state space is large, leading to a large run-time.

7.1.2.5 Exploitation of Static/System Information

The analysis of the memory controller can give better worst-case bounds when statically
exploiting more information about the memory requestors and the transaction sched-
ule. For example, the TDM arbiter determines a static order of executing transactions.
The formal analysis approach can bene�t from the case where the size of the preced-
ing transaction is known, and obtains 9.3% tighter bound on WCBW according to the
results shown in Figure 4.11. In this way, when the TDM arbiter provides a static order
of transactions, it gains 10% improvement compared to the case when the order is un-
known, i.e., the preceding transaction is unknown as well. However, the MCDF model
and the TA model are able to analyze a complete static sequence of transactions (i.e.,
with particular sizes, types, and physical addresses). Since more static information is
exploited, they provide much better results. For example, the MCDF model achieves
63.2% improvement on the WCBW when the static sequence of transactions from two
requestors is given by the TDM arbiter. The TA model provides 32.8% more WCBW
when the TDM arbiter is used to serve 5 requestors in a HD video and graphic process-
ing system. Note that it is hard to use the same experimental setup for the MCDF model
and the TA model, due to the limitations of their analysis tools. Hence, these numbers
are not comparable.

To exploit even more information of the system, the model of a memory controller
can be integrated into a higher level model to analyze the behavior of a system and
provide better worst-case results. For example, the TA model of a memory controller
could be integrated into another TA model that captures the behavior of the rest of the
system. As a result, a larger TA model can be used to analyze the worst-case execution
time or the minimum throughput of an application, where its tasks or jobs are running
on cores while generating memory transactions. When integrating the MCDF model of
the memory controller into a data�ow model describing the system, new modes must
be created to capture the complex behaviors. It may be too di�cult to obtain the modes
or the �nal MCDF model is too large to be analyzed by Heracles. On contrary, the only
concern for the veri�cation of the TA model is the state-space explosion issue. The rea-
sons are that 1) the SDRAM banks are non-deterministically used, and 2) the command
collisions are unpredictable. However, in a realistic system, the allocation of the banks
to cores are known, e.g., using a static memory mapping. In addition, the large TA model
can also apply the conservative assumption of collision per ACT command to simplify
the model, although this slightly degrades the accuracy of the worst-case results. How-
ever, the large TA model may gain enough bene�ts to o�set this drawback, since more
static information of the system can be exploited.

7.2 future work 151

7.1.2.6 Simulation, Validation, and Veri�cation

In addition to the worst-case bounds, portability for new memory controllers, and the ex-
ploitation of static/system information, the formal analysis approach, the MCDF model,
and the TA model also provide other features. Firstly, the MCDF and TA models are
executable and support simulation of the memory controller. As a result, these mod-
els can be validated by the cycle-accurate SystemC model of Run-DMC. Moreover, the
analysis of the MCDF model returns the critical cycle corresponding to a sequence of
transactions that cause the WCBW bound. By feeding these transactions to the SystemC
simulator, an identical bandwidth is obtained. Similarly, the veri�cation of the TA model
gives a diagnostic transaction trace, which is a witness of the worst-case bound. This
bound is validated to be tight in the same way. In contrast, the bounds computed by the
formal analysis approach cannot be validated like this. The con�dence in the bounds
can be improved by simulation, where the measured experimental results do not break
the bounds.

7.2 future work

This section introduces two feasible extensions of the work in this thesis. We �rstly
discuss the extension of the proposed formal analysis approach to obtain the optimal
memory mapping for requestors. Secondly, we show how to improve the average per-
formance and the memory utilization using Run-DMC.

7.2.1 Bank-Aware Memory Mapping

A memory requestor typically uses a range of memory addresses, which are mapped
to speci�c locations inside the SDRAM, e.g., a number of banks between which bank
interleaving is employed. However, an issue of bank interleaving is how to statically al-

locate the consecutive banks to a requestor, such that its WCRT is minimized while the

overall WCBW is maximized. This requires an optimal bank-aware memory mapping.
To achieve this goal, an analysis framework is needed, such that the WCRT/WCBW is
analyzed by capturing the transaction size and the allocated banks per requestor, as
well as the service order of requestors speci�ed by a TDM or a RR arbiter. This analy-
sis framework will be an extension of the analytical approach introduced in Chapter 4
from only capturing the preceding transaction size to covering sizes, allocated banks
to requestors, and the service order of requestors. Based on this analysis framework,
a holistic approach can be used to explore the optimal bank allocation and TDM ser-
vice order of requestors with variable transaction sizes, such that the lowest WCRT and
highest WCBW can be obtained.

152 conclusions and future work

7.2.2 Enhancement of SDRAM Utilization with Hybrid Page Policies

SDRAM is a scarce resource and it must be e�ciently used to not only provide good per-
formance, but also reduce cost. However, state-of-the-art real-time memory controllers
have been focusing on providing guaranteed performance, while the memory utilization
has not been given su�cient attention. The basic argument is that guaranteed perfor-
mance can be achieved by sacri�cing memory utilization. An example is bank priva-
tization, which spatially isolates the memory. It prevents the interference of sharing
banks, resulting in predictable performance for the requestor running real-time tasks.
However, many real-time applications are not memory intensive. For example, control
of a mechanical motor typically consists of the procedures of sensing, processing, and
actuation. It does not generate heavy memory tra�c. Moreover, bank privatization does
not support data sharing in SDRAM. For example, Wu et al. [108] add separate queues
in the memory controller to support data sharing when bank privatization is used.

To enhance the SDRAM utilization and provide an e�cient memory sharing mecha-
nism, our dynamically-scheduled memory controller can be extended to use the follow-
ing mechanisms. 1) Banks are allocated to requestors according to their data require-
ments. 2) Since one requestor may not consume the whole capacity of the allocated
bank(s), the banks can also be used by other requestors. 3) To provide good worst-case
performance for real-time applications, a close-page policy will be used. 4) To achieve
good average performance by non-real-time applications, an open-page policy can be
used to exploit page-hits. With this hybrid page policy, guaranteed performance will be
given to real-time applications, while providing best possible average performance for
the rest. In particular, memory banks are shared and the utilization can be increased.
Finally, the timed automata model can be extended to capture this hybrid page policy
and the allocation of SDRAM banks to requestors, where the worst-case results can be
automatically obtained by model checking.

B I B L I O G R A P H Y

[1] PrimeCell AHB SDR and NAND Memory Controller (PL242).
http://www.arm.com, 2006. (Cited on page 34.)

[2] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time
systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium, pages
4–13, 1998. (Cited on pages 1 and 6.)

[3] B. Akesson and K. Goossens. Architectures and modeling of predictable memory
controllers for improved system integration. In Design, Automation Test in Europe

Conference Exhibition (DATE), pages 1–6, 2011. (Cited on pages xi, xii, 6, 32, 45,
46, 47, 48, 51, 52, 77, 78, 79, 80, 81, 92, 93, 111, 115, 134, 137, 140, and 146.)

[4] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A predictable SDRAM mem-
ory controller. In 5th IEEE/ACM/IFIP International Conference on Hardware/Soft-

ware Codesign and System Synthesis (CODES+ISSS), pages 251–256, 2007. (Cited
on pages xi, xii, 31, 53, 54, 55, 56, 58, and 59.)

[5] B. Akesson, L. Ste�ens, E. Strooisma, and K. Goossens. Real-time scheduling
using credit-controlled static-priority arbitration. In International Conference on

Embedded and Real-Time Computing Systems and Applications, RTCSA, pages 3–
14, 2008. (Cited on pages 7, 19, and 34.)

[6] B. Akesson, L. Ste�ens, and K. Goossens. E�cient service allocation in hard-
ware using credit-controlled static-priority arbitration. In 2009 15th IEEE Inter-

national Conference on Embedded and Real-Time Computing Systems and Applica-

tions, pages 59–68, 2009. (Cited on page 7.)

[7] B. Akesson, W. Hayes, and K. Goossens. Classi�cation and analysis of predictable
memory patterns. In 16th IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications (RTCSA), pages 367–376, 2010. (Cited
on page 18.)

[8] B. Akesson, A. Minaeva, P. Sucha, A. Nelson, and Z. Hanzalek. An e�cient con-
�guration methodology for time-division multiplexed single resources. In IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
161–171, 2015. (Cited on pages 3, 37, and 45.)

[9] R. Albert, H. Jeong, and A.-L. Barabási. Internet: Diameter of the world-wide web.
Nature, 401(6749):130–131, 1999. (Cited on page 1.)

153

154 bibliography

[10] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer
system modeling. Computer, 35(2):59–67, 2002. (Cited on pages 45 and 76.)

[11] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson, P. Marwedel,
J. Reineke, C. Rochange, M. Sebastian, R. V. Hanxleden, R. Wilhelm, and Y. Wang.
Building timing predictable embedded systems. ACMTrans. Embed. Comput. Syst.,
13(4):82:1–82:37, 2014. (Cited on pages 1, 5, 34, 57, and 130.)

[12] S. Bayliss and G. A. Constantinides. Methodology for designing statically sched-
uled application-speci�c SDRAM controllers using constrained local search. In
International Conference on Field-Programmable Technology, FPT, pages 304–307,
2009. (Cited on pages 32 and 58.)

[13] G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hen-
driks. Uppaal 4.0. In Third International Conference on Quantitative Evaluation of

Systems (QEST), pages 125–126, 2006. (Cited on pages 12, 118, 119, and 147.)

[14] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzla�, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. Tile64
- processor: A 64-core SoC with mesh interconnect. In 2008 IEEE International

Solid-State Circuits Conference - Digest of Technical Papers, pages 88–598, 2008.
(Cited on page 3.)

[15] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In In

Lecture Notes on Concurrency and Petri Nets, Lecture Notes in Computer Science
vol 3098. Springer–Verlag, 2004. (Cited on pages 12, 31, and 117.)

[16] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic integrated schedu-
ling of hard real-time, soft real-time, and non-real-time processes. In Proceedings

of the 24th IEEE Real-Time Systems Symposium, pages 396–407, 2003. (Cited on
pages 1 and 6.)

[17] C. V. Briciu, I. Filip, and F. Heininger. A new trend in automotive software: Au-
tosar concept. In 2013 IEEE 8th International Symposium onApplied Computational

Intelligence and Informatics (SACI), pages 251–256, 2013. (Cited on page 3.)

[18] J. Buck. Static scheduling and code generation from dynamic data�ow graphs
with integer-valued control streams. In Signals, Systems and Computers, 1994.

1994 Conference Record of the Twenty-Eighth Asilomar Conference on, volume 1,
pages 508–513 vol.1, Oct 1994. (Cited on page 95.)

