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Summary

We elaborate in this thesis on the benefits and use of monitoring the internal
network-on chip (NoC) communication. One salient characteristic of monitoring
the internal NoC communication is that it corresponds to monitoring all inter-IP
interaction, thus showing a complete picture of what is happening in the chip.
The observed behavior can be interpreted in the form of information supporting
debugging or in the form of performance information related to interconnect or
system on chip supporting Quality of Service techniques. We argue that mon-
itoring has to eventually take the form of a dedicated monitoring service. Our
approach is to focus onto a generic monitoring service that has to be part of the
NoC itself. The proposed NoC monitoring service is generic and can be instan-
tiated for the monitoring task at hand, for example debugging or performance
monitoring. We show the feasibility of our approach via instances for both these
application domains.

The monitoring service is composed of multiple, spatially distributed monitors
supporting NoC components (routers and network interfaces) but supporting also
IP monitors if provided by a third party. The monitors support multiple levels of
abstraction and feature a modular design composed of a sniffer, an event generator
and a monitoring network interface. The capturing of data in the NoC-based
System on Chip is non-intrusive. The NoC monitoring service includes one or
more monitoring service access points, which configure the monitors at run-time
and receive the monitored data. A centralized or a distributed version of the
monitoring service can be instantiated. The monitoring service assumes an event-
based model for the monitored data, allowing for on-chip data abstraction.

NoCs are the result of sophisticated design flows. They usually contain several
steps: topology generation, mapping of cores to network interface ports, path
selection and slot allocation. These steps can be done serially or in an integrated
manner. Integration of monitors in the system has an influence on the design flow.
To integrate multiple monitors in the design flow, the following steps are proposed:
placement of the monitors, dimensioning of their communication requirements
and activation. We investigate three possibilities of interconnecting the monitors
together with the required design flow modifications. One of the three options,
the one using the same NoC for both application data and monitoring data, is
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further worked out in detail as it provides the most area-efficient solution. When
using the same network for application data and monitoring data, we have two
interdependent problems: the one of functional dimensioning of the NoC and
mapping of cores while accounting for their communication requirements, and the
other of monitor placement and monitoring bandwidth specification. If these two
problems are solved sequentially, the monitoring communication requirements can
be pre-computed. However, if the communication requirements of the monitors do
not fit directly on the generated application NoC, a new NoC must be generated,
e.g., by increasing the topology and repeating the process. However, by increasing
the topology, the number of NoC routers increases. In turn, the mapping, path
selection and allocation of resources may change and the number of required
monitors may increase as well (e.g. if probing all routers is required) and their
communication requirements may change. Therefore, in the mentioned cases, the
monitoring problem must be solved within or at least tightly coupled with the
NoC design process. We show that we can solve both problems in synergy, this
being beneficial for the NoC monitoring service cost.

Summarizing, our main contributions are: a generic NoC monitoring service,
proof of feasibility via two instances of the NoC monitoring service correspond-
ing to two driver application areas (debug, quality of service management), a
monitoring-aware NoC design flow able to take into account the monitoring re-
quirements at any step in the NoC design flow, and experimental evaluation and
cost quantification of all of the above.
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Chapter 1

Introduction

This introductory chapter opens the way to the main contribution chapters of
this thesis, being a mere prelude. It starts with an overview by making an in-
ventory of current practices and trends in the complex embedded world looking
at the shrinking technology, innovative networks on chip architectures, the val-
idation dominated electronic system design flows and the emerging applications
characteristics. It further details the monitoring problem within this resource
constrained world. An innovative communication centric approach to solve the
identified problem is briefly described. Based on the mentioned approach the de-
scription of this thesis’ main contributions including the resulting scientific papers
follows. A complete thesis overview concludes this chapter.

1.1 Current Trends
Moore’s law, multi-billion transistor ICs, lead towards multi-core, heterogeneous, increas-
ingly programmable SoCs through IP re-use and platform-based design

Ever increasing advances in semiconductor technology in the form of decreas-
ing feature sizes combined with increasing customer demand for more and more
functionality have enabled very complex large scale system on a chip (SoC) de-
signs. The design teams are facing now the challenges of integrating the increased
functionality on the growing number of transistors.

Currently, design teams are designing large scale integrated circuits (ICs) heav-
ily relying on existing intellectual property (IP) reuse technologies [80], where ex-
isting (often third party) IPs are glued together by system integrators in a complex
SoC. According to [81], the potential for IP reuse productivity gains is estimated
to be at least 200%. One step beyond IP reuse is the concept of platform-based
design [54]. Industry has adopted the concepts of platforms (e.g. Nexperia [28]
from Philips/NXP, Nomadik [85] from ST, or Omap [90] from TI) where applica-
tion domains (e.g. multimedia, automotive or mobile terminals) gracefully match
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2 1.1. CURRENT TRENDS

a specific architecture template consisting of reusable groups of cores [81]. In this
case, a concrete SoC design comes alive through platform instantiation.

Systems on chip are high-value high-complexity ICs that form the heart and
soul of a large diversity of products such as television sets, set-top boxes, and
cellular phones. As an example, we can mention the Viper2 set-top box SoC [74,
31] as one instance of the Nexperia multimedia platform [28], with more than 60
different cores and 50 million transistors. As another example, we can mention the
SAF7780 [48, 93] as one component in the in-car digital entertainment platform
of NXP Semiconductors.

Existing SoC designs integrate more and more IPs and offer increased function-
ality, inherently resulting in multi-core designs. As SoCs are usually targeted to a
specific domain, they usually comprise specialized IPs in the form of co-processors,
which can very efficiently solve tasks within the targeted application domain, as
well as programmable cores, making the multi-core designs heterogeneous. With
the addition of programmable cores (e.g. ARM, MIPS, Trimedia), the multipro-
cessor SoC designs (MPSoCs) are becoming increasingly programmable.

The need for programmable and scalable interconnects is materialized in NoCs supported
by state of the art NoC design flows

With the number of IPs in SoC designs increasing, in traditional architectures en-
compassing interconnects like busses, communication becomes a bottleneck [10,
82]. The system architecture methodologies also move towards a communication
centric design [82]. This shows that the importance of interconnect design in-
creasingly matches the importance of computation subsystems, and the need for
a new communication architecture to avoid scalability problems.

Networks on chip (NoCs) [10, 25, 41, 45, 55, 60, 52, 13] have been proposed
as a future-proof interconnect. They have emerged as a scalable, structured and
modular interconnect solution [10, 82, 25], and tend to become preferred for large
scale MPSoCs. NoCs decouple computation from communication supporting IP
reuse. With the addition of NoCs, the interconnect sophistication reaches a new
level, allowing for increased run-time communication programmability.

NoCs are the result of sophisticated design flows to aid in design time deci-
sions [46, 66, 14, 40]. The NoC design flows are resulting in area-efficient NoC
designs while meeting performance and power constraints. These synthesis flows
normally consist of several steps like NoC topology generation, mapping of func-
tional IP cores to the NoC, routing and scheduling of IP communication require-
ments.

Application specific standard products (ASSPs) are a preferred implementa-
tion for the ICs which have their functionality highly tuned to the application
domain (like chips in TVs, such as Viper). Multi-use case mapping addresses this
issue in the NoC context in [65, 64], where each use case resembles one application.
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Validation effort of complex systems spans from pre-silicon and the silicon bring-up period
to silicon life-time

With the increasing complexity of multi-core, heterogeneous, increasingly pro-
grammable SoCs and run-time programmable NoCs, the step of getting the design
working properly becomes increasingly difficult. From the total engineering effort
of current SoCs, it is estimated that the entire system verification and validation
effort consumes up to 70% with the subsequent debug effort accounting for 30-
50% [86]. ”Design conception and implementation are becoming mere preludes
to the main activity of verification” (quoted from [81]).

In the pre-silicon life of complex systems, slow system simulations are an im-
portant current practice both in academia and in industry, using for example Sys-
temC [44]. One tendency is to run those simulations at higher levels of abstraction
to cope with the speed problem. Simulations are coupled with transaction level
models of the system, such as in the Æthereal flit accurate NoC simulator that
is coupled with IP cores abstracted by traffic generators [37]. The simulation-
based methods are further complemented by the emerging formal [29, 81] and
(run-time) assertion-based methods [73]. While these methods arguably result in
better quality designs and higher rates of first time right silicon [86] there is a
clear need for an in-silicon verification flow.

The quest for better debug solutions points to the need for providing the nec-
essary controllability, and in particular the observability of internal operations of
complex SoCs, as it is very difficult to fix what you cannot see [86]. Observability
of current SoCs is becoming a major bottleneck as the amount of embedded cores
and critical internal signals per I/O pin ratio increases. This has led to the addi-
tion of dedicated on-chip resources which support functional analysis in order to
increase SoC observability.

Historically, the silicon bring-up problems have been addressed by reusing
the industry standard boundary scan-chain infrastructure and the JTAG port for
both observability and controllability [101]. Today’s designs have to meet strict
time to market requirements as well as to reduce the number of redesigns and
silicon spins required for a successful IC. As scan-chains alone are not enough [96]
to handle this, this must be complemented by a structured debug strategy [100].
This debug strategy spans also to the silicon life-time.

Dedicated debug instrumentation has become common at core level [5], and
bus-level [32]. Increasingly, a system-centric debug infrastructure, supporting
multi-core system-level diagnosis and analysis, like ARM’s Coresight [3] and First
Silicon’s OCI [56], is gaining momentum. Computation and communication ob-
servability in current SoCs are a recognized must, and its importance is growing.

Furthermore, designers have to live with the idea that debugging is still nec-
essary after the chip bring-up period, during the life-time period, due to several
reasons. Platform-based design enables the separation of one-time platform de-
sign and multiple-times platform instantiation, and the much larger use of the
same platform instance. Debugging is required at the platform design, instantia-
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tion, as well as at platform use, followed by software debugging for programmable
platforms.

Dynamic, complex, scalable and QoS-aware applications from converging application do-
mains are the driving force for SoCs

Modern multimedia applications are emerging. Such applications are becoming
very complex as both size and scope of such applications are exploding. One
potential factor for the increasing application size is the increasing complexity of
continuously added features, for instance, supported features in the multi-window
television like picture-in-picture and picture-and-picture. The scope of such ap-
plication has been broadened from mainly genuine audio-video for simple TV
sets to DVD players, recorders, digital radios, automotive, telecommunications or
networking.

Furthermore, the convergence of previously unrelated application domains can
be witnessed, e.g. looking at the transformation of TV sets into complex mul-
timedia terminals. Another good example to emphasize the convergence of the
application domains is the mobile phone. The mobile phone has evolved from a
simple communication device to further include a web browser and web services,
high resolution photo and video camera, radio, navigator, mp3 player, organizer
and other PC-like applications emphasizing also the trend of PC penetration in
the consumer electronics market.

With the addition of, for example, object-based MPEG4 applications, the
applications in the audio/video domain become very dynamic as the video streams
pack video objects instead of frames. Therefore, the processing shifts from (fixed
number of) pixels/frame video processing to object-based video processing, where
objects can vary in size, shape and contents; the number of objects can vary as
well. This means that the required video processing resources are amenable to
the input video stream, leading to the need for novel design techniques such as
scenario-based design [35].

Users have high expectations about the perceived video and audio quality de-
livered by multimedia terminals like TVs, or DVD-players. The need for scalable
applications is driven by the dynamism and concurrency in applications. Ap-
plications must be able to react to and cope with sudden changes in resource
requirements and resource availability. Scalable applications can handle changes
in need or availability of resources at run-time, allowing for example a graceful
degradation or enhancement of perceived quality.

Future SoC designs are becoming so complex that they would need to monitor
their performance at run-time; the complete performance validation at design
time being out of the question. This would be needed to tune the execution of
an application on the given hardware platform and hence the perceived Quality
of Service (QoS). This implies the presence of a certain degree of monitoring in
the loop, the on-line management of resources being (at least partly) monitoring
assisted.
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1.2 Monitoring Span
General Monitoring Span

Monitoring has been around us for a very long time. It is the process of collecting
information about items. The item is a very general term and can be: a technical
system e.g. a router or a set-top box, a physical object e.g. a star or a planet, a
being or part of it e.g. the human body or its brain.

There are many orthogonal axes along which monitoring systems can be clas-
sified; we only mention four important ones:

• the domain in which the monitoring takes place,

• the form in which the monitoring is achieved,

• the way in which the data is collected from the involved monitors, and

• where the initiative for monitoring lays.

Monitoring has been successfully employed in many domains. In the health
care domain patient monitoring systems have been employed for a long time to al-
low a quick assessment of the physical condition of the patient during e.g. surgery
or intensive care. In the energy production domain monitoring has been employed
to monitor nuclear power plants, while in the energy distribution domain monitor-
ing has been employed to assess capacity of the transport network at any moment.
In the IT domain monitoring has found a second home. One of the places where
monitoring proved itself worthy is network monitoring. Network monitoring tools
are employed to detect network failures (nodes can be down), network topology
changes (users continuously joining), the flows of data in the network, network
traffic. They are also employed to detect vulnerabilities in the network on in-
trusions. Monitoring output is used as input for network management tools, e.g.
admission control (allowing new flows of data in the network), balancing traffic
over network links, avoiding bad links or nodes, reduce latencies and the like. Set
top boxes are remotely monitored to understand how the users are using them, as
well as to extract viewing behavior. In the consumer electronics domain, complex
ICs in the form of SoCs are monitored during silicon bring-up and during their
life to understand the reasons of the field returns.

If we look at the form in which the monitoring is achieved than monitoring
can be also classified as hardware, software or hybrid monitoring. In hardware
monitoring the monitors are pieces of hardware attached to the items to be mon-
itored. In software monitoring the monitors are simple software routines which
are embedded in the software. Hybrid monitors will combine both software and
hardware parts. E.g. in network monitoring, the employed monitors can be both
hardware or software.

Monitoring systems may incorporate multiple monitors. These monitors can
be stand alone, with each monitor operating in isolation and having its monitored
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data employed locally; this local employment of monitored data may be done by
the monitor itself or by a third party IP. The monitors can also be employed
together, with data collected by multiple single monitors which is aggregated
to give a global picture. This leads to the centralized, hierarchical or (near)
distributed monitoring systems. In a centralized monitoring system all monitors
involved are part of a single monitoring domain and all the data is sent to a
central point. In a hierarchical monitoring system the overall monitoring domain
is partitioned in multiple smaller monitoring domains. Each of these monitoring
domains has a central entity which aggregates its data. Aggregated data from
multiple of these central entities are again aggregated at a higher level and the
process can continue until the monitoring root or the top aggregator is found. As
in a hierarchical monitoring system in a distributed monitoring system the overall
monitoring domain is split in multiple monitoring domains. The difference is that
there is no central aggregator, but multiple aggregators which collect data from
one or more monitoring domains.

Looking where the initiative for monitoring lays we can classify monitoring
systems in active and passive monitoring systems; in the active monitoring sys-
tems the monitor has the initiative in gathering the data it needs while in the
passive monitoring systems the monitor expects the data to be readily available
to him. As an example for an active monitoring system we can mention latency
measures by means of the round trip delay. One packet is sent by the latency
monitor via a route and the latency is measured in this way. Opposite to this, a
monitor which tracks a link’s usage will passively track each packet which passes
that link; in this way the initiative does not lay with it. Passive or active monitors
can be both realized in hardware and software.

In this work we restrict ourselves to technical systems, in the consumer elec-
tronics domain, specifically on-chip monitoring in the NoC-based SoC domain,
and we look at passive hardware monitoring in the form of a centralized or dis-
tributed monitoring service.

On-chip monitoring span

On-chip performance monitors were the first to be investigated and implemented.
[61] proposes the use of a performance monitoring unit (PMU) for the System-
On-Chip (SOC) platform for the AMBA AXI bus to give insight to the system
designers and analyze the performance bottlenecks of the target system. This
monitor is designed to gather the information for the bus performance related
metrics such as bus-transaction related events like number of requests, size of the
burst transfer request, bus latency for the specific master requests, and amount of
memory traffic for specific durations. It can also measure the contention of the bus
masters and slaves in the SoC. The authors postulate that the bus transactions
are the most interesting to observe and are not observable from outer pins, which
prompts the inclusion of on-chip monitors.

One of Intel’s former flagship, the Pentium 4 processor also features embedded
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performance monitors [84]. It supports 48 event detectors and 18 event counters,
capable of counting 18 events concurrently. Because it supports multi-threaded
executions it includes qualification of event detection by thread ID and qualifica-
tion of event counting by thread mode. These monitors are usually embedded in
the processor itself and are mainly used for dynamically tuning of applications.
An event example is ”branch retired” with a mask in the form of branch types:
taken, not taken, predicted, and mispredicted; each of these can be counted by a
counter.

Another class of on chip monitors are thermal monitors. They have been
employed in [15] to support a run-time thermal management strategy in the form
of a thermal-aware OS which can employ task migration as a way to control
and reduce hot spots. The authors provide no specific details of these thermal
monitors or their area cost.

Hardware assertion-checkers have been successfully employed in the verifica-
tion of large ICs, e.g. in [9]. The authors believe that hardware designers will
need to reconcile to the fact that hardware, exactly as software today, will not be
shipped bug free. However, they consider that this situation can be acceptably
handled with appropriate mechanisms for runtime validation that detect bugs and
recover from them when needed. Their proposed mechanism is an on-chip hard-
ware run-time assertion checker, that monitors the design continuously at runtime
for purpose of error detection. An assertion is a statement that is part of the de-
sign specification in a design specification language that specifies the property
which should hold; e.g. any request should be acknowledged in the next cycle.
Any deviation from the specification, i.e. invalidation of a property, is considered
to be an error. While the authors only consider properties from temporal logic,
their work represents a step forward from the traditional design time assertion
checking.

Core (IP) monitors have been also employed in complex SoCs for debug pur-
poses [88, 89]. Each computational core in the design is instrumented with a
monitor, which is placed between the core and their corresponding network inter-
face. Each core can be debugged in isolation. While the authors do not focus on
the area costs of their solution, their work advances the field with the insertion
of multiple monitors, where multi-core cross-triggering and global synchronized
time stamping is made possible.