[19] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-

rithms and Applications, volume 24. Springer, 2011. (Cited on page 1.)

bibliography 155

[20] Multi-Protocol LPDDR4/3/DDR4/3 Controller and PHY Subsystem IP. Cadence De-
sign Systems Inc., 2014. (Cited on page 43.)

[21] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee. Response
time analysis of cots-based multicores considering the contention on the shared
memory bus. In 10th IEEE International Conference on Trust, Security and Privacy

in Computing and Communications, pages 1068–1075, 2011. (Cited on page 5.)

[22] R. de Groote, J. Kuper, H. Broersma, and G. J. M. Smit. Max-plus algebraic through-
put analysis of synchronous data�ow graphs. In 38th EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA), pages 29–38, Sept 2012.
(Cited on page 99.)

[23] M. Dev Gomony, B. Akesson, and K. Goossens. Coupling TDM NoC and DRAM
controller for cost and performance optimization of real-time systems. In Design,

Automation and Test in Europe Conference and Exhibition (DATE), pages 1–6, 2014.
(Cited on page 19.)

[24] L. Ecco and R. Ernst. Improved DRAM timing bounds for real-time DRAM con-
trollers with read/write bundling. In IEEE Real-Time Systems Symposium, pages
53–64, 2015. (Cited on pages 33, 66, and 71.)

[25] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst. A mixed critical memory controller
using bank privatization and �xed priority scheduling. In 20th IEEE Interna-

tional Conference on Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), pages 1–10, 2014. (Cited on pages 6, 32, 33, 59, and 93.)

[26] L. Ecco, S. Saidi, A. Kostrzewa, and R. Ernst. Real-time DRAM throughput guaran-
tees for latency sensitive mixed QoS MPSoCs. In 10th IEEE International Sympo-

sium on Industrial Embedded Systems (SIES), pages 1–10, 2015. (Cited on pages 32,
66, 71, and 93.)

[27] M. Geilen. Synchronous data�ow scenarios. ACM Trans. Embed. Comput. Syst.,
10(2):16:1–16:31, 2011. (Cited on page 94.)

[28] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij, B. Theelen,
and M. Mousavi. Throughput analysis of synchronous data �ow graphs. In Sixth

International Conference on Application of Concurrency to System Design, ACSD,
pages 25–36, 2006. (Cited on page 99.)

[29] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele. Timed model checking
with abstractions: Towards worst-case response time analysis in resource-sharing
manycore systems. In Proceedings of the Tenth ACM International Conference on

Embedded Software, EMSOFT, pages 63–72. ACM, 2012. (Cited on page 5.)

156 bibliography

[30] M. D. Gomony, B. Akesson, and K. Goossens. Architecture and optimal con�g-
uration of a real-time multi-channel memory controller. In Design, Automation

Test in Europe Conference Exhibition (DATE), pages 1307–1312, 2013. (Cited on
page 19.)

[31] M. D. Gomony, B. Akesson, and K. Goossens. A real-time multichannel memory
controller and optimal mapping of memory clients to memory channels. ACM

Trans. Embed. Comput. Syst., 14(2):25:1–25:27, 2015. ISSN 1539-9087. (Cited on
pages xiii, 51, 112, and 142.)

[32] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens. A generic,
scalable and globally arbitrated memory tree for shared DRAM access in real-time
systems. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 193–198, 2015. (Cited on pages 19 and 38.)

[33] K. Goossens and A. Hansson. The Aethereal network on chip after ten years:
Goals, evolution, lessons, and future. In Proceedings of the 47th Design Automation

Conference, DAC ’10, pages 306–311. ACM, 2010. (Cited on page 4.)

[34] K. Goossens, O. P. Gangwal, J. Röover, and A. Niranjan. Interconnect-Centric De-
sign for Advanced SoC and NoC, chapter Interconnect and Memory Organization
in SOCs for Advanced Set-Top Boxes and TV, pages 399–423. Springer US, Boston,
MA, 2005. ISBN 978-1-4020-7836-1. (Cited on page 142.)

[35] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens,
M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad, A. Nelson, and S. Sinha.
Virtual execution platforms for mixed-time-criticality systems: The CompSOC ar-
chitecture and design �ow. SIGBED Rev., 10(3):23–34, 2013. (Cited on page 117.)

[36] S. Goossens, T. Kouters, B. Akesson, and K. Goossens. Memory-map selection for
�rm real-time SDRAM controllers. In Design, Automation Test in Europe Confer-

ence Exhibition (DATE), pages 828–831, 2012. (Cited on pages 18, 19, 39, and 45.)

[37] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page policy for
mixed time-criticality memory controllers. In Design, Automation Test in Europe

Conference Exhibition (DATE), pages 525–530, 2013. (Cited on pages 6, 19, 32, 34,
and 59.)

[38] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A recon�gurable real-time
SDRAM controller for mixed time-criticality systems. In International Conference

on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10,
2013. (Cited on page 43.)

bibliography 157

[39] S. Goossens, K. Chandrasekar, B. Akesson, and K. Goossens. Power/performance
trade-o�s in real-time SDRAM command scheduling. IEEE Transactions on Com-

puters, PP(99):1–1, 2015. (Cited on pages 6, 19, 20, 32, 41, 99, 108, 109, 120, 124,
127, 134, and 136.)

[40] S. Goossens, K. Chandrasekar, B. Akesson, and K. Goossens. Memory Controllers

for Mixed-Time-Criticality Systems: Architectures, Methodologies and Trade-o�s.
Embedded Systems Series. Springer, �rst edition edition, 2016. ISBN 978-3-319-
32093-9. (Cited on page 19.)

[41] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer

Systems, 29(7):1645 – 1660, 2013. (Cited on page 1.)

[42] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. Towards WCET analysis
of multicore architectures using uppaal. In 10th International Workshop on Worst-

Case Execution Time Analysis (WCET), 2010. (Cited on page 135.)

[43] F. Hameed, L. Bauer, and J. Henkel. Simultaneously optimizing DRAM cache hit
latency and miss rate via novel set mapping policies. In Proceedings of the 2013

International Conference on Compilers, Architectures and Synthesis for Embedded

Systems (CASES), pages 11:1–11:10, 2013. (Cited on page 20.)

[44] A. Hansson and K. Goossens. A quantitative evaluation of a network on chip
design �ow for multi-core consumer multimedia applications. Design Automation

for Embedded Systems, 15(2):159–190, 2011. (Cited on page 142.)

[45] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Enabling
application-level performance guarantees in network-based systems on chip by
applying data�ow analysis. Computers Digital Techniques, IET, 3(5):398–412, 2009.
ISSN 1751-8601. (Cited on page 93.)

[46] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling DRAM mem-
ory accesses for multi-core mixed-time critical systems. In Real-Time and Embed-

ded Technology and Applications Symposium (RTAS), 2015 IEEE, pages 307–316,
2015. (Cited on pages 3, 59, 93, and 134.)

[47] B. Heidergott, G. J. Olsder, and J. W. v. d. Woude. Max Plus at work : modeling and

analysis of synchronized systems : a course on Max-Plus algebra and its applications.
Princeton series in applied mathematics. Princeton University Press, Princeton
(N.J.), 2006. ISBN 0-691-11763-2. (Cited on page 99.)

[48] I. Hur and C. Lin. Memory scheduling for modern microprocessors. ACM Trans.

Comput. Syst., 25(4), 2007. (Cited on page 32.)

158 bibliography

[49] A. Intrater, M. Doron, G. Intrater, L. Epstein, M. Valentaten, and I. Greiss. Inte-
grated digital signal processor/general purpose CPU with shared internal mem-
ory, May 13 1997. US Patent 5,630,153. (Cited on page 3.)

[50] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana. Self-optimizing memory con-
trollers: A reinforcement learning approach. In Proceedings of the 35th Annual In-

ternational Symposium on Computer Architecture, ISCA, pages 39–50, 2008. (Cited
on page 32.)

[51] B. Jacob, S. Ng, and D. Wang. Memory systems: cache, DRAM, disk. Morgan Kauf-
mann Pub, 2007. (Cited on page 13.)

[52] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and F. Cazorla. A dual-
criticality memory controller (DCmc): Proposal and evaluation of a space case
study. In IEEE Real-Time Systems Symposium (RTSS), pages 207–217, 2014. (Cited
on pages 33, 59, 66, and 71.)

[53] JEDEC. DDR3 SDRAM speci�cation JESD79-3E, 2010. (Cited on pages xiv, 14, 15,
24, 29, 40, 41, 46, 66, 70, 78, 92, 99, 110, 126, 127, 131, 136, and 166.)

[54] L. Karam, I. Alkamal, A. Gatherer, G. A. Frantz, D. V. Anderson, and B. L. Evans.
Trends in multicore DSP platforms. IEEE Signal Processing Magazine, 26(6):38–49,
2009. (Cited on page 3.)

[55] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding
memory interference delay in COTS-based multi-core systems. In Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages
145–154, 2014. (Cited on pages 6, 33, 43, 59, 101, and 135.)

[56] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A predictable
and command-level priority-based DRAM controller for mixed-criticality sys-
tems. In Real-Time and Embedded Technology and Applications Symposium (RTAS),

2015 IEEE, pages 317–326, 2015. (Cited on pages 6, 66, 71, and 135.)

[57] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kan-
demir, and V. Narayanan. Leakage current: Moore’s law meets static power. Com-

puter, 36(12):68–75, 2003. (Cited on page 3.)

[58] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread cluster memory
scheduling. Micro, IEEE, 31(1):78–89, 2011. (Cited on page 32.)

[59] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A case for exploiting subarray-
level parallelism (salp) in dram. In Proceedings of the 39th Annual International

Symposium on Computer Architecture, ISCA’12, pages 368–379, 2012. (Cited on
page 5.)

bibliography 159

[60] P. Kollig, C. Osborne, and T. Henriksson. Heterogeneous multi-core platform for
consumer multimedia applications. In Design, Automation Test in Europe Confer-

ence Exhibition, DATE, pages 1254–1259, 2009. (Cited on pages 1, 3, and 33.)

[61] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applica-

tions. Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1997. (Cited
on page 2.)

[62] M. Krichen and S. Tripakis. 11th International SPIN Workshop on Model Check-

ing Software, chapter Black-Box Conformance Testing for Real-Time Systems,
pages 109–126. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. (Cited on
page 118.)

[63] Y. Krishnapillai, Z. P. Wu, and R. Pellizzoni. A rank-switching, open-row DRAM
controller for time-predictable systems. In 26th Euromicro Conference on Real-

Time Systems (ECRTS), pages 27–38, 2014. (Cited on pages 32, 43, 59, 66, 71,
and 135.)

[64] K. Lampka et al. A formal approach to the WCRT analysis of multicore systems
with memory contention under phase-structured task sets. Real-Time Systems, 50
(5-6):736–773, 2014. (Cited on page 135.)

[65] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a tool for evaluat-
ing and synthesizing multimedia and communications systems. In Proceedings of

the 30th Annual ACM/IEEE International Symposium onMicroarchitecture, MICRO,
pages 330–335, 1997. (Cited on pages 45 and 76.)

[66] E. A. Lee and D. G. Messerschmitt. Synchronous data �ow. Proceedings of the

IEEE, 75(9):1235–1245, 1987. (Cited on page 94.)

[67] A. Lele, O. Moreira, and P. J. Cuijpers. A new data �ow analysis model for TDM.
In Proceedings of the Tenth ACM International Conference on Embedded Software,
EMSOFT ’12, pages 237–246, 2012. (Cited on page 93.)

[68] A. Lele, O. Moreira, and K. van Berkel. FP-scheduling for mode-controlled
data�ow: A case study. In Design, Automation Test in Europe Conference Exhi-

bition (DATE), pages 1257–1260, 2015. (Cited on pages 92, 98, 107, and 115.)

[69] Y. Li, B. Akesson, and K. Goossens. Dynamic command scheduling for real-time
memory controllers. In 26th Euromicro Conference on Real-Time Systems (ECRTS),
pages 3–14, 2014. (Cited on pages 59, 79, 93, 121, and 136.)

[70] Y. Li, B. Akesson, and K. Goossens. RTMemController: Open-source
WCET and ACET analysis tool for real-time memory controllers.
http://www.es.ele.tue.nl/rtmemcontroller/, 2014. (Cited on pages xii, 8, 10,
44, 58, 63, 72, 75, 76, 77, 78, 118, 135, 136, and 147.)

160 bibliography

[71] Y. Li, H. Salunkhe, J. Bastos, O. Moreira, B. Akesson, and K. Goossens. Mode-
controlled data-�ow modeling of real-time memory controllers. In 13th IEEE

Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia), pages
1–10, 2015. (Cited on pages 134 and 143.)

[72] Y. Li, B. Akesson, and K. Goossens. Architecture and analysis of a dynamically-
scheduled real-time memory controller. Real-Time Systems, 52(5):675–729, 2016.
(Cited on pages 29, 34, 59, 79, 93, 121, 124, 134, 135, and 142.)

[73] Y. Li, B. Akesson, K. Lampka, and K. Goossens. Timed automata
model of a dynamically-scheduled real-time memory controller.
http://www.es.ele.tue.nl/rtmemcontroller/TA.zip, 2016. (Cited on pages 8
and 120.)

[74] W.-F. Lin, S. Reinhardt, and D. Burger. Reducing DRAM latencies with an inte-
grated memory hierarchy design. In Seventh International Symposium on High-

Performance Computer Architecture (HPCA), pages 301–312, 2001. (Cited on
page 20.)

[75] M. Lv, W. Yi, N. Guan, and G. Yu. Combining abstract interpretation with model
checking for timing analysis of multicore software. In Real-Time Systems Sympo-

sium (RTSS), 2010 IEEE 31st, pages 339–349, 2010. (Cited on page 135.)

[76] M. Mehendale, S. Das, M. Sharma, M. Mody, R. Reddy, J. Meehan, H. Tamama,
B. Carlson, and M. Polley. A true multistandard, programmable, low-power, full
HD video-codec engine for smartphone SoC. In 2012 IEEE International Solid-State

Circuits Conference, pages 226–228, 2012. (Cited on page 3.)

[77] A. Minaeva, P. Šůcha, B. Akesson, and Z. Hanzálek. Scalable and e�cient con�g-
uration of time-division multiplexed resources. Journal of Systems and Software,
113:44 – 58, 2016. (Cited on pages 3, 6, and 45.)

[78] S. K. Mitra and Y. Kuo. Digital signal processing: a computer-based approach, vol-
ume 2. McGraw-Hill New York, 2006. (Cited on page 3.)

[79] O. Moreira and H. Corporaal. Scheduling Real-Time Streaming Applications Onto

an Embedded Multiprocessor. Springer, 2014. (Cited on pages 11, 31, 91, 92, 93, 95,
97, 109, 147, and 149.)

[80] A. Nelson, K. Goossens, and B. Akesson. Data�ow formalisation of real-time
streaming applications on a composable and predictable multi-processor {SOC}.
Journal of Systems Architecture, 61(9):435 – 448, 2015. (Cited on pages 5, 93,
and 117.)

bibliography 161

[81] C. Norstrom, A. Wall, and W. Yi. Timed automata as task models for event-driven
systems. In Sixth International Conference on Real-Time Computing Systems and

Applications (RTCSA), pages 182–189, 1999. (Cited on pages 118 and 135.)

[82] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures
in avionics. In 2012 Ninth European Dependable Computing Conference (EDCC),
pages 132–143, 2012. (Cited on page 3.)

[83] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron. The rosace case study:
From simulink speci�cation to multi/many-core execution. In 2014 IEEE 19th

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
309–318, April 2014. (Cited on page 2.)

[84] M. Paolieri, E. Quiñones, F. J. Cazorla, and M. Valero. An analyzable memory
controller for hard real-time CMPs. Embedded Systems Letters, IEEE, 1(4), 2009.
(Cited on page 59.)

[85] M. Paolieri, E. Quiñones, and F. J. Cazorla. Timing e�ects of DDR memory sys-
tems in hard real-time multicore architectures: Issues and solutions. ACM Trans.

Embed. Comput. Syst., 12(1):64:1–64:26, 2013. (Cited on pages 6, 19, 32, and 59.)

[86] Qualcomm. Snapdragon S4 processors: System on chip solutions for a new mobile

age. Qualcomm White Paper, 2011. (Cited on page 3.)

[87] N. Ra�que, W.-T. Lim, and M. Thottethodi. E�ective management of DRAM band-
width in multicore processors. In 16th International Conference on Parallel Ar-

chitecture and Compilation Techniques (PACT), pages 245–258, 2007. (Cited on
page 93.)

[88] J. Reineke, I. Liu, H. Patel, S. Kim, and E. Lee. PRET DRAM controller: Bank
privatization for predictability and temporal isolation. In 9th International Con-

ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages
99–108, 2011. (Cited on pages 6, 32, 59, 66, 93, and 134.)

[89] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web service modeling ontology. Appl. Ontol.,
1(1):77–106, Jan. 2005. (Cited on page 2.)

[90] H. Salunkhe, O. Moreira, and K. van Berkel. Mode-controlled data�ow based
modeling & analysis of a 4G-LTE receiver. In Design, Automation and Test in

Europe Conference and Exhibition (DATE), pages 1–4, 2014. (Cited on pages 92
and 115.)

[91] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared resource load for
the performance analysis of multiprocessor systems. In Design, Automation Test

in Europe Conference Exhibition (DATE), pages 759–764, 2010. (Cited on page 5.)

162 bibliography

[92] H. Shah, A. Raabe, and A. Knoll. Bounding WCET of applications using SDRAM
with priority based budget scheduling in MPSoCs. In Design, Automation Test in

Europe Conference Exhibition (DATE), pages 665–670, 2012. (Cited on page 32.)

[93] H. Shah, A. Knoll, and B. Akesson. Bounding sdram interference: Detailed anal-
ysis vs. latency-rate analysis. In Design, Automation Test in Europe Conference

Exhibition (DATE), pages 308–313, 2013. (Cited on page 122.)

[94] J. Shen, A. Varbanescu, Y. Lu, P. Zou, and H. Sips. Workload partitioning for ac-
celerating applications on heterogeneous platforms. IEEE Transactions on Parallel
and Distributed Systems, PP(99):1–1, 2015. (Cited on page 4.)

[95] F. Siyoum, M. Geilen, O. Moreira, and H. Corporaal. Worst-case throughput anal-
ysis of real-time dynamic streaming applications. In Proceedings of the Eighth

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-

tem Synthesis, CODES+ISSS ’12, pages 463–472, 2012. (Cited on page 149.)

[96] R. Stefan, A. Molnos, and K. Goossens. dAElite: A TDM NoC supporting QoS,
multicast, and fast connection set-up. IEEE Transactions on Computers, 63(3):583–
594, 2014. (Cited on page 19.)

[97] A. Stevens. "QoS for High-Performance and Power-E�cient HD Multimedia". ARM
White paper, 2010. (Cited on page 33.)

[98] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In 6th International

Conference on Application of Concurrency to System Design, ACSD, pages 276–278.
http://www.es.ele.tue.nl/sdf3, 2006. (Cited on pages 91 and 149.)

[99] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware data�ow: Model-
ing, analysis and implementation of dynamic applications. In 2011 International

Conference on Embedded Computer Systems (SAMOS), pages 404–411, 2011. (Cited
on page 4.)

[100] SURFsara. https://www.surf.nl/en/about-surf/subsidiaries/surfsara. (Cited on
page 141.)

[101] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V. Gheorghita, and
S. Stuijk. A scenario-aware data �ow model for combined long-run average and
worst-case performance analysis. In Fourth ACM and IEEE International Confer-

ence on Formal Methods and Models for Co-Design, MEMOCODE, pages 185–194,
2006. (Cited on page 149.)

[102] H. Usui, L. Subramanian, K. K.-W. Chang, and O. Mutlu. Dash: Deadline-aware
high-performance memory scheduler for heterogeneous systems with hardware
accelerators. ACM Trans. Archit. Code Optim., 12(4):65:1–65:28, 2016. (Cited on
page 3.)

bibliography 163

[103] C. H. K. van Berkel. Multi-core for mobile phones. In Proceedings of the Conference

on Design, Automation and Test in Europe, DATE, pages 1260–1265, 2009. (Cited
on page 3.)

[104] K. W., C. H., C. H.-D., , and K. Y. Enjoy the ultimate WQXGA solution with Exynos

5 Dual. Samsung Electronics White Paper, 2012. (Cited on page 3.)

[105] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob. DRAM-
sim: A memory system simulator. SIGARCH Comput. Archit. News, 33:100–107,
2005. (Cited on page 32.)

[106] W. Wang, P. Mishra, and A. Gordon-Ross. Dynamic cache recon�guration for
soft real-time systems. ACM Trans. Embed. Comput. Syst., 11(2):28:1–28:31, 2012.
(Cited on page 2.)