Both on-chip performance as well as debug monitors are of interest in this
work specifically in the NoC-based SoC domain, and we are not looking at e.g.
thermal monitors.
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1.3 Motivating Examples

SoC Monitoring (Design for Debug)

In today’s chips debugging can be classified either as run-time control or real-time
tracing [97]. The former can be considered a proactive approach (monitoring and
control) while the latter a passive approach (monitoring only). The former is
intrusive in the chip behavior while the latter is not. Both have to be provisioned
at design time. They are not exclusive but rather complementary. In our view,
real time tracing is a step further from run-time control, which relies on the
run-time control as a fall back scenario.

Run-time control relies on setting breakpoints to stop the execution of the chip
under debug. The breakpoints are the points in time where the system will stop
execution. As there is no prior knowledge when their functionality will be required
they are programmable, e.g. when the program counter reaches a certain value.
When breakpoints are activated the system stops execution. There are several
approaches to stopping the system: stopping the entire system, stopping several
cores, using idle modes (called halting) and the like. Stopping large multi-core
ICs has proved to be problematic due to multiple clock domains and multi-core
aspects; this may result in system states not identical during multiple stops at
the same breakpoint in the same conditions. When the system has stopped the
system internal state can be examined, e.g via the present scan chains. If the
stopping problems are bypassed, it is possible to continue the functional execution
in stepping mode. There are various ways to single step ICs depending e.g. on the
granularity at which this happens. The steps can be defined in terms of function
calls, instructions, transactions, messages, data words, or clock cycles.

Real-time tracing (monitoring) relies on bringing internal signals out of the
chip on a set of pins. A variety of solutions exists for making these pins available
for monitoring: directly on the device pins, or using a separate debug interface,
be it low or high speed, serial or parallel. Captured signals can be internally kept
in a trace buffer or immediately made available to the output pins. The signals to
be captured are a design time choice and can span over a fixed choice (hardwired
solution) or a programmable solution, when the signals to be made available can
be selected at runtime from a predefined design time set.

The tenet of debugging, with a direct impact on monitoring, is that it is not
known in advance what kind of errors are expected. Several examples of real
errors and how the engineers have fixed these errors in industry-grade SoCs by
either using run-time control, real-time tracing or their combination, are pre-
sented in [97]; these examples reflect today’s semiconductor industry practices.
Note that in the five IC examples presented in this paper three feature real-time
tracing. Two error cases, one employing run-time control and the other real-time
tracing, literary taken from this paper are shown here for motivational purposes.
Both cases would have not been solved without the presence of the monitoring
hardware.
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”The scan-based silicon debug feature helped the designers diagnose a video
synchronization problem. This problem occurred only after approximately 50 to
100 input video frames 1 to 2 seconds of real-time video processing. For no obvious
reason, the image would disappear from a TV monitor connected to the chips
video output. Before tape-out, the SoCs entire timing-back-annotated netlist had
been simulated, but only for the first five video frames, because of the very long
simulation runtimes. None of these video frames showed any error, leading to the
conclusion that the design was error free. Nevertheless, the silicon failed at bring-
up. After repeated state dumps during the SoCs initialization sequence, and after
examining the on-chip bus transactions in detail, the designers discovered that the
internal ROM from which the SoC was booting contained a programming error.
An incorrect value in one of the video output processors configuration registers
caused the output processor to eventually lose synchronization with the input
stream.” (quoted from [97], debugging Philips’s Co-processor Array IC, during
silicon bring-up) Note that this example directly points to the need of monitoring
(bus) transactions.

”Analyzing the GPIO state machine. Engineers also used the real-time trace
infrastructure to monitor the state machine in the general-purpose I/O module, to
learn why it was not correctly responding to external triggers. Observing that the
state machines state did not change even in the clear presence of external triggers,
engineers looked elsewhere for the problem. They more closely examined the
external-trigger source selection, leading to the discovery of a programming error.
By fixing this error, they showed a correctly functioning state machine, which
transitioned correctly when external triggers were applied.” (quoted from [97],
debugging NXP’s PNX8525 and Codec IC, during first silicon bring-up and early
development of several embedded-software applications)

1.4 Problem Statement

We need NoC monitoring, and this is difficult/complex

One of the most vexing problems is the run-time SoC monitoring problem in
the context of NoC-based SoCs. The general observability problem exists for
current and future SoCs. Driven by debugging (as part of the validation track)
and QoS/performance reasons, there is a growing need to observe (monitor) what
is going on or happening in today’s SoCs. This information can be utilized on-
chip or off-chip to understand what the system is doing, to detect a functional
error or a performance bottleneck, or simply to improve the on-chip resource
management. The general observability problem is accentuated by the fact that
the only access points to the SoC internals are a limited number of pins, e.g. the
NEXUS debug port [92], and by the increase in the number of functional cores per
pin ratio. Furthermore, current SoC designs incorporate multiple (heterogeneous)
programmable cores and interconnect (NoC), adding to the overall complexity.
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NoC monitoring has to be solved in synergy with the NoC design

The decision on the presence, form and integration of NoC monitoring has to be
taken at NoC design time, and not after the NoC or NoC-based SoC has already
been designed. As NoCs are the result of sophisticated design flows there is a
further need to solve the above mentioned monitoring problem not in isolation
but in synergy with NoC design.

All implications of NoC monitoring must be analyzed and quantified

All the monitoring infrastructure and design efforts for realizing and integrating
it in the NoC designs come at a cost, and have a potential implication on the
resulting SoC. Therefore, the implications and costs of monitoring for NoC-based
SoCs have to be evaluated and known, as the presence of monitoring (e.g. for
debugging) in future SoCs is amenable to the will of SoC architects. The tenet
of NoC monitoring is to prove that it is feasible in the resource constrained SoC
environment and that it is cost effective; e.g. area overhead should not be sub-
stantial.

1.5 Approach

Our approach to alleviate the run-time monitoring problem of NoC-based SoCs
is the use of Communication-Centric Monitoring to counterbalance computation-
centric monitoring of SoCs historically emphasized so far in the research commu-
nity. We elaborate in this thesis on the benefits and use of monitoring the internal
NoC communication.

One salient characteristic of monitoring the internal NoC communication is
that it corresponds to monitoring all inter-IP interaction, thus showing a complete
picture of what is happening in the chip. The observed behavior can be interpreted
in the form of information supporting debugging, or in the form of performance
information related to the performance of the interconnect or the SoC supporting
Quality of Service techniques.

In the spirit of Communication-Centric Monitoring, we argue that monitoring
has to eventually take the form of a dedicated monitoring service. Our approach
is to focus onto a generic monitoring service that has to be part of the NoC
itself, and is composed of multiple, spatially distributed monitors supporting NoC
components (routers and network interfaces), but supporting also IP monitors if
provided by a third party. The monitors support multiple levels of abstraction
enabling debugging or performance analysis.
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1.6 State of the Art and Related Work
Tackling a subject which combines the recent NoC hype with the already existing
monitoring problem we can look at general monitoring, monitoring for busses,
debug, transaction monitoring, NoC related work and their combinations. A part
of this related work generally referring to the current trends and in particular to
the validation track has been introduced in Section 1.1, this section only completes
the picture with the missing parts.

There has been a lot of work towards run-time observability or monitoring and
towards NoCs, but little on the combination of the two. As NoCs are treated in
a separate chapter, Chapter 2, the NoC related work is not further detailed here,
but only briefly mentioned. The test and verification implications of using NoCs
have been inventoried in [98]. Currently, in the NoC research community, focus
is on the design [55, 60, 40], analysis [37, 76] and use [42, 67] of NoCs.

A lot af work has also been done for monitoring busses; ARM’s Coresight [3]
technology combines ETMs [5] for ARM cores, with the AHB Trace Macrocell
which gives visibility on AMBA AHB busses. First Silicon’s on-chip instrumen-
tation technology (OCI), provides on-chip logic analyzers [32] for AMBA AHB,
OCP, and Sonics SiliconBackplane bus systems. These allow the user to run-time
capture bus activity, and in a multi-core embedded debug system [56] they can
be combined with in-system analyzers for cores, e.g. for MIPS cores.

Summarizing, although state-of-the-art monitoring bus solutions exist, they
are not able to cope with a NoC-based SoC, and in NoCs the focus has not
been on the monitoring. More related work is treated in each of the following
contribution chapters.

1.7 Contribution
At the time this work started there was no NoC monitoring support. With the
addition of our work we have managed to provide it in the form of a NoC monitor-
ing service which has introduced the main NoC monitoring concepts. Thanks to
our monitoring service, internal NoC information is made available at run-time.
This provides the knobs and switches for assisting debugging at different levels
of abstraction up to the transaction level, or to the understanding of the system
behavior at run-time, allowing to take it into account for QoS management. Our
monitoring service is proven in two distinct cases (debugging and QoS) and we
have automated the instantiation of it with the help of an associated monitoring-
aware NoC design flow.

Summarizing, our main contributions are:

1. a generic NoC monitoring service,

2. proof of feasibility via two instances of the NoC monitoring service corre-
sponding to two driver application areas (debugging and QoS management)
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3. a monitoring-aware NoC design flow able to take into account the monitor-
ing requirements at any step in the NoC design flow,

4. experimental evaluation and cost quantification of all of the above.

Generic NoC monitoring service

The NoC monitoring service (NoCMS) allows the run-time observability of data
in the NoC at different levels of abstraction in a non-intrusive way. The service
is run-time accessible and reconfigurable.

The proposed NoCMS is generic and can be instantiated for the monitoring
task at hand. The monitoring service consists of hardware probes which can be
attached to NoC components (routers and network interfaces) or to IPs. The
hardware probes feature a modular design composed of a Sniffer, an Event Gen-
erator (EG), and a Monitoring Network Interface (MNI). The capturing of data
in the NoC-based SoC is non-intrusive. The probes feature a programming model
allowing all or part of them to start in sync.

The NoCMS includes one or more Monitoring Service Access points (MSAs),
which configure the probes at run-time and receive the monitored data. A cen-
tralized or a distributed version of the NoCMS can be instantiated. The NoCMS
assumes an event-based model for the monitored data, allowing for on-chip data
abstraction.

Due to the flexibility and richness of NoCs, we also exploit new possibilities of
pipelining or combining monitors, or optimizing communication of the monitors
with an MSA. These relate to the (Philips Research and NXP) patent applica-
tions [20, 39, 38, 21].

Two NoCMS instances.

To prove the concepts and evaluate the monitoring service, we propose two in-
stances of the service corresponding to the two main drivers of monitoring: de-
bugging and run-time performance (Quality of Service) instances.

The debug instance attacks the monitoring problem by focusing at the
transaction-level. IPs in a SoC interact by means of transactions, e.g. a write
transaction. An event generator (EG) capable to ultimately reconstruct (and ab-
stract) transactions at run-time is proposed, bypassing the problems caused by
the non-alignment of packets and messages in the NoC. This monitor is able to
work at four levels of abstraction, programmable at run-time. The EG can itself
be instantiated for supporting one or more of the abstraction levels.

In the Quality of Service instance the focus is on the performance moni-
toring. An EG capable of following the network utilization is proposed. It can be
configured at run-time to track the number of flits, payload words or headers (for
up to 10 router links). This EG can be employed in a performance NoCMS, via
a third part use case, in order to support a new congestion control BE service.
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Monitoring awareness in the NoC design flow.

NoCs are the result of sophisticated design flows. They usually contain several
steps: topology generation, mapping of cores to NI ports, path selection and slot
allocation. These steps can be done serially [40] as in the majority of NoC design
flows or in an integrated manner like in UMARS [46]. Integration of monitors in
the system has an influence on the design flow.

Multiple monitoring probes are part of the NoCMS. To integrate them in the
design flow, the following steps are proposed: placement of the monitors, dimen-
sioning of their communication requirements and activation. We investigate three
possibilities of interconnecting the monitors. For each of the proposed solutions,
the required design flow modifications are investigated. One of the three options,
the one using the same NoC for both user data and monitoring data is further
worked out in detail as it provides the most area-efficient solution.

When using the same network for application data and monitoring data, we
have two interdependent problems: the one of functional dimensioning of the NoC
and mapping of cores while accounting for their communication requirements, and
the other of monitor placement and monitoring bandwidth specification. If these
two problems are solved sequentially, the monitoring communication requirements
can be pre-computed. If the communication requirements of the monitors do not
fit directly on the generated application NoC, a new NoC must be generated, e.g.,
by increasing the topology and repeating the process. However, by increasing
the topology, the number of NoC routers increases. In turn, the mapping, path
selection and allocation of resources may change and the number of required
monitoring probes may increase as well (e.g. if probing all routers is required)
and their communication requirements may change. Therefore, in the mentioned
cases, the monitoring problem must be solved within or at least tightly coupled
with the NoC design process. We show that we can solve both problems in synergy,
this being beneficial for the NoCMS cost.

Experimental evaluation and cost quantification.

We have evaluated hardware area cost and traffic for the mentioned cases, taking
into account the area of the probes involved (e.g., a transaction monitor), all the
aspects of the NoC monitoring service (e.g., an extra monitoring network interface
for the monitoring service access point), the monitoring instance at hand (e.g., at
least one transaction monitor must be present on the path of a data stream) and
the NoC design flow (e.g., the original NoC topology). Placement strategies for
monitors are investigated. We have investigated the total configuration time for
the NoCMS in several scenarios.

The monitors alone come at a low area cost: 0.026mm2 for the transaction
monitor 1 and 0.016mm2 for the performance monitor for an arity five router 2,

1This area number corresponds to a fully configurable monitor for debugging, able to decode
transactions from the data stream, but without further abstraction capabilities.

2This area number corresponds to a fully configurable monitor for performance analysis, able
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both in CMOS12. The results show that the total area cost of a complete NoCMS
remains below 20-25% of the total NoC area.

1.8 Thesis Overview
Chapter 2 introduces the main concepts of NoCs in general, on which this work is

based, makes an inventory of existing NoCs with their shared features and
details the Æthereal NoC in particular, as this was used as a test-bench for
this work.

Chapter 3 presents the generic NoC monitoring service. It starts with the concepts of
the monitoring service, followed by the details of the generic probe archi-
tecture together with its associated event model and programming model.
All these are completed by a monitoring traffic management approach and
the (model of) monitoring service cost. This chapter is based on publica-
tions [17, 18].

Chapter 4 presents the instance of the NoCMS for transaction monitoring. It starts
with motivating the need for transaction monitoring. The underlying ar-
chitecture is detailed, presenting all intermediate layers of monitoring up
to transaction monitoring, which is made possible for virtually all known
packetization schemes. All this is exemplified for the Æthereal NoC. This
chapter is based on publication [19].

Chapter 5 presents the instance of the NoC monitoring service for QoS. After the
introduction of the performance monitor characteristics, a link is made with
the arising scalable applications. The proposed service is evaluated for the
controlled BE service case study. This chapter is based on the author’s
contributions from papers [94, 71].

Chapter 6 shows the impact of the NoC monitoring service on design flows for ASICs.
Three alternative interconnect options for interconnecting the monitoring
probes are proposed and evaluated. This is completed by the proposal of
a monitoring aware NoC design flow for one alternative which is able to
automatically account for monitoring at NoC design time. This chapter is
based on publications [22, 23, 24].

Chapter 7 summarizes the main results of this work and the remaining open issues. It
also features a short visionary look into the future of the presented ideas.

to count words, packet headers or payload words.



Chapter 2

Networks on Chip Preliminaries

After many years of designing SoCs around point to point interconnects and
busses, a new interconnect has been proposed: networks on chip (NoCs). This
chapter presents a bare minimum introduction to NoCs, such that the following
contribution chapters come natural to the reader. The focus is on understanding
the main concepts of NoCs and the motivation behind them. It touches the NoC
building blocks, NoC topologies, as well as the NoC-based system architectures.
A brief inventory of existing NoCs with their associated shared or distinctive
features is made. The Æthereal NoC is used as an example throughout this work
and it is therefore detailed together with its associated design flow. The entire
chapter elaborates on and is reduced in the conclusions to the common features
which are shared by the majority of NoCs, as a solid basis for a generic NoC
monitoring solution.

2.1 Basic Concepts

Networks on Chip

Networks on chip have recently received considerable attention as an emerging
future-proof interconnect. Many NoCs [10, 25, 41, 45, 60, 52, 13] have already
been proposed in academia as well as in the industry.

Networks on chip have emerged as a modular, scalable (they scale better than
busses), future-proof SoC interconnect and tend to become the preferred inter-
connect solution for large scale inherently multiprocessor SoCs. They enable IP
reuse and structuring of the design process by decoupling computation from com-
munication and by offering well defined interfaces.

In general, NoCs are composed of network interfaces (NI), which implement
the NoC interface to IPs, and of routers which transport packets of data from
NI to NI. Note that the literature sometimes refers to NoCs as the entire SoC

15
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including the connected IPs (cores). To avoid the ambiguity, in this thesis, we
refer to the interconnect only (NIs plus the routers) as the NoC.

Many references are available for NoC details, as mentioned throughout this
work, but in general the reader may refer to [30] for the more general intercon-
nection networks details and to [27] for the more NoC specific things.

Network Interfaces and Routers

Figure 2.1: Example NoC

The two NoC components, routers (R) and network interfaces (NIs), are de-
picted in Figure 2.1, together with example IPs connected to NIs. These IPs
can be genuine CPUs or DSPs, but also memories, dedicated (hardwired) IPs,
embedded FPGAs or complete subsystems. The routers can be connected among
themselves and to the NIs.

The routers flip data between NIs and are bound together and to network
interfaces by links. The links are in general bidirectional and are implemented
as a set of two unidirectional links. Note that in principle there can be multiple
links between the same pair of routers but only one between a router and one NI.

The network interfaces implement the NoC interface to IPs. They enable end-
to-end services [78] to the IP modules and are key in decoupling computation
from communication [13, 102]. The NI allows the designer to simplify communi-
cation issues to local point-to-point transactions at IP module boundaries, using
protocols natural to the IP [102]. In general they convert IP level communication
(reads and writes) into packets which the NoC can handle. They are responsi-
ble for (de-)packetization, for implementing the connections and services, and for
offering a standard interface (e.g., AXI or OCP) to the IP modules.

NoC Topologies

Many network topologies have already been investigated in the context of regular
networks, e.g. [30]. The most simple classification comprises regular and irregular



2. NETWORKS ON CHIP PRELIMINARIES 17

R R R R

R R R R

(a) fat tree

R

R

R

R

R

R

(b) ring

R R

R R

R R

R R

R

R

R

R

R

R

R

R

(c) mesh

R

R

R R

R R R R

R

R R

R R R R

(d) balanced binary tree

Figure 2.2: NoC regular topologies

topologies. The regular topologies group all topologies that show a regular pattern
in the connection of network components, and the irregular groups the ones that
show no regular pattern.

A few regular NoC topologies, like a ring, mesh, tree or fat tree are graphically
presented in Figure 2.2. Note that topologies mainly refer to the relative positions
of routers and not to the relation between routers and NIs, or the number of IPs
connected to a single NI, a relation which is detailed later in this chapter. For
the sake of comparison, Figure 2.1 with the example NoC features an irregular
topology. Regular topologies exhibit characteristics desirable in the design of large
scale ICs. E.g. the mesh topology leads to a high link utilization and is good for
floorplanning while the tree-like topologies are very well suited for designs that
exploit locality of traffic.

For NoCs in general, there are in principle no topology constraints except
that the supported topologies are mainly planar topologies, which can easily be
implemented in silicon. There are also no guarantees that all the proposed NoCs
support random topologies or even some of the most common regular topologies.
Some NoCs are not limited to a specific topology like the Æthereal NoC [40], but
other NoCs may actually be limited to a specific topology, e.g. the SPIN NoC [45]
assumes the fat tree topology.

IP-NI-R

One interesting dimension is the one which relates the IPs, NIs and routers.
Regardless of the use of regular or irregular (custom) topologies in the NoC design,
one relevant classification of NoCs from the monitoring point of view is the one
taking into account the number of IPs they support per NI, and the number of
supported NIs per router. Visually depicted in Figure 2.3, using as a basis the
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Figure 2.3: Various IP-NI-R relationships

previously presented fat tree topology from Figure 2.2(a), this classification is very
important for monitoring decisions like where to place the monitors. Simple NoCs
allow a single NI attached to a router with a corresponding single IP attached to
the mentioned NI as shown in Figure 2.3(a). Closely related is the fact whether
there are NIs attached to all routers or not. Due to the nature of the fat tree
topology (indirect topology), in Figure 2.3(a), only half of the routers have NIs
attached to them. One example where all routers may have NIs attached to them
is the mesh topology, see e.g. Figure 2.4.

Multiple (but not necessarily the same number of) IPs may be connected to
the same NI, as in Figure 2.3(b). From the monitoring point of view, this means
that a monitor added to that particular network interface may be able to monitor
the communication of any of the connected IPs. The clustering of multiple IPs
per NI is done to aggregate the bandwidth required by these IPs to the NI-R
link in order to obtain a high link utilization, meaning that the silicon area is
efficiently used. It is also done in order to keep the paths between the IPs that
communicate a lot together short in order to reduce the power consumption. The
clustering of multiple NIs per router as in Figure 2.3(c) is actually done for the
same reasons. Clustering more (but not necessarily the same number of) NIs
per router means that a monitor attached to that specific router may potentially
monitor the communication of all or any of IPs connected to its connected NIs.
There exists also the case when a single IP connects to multiple NIs, e.g. a
multiport memory, having each port connected to one NI; however; however from
the monitoring point of view each port can be viewed as a different IP.

Table 2.1 presents the possible combinations of options. The most complex
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Table 2.1: IP-NI-R
IPs per NI NIs per R topology

one one regular
one multiple regular

multiple multiple regular
one one irregular
one multiple irregular

multiple multiple irregular

cases are the NoCs which will potentially cluster multiple NIs per router with
potentially multiple IPs per NI in a regular or irregular topology. As another
interesting option, an IP with multiple ports, e.g., a multiport memory, may
connect to more than one NI. Such a case with a regular topology is shown in
Figure 2.3(d).

Routing and Switching

Communication between IPs takes place in the form of transaction components
called messages, which in NoCs are split into packets. As part of the commu-
nication between a sender IP and a receiver IP and their corresponding source
and destination NIs (the place where the IPs connect to NoC), routing is the
way of selecting a desired path as a sequence of routers which will deliver the
data. Routing is one of the main NoC characteristics and influences primarily
the performance of the NoC and ultimately its final area and (dynamic) power
required.

Both static and dynamic routing have been employed the NoCs. In static
routing, the path from the source to the destination is pre-computed and the
packet follows a fixed route. In dynamic routing, only the source and destination
pair are known and the packets belonging to the same communication may follow
different routes based on routing decisions taken at individual routers based on
the current status of the network, an individual router or of a group of routers.

Switching refers to the way in which inputs and outputs of a router connect
together, and the way the information belonging to a source destination pair
actually travels through the NoC. We can distinguish two main classes of switching
techniques: packet switching and circuit switching. In circuit switching, a circuit
through potentially multiple routers in the NoC, corresponding to the desired
routing path, is established prior to the communication start, by reserving physical
links. The entire circuit is therefore released after the communication takes place.
Virtual circuits make a step forward by multiplexing circuits on links.

In packet switching, the information to be communicated is partitioned into
packets which contain routing information in the first bits, usually referred to
as the packet header. These packets are routed from source to destination in a
time-space scheme. Unlike circuit switching no path has to be reserved. Two
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Figure 2.4: Example of NoC communication options

variations of packet switching employed in NoCs are wormhole and virtual cut-
through switching, with the former being the switching of choice in the NoC world.
Both are based on the principle of pipelining the communication through the NoC
at flit level avoiding the expensive buffering of complete messages at routers, the
main difference being the level of granularity at which they operate, the former at
a finer level (flit) than the latter (packet). In wormhole switching when receiving
a flit the router tries to send it to the next router; when this succeeds the next
flits follow in a pipeline fashion, if ir does not succeed the message is blocked. In
virtual cut-through switching if the flit cannot be sent to the next router, the rest
of the packet is received and buffered locally; if the flit can be sent then the rest
follow him. While in principle both try to avoid buffering entire messages, only the
former does it always, while the latter may actually buffer them in the worst case
scenario at high network loads. Combinations of multiple switching techniques
within single NoCs exist and are beneficial for NoCs, e.g., the combination of
circuit and packet switching in the Æthereal [41] and Mango [12] NoCs.

Communication options

Interesting enough, and related to the previously presented NoC topologies and
the relation IP-NI-R, there are multiple options for the type of the path of a
connection that may exist in a certain NoC. With our communication centric
monitoring approach understanding these options is crucial. The type determines
how the path relates to the number of NIs and routers it traverses, which is
important from the monitoring point of view. Note that here we only refer to
point-to-point connections (which support the communication between two IPs),
and not to, e.g., multicast connections. The three main options are depicted in
Figure 2.4.

The first option, connection C1 in the figure, is the most common option and
is present and supported in basically all of the existing NoCs. It adheres to the
restriction that a connection has to pass through two different NIs, and at least
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two routers.
The second option, option C2 in the figure, enables a connection to pass

through one router and two different NIs. This option only applies to NoCs
which support multiple NIs per router.

Finally, the least restrictive option of all, the third option, connection C3 in
the figure, restricts the length of the path to at least one router and two different
NI ports, which can be on the same NIs. Obviously this option only applies to
NoCs which support multiple IPs per NI. The support for any of these types of
connection must be built in the corresponding NoC design flow, and has an impact
on the monitoring support.

NoC services

One of the main strengths of NoCs is the decoupling of the computation from
communication. This issue is key in the service based design of SoCs, as the
communication and the computation parts can now be designed in isolation.

This decoupling is done by means of NoC services. NoC services abstract
from the NoC internals, hence belonging to the transport layer. These services
are offered to the NoC connected IPs. These IPs are refining their communication
onto the offered services. In order to communicate with each other, these IPs do
not know and do not make assumptions about the implementation of the NoC
which stands between them, and solely rely on the offered transport layer services.

The offered services can be grouped as guaranteed or best effort services, and
connection-oriented or connectionless services. Connection-oriented or connection-
based services requires an end to end connection to be set up before any commu-
nication between two NoC connected IPs at the ends of this connection can take
place; it guarantees that the transmitted data arrives in the proper order at the
receiver. Connectionless services do not require the prior establishment of such a
connection for communication; the sender starts to send data to the receiver; in
general there is no guaranteed that data will arrive and that it will arrive without
duplication, without delays, and in sequence.

In guaranteed services (GS), in its best known form of guaranteed throughput
(GT), e.g. as employed in the Æthereal NoC, the fixed bandwidth allocated for
the communication (of a higher level session) does not change dynamically during
the time of the session, regardless the state of the system. The GS is maintained
by means of appropriate NoC resource reservations for the entire duration of
the session. Time division multiple access (TDMA) is generally employed in
NoCs to provide time and bandwidth-related guarantees, with TDMA circuits
corresponding to NoC connections.

In best effort (BE) services or non-guaranteed services, the bandwidth allo-
cation for a specific communication may change dynamically subject to e.g. the
bandwidth availability in the NoC. These services can be perturbed by conges-
tion, existing or new guaranteed services used by the NoC connected IPs, as well
as by other best-effort services.
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In fact, the guaranteed services can be leveraged on and hence are often associ-
ated with the connection-oriented services. Connectionless services do not usually
offer much guarantees and are rather associated with the best effort services.

Connection-based flow control, also known as end to end flow control, is re-
quired to prevent the overflow of the buffers at NIs. If flow control is not im-
plemented, then the NIs can drop packets when buffers overflow. In NoCs, a
credit-based flow control is usually employed, where credits are associated with
empty buffer space at the slave (receiving) NIs. The credit for the slave NI is
kept at the master (sending) NI, and is increased when data is consumed from
the slave NI buffer and lowered when data is sent to the buffer.

NoC design flows

With their inherent complexity, NoCs require sophisticated tools to aid in design-
time decisions [46, 67]. These tools are generally referred to as NoC design flows.
The typical NoC design flow [40, 67, 14] is normally split into four steps as shown
in Figure 2.5: topology selection, mapping, path selection and slot allocation.
Each step adheres to the decisions taken in the previous steps.

Topology selection

Communication
specification

IPs

Mapping

Path Selection

Slot Allocation

Figure 2.5: General NoC Design Flow

As prerequisites for NoC design, communication requirements must be derived,
and the set of IPs to be connected to the NoC must be specified. In the topology
selection step, the router network together with the bordering NIs are generated,
based on the previously derived communication requirements. Note that even
NoCs that have no architectural topology constraints can be restricted in the use
(automated generation) of a specific topology by its associated design flow. Using
this topology together with the IP specification, the binding of IP ports to NI
ports is done in the mapping step. These two initial steps are done taking into
account the supported IP-NI-R relations, as previously presented.

In the path selection step, paths are allocated for all the communication flows
specified, taking into account which of the previously presented communication
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options are supported. In the slot allocation step each of the flows gets its own
TDMA time slots for the traversed NoC links. Some design flows may omit or
combine various steps.

NoC examples

As previously mentioned, many NoCs have been already proposed, both in the
academia and in the industry. Here, we briefly outline a few example of existing
NoCs with their main features:

Æthereal NoC [41, 40]. The Æthereal NoC is a connection-oriented packet-
switched network on chip, wit routers using input queuing and link level flow
control. It offers a unique blend of guaranteed throughput (GT) and best-effort
(BE) services. It allows multiple IPs per NI, and multiple NIs per router, exposing
the most general solution from the investigated NoCs. In the remainder of this
work we use the Æthereal NoC as an example for our work. Therefore, the relevant
details for this work of this particular NoC are detailed in Section 2.3.

MANGO [12]. The message passing asynchronous network on chip providing
guaranteed services over the OCP (Open Core Protocol) interface (MANGO) was
developed in academia. It’s main characteristic is that it is a clockless NoC.
It offers NIs to convert the data from the connected OCP compliant IPs. It
offers a combination of best effort and guaranteed services. It provides only a
one to one correspondence between IPs and NIs, resulting in the fact that each
communication path will pass two NIs and at least two routers.

SPIN [45]. The scalable, programmable, integrated network (SPIN) is one of
the pioneers of the on-chip packet-switched network. This NoC is clearly associ-
ated with the fat tree topology. It uses wormhole routing. Each terminal fat tree
router (e.g. the four routers with NIs attached in Figure 2.3(a)) accommodates
four terminals in SPIN terminology. Each terminal consist of an NI in the form
of VCI (Virtual Component Interface) wrapper with its corresponding IP. It can
only accommodate one IP per NI.

xPIPES [50, 68]. This work refers to the combination of the SUNMAP/xPipes
network on chip design methodology. Besides the genuine NoC work, this work
focuses on robustness, reliability and error correction. It supports a range of
topologies like mesh, torus, hypercube and butterfly. It combines wormhole rout-
ing with source routing and offers connectionless best effort services. It requires
one NI per each IP involved, but it can connect multiple NIs per router. The NI
supports OCP protocol.

Arteris [7]. This a one of the first commercially available NoC, and comes
from a French company. Their focus is on producing commercial designs and
they were between the first in the industry to believe that NoCs will soon replace
busses [8]. The Arteris NoC is a packet switched interconnect. It supports a range
of topologies including user specified topologies. It also supports the OCP and
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AMBA IP interfaces in the form of NI wrappers. It offers transport level services
in the form of best effort traffic. The network interfaces employed by the Arteris
NoC are basic ones which only allow the connection of a single IP per NI.

Chameleon [83, 53]. This packet-switched network with virtual channels uses
source routing. It offers both BE and GT services; the GT services are based on
the virtual channel allocations while the BE is made available by sharing virtual
channels. The destination processing element and the route to be followed are
specified in the packet header. The Chameleon NoC supports only a regular
mesh topology, combining each processing element with a single NI and a single
router. Thus, it provides a one to one correspondence between IP and NI as well
as between the NI and R. It uses a single PE as a configuration manager, to
configure the other PEs, the network and communication channels by means of
control messages.

2.2 General NoC-based Architectures

The routers and NIs, with their associated NoC topologies, routing and switching
schemes and design flows are mere parts of the more general NoC system ar-
chitectures. While, many classifications of these architectures have already been
presented the one we found most inspiring and closest to our opinion was pre-
sented in [16]. We further summarize the main characteristics of the two main
NoC based architectures.

Application Specific NoCs

The application specific NoCs assume that one or more applications are known up-
front. This class of architectures encompass the application specific ICs (ASICs)
and application-specific standard products (ASSPs).

ASICs are designed for a single application while ASSPs may support several
application instances being targeted to an application domain. The fact that the
applications are known at design time makes it easy to predict their communica-
tion requirements and therefore the corresponding network usage patterns before
the NoC is actually designed. A minimal NoC supporting the application(s) is
synthesized by the corresponding NoC design flow. Therefore, application specific
NoC design is of utmost importance, and these designs are usually area and power
efficient.

In general the class of application specific NoCs will cluster multiple IPs per NI,
multiple NIs per router and may employ regular or custom NoC topologies, with
all possible communication options as presented in section 2.1. This is because in
this case all the information about the application is known.
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write data n
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Figure 2.6: Æthereal write message format
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Figure 2.7: Æthereal packet example

General Purpose NoCs

Also called chip multi processor NoCs, they capture the general purpose aspects of
NoCs. They are not built to support a specific application or application domain
but are built to serve as a platform on which various applications, known after
the platform was built, are mapped.

The application communication requirements are not known at design time.
Therefore, a minimum cost NoC cannot be designed. As a result, the mapping of
an application onto this platform and routing of communication connections are
the most important steps, the corresponding traffic pattern being known only at
run-time. The NoC design step merely consist of a topology choice in this case.

In general the class of general purpose NoCs employs a one to one mapping
between IPs and network interfaces in a mesh topology of routers, supporting the
first communication option as presented in Section 2.1. The resulting components,
IP with the corresponding NI or even including their corresponding router are in
general called tiles. Variations though exist.
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payload 1eop
payload 0size

pathqidcreditid word 0
word 1
word 2

Figure 2.8: Æthereal flit format

2.3 TheÆthereal NoC

Implementation Details

The Æthereal NoC [41, 40] is a connection-oriented packet-switched network.
The Æthereal routers use input queuing and link level flow control. The Æthe-
real network interfaces have a modular design, composed of an NI kernel and NI
shells. The NI kernel provides the basic NI functionality, packetization of mes-
sages, arbitration between connections, and end-to-end flow control. The NI shells
implement protocol adapters for protocols such as AXI or DTL and additional
functionality, such as multicast and narrowcast connections, which are not always
needed in a design. Multicast and narrowcast are connections between a single
master and multiple slaves; while for the former all slaves receive a transmission
from the master, for the latter only one slave will receive it. These shells can be
plugged in or left out at design time in order to optimize area cost.

The Æthereal NoC supports the entire range of topologies from the regular
ones to custom ones, not being bound to a specific one. Furthermore, it allows
clustering of multiple IPs per NI and potentially multiple NIs per router with
any topology. It also supports all three communication options as presented in
Section 2.1.

Running at 500 MHz, the Æthereal NoC offers a raw link bandwidth of
2GB/s in a 0.13µm CMOS technology. Æthereal offers transport-layer commu-
nication services to IPs, in the form of connections, comprising best-effort (BE)
and guaranteed-throughput (GT) services. Guarantees are obtained by means of
TDMA slot reservations in NIs.

Æthereal NoC instances are reconfigurable at run-time. This is achieved by
programming the NIs using standard memory-mapped I/O ports. The current
setup uses centralized programming of the NoC and source routing, but dis-
tributed solutions are also possible.

The interconnected IPs interact with each other by means of transactions,
which are read and write transactions from IPs. In principle one transaction may
comprise one or optionally more messages. From the IP perspective these trans-
actions (reads and writes) are performed on connections, consisting of one request
and one response channel. The paths of request and response channels may be
different. Messages are differentiated as request and response messages. E.g., a
request message can be the write message depicted in Figure 2.6. A response
message is for example data coming back as a result of a read operation, or an
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acknowledgment as a result of a write operation. More details on transactions in
general and the Æthereal NoC transactions in particular together with examples
are presented in Section 4.3.