[107] Z. P. Wu, Y. Krish, and R. Pellizzoni. Worst case analysis of DRAM latency in
multi-requestor systems. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th,
pages 372–383, 2013. (Cited on pages 32, 59, 66, and 71.)

[108] Z. P. Wu, R. Pellizzoni, and D. Guo. A composable worst case latency analysis for
multi-rank dram devices under open row policy. Real-Time Systems, pages 1–47,
2016. (Cited on pages 17 and 152.)

[109] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control
in multiprocessor for real-time systems with mixed criticality. In 24th Euromicro

Conference on Real-Time Systems (ECRTS), pages 299–308, 2012. (Cited on pages 5
and 93.)

[110] H. Yun, R. Pellizzoni, and P. Valsan. Parallelism-aware memory interference delay
analysis for COTS multicore systems. In 27th Euromicro Conference on Real-Time

Systems (ECRTS), pages 184–195, 2015. (Cited on page 33.)

A
P R O O F O F L E M M A S

a.1 proof of lemma 1

Proof. To prove Lemma 1 that states the �nishing time of a transaction is only deter-
mined by either the �nishing time of the previous transaction, or the scheduling time of
its ACT commands, we only need to iteratively compute the scheduling time of its RD
or WR commands and �nally obtain the scheduling time of the last RD or WR command,
which is de�ned as the �nishing time of the transaction by De�nition 5.

For an arbitrary transaction Ti (i ≥ 0) that has BIi and BCi, its �nishing time tf (Ti)

is shown in Eq. (A.1), which is the scheduling time of its last RD or WR (named RW)
command.

tf (Ti) = t(RWBCi−1
j+BIi−1) (A.1)

According to Eq. (4.3) that gives the scheduling of a RW command, the scheduling time
of the last RW command in Eq. (A.1) is given by Eq. (A.2). We see that this is determined
by the scheduling time of the �rst RW to the same bank.

t(RWBCi−1
j+BIi−1) = t(RW0

j+BIi−1) + (BCi − 1) × tCCD (A.2)

Eq. (4.2) provides the scheduling time of the �rst RW command to a bank, which is
determined by either the scheduling time of the ACT command to the same bank due
to tRCD, or that of the previously scheduled RW command for the same transaction be-
cause of tCCD, which is the last command to the previous bank. As a result, t(RW0

j+BIi−1)
in Eq. (A.2) is derived based on Eq. (4.2), and is shown in Eq. (A.3).

t(RW0
j+BIi−1) = max{t(ACTj+BIi−1) + tRCD, t(RWBCi−1

j+BIi−2) + tCCD} (A.3)

We proceed by combining Eq. (A.1), (A.2) and (A.3) to obtain a new expression of the
�nishing time, as given by Eq. (A.4).

tf (Ti) = max{t(ACTj+BIi−1) + tRCD + (BCi − 1) × tCCD,
t(RWBCi−1

j+BIi−2) + BCi × tCCD}
(A.4)

In the same way, we can compute t(RWBCi−1
j+BIi−2) in Eq. (A.4), and it can be further ex-

pressed by t(ACTj+BIi−2) and t(RWBCi−1
j+BIi−3). We iteratively substitute the scheduling time

165

166 bibliography

of the last RW command to each bank of transaction Ti, and Eq. (A.5) is derived, which
consists of BIi number of terms.

tf (Ti) = Max
1≤l≤BIi−1

{t(RWBCi−1
j

) + (BIi − 1) × BCi × tCCD,

t(ACTj+l) + tRCD + [(BIi − l) × BCi − 1] × tCCD}
(A.5)

We proceed by substituting t(RWBCi−1
j

) in Eq. (A.5) with the scheduling time of the �rst
RW to the same bank, which is given by Eq. (A.6), and is derived according to Eq. (4.3).

t(RWBCi−1
j

) = t(RW0
j
) + (BCi − 1) × tCCD (A.6)

Furthermore, t(RW0
j
) in Eq. (A.6) can be computed based on Eq. (4.2). As a result, Eq. (A.7)

is obtained. Note that tf (Ti−1) is the �nishing time of the previous transaction Ti−1 that is
also the scheduling time of the last RW command of the previous bank. It was scheduled
just before RW0

j
and the timing constraint between them is tSwitch (given by Eq. (3.2)).

t(RW0
j
) = max{t(ACTj) + tRCD, tf (Ti−1) + tSwitch} (A.7)

By combining Eq. (A.5), (A.6) and (A.7), Eq. (A.8) is derived.

tf (Ti) = Max
0≤l≤BIi−1

{tf (Ti−1) + tSwitch + (BIi × BCi − 1) × tCCD,

t(ACTj+l) + tRCD + [(BIi − l) × BCi − 1] × tCCD}
(A.8)

Hence, for ∀l ∈ [0,BIi − 1], tf (Ti) is expressed by Eq. (A.8). It indicates that tf (Ti)
only depends on the scheduling times of its ACT commands, the �nishing time of Ti−1,
the memory map con�guration in terms of BIi and BCi and the JEDEC-speci�ed timing
constraints, which are constant values. �

a.2 proof of lemma 2

Proof. For ∀l ∈ (bcom,BIi − 1], the scheduling time of the command ACTj+l to bank
bj + l can be obtained from Eq. (4.1). It indicates t(ACTj+l) is determined by t(ACTj+l−1),
t(ACTj+l−4) or t(PREm), where m was the latest bank access number to bank bj + l be-
fore Ti. This lemma can be proved by simplifying Eq. (4.1) to derive the scheduling
time of ACTj+l, which is �nally given by Eq. (A.18). First, a simpli�ed Eq. (A.9) is ob-
tained because of the dominance of t̂(ACTj+l−1) in this case. We proceed by explaining
its derivation.

t̂(ACTj+l) =max{t̂(ACTj+l−1) + tRRD, t̂(PREm) + tRP,
t̂(ACTj+l−4) + tFAW} + C(j + l)

=t̂(ACTj+l−1) + tRRD + C(j + l)

(A.9)

bibliography 167

t̂(ACTj+l−1) dominates in the max{} of Eq. (A.9). We demonstrate this by showing
two relations between the terms in the expression: i) t̂(ACTj+l−1) > t̂(PREm) + tRP. For
∀l > bcom, Eq. (4.1) is employed to derive Eq. (A.10), which shows a later bank access
(larger l) has a larger scheduling time of the ACT command. This is intuitive since the
scheduling algorithm (Algorithm 2) schedules ACT commands in order.

BIi − 1 ≥ ∀l > bcom =⇒ t̂(ACTj+l−1) ≥ t̂(ACTj+bcom) (A.10)

The command ACTj+bcom is scheduled to bank bj + bcom = bj−1 that is the �nishing bank
of Ti−1. As a result, Eq. (A.11) is derived on the basis of Eq. (4.1). It simply states that a
bank cannot be activated until it has been precharged.

bj + bcom = bj−1 =⇒ t̂(ACTj+bcom) ≥ t̂(PREj−1) + tRP (A.11)

Moreover, the precharge of a bank is triggered by the auto-precharge �ag appended to
a RD or WR command, which is issued sequentially. Therefore, banks are precharged in
the order of bank accesses, resulting in Eq. (A.12), where the latest access number m for
bank bj + l is smaller than the latest bank access number j − 1. Finally, by substituting
Eq. (A.10), (A.11) and (A.12), we can prove the relation that t̂(ACTj+l−1) > t̂(PREm) + tRP.

∀m < j − 1 =⇒ t̂(PREj−1) > t̂(PREm) (A.12)

ii) t̂(ACTj+l−1) > t̂(ACTj+l−4) + tFAW. According to Eq. (4.4), we can obtain Eq. (A.13),
which shows that the precharging time of a bank is after issuing the last RD or WR

command of a transaction to the same bank.

t̂(PREj−1) ≥ t̂(RWBCi−1−1
j−1) + tRWTP (A.13)

With Eq. (4.2) and (4.3) that capture the timing dependencies for a RD or WR command,
Eq. (A.14) is derived and it indicates that the last RD or WR command of a transaction
to a bank is scheduled later than the ACT command to the same bank.

t̂(RWBCi−1−1
j−1) ≥ t̂(ACTj−1) + tRCD + (BCi−1 − 1) × tCCD (A.14)

Since ACT commands are scheduled in order by Algorithm 2, the previously scheduled
command ACTj+l−4 (l < 4) was not scheduled later than that of ACTj−1. We can get
Eq. (A.15).

∀l < 4 =⇒ t̂(ACTj−1) ≥ t̂(ACTj+l−4) (A.15)

By combining Eq. (A.13), (A.14), and (A.15), Eq. (A.16) is derived.

t̂(PREj−1) ≥ t̂(ACTj+l−4) + tRCD + (BCi−1 − 1) × tCCD + tRWTP (A.16)

168 bibliography

We now proceed by obtaining Eq. (A.17) based on the combination of Eq. (A.10), (A.11),
and (A.16). Moreover, we can observe tFAW ≤ tRC = tRAS + tRP ≤ tRCD + tRWTP +

tRP for all DDR3 devices from the JEDEC DDR3 timing constraints [53]. Therefore,
t̂(ACTj+l−1) > t̂(ACTj+l−4) + tFAW according to Eq. (A.17), proving the second relation.

t̂(ACTj+l−1) > t̂(ACTj+l−4) + tRCD + (BCi−1 − 1) × tCCD + tRWTP + tRP (A.17)

With the above two reasons, the simpli�ed equation is given by Eq. (A.9). It indicates
the scheduling time of ACTj+l is only determined by that of the previous ACTj+l−1. Based
on Eq. (A.9) and ∀l ∈ (bcom,BIi − 1], we can get Eq. (A.18), which shows the scheduling
time of ACTj+l depends on that of ACTj+bcom . Note that ACTj+bcom was scheduled to the
last bank bj−1 of Ti−1.

t̂(ACTj+l) = t̂(ACTj+bcom) + [l − bcom] × tRRD +
l∑

l
′=bcom+1

C(j + l′) (A.18)

�

a.3 proof of lemma 3

Proof. To prove the lemma, we have to separate the problem into two pieces by ana-
lyzing the scheduling of commands for Ti to common banks with Ti−1 and to the non-
common banks, respectively. Since Lemma 2 implies the scheduling of ACT commands
to non-common banks is only determined by the scheduling of the ACT command for
Ti to the last common bank, we only need to prove the �rst piece that the scheduling
of ACT commands to common banks is only dependent on Ti−1 in the worst case. The
common banks have been accessed by Ti−1, resulting in worst-case initial bank state
for Ti because of the timing dependencies. Moreover, when BIi−1 < 4, the scheduling
of an ACT command for Ti may be determined by the ACT commands of earlier trans-
actions, e.g., Ti−2 or Ti−3, through the tFAW timing constraint. We hence only need to
prove that these earlier ACT commands cannot dominate in the initial bank state given
by the ALAP command scheduling of Ti−1. Note that BIi−1 ≥ 4 ensures that there were
at least four ACT commands for Ti−1. As a result, the command scheduling of Ti is only
dependent on that of Ti−1 when BIi−1 ≥ 4. So, the following only considers BIi−1 < 4.