The NIs convert these messages into packets, by chopping them into pieces
of a maximum length and adding a header to each of these pieces. Packets may
be of different lengths. An example packet is shown in Figure 2.7. The packet
header consists of:

(1) a path to the destination NI as a sequence of router output ports,

(2) a queue identifier (qid) at the destination NI, and

(3) piggybacked credits for end to end flow control.

Packets are further split into flits, the minimum transfer or flow-control unit
between hops. The flit format is presented in Figure 2.8, with the mention that
this particular flit contains a packet header as the first word. One flit corresponds
to one TDMA slot. Note that the packet presented in Figure 2.7 corresponds to
three consecutively allocated slots. One flit comprises three 32-bit words. For
each of the three words there are two bits of sideband information. The first two
sideband information bits, id in Figure 2.8, show whether the flit is BE or GT
and whether it contains a packet header or not. The second two bits show the
number of valid words in the flit. The last two bits indicate the end of packet.

Connections have properties such as data integrity, transaction ordering or
flow control. Data integrity guarantees that the data is not altered in the NoC.
Transaction ordering guarantees that the order of separate communications is
preserved per connection. Connection flow control guarantees that the data that
is sent will fit in the buffers at the receiving end, to prevent data loss and network
congestion.

The Æthereal NoC uses wormhole routing which requires less memory because
its storage unit is a flit rather than a packet. Packets are partitioned in flits. A
flit is passed to the next router when that router indicates it accepts that flit. As
soon as a flit of a packet is sent over an output port, that output port is reserved
for flits of that packet only. Therefore, a packet can be spread over a number of
routers.

Corresponding Design Flow(s)

The basic ideas of the Æthereal NoC design flow have been presented in [40].
It targets application specific NoC designs and fits the four step sequential NoC
design flow profile previously presented relying on topology selection, mapping,
path selection and slot allocation. As shown by [37], the Æthereal NoC design
flow supports a wide range of topologies including meshes, trees and fat-trees. It
also supports all possible communication options of Section 2.1. As output, it can
generate synthesizable VHDL or a flit accurate SystemC simulator.
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Further upgrades to this design flow in the form of a combination of its steps
achieving better run-time and lower area cost of the final designs has resulted in
UMARS [46]. UMARS is a QoS constrained NoC design algorithm. It unifies the
three resource allocation phases: spatial mapping of cores, spatial routing of com-
munication, and the restricted form of temporal mapping that assigns time-slots
to these routes. UMARS considers the real-time communication requirements,
and guarantees that application constraints on bandwidth and latency are met.

UMARS is a greedy algorithm, iterating over the monotonically decreasing
set of unallocated channels until they are all accommodated in the NoC, or until
allocation failed. The algorithm, as outlined in Algorithm 2.3.1, never back-
tracks to reevaluate an already allocated flow, enabling run-times in the order of
milliseconds.

Algorithm 2.3.1 Outer loop of UMARS

1. While there are unallocated channels

(a) Select the channel with highest bandwidth

(b) Find a mapping and a path for the selected channel

(c) Select slots on this path

Channels are allocated ordered on their bandwidth requirements. This is done
as it:

(1) helps in reducing bandwidth fragmentation [59];

(2) is important from an energy consumption and resource conservation per-
spective since the benefits of a shorter path grow with communication de-
mands [49];

(3) gives precedence to flows with a more limited set of possible paths [49].
This ordering assures us that no channel succeeding the one currently being
allocated has higher bandwidth requirements.

2.4 Conclusions
NoCs are becoming the interconnect of choice in the embedded world due to their
scalability and to the decoupling of the communication from the computation.
With many NoCs already proposed and a few which have reached maturity, they
support complex and varied topologies. Different relations between the number
of IPs per NI and the numbers of NIs per router together with different commu-
nication options may be supported in the current NoCs.

The Æthereal NoC, which is used throughout this work as an example, is a
very rich NoC in the sense that it supports a wide range of topologies and that it
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allows all IP-NI-R relations and communication options. One of the key issues in
the NIs, the packetization was detailed, together with the associated state of the
art NoC design flow required as support for real designs.

Besides being a mere introduction to NoCs, this chapter shows that common
features exist for the majority of NoCs. It is important to observe that despite
implementation details or particular NoC cases most NoCs share the features on
which our NoC monitoring service is built. We further summarize these common
features:

(1) Routers are the basic data switch unit and are connected by links. Network
interfaces connect and interface the IPs to the router network. Concentrat-
ing the entire SoC communication, the routers and NIs make ideal points
for monitoring.

(2) IPs are connected to the NoC via NIs. The main process that happens at
the insertion of IP data in the NoC, via the NI, is the packetization, and
splitting of these packets in flits. This implies that extra information is
added to the original IP data, e.g. headers or sideband information. For
monitoring at the routers or NIs this is premium information as it allows
the original IP communication to be identified and decoded.

(3) The packetized data is transported via a supported multi-hop communica-
tion path. This allows router or NI monitors to be inserted (at design time)
or activated (at run-time) at different positions along this communication
path.

(4) Advanced design-flows are indispensable tools to tackle the associated in-
herent complexity of the NoC designs. NoCs are not just taken from an IP
library but are designed around routers and NIs from such libraries. Moni-
toring, in the form of the router and NI monitors must be added at design
time, and the impact (if any) on the existing NoC must be investigated and
be accounted for. This means that a synergy exist between the monitoring
and NoC design flows; the NoC design flow must integrate and be aware of
monitoring.
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Chapter 3

Generic NoC Monitoring Service

Networks on chip are considered by many as the interconnect of choice for the
SoC design. While the analysis and design of such NoCs have been the focus of
the research community, one important issue, monitoring, has not yet received
the deserved attention. This chapter presents the basic features of a generic NoC
monitoring service. After a brief motivation showing the need for a monitoring
service and the associated related work, Section 3.3 clarifies what a NoC monitor-
ing service actually is, what are its associated main features and what it means
to add a NoCMS to a NoC. The monitoring service consists of generic hardware
monitors and monitoring service access points. The monitors can be instanti-
ated for the monitoring task at hand. They are run-time configurable, and their
corresponding programming model is presented. The monitoring service access
points are IPs which can configure the monitoring service, and which can receive
the monitored data. They are also the entry points for the clients requesting
monitoring data. The monitoring service can be instantiated as a centralized or
a distributed system.

We advocate a generic monitor architecture enabling reuse comprised of three
major components: a sniffer, an event generator and a monitoring network inter-
face. This is made clear in Section 3.5. In order to be able to use the employed
monitors the monitoring service must be configured. The configuration obeys a
monitoring service programming model as depicted in Section 3.6.

The monitored data is locally abstracted at monitors in the form of events. The
event model used by the monitoring system is presented in Section 3.4. Monitoring
data generated by the monitors which has been abstracted at monitors must be
sent towards monitoring service access points. Also monitoring service access
point configuration data is required for programming the monitors. This is done
by means of a traffic management strategy, elaborated in Section 3.7, with the
help of two data transport scenarios.

With all the NoC monitoring service features presented it is time to revisit all
from a cost perspective, as described in Section 3.8 where an initial cost estimation
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is made. With this we conclude that the costs of our proposed monitoring service
are acceptable.

The first ideas supporting this chapter have been published as ”An Event-based
Network-on-Chip Monitoring Service”; Calin Ciordas, Twan Basten, Andrei Rad-
ulescu, Kees Goossens, and Jef van Meerbergen; In Proceedings of International
High Level Design Validation and Test Workshop (HLDVT), November 2004.
IEEE,2004 [17]

An extended version of this paper with a closer resemblance to this chapter
has appeared as ”An Event-based Monitoring Service for Networks on Chip”;
Calin Ciordas, Twan Basten, Andrei Radulescu, Kees Goossens, and Jef van
Meerbergen; In ACM Transactions on Design Automation of Electronic Systems,
10(4), Oct 2005 [18]

3.1 Motivation

The need for multiple monitors

As already mentioned in the introductory chapter, system level observability solu-
tions must include on-chip instrumentation modules called monitors that support
the entire system of interest, the computation and the communication part. Such
monitors are common for computation, e.g. at the core level [5], and for bus-based
communication [32].

As the SoC world is moving towards NoCs, inter-IP communication becomes
more sophisticated relying on run-time programmable solutions and will be able
to use multiple truly parallel communication paths, as opposed to centralized bus
communication in current SoCs.

As a performance monitoring example, a single central bus performance mon-
itor is enough for bus-based systems to track the performance of the bus intercon-
nect (e.g. utilization). As opposed to this, multiple performance monitors (e.g.
the performance monitor of Chapter 5) are required to track the performance (e.g.
utilization) of the system interconnect in NoC-based SoCs.

Also a single transaction monitor suffices in the centralized bus-communication
to gather the transaction history. Due to the inherent parallel behavior of commu-
nications, where multiple pipelined parallel communications may exist between
IPs, in the NoC-based SoCs more than one such transaction monitor (e.g. the
transaction monitor of Chapter 4) has to be employed to recreate a transaction
history of the system.

It is therefore clear that for a successful monitoring task we will have to deal
with a collection of multiple monitors.
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Interconnecting multiple monitors

While supporting multiple monitors in future NoC-based SoCs is a must, the
problem of their interconnection arises. The employed monitors need to send their
data towards the monitoring requestor, and have to be able to receive requests
for monitoring, in the form of configuration data, requiring their interconnection
together with the monitoring requestors. Interconnecting the chip-wide spatially
distributed monitors poses a number of significant challenges. These challenges
shall reflect in the features offered by any proposed NoCMS.

Many monitors participate together or in isolation in one or more monitoring
tasks. Some of these monitors might be third party monitors. Any such monitor-
ing interconnect must be scalable, non-intrusive, run-time usable and configurable,
and of minimum area cost. Furthermore, we want generality, i.e. we want the
same monitoring service concept, including the interconnecting of the monitors,
to successfully apply to more NoCs.

As NoCs are a scalable interconnect they appear a natural fit for the task. Op-
tions like sharing or not sharing a single interconnect for functional and monitoring
traffic are key to monitoring system design. By using a scalable interconnect like
the NoC for the transport of monitored data from multiple monitors, as opposed
to a single big multiplexer tree, the physical wiring problem (bottleneck) has been
traded for potential congestion in the NoC.

Three scalable alternatives for interconnecting the spatially distributed mon-
itors, all employing NoCs, are presented in Chapter 6, because of the inherent
binding to the NoC design flow that is presented in the mentioned chapter. The
rest of the chapters, including the current one, assumes that a single NoC is used
for the monitoring as well as for the functional traffic, because it is the most area
efficient solution. The motivation of this choice is further detailed in Chapter 6.

3.2 Related Work
While the previous chapter has presented related work on NoCs in detail and the
state of the art in bus monitoring, including multi-core support has been presented
in Section 1.6, this section presents the existing NoC monitoring related work.

Multiple monitors have been employed in one combination of NoCs and mon-
itoring [69]. Here, the use of end-to-end performance monitors is proposed in
order to run-time assist the operating system controlling the NoC. The moni-
tored data uses a separate NoC, called the control NoC instead of the application
NoC. It fails however to show what are the associated costs or implications of
using monitoring, for example whether it is area efficient or not.

Embedded monitors in an FPGA environment are used to track end to end
run-time behavior (queue utilization) as feedback for the design exploration phase
in [63]. The employed hardware monitors have dedicated wires for transport of
their results multiplexed in front of an output port, showing an approach that is
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not scalable.
[1] proposes a dynamic routing scheme for reducing jitter in the latency of

BE traffic, only in the combination with GT traffic, which can benefit from mon-
itoring. It is assumed that the monitoring system is already in place, solved by a
third party. The work also fails to show the associated costs.

The presented related work shows that while the need for multiple monitors
and their interconnection is real, as multiple monitors have already been suggested
or employed in different works, no work actually presents a coherent picture of
what is actually needed in NoCs for NoC monitoring, or what are the options for
interconnecting multiple monitors, their associated costs or a generic monitoring
strategy which scales well with the size of the NoC. Our work tries to close this gap
with the proposal of a generic NoC monitoring service which can be instantiated
for the monitoring task at hand.

3.3 Introducing the NoC Monitoring Service

3.3.1 Monitoring Service Concepts
Monitoring service or monitoring system ?

In our view a NoC monitoring service provides its clients with information gath-
ered from the NoC. This information is about the NoC or the surrounding NoC-
connected IPs, and it is provided in a raw or a more abstracted form. For example,
a client in the form of an internal protocol checking IP is provided with monitored
transaction information gathered and abstracted by transaction monitors spying
on a NoC link. The information comprising only the read and write messages with
the commands and addresses (but without the data), between two IPs over a NoC
connection. As a second example, another client taking the form of a run-time
application quality manager is provided with NoC utilization information com-
prising link utilization for a selected number of links, gathered by performance
monitors directly from the NoC.

The NoCMS is a service which is offered by the NoC in addition to the commu-
nication services offered to the IPs. Our proposed NoCMS seamlessly integrates
the concepts of a NoC monitoring service on top of a NoC monitoring system.
Confusingly enough, even in the (networking related) literature the form taken by
monitoring is sometimes referred to as a service (a monitoring service) and some
other times as a system (a monitoring system), without a clear difference being
made between them. To keep the confusion minimal the existing subtle difference
between them is pointed out here; the monitoring service is something which is
offered to someone else, e.g. to a client, while the monitoring system is something
which makes the monitoring itself or the delivery of the monitoring service to its
clients possible, e.g. a monitor or a dedicated monitoring interconnect.

Throughout this work both the monitoring service and the monitoring system
are jointly referred as the NoCMS (or network on chip monitoring service), the
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terms ”is offered” and ”consists of” making the distinction clear between the
monitoring service part and the monitoring system part.

NoCMS architecture

As previously mentioned, the NoCMS (the monitoring service part of it) is offered
by the NoC itself, in addition to the communication services [79] offered to IPs.
The NoCMS (the monitoring system part of it) consists of configurable monitors
(P) attached to NoC components (routers and NIs) and monitoring service ac-
cess points (MSAs), see Figures 3.1 and 3.2 for an illustrated version of it. The
monitoring service access point (MSA) is an IP which controls the configuration
of the monitors at run-time and receives the monitored data from the monitors
it controls. E.g. the MSA can stream this data outside the chip through a debug
port. The system wide distributed monitors and the MSAs are interconnected by
a scalable interconnect.

The monitor modular design comprises three parts: the sniffer (S), the event
generator (EG) and the monitoring network interface (MNI). The MNI can be
a separate NI or can be merged with an existing NI. The generic and modular
NoC monitor architecture (S + EG + MNI), allows e.g. to seamlessly change the
EG, e.g. the performance monitor of Chapter 5 with the transaction monitor of
Chapter 4, during the design process without changing the rest.

Note that we have chosen to add monitors to routers and NIs, because this
gives access to the internals of these components. As an alternative one could
consider attaching monitors to links but limiting in this way the observability to
the information passing the links. In fact, the transaction monitor of Chapter 4
and the performance monitor of Chapter 5 use only the information passing the
links.

Note also that the NoCMS provides support for the chip-wide monitoring
system (on the computational part, e.g. processors) by offering the option of inte-
grating third party probes (monitoring IPs) for the IPs connected to the NoC, like
ARMs ETM probe [5] for the ARM processors. These connect to the monitoring
NoC, see Chapter 6 for details, as any other IPs in the system. Their communica-
tion requirements are taken into account the same way as for any other monitors
(e.g. performance or transaction monitors). In this work we further refer to the
monitors as attached only to routers and NIs. The extension of it to include IP
monitors is left as an exercise for the reader.

The NoCMS is configured by means of monitor programming via the NoC
using memory-mapped I/O write transactions. Monitors are configured using
their associated programming model. The monitor gathered data may be sent
as is (raw) or locally abstracted at the monitors in the form of events; e.g. the
reader may want to check Chapter 4 for levels of data abstraction from physical
raw to logical transaction-event based, including the associated challenges. The
data for monitor configuration and the data gathered by monitors is sent using a
predefined monitoring traffic management strategy. In the following paragraphs
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we briefly explain the main concepts, as they are detailed in the following sections.

Event model

All the monitored information is modeled at the monitors in the form of events.
This supports event-based monitoring and on-chip abstraction of data. An event
model specifies the event format, e.g. timestamped events or not. Currently,
we focus only on timestamped events. An event taxonomy helps to distinguish
different classes of events and to present their meaning. An event model with an
associated event taxonomy and one instantiation of it is described in Section 3.4.

Monitors

The monitors are responsible for collecting the required information from NoC
components. The monitors, Ps in Figures 3.1 and 3.2, capture data from the
NoC components. This monitored information is locally converted in the form
of timestamped events. The monitors are run-time usable; this means that they
collect and locally process or abstract and send data while the system is running.

Multiple classes of events can be generated by each monitor, based on a pre-
defined instance of an event model. Monitors are not necessarily attached to all
NoC components. E.g. the top-right router in Figure 3.1 has no monitor at-
tached. The placement of monitors is a design-time choice and is related to the
cost versus observability trade off, see for more details Chapter 6. The employed
monitors may be of different types, e.g. the transaction monitor of Chapter 4
or the performance monitor of Chapter 5. The generic monitor architecture is
detailed in Section 3.5.

Programming model

The programming model describes the way in which the monitoring service is
being set up or torn down. It consists of a sequence of steps for configuring the
monitors and the means of implementing those steps. Monitors are programmed
via the NoC, e.g. using memory-mapped I/O [78, 75]. Single monitors are run-
time configurable, implying that the entire monitoring service can be configured at
run-time. This configuration can be done by any master IP connected to the NoC
from the corresponding NI. This master IP is called the monitoring service access
point (MSA), e.g. MSA1 and MSA2 in Figure 3.2. The programming model is
detailed in Section 3.6. The time required to configure the entire NoCMS is called
monitoring service configuration time, see Section 4.10 for details.

Monitoring Service Access points

MSAs are NoC connected IPs which receive the monitored data from the monitors,
make sense of this data locally, and/or forward it somewhere. They can also for
example be memories used to store the monitoring data or simply a debug port
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which streams the monitored data off-chip. As already mentioned, in principle
any master IP connected to the NoC can act as an MSA; this IP only needs the
knowledge (what and where to send) to configure the monitors. Note that al least
one MSA is always required in a NoCMS.

Traffic management

Traffic management regulates the traffic from the MSA to the monitors, required
to configure the monitors, and the traffic from the monitors to the MSA, required
to get the monitoring information out of the NoC. Already available NoC com-
munication services or dedicated solutions, e.g. a separate bus, can be used for
the traffic management for monitoring. Several alternatives for interconnecting
the monitors are detailed and evaluated in Chapter 6.

Non-intrusiveness

Non-intrusiveness is a key aspect in debugging, one of the main run-time mon-
itoring drivers, and also in performance monitoring where we do not want the
monitoring process and the monitoring data to perturb the functionality or the
performance of the monitored system. Non-intrusiveness must be ensured at all
levels.

We employ passive hardware monitoring in our proposed NoCMS. In the large
context of networks, passive monitoring means that the monitoring device, e.g. a
monitor, passively tracks a monitored device, e.g. a physical link by e.g. collect-
ing utilization statistics. In the same context active monitoring means that the
monitoring device is pro-actively trying to assess actual properties of the network
by e.g. sending packets for a round trip in order to detect network latency.

For our proposed NoCMS, the employed passive monitoring ensures non-
intrusiveness at the level of data gathering (SPY), see Section 3.5 for details.
For a non-intrusive monitoring service, not only the monitoring itself but also the
transport of the monitored data has to be done in a non-intrusive way. When a
separate NoC is used for monitoring, non-intrusiveness is guaranteed, see Chap-
ter 6 for this case. However, when the same NoC is used for transporting the
monitoring and the functional data, non-intrusiveness is not guaranteed by de-
fault and extra steps during design time need to be done to ensure it, as presented
in [20].

3.3.2 Distributed vs. centralized NoC monitoring service
We propose a NoC monitoring service that can be configured as a distributed or
a centralized service, during run-time, at arbitrary moments in time. The same
service can be later re-configured in a different form.

In a centralized monitoring service, as shown in Figure 3.1, the monitoring
information from the selected monitors is collected in a central point, in this case a
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Figure 3.1: Centralized Monitoring Service

collector monitor, through a single MSA. For small NoCs, a centralized monitoring
service is possible and convenient. However, the convergence of monitoring data
to a central point may become a bottleneck in large NoCs.

In a distributed monitoring service, the monitoring information is collected for
different subsets of NoC components at different points through multiple MSAs.
In this way, bottlenecks are removed and we achieve scalability. If all of the
present IPs have MSA capabilities as previously outlined, each of them can set
up its own monitoring service, eventually sharing probes.

Figure 3.2 shows a distributed monitoring service composed of two subsets of
components. One connects directly to a dedicated monitoring IP through MSA1.
The second connects, indirectly through a router which is not part of the subset, to
an off-chip interface through MSA2. The subsets can be programmed at run-time
offering increased flexibility. Hence, a monitor probe can be part of one subset
at one time and of a different subset at other times; see the monitors attached to
the routers in the middle of the figure. Monitoring information can be either used
on-chip, e.g. by the dedicated IP in Figure 3.2, or it can be sent off-chip either
directly through an off-chip link or via a memory.

3.3.3 Adding a NoCMS
In our view adding a NoCMS to an existing NoC means:

(1) adding the monitors; this is done taking into account the monitoring task
that is driving the monitoring activity, e.g. transaction-based debugging
or performance analysis. Note that as previously explained the number
of monitors may depend on the NoC topology, mapping of cores to NIs,
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Figure 3.2: Distributed Monitoring Service

number of NIs connected to routers, etc.;

(2) adding one or more MSAs; a single MSA is required assuming a centralized
monitoring system and more MSAs may be employed assuming a distributed
monitoring service;

(3) connecting the monitors to the MSA(s) for the dual purpose of monitoring
data transport and run-time monitor (re)configuration; this includes the
selection of a suitable monitoring interconnect in case the functional NoC
is not shared for monitoring. In this case, as well as in the case when the
functional NoC is shared for monitoring, using the communication services
of the NoC (or of the other interconnect) is the following step.

3.4 Event Model

3.4.1 Events
An event [57] is a happening of interest, which occurs instantaneously at a certain
time. In our view, an event is a tuple:

Event=(identifier, timestamp, producer, attributes)
The mandatory event identifier identifies events belonging to a certain class of

events and is unique for each class. The event identifier can be explicit or implicit.
In the frame of a NoCMS it makes sense to have it explicit to distinguish between
event classes when the same monitor is able to generate two or more event classes
at the same time, as opposed to a single event class being enabled at a certain
time. In the case of transaction monitors of Chapter 4 and performance monitors
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of Chapter 5 this is implicit, as these monitors can only generate a single event
class during a certain time period after being programmed, until next time it is
being programmed.

The timestamp defines the time at which the producer, in our case the mon-
itor via its event generator, generates the event. The producer is the entity that
generates the event. Attributes are the useful payload of events. Each attribute
is present in the form:

Attribute=(attribute identifier, value)

An attribute consists of its attribute identifier and its value. The attributes
and the number of attributes may depend on the event type.

Note that in some particular NoC context the identifier, timestamp or producer
are not always needed to be explicit at an event creation but can be inferred when
the events are collected.

3.4.2 NoC Event Taxonomy

In the following, we present a taxonomy of NoC events. The term user is used
to identify an IP. In general, we can group NoC events in five main classes:
user configuration events, user data events, NoC configuration events, NoC alert
events, and monitoring service internal events.

The criteria used for this taxonomy are graphically presented in Figure 3.3.
Within the NoC, we can have either user traffic or NoC internal traffic. Further-
more, there can be control traffic or regular data traffic. These two dimensions
define four of the five mentioned classes. All these classes represent data of the
monitored system. The fifth class of events is the class of monitoring service
internal events. Whether data is generated by the monitoring service or by the
monitored system can be seen as a third dimension. The resulting taxonomy
covers all relevant groups of events and is general enough to be valid for different
types of NoCs, although event types may need to be redefined for each specific
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NoC. The reason to choose these classes is that each of them may be useful in
different debugging tasks. Also, other dimensions can be added to this taxonomy
in order to refine it. One such dimension could be the grouping of events accord-
ing to the component where they are generated, e.g. in the probes attached to
routers or NIs.

In the remaining chapters of this thesis, only the user data events and NoC
alert events were further investigated and resulted in the proposal of a transaction
monitor and a performance monitor, although with other event capabilities than
the ones described here.

User Configuration Events

A NoC is used by IPs to communicate to each other. User configuration events ex-
pose this communication, presenting a system-level view of it, hiding NoC specific
details. User configuration events can show for example that processor X is com-
municating with processor Y via a connection. These events can be very detailed,
for example exposing the properties of the connection, or very abstract showing
just the timing of the communication and the communicating parties. This class
of events may be useful to check the system level interaction of components.

User Data Events

This class of events is the class that allows the sniffing or spying of functional data
from the NoC. The sniffing itself can be from the NoC elements or from the links.
Sniffing may be required for example to check whether the transmitted data, such
as a memory address, is exactly the intended data. It can allow for example
sniffing of flits, network packets or complete messages (as done in Chapter 4)
depending on the NoC and the purpose sniffing is used for. This class of events
may be useful to check data details of the specific interaction of components.

NoC Configuration Events

To achieve interprocessor communication, the NoC must be programmed or con-
figured, statically or dynamically, in a centralized or distributed way. NoC con-
figuration events expose this configuration of the network, enabling the system
debugger to trace configurations, allowing it for example to observe the setup of
a specific connection. Examples of such events are the fact that a new entry in
a routing table has been completed or that the routing table is full. Attributes
of these events can be for example the party that wrote the routing table entry.
These events are particularly useful for NoC debugging and optimizations.

NoC Alert Events

After programming the NoC, network problems can arise. Problems like buffer
overflow, congestion, starvation, livelock or deadlock can appear. In real-time
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systems, missing a hard real-time deadline is a serious error. Therefore, it is
imperative to monitor the network behavior and be alerted if signals of overload
or misbehavior appear. An example of an event fitting into this class is the
continuous lack of progress in a non-empty router queue indicating that the NoC
might be congested or even deadlocked. An attribute of such an event can be the
number of cycles the specific queue was idle. Performance analysis events, like
average queue fillings or other metrics, can be included here also. Performance
debugging may typically need this class of events, as illustrated in Chapter 5.

Monitoring Service Internal Events

This class of events contains all the events used by the monitoring service for its
own purposes, such as synchronizing or ordering of events, or to signal extraordi-
nary behavior of the monitoring service, e.g. monitoring data loss.

3.4.3 Æthereal Events

In principle, many instantiations of the above taxonomy for any given NoC are
possible, depending on the level of abstraction of the defined events and the
monitoring purpose. This section presents examples of potential Æthereal NoC
events in each of the corresponding event classes. As producer and timestamp are
always present, we only give the identifier and the attributes for each event.

User Configuration Events

Interprocessor communication via the Æthereal NoC is performed by means of
connections. As an example the Connection Opened event could shows when a
certain connection has been opened. The attributes are the connection identifier,
the type of the connection, e.g. narrowcast, the ports between which the connec-
tion exists, the path of the connection and whether it is a GT or a BE connection.
A Connection Closed event shows when a connection is torn down. Its attribute
is the connection identifier.

User Data Events

Sniff events for the Æthereal NoC refer to sniffing flits, either BE or GT. Flits
are sniffed from the router queues. Sniffing multiple flits can emulate sniffing a
complete packet or even complete messages (see Chapter 4). BE Sniff and GT
Sniff events are example events that can be generated when a BE flit and GT
flit are sniffed, respectively. Their attributes are the identifier of the queue from
which the flit was sniffed and the BE or GT flit itself.
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NoC Configuration Events

The Reserve Slot event is an example of NoC configuration event that shows when
a certain slot in the slot table of a router or network interface has been reserved.
The attributes are the slot number and its value. The Free Slot event shows that
a slot table in the router has been freed. Its attribute is the slot number. A
System packet arrived event shows when a programming packet addressed to a
router has arrived there. Its attribute is the entire packet. The purpose of this
attribute is to trace a system packet and to see what actions will occur because
of it. E.g. a setup system packet can go through multiple routers and program
all of them.

NoC Alert Events

A Queue filling event could be specified taking into account the number of queues
a router has. In case of a four port router, we have four attributes, namely the
queue fillings in absolute numbers for each of the four queues. A Queue full for X
cycles event could have as attributes the queue identifier and a value for X. The
queue identifier pinpoints the specific queue while the X attribute is a number
specifying the number of clock cycles the queue stayed full. A Queue resuming
sending event, with attribute queue identifier, shows that the queue has resumed
sending packets after it has been idle for some time. An End-to-end credit 0 event
is an example flow control event showing when the remaining buffering credit for a
certain connection is zero, leading to a blocked IP. Its attribute is the connection
identifier.

Monitoring Service Internal Events

Each monitor in a NoC can generate events. The total order of events for one event
generator is given by the timestamp. For area efficiency reasons, a timestamp
is necessarily limited to a specific maximal value. After reaching this value, the
timestamp counter wraps itself. A Synchronization event could be used to indicate
when the event counter wraps. The event has no attributes and is only required
to allow the proper synchronization for one probe. Currently, Æthereal works
with a totally synchronous NoC. The event definition for the Æthereal setup
allows to reliably reconstruct the overall partial order of monitoring events. The
methods described in this work will also work with asynchronous NoCs but the
timestamping policy will be influenced.

3.5 Monitors

3.5.1 Generic Architecture
The generic NoC monitor architecture consists of three components, see Fig-
ure 3.4: a sniffer (S), an event generator (EG) and a monitoring network interface
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(MNI). The monitor has as input a number of signals obtained by the sniffer from
the router. Based on these signals, the monitor generates events through the EG,
which must be sent to the MSA. This means that the events must be packetized
and sent through the network. This is what the MNI is doing. The means of
implementing the sniffer, EG and MNI blocks and their architectural details, e.g.
timestamping policy, are NoC dependent.

3.5.2 Æthereal Probe Architecture

This section presents the architecture of the monitors for the Æthereal NoC,
based on a prototype implementation for evaluation purposes. Monitors are im-
plemented in hardware and are a design-time choice. The system designer has
to decide what level of monitoring is desirable and affordable. The proposed
monitoring architecture is suitable for multiple levels of abstraction.

An Æthereal monitor is attached to a router or to an NI. For simplicity, we
restrict ourselves to routers in the following. For NIs, there are no conceptual
differences.

The Æthereal monitor can be seen in Figure 3.5. It features a modular design,
and can be used without changing the design of the router or NI. In the following,
we briefly present each of its components. The basic scenario illustrated in the
example figure is very simple: programming packets are coming through the NoC
on any of the router ports, e.g. I1 in Figure 3.5. They are transferred by the
router from I1 to output O5. The MNI depacketizes the programming packets
and configures itself via CNIP and the EG via the Configuration Port. The EG
generates events and transfers them to the MNI, via the Event Port, where they
are packetized. Packets are sent to the input I5 of the router to be sent to the
MSA, via e.g. O2 in Figure 3.5.

Sniffer

The task of the sniffer is to get info from the router and offer it as input data to
the EG. Sniffing the signals is not intrusive. The input data are signals obtained
by means of SPY-like [100] mechanisms. The SPY approach allows a limited set
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of signals to be monitored in real time, while the chip is running an application,
using a multiplexer tree of dedicated wires attached to points of interest in the
circuit/SoC. Sniffers can be attached either to routers or to the links between
them. We attach the sniffer directly to routers because then we can also have
access to the router internals. The sniffer delivers the signals to the EG data
port.

Event Generator

The task of the EG is to generate timestamped events based on the input received
from the sniffer. The EG can generate instances of multiple event types. Our test
implementation implements all the example events of Section 3.4.2. Event types
supported are a design-time choice, their selection is a run-time choice. The EG
passes the generated events to the MNI.

The general format of the Æthereal NoC event in our evaluation implementa-
tion is:

identifier timestamp producer attributes
8 bits 16 bits 8 bits ≥ 0 words

The Æthereal event identifier is an 8 bit code in the proposed format. Æthe-
real events are not all of the same size. Event attributes can be enabled or disabled
allowing any combination of existing attributes for one event. The number and
size of attributes is determined by the identifier.

The format uses a 16 bit timestamp. This timestamp is obtained by taking
advantage of the 8 bit counter in the router used for slot table iterations. As
an 8 bit counter is considered too small for the timestamp, for synchronization
reasons, it is extended with another 8 bit counter in the event generator itself.
In this way, we can iterate 256 revolutions of 256 slots, without wrapping the
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timestamp counter. Æthereal NoC has showcased four router designs [41] with
the first three supporting a combination of GT and BE traffic and the last one
supporting only GT traffic. The first from the three GT/BE router designs, for
which this monitor was initially built, features an internal slot table unit with the
mentioned 8 bit counter; this counter is not present in the other router designs,
which means that it has to be provisioned as part of the monitor.

The producer specifies the router that has the monitor generating the event
attached to it. An 8 bit code is used, allowing for 256 producers, which fits today’s
requirements.

The identifier, timestamp and producer together consist of one (32bit) word
matching the Æthereal link width. The attributes can have any maximum size
in principle. In a test implementation of all the example events discussed in
Section 3.4.2, our longest event with all attributes enabled is 5 words.

EGs contain an on/off switch, masks for selection of events, their correspond-
ing attributes and activation time, the timestamping unit and a queue for events.
In the evaluation implementation, we use a 10 words queue to accommodate two
maximum size events.

The proposed Æthereal EG has three ports, see Figure 3.5: one data port,
one configuration port and one event port. The data port gets the input from
the sniffer. The programming port, a memory-mapped I/O slave, is connected to
the MNI output port. The event port, a master memory mapped block data is
connected to the MNI input port. The generated events are posted in the internal
queue and from there they are passed to the network interface.

Monitoring NI

The MNI is a standard NI, see Chapter 2 for NI details; we call it the MNI in
order to help distinguish it from the other NIs present in the NoC. The events
generated in the EG are transferred to the MNI. The MNI packetizes events and
sends them via the NoC to MSAs like any other data. The MNI can be configured
by any master attached to the NoC through its configuration port CNIP [78] in
order to setup the connection for the monitoring packets.

The MNI has two Network Interface Ports (NIPs) for communication with the
EG: one master memory-mapped I/O port and one slave memory-mapped block
data port. The master port connects to its slave pair in the EG and the slave
port connects to its master pair in the EG. This MNI has also one bidirectional
port to communicate with the router, and is independent of the events fed to it.
Packets are queued internally in the MNI queue and then sent to the router.

The design of the MNI makes it possible to treat the EG like any other IP
connected to the NoC, which has advantages in the design of the monitoring
service and in the co-design of the system and its debug support.
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3.6 Monitor Programming Model

3.6.1 Generic Model
The previous section explains the architectural features of the monitors. This
section presents the associated programming model.

In general, it is important to decide when a monitor can be configured. As-
suming monitors are physically present in the NoC, they can be configured at
three possible moments: NoC initialization time, NoC reconfiguration time, or
run-time.

Our goal is to make the service available at arbitrary moments at run-time.
The monitors are programmed using the NoC itself. It has been shown [78] how to
configure the NoC at run-time, using the NoC itself. Similar techniques can also
be used for programming the monitors, requiring no additional communication
infrastructure.

The programming of the monitors must include the selection of desired events
to be generated, including their desired attributes, the selection of monitors to
generate the events, a means to enable or disable monitors, a way of timing and
the setup of traffic monitoring connections.

3.6.2 Æthereal Model
For Æthereal, we are able to configure the monitors at any of the above men-
tioned moments using memory-mapped I/O read/writes as in AXI [6], OCP [70]
or DTL [75]. The EG is a slave with a memory-mapped configuration space
slave interface. This means that the registers in the EG appear in the general
memory map allowing them to be read or written by any master. In this way
we implement the programming of the EGs. This is in line with the de facto
programming model for the NIs. An EG can therefore be configured by means
of simple memory-mapped I/O write operations. Multiple monitors can be pro-
grammed independently in parallel. If more monitors must be configured, then
each can be selected at run-time and each monitor must be configured separately.