We proceed by proving that the scheduling of ACT commands for Ti to common
banks is only dependent on Ti−1. For a common bank bj + l between Ti−1 and Ti where
∀l ∈ [0, bcom], the scheduling time of its ACT command ACTj+l is obtained from Eq. (4.1)
and is shown in Eq. (A.19), which indicates that t̂(ACTj+l) depends on the scheduling
time t̂(ACTj+l−1) of the previous ACT, the scheduling time t̂(PREj−1−(bcom−l)) of the lat-
est PRE to bank bj + l and the scheduling time t̂(ACTj+l−4) of the fourth previous ACT
command (due to tFAW). Note that j− 1− (bcom − l) is the latest access number to bank
bj + l according to the ALAP command scheduling of Ti−1. For example, if l = bcom, bank

bibliography 169

bj + l = bj + bcom is the last common bank between Ti−1 and Ti, where its latest access
number is j − 1. Since ACTj+l−1 is a command for Ti or Ti−1 (l = 0) while PREj−1−(bcom−l)
was for Ti−1, only ACTj+l−4 is possible to be a command for earlier transactions, e.g.,
Ti−2 or Ti−3, if BIi−1 < 4. To prove the lemma, we only need to prove t̂(ACTj+l−4) does
not dominate in the max{} of Eq. (A.19), which is then further simpli�ed as shown in
Eq. (A.19).

t̂(ACTj+l) =max{t̂(ACTj+l−1) + tRRD, t̂(PREj−1−(bcom−l)) + tRP,
t̂(ACTj+l−4) + tFAW} + C(j + l)

=max{t̂(ACTj+l−1) + tRRD, t̂(PREj−1−(bcom−l)) + tRP}

+ C(j + l)

(A.19)

For ∀l < 4 − BIi−1, ACTj+l−4 is a command for earlier transactions, e.g., Ti−2 or Ti−3
when BIi−1 < 4. We proceed by computing the scheduling time of ACTj+l−4 based on
the ALAP scheduling time of ACT commands for Ti−1, which are given by Eq. (4.7). In
particular, the possible maximum scheduling time of the �rst ACT command of Ti−1 is
obtained by using Eq. (4.7), which is shown in Eq. (A.20).

t̂(ACTj−1−(BIi−1−1)) =t̂s (Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD
− (BIi−1 − 1) ×max{tRRD,BCi−1 × tCCD}

(A.20)

By conservatively using the minimum time interval tRRD between two successive ACT
commands, Eq. (A.21) is derived, which provides the possible maximum scheduling time
of ACTj+l−4. Moreover, by substituting Eq. (A.20) into Eq. (A.21), an explicit expression
of t̂(ACTj+l−4) is obtained.

t̂(ACTj+l−4) =t̂(ACTj−1−(BIi−1−1)) − (4 − l − BIi−1) × tRRD

=t̂s (Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD
− (BIi−1 − 1) ×max{tRRD,BCi−1 × tCCD}

− (4 − l − BIi−1) × tRRD

(A.21)

In order to prove that t̂(ACTj+l−4) + tFAW cannot dominate in the max{} of Eq. (A.19), we
only need to prove that t̂(ACTj+l−4)+ tFAW ≤ t̂(PREj−1−(bcom−l))+ tRP. Since t̂(PREj−1−(bcom−l))
is given by Eq. (4.8) with assumption that Ti−1 is write while t̂(ACTj+l−4) is provided by
Eq. (A.21), Eq. (A.22) is derived.

t̂(PREj−1−(bcom−l)) + tRP − [t̂(ACTj+l−4) + tFAW]

= t̂s (Ti) − 1 + tRWTP − (bcom − l) × BCi−1 × tCCD + tRP

− [t̂s (Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD − (BIi−1 − 1)
×max{tRRD,BCi−1 × tCCD} − (4 − l − BIi−1) × tRRD + tFAW]

= tRWTP − (bcom − l) × BCi−1 × tCCD + tRP + tRCD

+ (BCi−1 − 1) × tCCD + (BIi−1 − 1) ×max{tRRD,BCi−1 × tCCD}

+ (4 − l − BIi−1) × tRRD − tFAW

(A.22)

170 bibliography

The result of this equation is non-negative, as the positive terms in Eq. (A.22) cancel
out all the negative ones for the following four reasons: 1) max{tRRD, BCi−1 × tCCD} ≥
BCi−1 × tCCD. 2) bcom − l ≤ BIi−1 − 1 since ∀l ∈ [0, bcom] and bcom = min{BIi−1,BIi} − 1. 3)
the observation from JEDEC DDR3 timing constraints that tFAW ≤ tRWTP+ tRP+ tRCD

for all DDR3 memories with write transaction. 4) l < 4−BIi−1 from the above discussion.
Therefore, t̂(PREj−1−(bcom−l)) + tRP ≥ t̂(ACTj+l−4) + tFAW, which indicates t(ACTj+l−4)
cannot dominate in the max{} of Eq. (A.19). These earlier ACT commands (ACTj+l−4)
hence cannot dominate in the scheduling of the ACT commands for Ti because of tFAW
in the worst case. Thus, Eq. (A.19) guarantees that the scheduling of ACT commands
for Ti only depends on the maximum possible scheduling time of the previous PRE for
Ti−1 in the worst case or ACTj+l−1 that belongs to Ti−1 for l=0. We can conclude that the
ALAP command scheduling of the previous write transaction Ti−1 is su�cient to give
worst-case initial bank state to Ti. �

a.4 proof of lemma 4

Proof. According to Lemma 1, the �nishing time of a transaction Ti is determined by
the �nishing time of the previous transaction Ti−1 and the scheduling time of all its
ACT commands. Therefore, the worst-case �nishing time of Ti is obtained by using
the worst-case scheduling time (maximum) of its ACT commands, and the maximum
�nishing time of Ti−1 that is t̂f (Ti−1) = t̂s (Ti) − 1 based on Eq. (4.5), where we �x the
worst-case starting time t̂s (Ti) of Ti.

We proceed by obtaining the worst-case scheduling time of the ACT commands for
Ti. Without loss of generality, Ti has BIi and BCi while Ti−1 uses BIi−1 and BCi−1. The
current bank access number is j, and the starting bank of Ti is bj, while the �nishing
bank of Ti−1 is bj−1. This results in bcom = bj−1 − bj. For ∀l ∈ [0,BIi − 1], the worst-case
scheduling time of the ACT command to bank bj + l is denoted by t̂(ACTj+l). It can be
computed with two cases that l ∈ [0, bcom] and l ∈ (bcom,BIi − 1], respectively.

For ∀l ∈ [0, bcom], the ACTj+l command is scheduled to bank bj + l that is a common
bank between Ti and Ti−1. Lemma 3 guarantees that the ALAP scheduling of commands
for the write transaction Ti−1 is su�cient to provide the worst-case initial bank state
for Ti. As a result, the worst-case scheduling time t̂(ACTj+l) can be obtained based on
this worst-case initial states. Eq. (A.19) is hence used to compute t̂(ACTj+l), which indi-
cates that the scheduling time of ACTj+l is either determined by its previous ACTj+l−1
or the latest precharge, PREj−1−(bcom−l) , to the same bank. By iteratively using Eq. (A.19)
to obtain the scheduling time of each ACT command to the common banks, we can de-
rive a new expression of the scheduling time of ACTj+l that is given by Eq. (A.23). Note

bibliography 171

that ∀l′ ∈ [0, l] indexes a bank (bj + l′) that is not accessed later than bank bj + l, since
bj + l

′ ≤ bj + l.

t(ACTj+l) = Max
0≤∀l′≤l

{t(ACTj−1) + (l + 1) × tRRD +
l∑

h=0
C(j + h),

t(PRE
j−1−(bcom−l′)) + tRP + (l − l′) × tRRD +

l∑
h=l′

C(j + h)}

(A.23)

t(ACTj−1) in Eq. (A.23) is the scheduling time of the last ACT command for Ti−1. Accord-
ing to ALAP scheduling, the worst-case scheduling time t̂(ACTj−1) can be derived based
on Eq. (4.7), and it is given by Eq. (A.24).

t̂(ACTj−1) = t̂s (Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD (A.24)

Moreover, the worst-case scheduling time of PRE
j−1−(bcom−l′) to the common bank bj + l

′

based onALAP scheduling is given by Eq. (4.8). Therefore, by substituting t(ACTj−1) and
t(PRE

j−1−(bcom−l′)) in Eq. (A.23) with their worst-case scheduling time given by Eq. (A.24)
and Eq. (4.8), we can obtain the worst-case scheduling time of ACTj+l, as shown in
Eq. (A.25).

t̂(ACTj+l) = Max
0≤l′≤l≤bcom

{t̂s (Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD

+ (l + 1) × tRRD +
l∑

h=0
C(j + h),

t̂s (Ti) − 1 + tRWTP − (bcom − l
′) × BCi−1 × tCCD

+ tRP + (l − l′) × tRRD +
l∑

h=l′

C(j + h)}

(A.25)

For ∀l ∈ (bcom,BIi − 1], the ACTj+l command is scheduled to the non-common bank
bj + l. Since Lemma 2 ensures that the scheduling time of an ACT command to a non-
common bank is only determined by that of the ACT command to the last common
bank, Eq. (A.18) is used to compute t(ACTj+l), and it is only dependent on t(ACTj+bcom).
Eq. (A.25) is used to compute the worst-case scheduling time t(ACTj+bcom), which is
further substituted into Eq. (A.18). Hence, t̂(ACTj+l) is also derived when∀l ∈ (bcom,BIi −
1].