Programming follows two conceptual programming steps for each monitor:

1. Monitoring connection setup. Events are generated in the EG and then
packetized in the MNI. Packets containing events must reach the MSA where
the monitoring service has been requested. This is done by setting standard
Æthereal connections from the MNI to the MSA. Note that both the MNI
and the MSA are standard NIs supporting such connections.

2. Monitor setup.

(a) Event selection. After a connection has been configured, the desired
events to be generated must be enabled. By default, all events are
disabled. Events are activated by writing the event masks in the EG.
Multiple events can be active simultaneously.
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(b) Select attributes. Each of the attributes of an event can be selected.
Therefore, for each of the events selected in the previous step, the
selection of desired attributes is mandatory. The default is that all
attributes are disabled. This means that by default all events will be
limited to identifier, producer and timestamp. Attributes are enabled
by writing attribute masks in the EG.

(c) Select time. When programming the monitor, the programmer can
optionally set the time that the event generation should start. This is
done by setting the time mask in the EG. This mask will be compared
with the 8-bit value of the counter in the EG, and at the first match
the event generation will start. Selecting the start time of the event
generation guarantees in a synchronous NoC the simultaneous start of
the event generation by multiple monitors.

(d) Enable/disable monitor. Even after the time selection, the monitors
have to be enabled. Monitors are by default disabled. The user can
enable or disable any monitor in the NoC. Only when the monitor is
enabled, the event generation starts. Without the time mask the event
generation starts immediately. If multiple monitors are enabled, it is
not possible to guarantee that they will be simultaneously enabled,
because of network latency. If the same time mask is set for all EGs,
all EGs will simultaneously start at the first encounter of the time set.
Enabling or disabling monitors is done by writing the enable/disable
mask.

The time required to set up the monitoring system is composed of the time
required for setting the connections between the EGs and the MSA, and the
time required to configure the monitors. As an example, the setup time for
one connection with a path of length four is 90ns [78]. The time required for
configuring the monitors depends on the time required for a write operation to
a monitor register and the number of registers to be written. E.g. doing a
write transaction for monitor configuration, with a payload of two words, to a
monitor via a GT connection of length three takes 54ns. The write transactions
for programming the monitors can be pipelined. We need further experimentation
with realistic applications of the monitoring service to assess the impact of the
setup time on the performance of the monitoring service.

A concrete example of configuring a transaction monitoring system spanning
an entire 2x3 Æthereal mesh NoC with six transaction monitors and having a
single MSA is presented in Section 4.10, together with a few configuration policies:
using BE or GT, using different message orderings, each using a protocol with
or without acknowledgement. All of the configuration policies exemplified have
resulted in acceptable configuration times, e.g. 1212ns when using GT and a
64-bit DTL-MMBD write operation.
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3.7 Traffic Management

3.7.1 Generic Strategy
The monitoring traffic is composed of the monitor configuration traffic and the
event traffic.

Monitor configuration traffic

The monitor configuration traffic is all traffic required to setup and configure
the monitoring service. It includes the traffic required to configure the monitors,
which flows from the MSA NI to the MNI, and the traffic for setting up the
connections for the transport of data from the monitors’ MNIs to the NI port of
the MSA that requested the monitoring service. The monitor configuration traffic
depends on the number of probes being setup.

Event traffic

The event traffic is all the traffic produced as a result of event generation in
monitors. This traffic flows from the monitors’ MNIs towards the MSA NI. The
event traffic depends on the number of monitors set up as well as on the time a
monitor is enabled.

The monitoring traffic can use existing NoC communication services or a ded-
icated interconnect, e.g. a debug bus. In case existing NoC services are used,
additional traffic is introduced in the NoC but no extra interconnect is needed.
However, in certain cases, the existing NoC may have to be re-dimensioned to
accommodate the additional monitor configuration and event traffic; see Chap-
ter 6 for a detailed analysis and examples. In case of a dedicated interconnect
for monitoring only, no additional monitoring traffic is introduced on the existing
NoC but more effort is required to design or use another scalable interconnect.

3.7.2 Æthereal Strategy
The Æthereal monitoring traffic uses the NoC itself and it is based on the exist-
ing Æthereal communication services. In this way, no separate interconnect, for
control as well as for use, is required for the monitors. There are several choices:

Using GT services

All the monitoring traffic, the event traffic and the monitor configuration traf-
fic, uses GT connections. Two connections are set up between the MSA NI and
the MNI of the specific monitor; one for the event traffic and one for monitoring
configuration traffic. Each monitor in the system uses its own pair of GT connec-
tions. In this way, even if the network is congested, monitoring traffic can still
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reach the MSA NI at a guaranteed data rate, offering a real-time behavior of the
monitoring service. BE user traffic can use the reserved slots when no monitoring
traffic is present. It is the safest option from the debugging point of view, but
it may interfere with other BE traffic. BE traffic can be employed to setup of
new GT connections or as traffic not related to monitoring but to the monitored
system (ordinary BE traffic). In our test implementation, we use GT services as
the implementation choice.

Using BE services

All monitoring traffic uses BE connections. In case of congestion, it may not be
possible for monitoring traffic to reach the MSA NI at a predefined data rate.
The use of BE services is the least intrusive for existing traffic because it does
not interfere with GT traffic, but it may interfere with other BE traffic. Note
that GT monitoring connections as discussed in the previous option, interfere
with user GT connections in the sense that they limit the slot table allocation for
the latter. Also note that the use of BE connections for monitor configuration
traffic does not guarantee an upper bound for configuration time. One way to
alleviate this problem is the use of acknowledgements during monitoring service
configuration. In this way an acknowledgement message is sent back to the MSA
when each monitor is configured; when the last acknowledgement is received at
the MSA the configuration is considered completed.

Using GT and BE services

When configuring the monitoring service, if multiple monitors are used, it is pos-
sible to use either GT or BE for each monitor, in order to balance the overhead
of the monitoring service. For the distributed monitoring service shown in Fig-
ure 3.2, for example, the traffic from all the monitors in the subset of the dedicated
IP can use GT services and the traffic from all the monitors in the subset of the
off-chip interface can use BE services.

Note that a combination of GT and BE per monitor is also possible, as these
are connection properties, assuming that the single monitor uses more than one
connection for the transport of its monitored data; this work assumes that one
monitor uses a single monitoring connection for the event traffic.

3.7.3 Data Transport Scenarios
Whether the monitoring traffic is in the form of monitor configuration traffic or
in the form of event traffic as previously presented, two data transport scenarios
for this data are possible: the memory mapped and the streaming data scenarios.
Both scenarios are visually depicted in Figure 3.6 and further explained. Note
that these two data transport scenarios also apply to any other IPs connected to
the network exchanging data between them, and not only to the monitors.
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Figure 3.6: Streaming Data (left) versus Memory Mapped (right) scenarios

If the sniffed data is memory-mapped, e.g. the MSA is a memory, the monitor
uses write transactions to send the data to the MSA, and a command and address
have to be added to the monitor data. Therefore, a write transaction from a
monitor to an MSA will always contain a command, an address, and the useful
payload. In the remainder of this work, we refer to this as the memory-mapped
scenario.

If the sniffed data is not memory-mapped, e.g. the MSA is another IP which
takes care of streaming the data off chip, no commands and addresses are added to
this data. Therefore, a peer-to-peer streaming data transaction from the monitor
to MSA will contain just the useful payload. In the remainder of this work, we
refer to this as the streaming data scenario.

Note that in both scenarios headers are added in the NI to the sniffed data as
the effect of packetization.

3.8 Monitoring Service Cost

3.8.1 Cost Inventory
Our proposed NoC monitoring service provides run-time observability of the NoC
behavior. However, this capability does not come for free for the NoC or SoC
designer. This section presents an inventory of costs associated with it: area,
traffic, and energy.

Area

Area target. We target an area budget for the NoC monitoring service of 15-20%
of the NoC area. NoC area does not include the area of the IPs or other parts of
the chip, it refers to the NoC interconnect area only. Looking at the area cost of
commercially available run-time monitoring solutions for computation cores like
ARM’s ETM has led us to this area budget.

The area cost of several ARM cores [2] and ETMs [5] are presented in ta-
ble 3.1. Together with the ARM cores their cell technology is presented, and
their corresponding ETM version with its own area cost in the same technology
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Table 3.1: ARM Cores and corresponding ETMs
core technology core area ETM ETM area % of % of

(µm) (mm2) (mm2) core total

ARM7TDMI 0.18 0.53 ETM7 0.34 64.15 39.08

ARM7TDMI-S 0.18 0.62 ETM7 0.34 54.84 35.4

ARM720T 0.18 4.7 ETM7 0.34 8.08 6.75

ARM926EJ-S 0.13 2.39 ETM9CS 0.38 15.9 13.72

ARM968E-S 0.13 0.4 ETM9CS 0.38 95 48.72

ARM966E-S 0.13 1 ETM9CS 0.38 38 27.53

ARM1022E 0.13 6.9 ETM10 1.12 16.23 13.97

as the ARM core. The last two columns of the table show the area percentage
the monitoring, in the form of the ETM core, takes relative to the corresponding
ARM core and relative to the subsystem they form, the ARM core together with
the ETM core. Relative to the core the monitoring spans from the very optimist
8% to 95% with an average of around 42%. Relative to the total it spans from
around 7% to almost 49% with an average of around 26%; if we average only for
the ARM cores realized in the 0.13µm) CMOS cell technology and we leave out
the core with the highest percentage of monitoring relative to it, ARM968E-S, we
obtain an average of around 18%. Note that these numbers do not include the
cost of an Embedded Trace Buffer (ETB) [4] that may be required, e.g. when no
high speed port is available. For communication observability, e.g., our monitor-
ing system, we believe a similar area budget is reasonable; therefore, we target an
area budget for the NoC monitoring service of 15-20% of the NoC area.

Area inventory. Looking at Figure 3.5, we get a basic idea of the components
that must be physically added to the routers for the NoC monitoring system. All
these components have an impact on the area:

1. Figure 3.5 suggest that an extra bidirectional router port is required to
connect the monitor. This means that all probed routers will have a higher
arity. For example, moving from arity 4 to arity 5 for an Æthereal router
means increasing router area from 0.11mm2 to 0.13mm2, in a 0.13 micron
technology. As we see later, in Section 3.8.2, it turns out that we can often
optimize the monitoring system in such a way that an extra port is not
needed.

2. A network interface with two network interface ports (NIPs)(mmio and
mmbd in Figure 3.5) and one configuration port (CNIP) needs to be added
per probed router. The cost of such an Æthereal NI is 0.07mm2 in a 0.13
micron technology. For our monitoring solution this can be optimized; see
Section 3.8.2 for more details.
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3. A sniffer is required in order to get information from the routers in a non-
intrusive way. Details of the SPY mechanisms and their area costs are
presented in [100]. The costs are determined by the number of signals the
designer wants to be monitored. Thus, it makes for example a difference
whether a designer wants to monitor a single router queue at a time or all
queues simultaneously.

4. An Event Generator creates events based on the signals monitored by the
sniffer. The cost of the EG depends on the number and type of events
desired. Therefore, EGs can vary from very simple ones, coming at basically
no area cost, to very complex ones with significant area cost. For example,
an estimation of area cost for one EG in the form of a watchpointing unit
for four Æthereal router links, together with its corresponding Sniffer, is
0.028mm2, in a 0.13 micron technology. This estimate is based on the cost
of a 128-bit Sniffer, corresponding to sniffing the four 32-bit router links, a
watchpointing unit with four 32-bit comparators, and one 128-bit control
register, meaning that all the Æthereal router links can be watchpointed
simultaneously.

Traffic

The NoC monitoring system presented uses the NoC for transporting the events
it generates. Therefore, the NoC monitoring traffic coexists in the NoC with the
user traffic. In this way, it uses NoC resources. The NoC monitoring traffic should
be as low as possible compared to the user traffic.

The previously mentioned area costs, are the directly visible costs of the NoC
monitoring system. It may be possible to also have a hidden cost: the NoC
designer may have to overdesign the NoC in order to be able to accommodate the
monitoring traffic besides the user traffic.

Energy

The energy consumed by the NoC monitoring system consist of a variable part
related to the monitoring traffic and a constant part required by the probes to
function.

In the remainder of this section and throughout this work, we further quantify
only the area and traffic costs. The energy aspect is left for future work.

3.8.2 Area

MPEG Examples

In order to study the area cost, we start with two NoC instances for an MPEG
codec with 24 IPs including 3 memories, 21 GT connections with bandwidth
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varying from 54 to 120 MB/s. The two examples were designed, evaluated and
presented in [40].

The first example, NoC1 in Figure 3.7 is a 3x1 mesh. Each router has three
NIs attached to it, each NI connecting multiple IPs to the NoC. The original area
of this NoC, without monitoring, is 1.86mm2. The area does not include the IPs
connected to the NoC.

The second example, NoC2 in Figure 3.8 is a 2x3 mesh. Each router has one
NI connected to it and one or more IPs are connected to each NI. The original
area of this NoC, without monitoring, is 2.35mm2, again not including the IPs.

The NoCs used in the two examples have different topology, sizes, and number
of NIs attached to the routers. Both NoC instances are automatically generated
using the Æthereal design flow [40]. Results are SystemC and synthesisable RTL
VHDL, directly usable in a back-end design flow. NoC1 of Figure 3.7 was subse-
quently manually optimized for area.

Adding the probes. Naive version

We have added the monitors to the already presented examples. We have im-
plemented a centralized monitoring service for both NoC examples. Figure 3.9
shows the architectural implications for NoC2. A distributed monitoring service,
see Figure 3.10, has been developed for NoC2. In the centralized monitoring ser-



3. GENERIC NOC MONITORING SERVICE 55

IP IPIP

NI0

IP IPIP

NI2

IP IPIP

NI1

NI3

IP IPIPIP IPIP

NI5

IPIPIP IP IPIPIP IPIP

R3
NI4

R4R5

R0

M

S

EG
MNI

S

EG
MNI

S

EG
MNI

S

EG
MNI

S

EG
MNI

R1

S

EG
MNI

R2

Figure 3.9: NoC2 extended with monitors, centralized service

IP IPIP M2

R5

IP IPIP

NI0

IP IPIP

NI2

NI3

IP IPIPIP IPIP

NI5

IPIPIP IP IPIPIP IPIP

R3
NI4

R4

R0

M1

S

EG
MNI

S

EG
MNI

S

EG
MNI

S

EG
MNI

S

EG
MNI

R1

S

EG
MNI

R2
NI1

Figure 3.10: NoC2 extended with monitors, distributed service

vice of Figure 3.9, all monitoring traffic goes to the IP called M. In the distributed
monitoring service, the traffic from monitors attached to routers R0, R1 and R2
goes to IP M2, and the traffic from the monitors connected to routers R3, R4,
and R5 goes to IP M1.

The area of NoC1 extended with monitors is 2.26mm2. The area of NoC2 with
probes is approximatively 3.09mm2. The centralized version is slightly smaller
than the distributed one but that is not visible in the area numbers with two
decimals accuracy. The monitoring service needs a NIP for each MSA. The area
results do not include the area for the sniffers and the area for the EGs, but only
the area of the extra cost parts in the routers and MNIs. As already mentioned,
the size of the sniffer and the EG heavily depends on the events that should be
supported.

Taking into account the area estimate of 0.028mm2 for the EG in the form
of a complex watchpointing unit with its associated sniffer, as described in Sec-
tion 3.8.1, the area of NoC1 extended with monitors becomes 2.34mm2 and the
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area of NoC2 with monitors becomes 3.26mm2.

Improved version

Observing the probed MPEG NoCs from Figures 3.9 and 3.10 we see that on the
probed routers we already have at least one NI besides the MNI of the monitor.
As we have previously mentioned, the MNI is a common NI parameterized for
monitoring purposes. It is therefore possible and straightforward to merge the
MNI with one of the NIs already connected to the routers, reducing the area cost,
see Figure 3.11. The resulting NIs are larger in area than the NIs not merged
with their MNI counterpart but we can reuse the NI present together with its
configuration port and one of the router ports which already connects the NI.
One router port is therefore also spared when compared to the naive solution,
further reducing the area cost. Please note that this optimization is only possible
because we have reused the NI design for the MNI. The resulting area of the
optimized NoC2 as presented in Figure 3.11 is approximatively 2.75mm2. This
area result does again not include the area of the sniffers and EGs. Taking into
account the area estimate for the watchpointing EG with its associated sniffer,
like in the previous paragraph, the area of NoC1 extended with monitors becomes
2.17mm2 and the area of NoC2 with monitors becomes 2.92mm2

Area conclusions

To conclude the area section, we summarize the results:
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area (mm2) NoC1(8 slots) NoC1(16 slots) NoC2
initial 1.86 1.94 2.35
naive 2.26 (+21%) 2.26 (+16%) 3.09 (+31%)

naive+EG/S 2.34 (+26%) 2.34 (+21%) 3.26 (+39%)
improved 2.09 (+12%) 2.09 (+8%) 2.75 (+17%)

improved+EG/S 2.17 (+17%) 2.17 (+12%) 2.92 (+24%)

It turns out that the original hand optimized NoC1 cannot accommodate the
monitoring traffic with the built-in 8-slot routing tables. Therefore, the number
of slots had to be increased from 8 to 16, leading to an increase in the NoC1
area from 1.86mm2 in the original version to 1.94mm2. If we consider the original
NoC1 instance with 8 slots as the starting point of comparison, the result is an
increase in area with 12% (not counting the EG/Sniffer components); otherwise
the result is an increase in area with 8%. Taking into account also the EG/Sniffer
area estimates, area increases with 17% and 12% respectively.

NoC2 can accommodate the monitoring traffic without modifications. Com-
pared to the original version, we see an increase in area of 17%. Taking into
account also the EG/S area estimates, area increases with 24%. Please note that
the 24% increase for the NoC2 case is only 0.57mm2.

These examples show that:

1. The area cost of the NoC monitoring service based on the NoC itself, not
including the area of the sniffer and the EG, are contained within an average
of 14.5% (average of 12% for NoC1 and 17% for NoC2). The sniffer and
EG sizes depend on the events desired to be monitored and therefore can
substantially vary.

2. The total area costs of the NoC monitoring service including the watch-
pointing EG and sniffer estimates are sustainable, and in the order of 17-
24% compared to the whole NoC area. The monitoring system for NoC1
(17%), fits into the proposed area budget. The monitoring system for NoC2
(24%), exceeds the proposed area budget. On average (20.5%), the area
cost is very close to the proposed area budget of 15-20%. Together with
further optimizations, it should be possible to bring the total area cost for
NoC2 monitoring system as well as for other examples within the proposed
NoC monitoring service total area budget of 15-20%.

The presented area costs are first results and can be improved. No optimiza-
tions, except the most straightforward ones were made. However, such optimiza-
tions are possible; for example, not probing each router but using a smart place-
ment of the monitors can drastically reduce the overall area cost of the monitoring
system, making the NoC monitoring service area cost even more acceptable. It
is beyond the purpose of this chapter to present these optimizations; they will be
presented in Chapter 6. Also a further specialization towards specific tasks may
reduce the costs, as illustrated in Chapters 4 and 5.
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3.8.3 Event Traffic

Media processing SoCs for Set-top Box applications or digital TV consist of audio
encoding or decoding, e.g. AC3, and video processing functions, e.g. H263 or
MPEG-2 [42]. We briefly look into the monitoring event overhead for such a
media processing SoC using a NoC.

From [42], we learn that the typical task graph of such a SoC has approximately
200 connections all over the NoC. When the application task graph changes, a
partial or complete reconfiguration of the NoC is needed. A complete reconfigu-
ration means that all the connections are torn down and a new set of connections
is set up. Reconfiguration is required at a maximum rate of once per second. A
partial reconfiguration means that only part of connections, e.g. half, are torn
down and a similar number of connections are set up.

In the case we monitor reconfiguration, we focus only on two events, namely
OpenConnection and CloseConnection events. The average cost of these events
is two (32bit) words per event. Each monitor monitors the OpenConnection and
CloseConnection events, with all attributes enabled. One flit comprises three
words, one being the header and two being the useful payload. For a complete
reconfiguration, the total useful event payload is 3.2KB, leading to an event traffic
of 4.8KB i.e:

200(connections) x 2(events) x 1(flit) x 3(words) x 4(bytes) = 4800 bytes

In case we monitor the functional data over one connection, e.g. a reserved
30MB/s GT connection, used for writes to a memory, with an actual usage of
28.6MB/s, we focus on the GTSniff event. In this case, as we monitor only one
connection, the source, the identifier and the timestamp of the events are not
necessary. An event will be the flit itself. We are interested in the functional
data passing the connection. The 30MB/s GT user connection uses 50.25MB/s
traffic in the NoC, considering all the overhead caused by the transaction protocol
used (commands and addresses are added to messages) and the packetization. In
this way, we sniff 50.25MB/s of data which is the payload for the debug connec-
tion. Assuming the monitoring connection writes this data into memory, through
the MSA, in the memory mapped scenario, commands and addresses are added
bringing the total required before packetization to 62.3MB/s, and to 83MB/s
afterwards it. These numbers can be further improved, e.g. by (1) using the
streaming data scenario for sending the sniffed data to the MSA or (2) removing
the packetization overhead from the sniffed data, the sniffed packet headers.

These examples show that the traffic related to the monitoring service is sus-
tainable by mature NoCs if events are carefully selected and enabled at the right
time. For example, the raw bandwidth of the Æthereal NoC is 2GB/s per link
and the monitoring traffic from our reconfiguration monitoring is 4.8KB/s, ap-
proximately six orders of magnitude less, while the monitoring traffic from our
connection sniff example is 62.3MB/s, two orders of magnitude less. More enabled
events would lead of course to more traffic.
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3.9 Monitoring Bandwidth Optimization

From the previous sections of this chapter it is clear that sometimes the required
monitoring bandwidth can be very low, even below what a single slot reservation
can offer to an IP. This section presents a method, together with an example,
which enables a more efficient monitoring bandwidth utilization. Two monitor-
ing connections can be merged if their bandwidths or the combination of their
bandwidths does not exceed the available bandwidth of a network link. In other
words, if at least two NoC connections share at least one network link and if
their respective bandwidths are less than the basic bandwidth of the link, these
connections can be merged in at least one shared network link. This method uses
sub-slot accuracy.

Figure 3.12 shows a block diagram of part of a system-on-chip where three
low bandwidth monitors connected to MNI1, MNI2 and MNI3 are each utilizing
a low bandwidth connection. Here, merely the monitoring network interfaces
MNI1- MNI4 and the routers R1-R5 are shown. A first connection C1 extends
from the monitoring network interface MNI1 via the router R1, R4 and R5 to the
monitoring network interface MNI4. The second connection C2 extends from the
monitoring network interface MNI2 to the monitoring network interface MNI4 via
the router R2, R4 and R5. The third connection C3 extends from the monitoring
network interface MNI3 to the monitoring network interface MNI4 via the router
R3, R4 and R5. Accordingly, the link L7 and L8 between the router R4 and R5
and between the router R5 and the monitoring network interface MNI4 is used
by the three connections. As an illustrative example, each of the connections C1
- C3 occupies 1/3 of the available bandwidth.

Figure 3.12: Original NoC featuring three monitoring connections

Figure 3.13 shows the corresponding slot table reservation for the part of the
system depicted in Figure 3.12. In particular, the slot table reservation is shown
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for different points along the time axis t. The usage or the reservation of each link
is shown for the time slots S1 - S4. Those slots reserved for the first connection are
indicated by C1. Those slots required by the second connection are indicated by
C2 and those slots required for the third connection are indicated by C3. Those
slots which are reserved but not actually induced are indicated by R in the figure.

Figure 3.13: Original slot table revolutions

Figure 3.14 shows the block diagram of the system from Figure 3.12, where the
three connections C1, C2 and C4 from the latter have been merged into connection
C from the former. The connections C1-C3 are merged into a single connection
C in the router R4.

Figure 3.15 shows a representation of a slot table reservation for the case when
the three connections C1 - C3 are merged into a single connection C. This can be
achieved by sharing the links L7 and L8 among these connections.

Besides the slot table, each of the monitoring network interfaces MNIs may
maintain a minislot MS1 - MS3 of size 3. As the original connections only require
1/3 of the bandwidth available, only one packet is generated at 3 revolutions of
the slot table. The minislot MS1 - MS3 contain the information for the monitoring
network interface MNI in which slot table revolution it can place the data on the
network N.

If the above-mentioned minislots MSl - MS3 are to be used effectively, the
scheduling of the data transfer needs to be adapted. Guaranteed throughput flits
may only stay for one flit clock in a router. Accordingly, as the links L7 and L8 are
shared among the connections, i.e. the links are shared within the same slot, the
time slot reservation in any previous links must be rearranged. This can clearly
be seen if the slot time reservation table according to Figure 3.15 is compared to
the table according to Figure 3.13. In the same way the destination MNI keeps
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Figure 3.14: Original NoC featuring three monitoring connections with the asso-
ciated minislots

a minislot in which it knows from which connection it receives data at each slot
table revolution.

We conclude that minislots, or sub-slots are an efficient way to manage low
bandwidth monitoring connection.

3.10 Conclusion
In this chapter, we have presented the concepts of a NoC monitoring service, the
first one described in the scientific literature, and first described in [17, 18]. This
monitoring service offers communication observability at run-time. It can be used
for example for on-chip or off-chip application and system-level debugging, but
also for run-time performance analysis. The monitoring service can be configured
and used at arbitrary moments during run-time, offering increased flexibility.

The monitoring service is integrated in the NoC and uses the NoC communica-
tion services for configuration as well as for the event traffic. It can be instantiated
automatically together with the NoC, saving design time. The monitoring service
consists of monitors attached to NoC components, allowing easy scalability of the
service, and monitoring service access points, the points where the monitoring
service can be setup and monitored data can be accessed. The generic architec-
tural concepts of the monitor feature a programmable modular design composed
of sniffer, monitoring network interface and event generator, providing flexibility
to target the service to the monitoring task at hand.

Proof of concept is achieved via implementation for the Æthereal NoC. The
monitors model the monitored information in the form of timestamped events.
We have presented our event model, a generic event taxonomy for NoCs and one



62 3.10. CONCLUSION

Figure 3.15: Original slot table revolutions with minislots

of the possible instantiations for the Æthereal NoC. Run-time programmability
of the probes is achieved via memory-mapped configuration ports in the monitor.
Traffic management is achieved by reusing the guaranteed communication services
of the NoC. This provides potentially non-intrusive real-time monitoring.

The cost of the monitoring traffic is low, being several orders of magnitude
lower than the bandwidth available in the NoC, for two realistic examples in
a typical media processing SoC. The area cost for the NoC monitoring service
targets a 15-20% of the total NoC area. Initial experiments on two different
MPEG NoCs show that this target is realistic.

The generic concepts presented allow to retarget the NoC monitoring service to
other NoCs. Almost all NoCs have network interfaces and routers as basic building
blocks. They all provide some sort of communication services, and they support
a certain design flow to instantiate these blocks and services. Furthermore, they
all provide means of configuration or reconfiguration. In order to instantiate the
proposed NoC monitoring service for another NoC, these concepts can be reused
leading to a reasonable implementation effort.

In the next chapters we focus on cost analysis and optimization of the NoC
monitoring service for the particular cases of transaction monitoring and perfor-
mance analysis, as well as on the impact of such a monitoring service on the
general NoC design flow. Since not all monitoring tasks require the same moni-
toring functionality, we will look into functionality vs. cost trade-offs.



Chapter 4

Transaction-based Monitoring

Being one of the main contributions of this thesis, this chapter presents the con-
cepts of monitoring NoC transactions on chip at run-time. Transactions are the
means of communication between IPs, and are comprised of messages. We want
to be able to present a transaction-level view of the communication between the
SoC components, in line with the communication-centric monitoring of NoC-based
SoCs we advocate. With the generic NoC monitoring service presented in Chap-
ter 3 we have shown that monitoring networks on chip at run-time is possible and
can be feasible in general. This chapter focuses the discussion on the adequate
abstraction levels for monitoring. It shows how the generic NoC monitoring ser-
vice can be instantiated at design-time for run-time transaction monitoring, as
well as run-time reconfiguration options.

The chapter starts with good motivation for transaction monitoring and an
overview of the potential benefits of it in Section 4.1. Related work is discussed in
Section 4.2. An introduction to transactions in general and to NoC transactions
in particular is given in Section 4.3.

Section 4.4 details our proposed solution for monitoring the NoC transaction-
based communication, concretely exemplified for the Æthereal NoC. The details
regarding the Æthereal NoC and in particular the employed packetization scheme
have already been presented in Section 2.3. We propose a specialized hardware
monitor to replace the generic monitor of the NoC monitoring service. This mon-
itor supports on-chip transaction reconstruction and several intermediate levels
of abstractions needed for it, raising the abstraction level gradually from physi-
cal ‘raw’ to logical connection-based, transaction-based and abstract transaction
event-based. We call the resulting monitoring system a NoC analyzer and the
supported abstraction levels, analyzer modes. The NoC analyzer supports the
two basic data transport scenarios of Section 3.7.3.

The four specific NoC analyzer modes are separately treated and the underly-
ing monitor architecture is further detailed. Section 4.5 describes the raw mode
of the NoC analyzer, the lowest granularity at which monitoring takes place. The
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logical connection-based mode is detailed in Section 4.6 showing how a connec-
tion can be isolated from the intercepted raw data stream. Section 4.7 shows how
we can reconstruct the transaction view (read and write actions from IPs) from
the raw, low-level monitored data flowing through a single connection. Transac-
tions are reconstructed in the form of composing messages. The raw data can be
monitored at any router, a module which has no understanding of any notion of
transaction. We show that transactions can be reconstructed regardless the way
in which packetization has been done in network interfaces, covering all existing
(and all possible) NoC packetization schemes. The obtained transaction informa-
tion can be further abstracted in the form of events as shown in Section 4.8.

An analysis of the generated traffic for each of the analyzer modes is presented
in the context of four realistic Æthereal NoC designs based on an MPEG codec,
underlining advantages and potential problems for each of them. We further show
that such monitoring is feasible area wise, as the transaction monitor supporting
both GT and BE traffic classes is 0.026mm2 in a 0.13µm CMOS technology, small
even when compared with a corresponding 0.13mm2 combined GT/BE NoC router
realized in the same technology. The area and traffic implications of transaction
monitoring including all the associated monitoring abstractions are presented in
Section 4.9 together with an example of monitoring NoC configuration master
activity in the connection-based mode. Section 4.10 investigated run-time recon-
figuration strategies and reconfiguration times. The main conclusions of this work
are presented in Section 4.12.

The core of this chapter including the main results and examples has been
published as ”Transaction Monitoring in Networks on Chip: The On-Chip Run-
Time Perspective”; Calin Ciordas, Kees Goossens, Twan Basten, Andrei Rad-
ulescu, and Andre Boon; In Proceedings of the IEEE Symposium on Industrial
Embedded Systems (IES 2006), October 2006. [19]

4.1 Motivation
Chapter 1 gave a general motivation on the necessity of monitoring and presented
the related work. Knowing what transactions are and with the transaction moni-
toring at the heart of this chapter, we give now an overview of the problems that
need or can benefit from transaction monitoring in special.

Complex systems require debugging, hence monitoring at different levels of
abstraction. The use of monitoring is amenable to at least two key aspects:
the desired level of monitoring and the possibility to tune, adjust and focus the
monitoring system at the desired aspects at runtime. The former is merely a
question of which task is driving the monitoring, in which case the desired level
of monitoring can be provisioned for at design time. E.g., in transaction-based
debugging, monitoring at transaction level is a prerequisite. The latter is more a
question of what we can do when the desired level of monitoring is not known in
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advance but must be adapted at run-time. In this case, several levels of abstraction
must be provisioned for at design time, with the option to select them at run-
time. Transaction level monitoring makes a good candidate in this case as one of
the high levels of abstraction to be provided, realizing a real productivity gain by
analyzing the data at such a high level of abstraction.

For example in silicon debug and diagnosis, which is supposed to solve all
problems which may arise after a first silicon exists, the desired level of monitor-
ing is the lowest possible, i.e., bit-level. That is the reason why the monitoring
infrastructure in that case (in fact reused from the test infrastructure - therefore
sharing the costs), the scan chains [96], is targeted at this. Of course even this
would benefit from a higher abstraction level [99] at which debugging, or at least
the triggering of the breakpoints, can be done, in order to reduce the debugging
time.

If we extend the reasoning to complex multiprocessors with programmable
cores, the system level debug has to take into account the hardware/software
aspects, like how software interacts with the hardware, or the hardware modules
with each other, making no assumptions whether the errors are in the software or
in the hardware part. Clearly referred to as transaction-based debugging [43] the
desired level of monitoring in this case is the transaction level, as IPs interact by
means of transactions.

Obviously the silicon debug and diagnosis and the system level debug are
interleaved activities, no clear separation existing. Therefore a high abstraction
level for monitoring is desired but still with the fall back scenario of monitoring
the lowest level possible, driving the debug quest towards multiple abstraction
levels which are usable, tunable and selectable at run-time.

In the closely related area of run-time assertion checking [73], sometimes
employed in complex systems, at run-time certain properties of the system are
checked. One example is communication protocol checking. The desired level of
monitoring is related to the level at which the protocol takes place, for example a
request-response protocol for bus transfers. One desired level of monitoring is at
the transaction level, being another application area for the generic transaction
monitoring.

4.2 Related Work
There has been quite some work in transaction monitoring for busses. Monitoring
is used for RTL level simulation environments but also for real SoC designs to trace
the bus interconnect in its own environment. For NoCs, as far as we are aware,
there is no related work (not counting our own publications) on the transaction
monitoring topic.

DesignWare Verification IP for AMBA busses [87] from Synopsys, provides
an easy way to verify SoC designs that make use of AMBA busses, compliant
with AMBA 2.0 specification. It includes AHB and APB monitors for the AHB
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and APB busses. The main features include: full transaction tracking and log-
ging, protocol checking giving warnings and errors when protocol violations are
encountered, and constrained random test generation used for automatic trans-
action generation to stress the maximum number of protocol combinations. The
AHB monitor supports up to 16 masters and 16 slaves, being able to monitor
all AHB transaction types. The APB monitor supports up to 16 slave devices.
This is provided for RTL level simulations. However, there is no major obstacle
in porting it on-chip.

Transaction-based debugging of PCI Express Embedded SoC platforms [11]
in RTL simulations motivates that the grouping together of communication event
sequences into abstract transactions provide a new way of describing interaction
of modules within a SoC. Note that here abstraction refers to the way of ignoring
pin/wire level activity. The authors argue that it is more convenient to analyze
at the high abstraction level of a transaction. However, they also acknowledge
that the detailed signal level activity is also required and monitoring has to be
used do provide both the transaction level and signal level view when debugging.

Illustrative examples for porting bus monitors on-chip are industry’s Silicon-
Backplane Navigator [33] and OCP Navigator [34] from First Silicon Solutions.
Both systems include an synthesizable on-chip instrumentation module which
supports transaction monitoring. This module is synthesized in the SoC designs,
FPGAs or ASICs. The OCP Navigator in particular offers the possibility of trig-
gering on IO operations, on memory operations or on address values or ranges.

In busses, the level at which the monitoring is being conducted is usually the
level where read and write actions are visible. Therefore, it is not needed to
reconstruct reads and writes from an associated data stream, like it is the case for
a NoC if the monitoring is done at routers. If we compare this with the NoCs, it
is as if monitoring is performed between the NIs and the IPs connected to them,
and not at the routers.

Furthermore, single monitors employed in busses can track the entire trans-
action history of bus activity. It is a mere task of logging these transactions in
a centralized manner, using a circular buffer (a buffer that only keep the last X
bus actions, the oldest being replaced with the new ones). In NoCs, multiple
communication paths exist, requiring the use of multiple monitors, to be able to
gain access to all potential transactions between IPs.