Finally, we can use t̂f (Ti−1) = t̂s (Ti) − 1 and t̂(ACTj+l) to derive the worst-case �n-
ishing time t̂f (Ti) of Ti based on Lemma 1 (described by Eq. (A.8)). It is described by
Eq. (A.26), where ∀l′[0, bcom] and ∀l ∈ [l′,BIi − 1]. Intuitively, Eq. (A.26) illustrates that

172 bibliography

the worst-case �nishing time of a transaction is dependent on the precharging time of
the common banks with the previous write transaction.

t̂f (Ti) = Max
0≤l′≤bcom ,l′≤l≤BIi−1

{t̂s (Ti) − 1 − (BCi−1 − 1) × tCCD

+ (l + 1) × tRRD + [(BIi − l) × BCi − 1] × tCCD +
l∑

h=0
C(j + h),

t̂s (Ti) − 1 + tRWTP − (bcom − l
′) × BCi−1 × tCCD + tRP + tRCD

+ (l − l′) × tRRD + [(BIi − l) × BCi − 1] × tCCD +
l∑

h=l′

C(j + h),

t̂s (Ti) − 1 + tSwitch + (BIi × BCi − 1) × tCCD}

(A.26)

�

a.5 proof of theorem 1

Proof. Since Lemma 4 provides the worst-case �nishing time of a transaction Ti, we can
hence compute the worst-case execution time (WCET) according to De�nition 7. Then
we only need to simplify the expressions in the equation and obtain the WCET.

Lemma 4 indicates that the worst-case �nishing time t̂f (Ti) depends on its worst-case
starting time t̂s (Ti), the BI and BC used by Ti−1 and Ti, and the JEDEC DDR3 timing
constraints. According to De�nition 7, the WCET is the time between t̂s (Ti) and t̂f (Ti),
and is given by Eq. (A.27).

t̂ET (Ti) = t̂f (Ti) − t̂s (Ti) + 1 (A.27)

Based on Eq. (A.26) that gives the worst-case �nishing time, we further obtain Eq. (A.28)
according to Eq. (A.27) by moving t̂s (Ti) − 1 from the right side to the left of Eq. (A.26).

t̂ET (Ti) = Max
0≤l′≤bcom ,l′≤l≤BIi−1

{−(BCi−1 − 1) × tCCD

+ (l + 1) × tRRD + [(BIi − l) × BCi − 1] × tCCD +
l∑

h=0
C(j + h),

tRWTP − (bcom − l
′) × BCi−1 × tCCD + tRP + tRCD

+ (l − l′) × tRRD + [(BIi − l) × BCi − 1] × tCCD +
l∑

h=l′

C(j + h),

tSwitch + (BIi × BCi − 1) × tCCD}

(A.28)

bibliography 173

Since we conservatively assume there is always scheduling collisions for ACT com-
mands, i.e., C(j + h) = 1, Eq. (A.28) can be simpli�ed based on ∑l

h=0 C(j + h) = l + 1
and ∑l

h=l′
C(j + h) = l − l′ + 1, as shown in Eq. (A.29).

t̂ET (Ti) = Max
0≤l′≤bcom ,l′≤l≤BIi−1

{(BIi × BCi − BCi−1) × tCCD

+ l × (tRRD + 1 − BCi × tCCD) + tRRD + 1,
tRWTP + tRP + tRCD + [BIi × BCi − 1 − bcom × BCi−1] × tCCD + 1
+ l′ × (BCi−1 × tCCD − tRRD − 1) + l × (tRRD + 1 − BCi × tCCD),
tSwitch + (BIi × BCi − 1) × tCCD}

(A.29)

We can observe from Eq. (A.29) that the expressions in the max{} function either linearly
increase or decrease with l and l

′. Therefore, Eq. (A.29) can be further simpli�ed to
obtain t̂ET (Ti) by using both the maximum and minimum values of l and l′ in the max{} of
Eq. (A.29). Since ∀l′[0, bcom] and ∀l ∈ [l′,BIi − 1], we substitute (l′, l) with (0, 0), (0,BIi −
1), (bcom, bcom), and (bcom,BIi − 1) in all the terms of the max{} in Eq. (A.29). t̂ET (Ti) is
further given by Eq. (A.30). Note that some of the terms are removed, since they cannot
dominate in the max{} when deriving Eq. (A.30).

t̂ET (Ti) = max{(BIi × BCi − BCi−1) × tCCD

+ (BIi − 1) × (tRRD + 1 − BCi × tCCD) + tRRD + 1,
tRWTP + tRP + tRCD + [BIi × BCi − 1 − bcom × BCi−1] × tCCD + 1,
tRWTP + tRP + tRCD + [(BIi − bcom) × BCi − 1] × tCCD + 1,
tRWTP + tRP + tRCD + [BCi − 1 − bcom × BCi−1] × tCCD

+ (BIi − 1) × (tRRD + 1) + 1,
tRWTP + tRP + tRCD + (BCi − 1) × tCCD
+ [BIi − 1 − bcom] × (tRRD + 1) + 1,
tSwitch + (BIi × BCi − 1) × tCCD}

(A.30)

Note that bcom = bj−1 − bj and is determined by the size of Ti−1 and Ti, whichever is
smaller, i.e., bcom = min{BIi−1,BIi} − 1. Moreover, some of the expressions in the max{}
of Eq. (A.30) are further simpli�ed according to the observation from JEDEC DDR3

174 bibliography

timing constraints that tSwitch > tRRD + 1 when Ti−1 is a write. The simpli�ed t̂ET (Ti)

is �nally shown in Eq. (A.31).

t̂ET (Ti) = max{(BCi − BCi−1) × tCCD + BIi × (tRRD + 1),
tRWTP + tRP + tRCD + 1
+ [BIi × BCi − 1 − (min{BIi−1,BIi} − 1) × BCi−1] × tCCD,
tRWTP + tRP + tRCD + 1
+ [(BIi − (min{BIi−1,BIi} − 1)) × BCi − 1] × tCCD,
tRWTP + tRP + tRCD + (BIi − 1) × (tRRD + 1) + 1
+ [BCi − 1 − (min{BIi−1,BIi} − 1) × BCi−1] × tCCD,
tRWTP + tRP + tRCD + (BCi − 1) × tCCD
+ [BIi −min{BIi−1,BIi}] × (tRRD + 1) + 1,
tSwitch + (BIi × BCi − 1) × tCCD}

(A.31)

�

a.6 proof of theorem 2

Proof. To prove the WCET of a transaction provided by Theorem 1 monotonically in-
creases with its size, it is only necessary to prove that the WCET monotonically in-
creases with its BI and BC. The WCET of Ti is given by Theorem 1 (i.e., Eq. (A.31)). We
can see that the WCET, t̂ET (Ti), is determined by one of the 6 expressions in the max{}
function, which are all also functions of BIi and BCi. These 6 expressions are denoted
by expr1 to expr6, respectively, corresponding to the expressions from top to bottom in
Eq. (A.31). We proceed by proving the monotonicity for each of them.

Expression 1:
Since expr1(BIi,BCi) = (BCi − BCi−1) × tCCD + BIi × (tRRD + 1), BI′

i
≤ BIi ∧ BC

′
i
≤

BCi =⇒ expr1(BIi,BCi) ≥ expr1(BI′
i
,BC′

i
).

Expression 2:
expr2(BIi,BCi) = tRWTP + tRP + tRCD + 1 + [BIi × BCi − 1 − (min{BIi−1,BIi} − 1) ×

BCi−1] × tCCD.
Case 1: BIi ≤ BIi−1,
BIi ≤ BIi−1 =⇒ expr2(BIi,BCi) = tRWTP + tRP + tRCD + 1 + [BIi × (BCi − BCi−1) +

BCi−1 − 1] × tCCD.
We can observe that expr5 > tRWTP+ tRP+ tRCD+ (BCi − 1) × tCCD+ 1 in this case

for any BIi and BCi. As a result, expr2 can dominate the max{} function of Eq. (A.31) only
if the given BIi and BCi cannot make it smaller than tRWTP + tRP + tRCD + (BCi − 1) ×
tCCD + 1. Therefore, BCi ≥ BCi−1 is a necessary condition for expr2. On this condition,
we can derive expr2(BIi,BCi) ≥ expr2(BI′

i
,BC′

i
), where BI

′
i
≤ BIi and BC

′
i
≤ BCi.

bibliography 175

Case 2: BIi > BIi−1,
BIi > BIi−1 =⇒ min{BIi−1,BIi} = BIi−1 =⇒ expr2(BIi,BCi) = tRWTP+ tRP+ tRCD+

1 + [BIi × BCi − 1 − (BIi−1 − 1) × BCi−1] × tCCD.
For this expression, it follows that expr2(BIi,BCi) ≥ expr2(BI′

i
,BC′

i
) if BI′

i
≤ BIi and

BC
′
i
≤ BCi in this case.

With these two cases, when expr2 dominates the max{} function of Eq. (A.31), there
is expr2(BIi,BCi) ≥ expr2(BI′

i
,BC′

i
), where BI

′
i
≤ BIi and BC

′
i
≤ BCi.

Expression 3:
expr3(BIi,BCi) = tRWTP + tRP + tRCD + 1 + [(BIi − (min{BIi−1,BIi} − 1)) × BCi − 1] ×

tCCD. For this expression, there are again two cases, where the theorem follows straight-
forwardly for both of them.
Case 1: BIi ≤ BIi−1,
expr3(BIi,BCi) = tRWTP+ tRP+ tRCD+ 1+ (BCi − 1) × tCCD. As a result, BI′

i
≤ BIi ∧

BC
′
i
≤ BCi =⇒ expr3(BIi,BCi) ≥ expr3(BI′

i
,BC′

i
).

Case 2: BIi > BIi−1,
expr3(BIi,BCi) = tRWTP + tRP + tRCD + 1 + [(BIi − BIi−1 + 1) × BCi − 1] × tCCD. So,

BI
′
i
≤ BIi ∧ BC

′
i
≤ BCi =⇒ expr3(BIi,BCi) ≥ expr3(BI′

i
,BC′

i
).

According to these two cases, there is expr3(BIi,BCi) ≥ expr3(BI′
i
,BC′

i
), where BI

′
i
≤

BIi and BC
′
i
≤ BCi.

Expression 4, 5, and 6:
With a similar discussion as for Expression 2, we can conclude that expr4 monoton-

ically increases with BIi and BCi. This conclusion also holds for expr5 if it is analyzed in
the same way as Expression 3, while expr6 can be discussed similarly to Expression
1. The detailed derivation is not shown here for brevity. �

a.7 proof of lemma 5

Proof. For a given DataSize, there is DataSize = ∑
∀T∈T S (T) and its maximum execution

time is Max
∀T
∑
∀T∈T tET (T), which can be obtained by verifying the bound of the clock

WCRT with the observer TA shown in Figure 6.5(b). For ∀N > 1, the larger data size
DataSize

′ = N × DataSize =
∑
∀T∈T ′ S (T) corresponding to trace T ′, and its maximum

execution time is Max
∀T ′
∑
∀T∈T ′ tET (T). Conservatively, we obtain Eq. (A.32), since the

transaction traceT ′ generates N times more data than the traceT . Therefore, Eq. (A.33)
is derived, which shows that better WCBW can be obtained when verifying with larger
data size. Intuitively, larger amount of data is generated by more transactions, where
more pipelining between transactions can be exploited to achieve better WCBW. When
N approaches +∞, we get the long-term WCBW, which is given by Eq. (A.34). Accord-

176 bibliography

ing to Eq. (A.33), we can conclude that the ˆbw (DataSize) of any given DataSize is a
conservative lower bound for the long-term WCBW.

Max
∀T ′

∑
∀T∈T ′

tET (T) ≤ N ×Max
∀T

∑
∀T∈T

tET (T) (A.32)

ˆbw (N ×DataSize) =
N ×DataSize

Max
∀T ′
∑
∀T∈T ′ tET (T)

≥
N ×DataSize

N ×Max
∀T
∑
∀T∈T tET (T)

≥ ˆbw (DataSize)

(A.33)

ˆbw = lim
N→+∞

ˆbw (N ×DataSize)

≥ ˆbw (DataSize)
(A.34)

�

B
S Y S T E M D E C L A R AT I O N S F O R T I M E D A U T O M ATA M O D E L

b.1 intuitive timed automata model

// Place template instantiations here.
Src = Source();

ACTScheduler := ActScheduler();

RAS0 = RAS(0);
RAS1 = RAS(1);
RAS2 = RAS(2);
RAS3 = RAS(3);
RAS4 = RAS(4);
RAS5 = RAS(5);
RAS6 = RAS(6);
RAS7 = RAS(7);

FAW0 = FAW(0);
FAW1 = FAW(1);
FAW2 = FAW(2);
FAW3 = FAW(3);

RRD0 = RRD();

RCD0 := RCD(0);
RCD1 := RCD(1);
RCD2 := RCD(2);
RCD3 := RCD(3);
RCD4 := RCD(4);
RCD5 := RCD(5);
RCD6 := RCD(6);
RCD7 := RCD(7);

177

178 bibliography

RWScheduler := RwScheduler();

PRE0 := PRE(0);
PRE1 := PRE(1);
PRE2 := PRE(2);
PRE3 := PRE(3);
PRE4 := PRE(4);
PRE5 := PRE(5);
PRE6 := PRE(6);
PRE7 := PRE(7);

RWTP0 := RWTP(0);
RWTP1 := RWTP(1);
RWTP2 := RWTP(2);
RWTP3 := RWTP(3);
RWTP4 := RWTP(4);
RWTP5 := RWTP(5);
RWTP6 := RWTP(6);
RWTP7 := RWTP(7);

CCD0 := CCD();
RWCounter := SWCounter();

CMDBUS := CmdBus();
TDMBUS := TDM();
MeMAP = MemMap();

//List one or more processes to be composed into a system.
system
Src, TDMBUS, MeMAP, ACTScheduler, RWScheduler, CMDBUS, RWCounter,
RCD0, RCD1, RCD2, RCD3, RCD4, RCD5, RCD6, RCD7,
RAS0, RAS1, RAS2, RAS3, RAS4, RAS5, RAS6, RAS7,
PRE0, PRE1, PRE2, PRE3, PRE4, PRE5, PRE6, PRE7,
RWTP0, RWTP1, RWTP2, RWTP3, RWTP4, RWTP5, RWTP6, RWTP7,
FAW0, FAW1, FAW2, FAW3, RRD0, CCD0;

b.2 simplified timed automata model

// Place template instantiations here.
Src = Source();

bibliography 179

ACTScheduler := ActScheduler();

FAW0 = FAW(0);
FAW1 = FAW(1);
FAW2 = FAW(2);
FAW3 = FAW(3);

RRD0 = RRD();

RCD0 := RCD(0);
RCD1 := RCD(1);

RWScheduler := RwScheduler();

PRE0 := PREScheduler(0);
PRE1 := PREScheduler(1);
PRE2 := PREScheduler(2);
PRE3 := PREScheduler(3);
PRE4 := PREScheduler(4);
PRE5 := PREScheduler(5);
PRE6 := PREScheduler(6);
PRE7 := PREScheduler(7);

CCD0 := CCD();
RWCounter := SWCounter();

CMDBUS := CmdBus();
TDMBUS := TDM();
MeMAP := MemMap();

//List one or more processes to be composed into a system.
system
Src, TDMBUS, MeMAP, ACTScheduler, RWScheduler,
CMDBUS, RWCounter, RCD0, RCD1,
PRE0, PRE1, PRE2, PRE3, PRE4, PRE5, PRE6, PRE7,
FAW0, FAW1, FAW2, FAW3, RRD0, CCD0;

C
S C A L A B I L I T Y O F M O D E - C O N T R O L L E D D ATA F L O W A N D T I M E D
A U T O M ATA

A memory controller can be con�gured to support a di�erent number of requestors with
a �xed transaction size or variable sizes, respectively. In our experiments, the �xed trans-
action size includes 16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes. When mixing
some of these sizes, the cases of variable sizes are obtained. Table C.1 provides 8 cases
when the memory controller serves requestors with variable sizes. In particular, the re-
questors can be served by a TDM arbiter that speci�es a static order, as described by
the arrows in Table C.1. When the arbiter is unknown, requestors can be served in any
order. For example, when two requestors Req_0 and Req_1 are served by an unknown
arbiter, the order is denoted as "Req_0 | Req_1". In this case, we can only analyze the
WCBW, while the WCRT of a transaction cannot be analyzed because the number of
the preceding transactions is unpredictable, as indicated with "n/a" in Table C.2.

Experiments are carried out to analyze the worst-case bandwidth (WCBW) and/or
worst-case response time (WCRT) using the mode-controlled data�ow (MCDF) model
and the timed automata (TA) model, respectively. To fairly compare the time and RAM
used by the MCDF model and the TA model, the same server is used. The server con-
sists of 125 GB usable RAM and 24 Intel Xeon(R) CPUs running at 2.1 GHz, and it uses
a CentOS 6.8 system. Table C.2 presents the time and RAM consumed by analyzing the
MCDF model with Heracles and verifying properties of the TA model using Uppaal,
respectively. Moreover, it also provides the worst-case results if the analysis or veri�-
cation is successful. Otherwise, it indicates "failed" and also shows the time and RAM
usage when the analysis or veri�cation fails.

181

182 bibliography

Table C.1: Di�erent con�gurations for Run-DMC with variable sizes.

Con�guration Requestor: transaction size (bytes) Arbitration & Service Order

Case 1 Req_0: 128, Req_1: 128, Req_2: 128,
Req_3: 64, Req_4: 64

Unknown; Req_0 | Req_1 | Req_2 |
Req_3 | Req_4

Case 2 Req_0: 128, Req_1: 128, Req_2: 128,
Req_3: 64, Req_4: 64

TDM; Req_0→ Req_1→ Req_2→
Req_3→ Req_4

Case 3 Req_0: 256, Req_1: 128, Req_2: 64,
Req_3: 32, Req_4: 16

Unknown; Req_0 | Req_1 | Req_2 |
Req_3 | Req_4

Case 4 Req_0: 256, Req_1: 128, Req_2: 64,
Req_3: 32, Req_4: 16

TDM; Req_0→ Req_1→ Req_2→
Req_3→ Req_4

Case 5 Req_0: 256, Req_1: 128, Req_2: 64,
Req_3: 32

Unknown; Req_0 | Req_1 | Req_2 |
Req_3

Case 6 Req_0: 256, Req_1: 128, Req_2: 64,
Req_3: 32

TDM; Req_0→ Req_1→ Req_2→
Req_3

Case 7 Req_1: 128, Req_2: 64 Unknown; Req_0 | Req_1
Case 8 Req_1: 128, Req_2: 64 TDM; Req_0→ Req_1

bibliography 183

Ta
bl

e
C.

2:
W

CB
W

(M
B/

s)
an

d
W

CR
T

(c
yc

le
s)

of
di

�e
re

nt
D

D
R3

SD
RA

M
sw

ith
�x

ed
tra

ns
ac

tio
n

siz
e.

M
CD

F
w

ith
H

er
ac

le
s

TA
w

ith
Up

pa
al

Si
ze

(b
yt

es
)

St
ar

tin
g

Ba
nk

W
CB

W
(M

B/
s)

Ti
m

e
(s)

RA
M

(M
B)

St
ar

tin
g

Ba
nk

W
CB

W
(M

B/
s)

Ti
m

e
(s)

RA
M

(M
B)

W
CR

T
(c

yc
le

s)
Ti

m
e

(s)
RA

M
(M

B)

Fi
xe

d
Si

ze

16
0,

1,
2,

3,
4,

5,
6,

7
31

2
53

76
29

0,
1,

2
32

0
12

47
0

30
49

9
16

0
44

19
13

63
1

0,
1,

2,
3

fa
ile

d
72

56
3

12
19

11
fa

ile
d

63
39

8
11

83
58

32
0,

2,
4,

6
62

4
2

26
0,

2,
4,

6
63

8
85

71
14

98
1

16
1

19
83

54
47

64
0,

4
12

49
2

26
0,

4
12

80
21

5
72

2.0
16

0
76

16
68

12
8

0,
4

22
76

3
25

0,
4

22
95

21
28

60
07

17
9

61
6

25
05

25
6

0,
4

28
44

6
33

0,
4

28
44

13
0

65
8

28
8

36
28

9

Va
ria

bl
e

Si
ze

Ca
se

1
0,

4
11

38
80

10
4

0,
4

fa
ile

d
70

87
0

12
51

32
n/

a
Ca

se
2

0,
4

fa
ile

d
65

61
92

0,
4

12
76

38
50

66
92

22
7

40
24

66
93

Ca
se

3
0,

1,
2,

3,
4,

5,
6,

7
17

8
12

9
15

6
0,

1,
2,

3,
4,

5,
6,

7
fa

ile
d

26
64

7
11

75
37

n/
a

Ca
se

4
0,

1,
2,

3,
4,

5,
6,

7
fa

ile
d

34
6

37
35

0
0,

1,
2,

3,
4,

5,
6,

7
15

03
17

79
4

42
43

8
26

4
17

77
1

42
44

0
Ca

se
5

0,
2,

4,
6

35
6

65
10

4
0,

2,
4,

6
fa

ile
d

32
65

6
11

74
21

n/
a

Ca
se

6
0,

2,
4,

6
fa

ile
d

24
34

04
0,

2,
4,

6
17

46
83

4
29

69
22

0
85

1
29

69
Ca

se
7

0,
4

11
38

9
38

0,
4

11
91

31
76

9
71

59
0

n/
a

Ca
se

8
0,

4
17

86
16

0
15

3
0,

4
18

04
75

6
14

03
96

42
9

11
18

D
L I S T O F A C R O N Y M S

SDRAM Synchronous Dynamic Random-Access Memory 1
TDM time-division multiplexing . viii
IoT Internet of Things . 1
DMA direct memory access . 1
QoS Quality of Service . 2
SRAM static random-access memory . 3
NoC network-on-chip . 4
SoC System-on-Chip . 3
DSP digital signal processor . 3
RR round-robin . 6
Run-DMC a memory controller with dynamic command scheduling at run-time . . 8
FCFS �rst-come �rst-serve . 9
ALAP as-late-as-possible . 10
MCDF mode-controlled data�ow . 11
TA timed automata . 12
DDR double data rate . 13
ACT Activate . 14
RD read . 14
WR write . 14
RW a RD or RD command . 22
PRE precharge . 14
REF refresh . 14
NOP no operation . 14
BL burst length . 14
LPDDR low-power double data rate . 14
WCET worst-case execution time . 26
WCRT worst-case response time . 26