One rare combination of debugging, transactions and NoCs, clearly referred
to as transaction-based debugging in the frame of system level debug is presented
in [43, 99]. In this work, transactions are simply a higher level of abstraction
at which triggering of breakpoints can be done, enhancing debugging. The work
also shows the associated area cost to be around 5%. Based on the traditional
stepping of the SoC, this approach is complementary to ours and relies on the
presence of transaction monitors, and quickly discards sets of IPs which are not
part of the problem.
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4.3 NoC Transactions

4.3.1 Transactions

Before detailing transaction monitoring we have to clarify what transactions really
are. Typical embedded systems contain a multitude of IP blocks like processors,
DSPs, along with peripherals, memories and interface modules. They interact by
means of transactions. Transaction examples are presented in Figures 4.1, 4.2,
and 4.3. Normally, transactions take place between two or more IPs, involving
both masters (M) and slaves (S). Transactions involving only slaves are normally
excluded.

Figure 4.1 shows a read transaction between a single master and single slave.
This is a typical way of communication between for example a programmable core
as master and a memory as slave. The master issues a READ command towards
the slave and as a response, the slave delivers the requested DATA. At this smaller
level of granularity, for example READ and DATA, the atomic units are called
messages, each transaction consisting of one or more messages. Note that this
picture is conceptual, meaning only that the command READ is issued before the
data; in real designs, for example busses have separate wires for commands and
data. For the case of Figure 4.1, the number of messages involved in the presented
transaction is two, and the communication is bidirectional from the master to the
slave and from the slave to the master.

An even simpler transaction is depicted in Figure 4.2, where the communi-
cation is unidirectional, the master sending to the slave the command WRITE,
followed by DATA. The slave is not expected to react.

The last example, shown in Figure 4.3, is an acknowledged or tagged write.
The master sends the WRITE command to the slave, shortly followed by the
DATA. After reception, the slave reacts by sending an ACK back, called a tag.
In general, the ACK contains a means of identifying the last properly received
message, for example a sequence number. In this case, communication is again
bidirectional.
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Figure 4.1: Read Transaction
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Figure 4.2: Write Transaction
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Figure 4.3: Acknowledged (Tagged) Write Transaction
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Figure 4.4: Æthereal Transaction Composition

4.3.2 Æthereal NoC Transactions

We have to consider now that a network on chip exists in between the master and
slave IPs from the before mentioned figures, while the IPs are connected to the
NI ports. In the Æthereal NoC terminology, a transaction is always between an
active network interface port (ANIP) and one or more passive network interface
ports (PNIP), as the transactions take place over connections and connections
can involve two (in the case of a simple connection) or more network interface
ports (in the case of a multicast or narrowcast connection); Æthereal NoC details
have been presented in Section 2.3. The ANIP resembles the genuine master
(M) and the PNIP the genuine slave (S) from Figures 4.1, 4.2 and 4.3. As the
transactions take place over connections, transactions are pipelined between a
single master-slave pair. Transactions are composed of a request and possibly a
response.

In order to match the transaction-based communication model of IPs, the
Æthereal NoC proposes the use of four message types as presented in Figure 4.4:
CMD (a command message), OUTDATA (a data message), RETDATA (a data
message) and RETSTAT (a status message). It implements a two phase request-
response protocol. As bidirectional communication between IPs is a must, the
messages are divided between outgoing (CMD and OUTDATA) and response
(RETDATA and RETSTAT) messages. Note that the presence of all message
types in a transaction is not required. The messages are further referred in this
work as request and response messages. To match this setup with, for example,
the generic simple write transaction of Figure 4.2, we must match the WRITE
and DATA messages with the CMD and OUTDATA messages from Figure 4.4
respectively.



4. TRANSACTION-BASED MONITORING 69

R2

IPIP

NI0

IP IPMem-1

NI2

IP IPMem-2

NI1

IP Cfg.MasterIPIPIPMem-3 IP IPIPIP IPIP

R3

S

TM

R1

SS

S S S

R4R5

R0

MSA

TM

NI3

TM

NI4

TM

NI5

TM

TM

This PDF was created with evaluation copy of Right PDF printer. To remove this notice
please register Right PDF printer at http://RightFiles.com/pdfprinter/order/

Figure 4.5: 2x3 MPEG Codec with NOCMS

4.4 NoC Analyzer

4.4.1 General Setup

As an example for our transaction monitoring work we have used the Æthereal
NoC detailed in Section 2.3. The concepts presented in this chapter, however,
are more general and can be reused for other NoCs, as they rely on the shared
features of the NoCs as described in Chapter 2.

For readability, we summarize the relevant details of the Æthereal NoC. Trans-
actions (reads and writes) are performed on connections. One transaction com-
prises one or more messages. Messages are differentiated as request and response
messages. The NIs convert these messages into packets, by chopping them into
pieces of a maximum length and adding a header to each of these pieces. Pack-
ets may be of different lengths. Packets are further split into flits, the minimum
transfer unit between hops. The concrete message, packet and flit formats as well
as examples of those are detailed in Section 2.3.

For the basic access to NoC flits, we have used the NoC Monitoring Service
(NoCMS) detailed in Chapter 3. Our specialized transaction monitor replaces the
generic event generator. Figure 4.5 presents an MPEG codec with a 2x3 NoC with
its NoC Analyzer. All routers of the NoC example from Figure 4.5 have a trans-
action monitor (TM). The general process works as follows; the sniffer obtains
the raw flits (bit-level) from the NoC components and passes this information
to the transaction monitor. The transaction monitor performs local processing,
specific to each of the analyzer modes. The monitors involved might operate in
different modes. Single monitors might operate in different modes at different
points in time while multiple monitors might operate in the same or in different
modes at the same point in time. Monitors forward the results to the MNI. The
MNI packetizes the result as payload and sends them over the network to the
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Monitoring Service Access point (MSA), over a previously established monitoring
connection, just like any other data in the NoC. The monitoring connections can
be BE or GT or a combination of them, as presented in Section 3.7.2.

Throughout this chapter we make the assumption that we use the same NoC
for the resulting monitoring traffic as well as for the user traffic because this
solution allows a logical, dynamic partitioning of NoC resources; resources can
be used for monitoring when needed, and freed when not. Note that this fact
does not influence the techniques used to achieve multiple abstraction levels, the
decoding of higher level protocols (transactions) from the raw data stream, or
the transaction monitor design and cost. Alternative architectural options like a
separate interconnect only for monitoring or just extra resources reserved only for
monitoring may be used as well, as later described in Section 6.3 of this thesis.

For the experimental part we have implemented and used both memory-
mapped and streaming-data scenarios as described in Section 3.7.3.

4.4.2 Multi-level abstraction capability
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Figure 4.6: Transaction Monitor Architecture

The NoC analyzer has to be able to check the functional details of user traffic
from the observed router link data, at different levels of abstraction. For this,
the transaction monitor architecture is defined as a set of five successive pipelined
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filters.
A schematic of the transaction monitor’s internal architecture is depicted in

Figure 4.6. All the router links are sniffed by the sniffer which provides this info to
the link selection block. In the link selection block, one link is selected for further
analysis. Then, there are four transaction monitor processing blocks. One or more
of these blocks can be enabled and configured through the enable/configuration
block. Two ports connect the transaction monitor to the MNI, one slave port (SP
in Figure 4.6), for programming the transaction monitor, and one master port
(MP in Figure 4.6), for sending the transaction monitor data to the MSA.

Transaction monitors are programmed using memory-mapped I/O, by means
of write transactions. This is similar with the way NIs are programmed by means
of write transactions, as explained in Chapter 3. Each of the processing blocks
corresponds to one of the analyzer modes that we have identified. Each analyzer
mode is detailed in the following sections.

4.5 Raw Mode
In the raw mode, the analyzer provides full observability on all bits passing a
certain physical link. The desired link can be selected from all router links at run-
time through the enable/configuration block. The link selection block provides at
its output all flits passing one link. These flits can be part of different connections
as TDMA is used for every link. The flits can be directly forwarded to the MNI or
passed as input to the GT/BE filtering block. Looking only at the flit structure
and not beyond, we can do only limited filtering. Local filtering is possible based
on the traffic category. For the Æthereal NoC, we are able to filter GT or BE
traffic from the raw flits. This is made possible by the 2-bit sideband information
of each flit which specifies whether the flit is GT or BE. See Figures 2.7 and 2.8
from Chapter 2 for a single flit structure, and a packet comprising a sequence of
flits. The resulting flits are forwarded to the MNI. The MNI packetizes the flits
as payload of a write transaction (memory-mapped scenario) or a data stream
(streaming-data scenario).

A potential problem may arise: assuming for a certain link that utilization
is very high, and that we do raw sniffing, the sniffed data has to be sent over a
connection to the MSA. Due to the packetization overhead (the packet headers
added to the useful sniff payload), the total can be more than the physical link
bandwidth, making the transport of the sniffed data impossible. Filtering whether
the traffic is GT or BE can alleviate this problem in certain cases, but not always
solve it. As an area expensive alternative, the use of a separate interconnect
properly dimensioned may be employed.

Note that the transaction monitor in the current setup can select for monitor-
ing a single physical link per monitor, from all the links that are sniffed from the
router.

The raw mode is useful in case all details of the flits are important to be exam-
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ined. Bit-level details can be inspected. In practice, it works for low bandwidth
connections, or for short snapshots of high bandwidth connections.

4.6 Connection-based Mode

As sending the raw sniffing results to the MSA cannot always work in practice,
a more advanced mode is needed. In the connection-based mode, the analyzer
provides full observability on all bits of a selected connection, raising the abstrac-
tion level from physical raw to logical connection. The transaction monitor must
allow further filtering of the sniffed data, besides the traffic class (e.g. BE/GT)
in order to reduce the traffic from monitoring probe to MSA. All the NoC user
traffic goes over connections, and connections share NoC links based on a TDMA
scheme. Filtering of the sniffed data is possible if a certain connection can be
identified from the other connections sharing the same link.

The connection filtering block of the transaction monitor uses as input the
output of the GT/BE filtering block, and therefore all the link traffic of the
selected traffic class. Connection identification can be done for the Æthereal
NoC by means of the queue identifier and path; this pair uniquely identifies a
connection. Both have to be programmed in the transaction monitor using the
transaction monitor’s slave port SP. Both the queue identifier and path can be
found in the header of packets, see Figure 2.7. A packet header can be identified
by the 2-bit sideband information of each flit. Furthermore, a packet header is
always the first word in the flit. Once a header is intercepted the queue identifier
of the destination queue in the NI, and the path to that NI, can be extracted from
the header. The transaction monitor must have the desired connection set and
compare the value stored locally with run-time values from the headers. Once a
match is found, we have identified a packet belonging to the desired connection.
The resulting packets are forwarded to the MNI.

Note that the proposed transaction monitor enabled in the connection-based
mode is in the current setup able to monitor only a single connection at a given
time; the connection must pass the link previously selected for monitoring. How-
ever, the extension to support the monitoring of multiple connections at a given
time is straightforward.

The connection-based mode is useful in case all details of a certain connec-
tion have to be examined, e.g., packet headers or connection utilization. The
previously mentioned problem of exceeding the physical link bandwidth is still
possible although this would require extraordinary circumstances, e.g., all slots
being reserved for a single connection. This is unlikely in a realistic scenario, and
this mode is feasible in practice.
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4.7 Transaction-based Mode
In the transaction-based mode, the analyzer raises the abstraction to transac-
tion level and provides bit-level full observability on transactions over a certain
connection. This implies full observability of all transaction components, which
are messages. A full transaction may involve a single message (e.g. a single re-
quest) or multiple messages. The case of transactions using multiple messages on
multiple connections, involves the combination of data from multiple transaction
monitors or from one transaction monitor at different points in time, which can
for example be done at the MSA.

Being able to identify all the flits of a certain single connection, the next step
is the capability to identify the messages belonging to this connection. This allows
to see, from within the NoC, when a write or a read message has been issued and
from where or to which of the IPs or memories, providing a transaction level view.

The main problem is how to identify the messages. Within a data stream
belonging to a single connection, it is difficult to detect the start of a message,
because at NIs, and for the Æthereal NoC in particular at NI kernels, messages
are considered payload and are packed in packets without any alignment. The
routers, where the monitoring is done, have no notion of messages. A packet may
contain a single message, part of a message, or parts of multiple messages. The
last option also accounts for the particular case where multiple complete messages
are packed within the same packet. It is therefore complex to see where a message
starts just by looking at a packet.

In the general case, message identification requires depacketization, a proce-
dure usually done at the NI at the receiving side, at every slave NI port (SNIP).
Hardware modules for depacketization are available for the Æthereal NoC. These
modules assume that the first packet over a connection carries the first message
header, immediately after the packet header. From there they only count the
number of words in the received message, knowing that after completion of the
message there is a new message header.

Having detected the start of the message, the rest becomes simple. In the
majority of the existing NoCs, the size of the message is coded in the first word
of the message, the exact place depending on the exact protocol message format.
So, if the message start is detected, the rest of the message can be obtained by
counting the words in the following sniffed flits belonging to the same connection,
till the message size is reached. Counting of the message words does not take
into account the headers of the packets involved, which are discarded during
depacketization. However, the main difficulty is detecting the start of the message.

Related to the packetization schemes, there are three possible situations, cov-
ering all existing NoCs, see Figure 4.7, with regard to alignment of packet header
and message header, each of the situations having pros and cons regarding the
NoC design:

(A) The NoC does not distinguish between messages and packets, message/packet
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Figure 4.7: Message-packet alignment

correspondence is one to one, see Figure 4.7A. As previously explained, a
packet header (PH) can be easily identified. In this case, we have also iden-
tified the message header (MH), which follows the packet header, and the
message decoding can start. From the NoC point of view, this is a simple
packetization scheme, but it may require long packets. Therefore, it may
not fit well with the TDMA scheme, and may have partially empty packets.

(B) The message header is aligned with the packet header but the NoC splits
messages in multiple packets, see Figure 4.7B. Even if a packet header can
be easily identified, as message/packet correspondence is no longer one to
one, it is important to know with which packet header the message header
is aligned. Some packet headers are followed by message headers, others are
followed by parts of the message payload (MP). This situation fits well with
the TDMA scheme, but may have partially empty packets.

(C) The NoC does not align messages and packets, see Figure 4.7C. This is the
most general and difficult case and is used by the Æthereal NoC. A message
header can be anywhere in the payload of a packet. This is the most efficient
packing of messages in packets and it is good for TDMA.

There are at least two solutions to solve the message identification problem
described under items B and C:

(1) One solution is to explicitly specify the message boundaries. This means that
each packet specifies whether it contains the start of the message and where
in the packet is the message header. The presence of a message header in
the packet and its offset can be coded either in the packet header itself or in
the sideband information in the form of a control bit. This can be enforced
by adapting the master NI port (MNIP) to include this information in the
header or sideband information, which is not difficult because the NI has
knowledge of the message start. Using this solution may require design
modifications of the NI.

(2) A second solution is to make sure that we can monitor the first packet going
over the connection, and all the following flits belonging to the same connec-
tion. In this case, we can continue identifying messages. This is because the
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first packet will contain a packet header immediately followed by a message
header and from there we can keep accounting for the following messages
like the SNIP is already doing for the user traffic. This can be enforced e.g.
by setting and enabling the transaction monitors before the connection is
used. The advantage of this solution is that it requires no modifications of
the NoC components.

For our experiments with the Æthereal NoC, we have enforced the second
solution (2). We have made this choice because the Æthereal packet header does
not contain information about message headers. The potential drawback of this
solution, the fact that the transaction monitors must be enabled before the actual
monitored connection is set up, is considered acceptable. Our solution requires
a strict correlation between the (re)configuration moments of the NoC and the
configuration of the NoCMS transaction monitors. It is possible to apply this
solution for the Æthereal NoC, because our transaction monitors are run-time
configurable by means of MMIO write operations, and because precedence of the
transaction monitor configuration in front of the user connection configuration is
enforced. The transaction monitors are configured before the actual connections
are configured, being able to sniff all the data from a connection starting with the
first flit of the first packet. In case of a NoC reconfiguration, it is again possible
to reconfigure all the transaction monitors at the beginning of the reconfiguration
when the rest of the connections are not yet configured.

The traffic introduced by the analyzer transaction-based mode is lower than
in the connection-based mode as packet headers are removed in transaction re-
construction, when converting from packets to messages. This is done in the
depacketization block of the transaction monitor, in fact a reused SNIP from the
Æthereal NoC.

By identifying messages, local filtering of messages per connection is possible;
all these options can be added to the depacketization block. For example, filtering
of only write or read messages, or filtering of certain address range writes can be
done, handy for debug purposes.

Note that in the current setup a single transaction monitor can track messages
over a single connection, as a consequence of the previous mode which was able
to gather the data stream of a single connection only.

The transaction-based mode is useful when all details of transactions or trans-
action components are required to be inspected. This is especially useful when
inspecting IP to IP communication. However, details regarding packetization, like
the content of packet headers, are no longer visible.

4.8 Transaction Event-based Mode
In the transaction event-based mode, the analyzer provides full observability on
relevant transaction features or components and abstracts other irrelevant trans-
action features. Being able to identify messages over a certain connection is indeed
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very useful. However, not all of this information is always needed for getting the
picture of what is really going on in the NoC. Therefore, the abstraction level
can be raised; whenever a transaction component is sniffed, a transaction event
can be generated. E.g., a transaction event can state what was the command,
address and the number of words in a message. A write message at address #0000
with 10 words of payload has a total of 12 words for the entire message. All this
can be abstracted in an event of two words containing only the relevant features
(command, address, nr. words), getting rid of the irrelevant (for this example) 10
words of payload. As another example, a transaction event could be generated
only if certain value is written to a certain address.

Local filtering of relevant features of transactions is done in the abstraction
block of the transaction monitor. The traffic introduced is lower than in the
transaction-based mode as we get rid of packet headers and irrelevant transaction
features by means of event abstractions.

Table 4.1: Comparison of analyzer modes
Mode TM capability Filtering