185

186 list of acronyms

WCBW worst-case bandwidth . 26
CMD command . 27
RAM random-access memory . 45
DRAM dynamic random-access memory . 32
FPGA �eld-programmable gate array . 32
DIMM dual in-line memory module . 33
GT guaranteed throughput . 32
BE best-e�ort . 33
FR-FCFS First-Ready First-come First-Serve . 33
BC Burst count . 18
BI Bank interleaving . 18
BS starting bank number . 21
RT response time . 24
CCSP credit-controlled static-priority arbitration . 7
FBSP frame-based static priority . 7
TCC timing constraint counters . 40
XML extensible markup language . 43
Gb gigabit . 15
GB gigabyte . 45
SRDF single rate data�ow . 94
MCM maximum cycle mean . 95
SL select . 96
SW switch . 96
MC model controller . 95
SMS static mode sequence . 97

E
L I S T O F S Y M B O L S

general

i the arrived number of a transaction . 21
Ti the i

th arrived transaction, where ∀i ≥ 0 . 21
S(Ti) size of transaction Ti . 21
Type(Ti) type of transaction Ti and is either read or write 21
BIi the BI used by Ti . 21
BCi the BC used by Ti . 21
j(i) the current bank access number for Ti . 22
j the shorthand for j(i) . 21
bj bank number of the j

th bank access. It is also the starting bank of Ti 21
ACTj ACT command for bank bj . 23
t(ACTj) the scheduling time of ACTj . 61
RW

k

j
k
th
RD or WR command for bank bj . 23

t(RWk

j
) the scheduling time of RWk

j
. 61

PREj PRE command for bank bj . 23
t(PREj) the scheduling time of PREj . 61
RW

BCi−1
j+BIi−1 the last RD or WR command of Ti . 26

t (RWBCi -1
j+BIi -1

) the scheduling time of RWBCi−1
j+BIi−1 . 26

t
fe

a
(T

i
) arrival time of Ti in the front-end . 26

t
a
(T

i
) arrival time of Ti in the back-end . 26

t
s
(T

i
) starting time of transaction Ti in the back-end 26

t
f
(T

i
) �nishing time of transaction Ti in the back-end 26

tET (Ti) execution time of an arbitrary transaction Ti in the back-end 26
t̂ET (Ti) worst-case execution time of an arbitrary transaction Ti 26
t
fe

f
(T

i
) �nishing time of transaction Ti in the front-end 27

t
RT
(T

i
) response time of transaction Ti in the front-end 27

187

188 list of symbols

t
ref

refresh time . 29
t̂RT (Ti) worst-case response time . 27
bw bandwidth . 29
f
mem

the clock frequency of the memory . 29
ˆ
bw worst-case bandwidth . 29
T a transaction trace . 29
|T | the length of T , i.e., the number of transactions in T 29
C(j) the time caused by a collision on the command bus 61
bcom the number of common banks between Ti and Ti-1 65
FS the frame size of a TDM table . 73
N the number of requestors . 73
r a requestor number and r ∈ [0,N − 1] . 73
Nr the number of consecutive TDM slots allocated to r 73
t̂
r

ET
the WCET of transactions from requestor r . 73

t̂
r

RP
the WCRT of transactions from requestor r . 74

t̂
r

interf
the maximum interference delay for requestor r 74

K the number of di�erent transaction sizes in a system 75
S
k

one of the transaction sizes in a system, ∀k ∈ [1,K] 75
C a cycle of a model-controlled data�ow graph 109
|C| the total execution time of actors on cycle C 109
ω(C) the total number of initial tokens on cycle C 109
NS(C) the number of static mode sequences corresponding to cycle C 109

F
A B O U T T H E A U T H O R

Yonghui Li was born on July 21, 1986 in Shaanxi, China. He received a B.Sc. in Space
Information and Digital Technology from Xidian University, Xi’an, China in 2009, and a
M.Sc. in Communication and Information System from the same university in 2012. He
carried out research on design and analysis of Network-on-Chip for manycore System-
on-Chip with the State Key Laboratory of Integrated Services Networks in Xidian Uni-
versity from 2008 to 2012. In May 2012, he became a PhD candidate in the Electronic
Systems Group at Eindhoven University of Technology, the Netherlands. His research in-
terests include real-time systems, data�ow modeling, timed automata modeling, model
checking, Network-on-Chip, and memory controller. He won a Best Paper Award from
the 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMe-
dia), 2015.

189

L I S T O F P U B L I C AT I O N S

Articles Included in the Thesis:

[1] Y. Li, B. Akesson, and K. Goossens. Dynamic Command Scheduling for Real-Time
Memory Controllers. In 26th Euromicro Conference on Real-Time Systems (ECRTS),
pages 3–14, 2014.

[2] Y. Li, B. Akesson, and K. Goossens. Architecture and Analysis of a Dynamically-
Scheduled Real-Time Memory Controller. In Real-Time Systems, Volume 52, Issue 5,
pages 675–729, 2016.

[3] Y. Li, H. Salunkhe, J. Bastos, O. Moreira, B. Akesson, and K. Goossens. Mode-
Controlled Data-Flow Modeling of Real-Time Memory Controllers. In 13th IEEE

Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia), pages 1–
10, 2015 (Best Paper Award).

[4] Y. Li, B. Akesson, K. Lampka, and K. Goossens. Modeling and Veri�cation of Dy-
namic Command Scheduling for Real-Time Memory Controllers. In 22nd IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
1–12, 2016.

Open-Source Tools:

[5] Y. Li, B. Akesson, and K. Goossens. RTMemController: An Open-Source
WCET and ACET Analysis Tool for Real-Time Memory Controllers.
http://www.es.ele.tue.nl/rtmemcontroller/, 2014.

[6] Y. Li, B. Akesson, K. Lampka, and K. Goossens. Timed Automata
Model of Real-Time Memory Controller with Dynamic Command Scheduling.
http://www.es.ele.tue.nl/rtmemcontroller/TA.zip, 2016.

[7] K. Chandrasekar, C. Weis,Y. Li, S. Goossens, M. Jung, O. Naji, B. Akesson, N. Wehn,
and K. Goossens. DRAMPower: Open-source DRAM Power & Energy Estimation
Tool. http://www.es.ele.tue.nl/drampower/, 2012.

Posters:

[8] Y. Li, B. Akesson, and K. Goossens. Dynamic Command Scheduling for Real-Time
Memory Controller. In the ICT.OPEN 2012 Conference: The Interface for Dutch ICT-

Research, 2012 (Abstract & Poster).

191

192 list of publications

[9] Y. Li, O. Moreira, B. Akesson, and K. Goossens. Data�ow Modeling of Real-Time
Memory Controllers. In the ICT.OPEN 2015 Conference: The Interface for Dutch

ICT-Research, 2015 (Abstract & Poster & Oral Presentation).

[10] Y. Li, B. Akesson, and K. Goossens. Design and Formal Analysis of Run-DMC, a
Dynamically-Scheduled Real-Time Memory Controller. In DATE PhD Forum, 2016
(Abstract & Poster).

Other Co-authored Articles:

[11] K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam,
Y. Li, D. Mirzoyan, A. Molnos, A. Beyranvand Nejad, A. Nelson, and S. Sinha. Vir-
tual Execution Platforms for Mixed-Time-Criticality systems: The CompSOC Ar-
chitecture and Design Flow. SIGBED Rev., 10(3):23–34, 2013.

[12] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside,
K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jor-
dan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Pu�tsch, P. Puschner, A. Rocha,
C. Silva, J. Sparsø, and A. Tocchi. T-CREST: Time-Predictable Multi-Core Architec-
ture for Embedded Systems. Journal of Systems Architecture, 61(9):449–471, 2015.

	Title
	Colophon
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Real-Time Embedded Systems
	1.2 Problem Statement
	1.3 Thesis Contributions

	2 Background & Terminology
	2.1 SDRAM Architecture and Operation
	2.2 Real-Time Memory Controllers
	2.3 Analysis of Real-Time Memory Controllers

	3 Run-DMC: A Real-Time Memory Controller with Dynamic Command Scheduling
	3.1 Related Work
	3.2 Memory Controller Front-End
	3.3 Memory Controller Back-End
	3.4 Cycle-Accurate SystemC Model of Run-DMC
	3.5 Experimental Results
	3.6 Summary

	4 Formal Analysis of Run-DMC
	4.1 Related Work
	4.2 Formalization of Dynamic Command Scheduling
	4.3 Worst-Case Initial Bank States
	4.4 Worst-Case Execution Time
	4.5 Worst-Case Response Time
	4.6 Worst-Case Bandwidth
	4.7 RTMemController Tool
	4.8 Experimental Results
	4.9 Summary

	5 Mode-Controlled Dataflow (MCDF) Modeling of Run-DMC
	5.1 Related Work
	5.2 Background of Dataflow Models
	5.3 MCDF Model of Run-DMC
	5.4 Worst-Case Bandwidth
	5.5 Experimental Results
	5.6 Summary

	6 Timed Automata (TA) Modeling of Run-DMC
	6.1 Background of Timed Automata
	6.2 Modular TA Model of Run-DMC
	6.3 Verification with Model Checking
	6.4 Related Work
	6.5 Experimental Results
	6.6 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	A Proof of Lemmas
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3
	A.4 Proof of Lemma 4
	A.5 Proof of Theorem 1
	A.6 Proof of Theorem 2
	A.7 Proof of Lemma 5

	B System Declarations for Timed Automata Model
	B.1 Intuitive Timed Automata Model
	B.2 Simplified Timed Automata Model

	C Scalability of Mode-Controlled Dataflow and Timed Automata
	D List of Acronyms
	E List of Symbols
	F About the Author
	List of Publications

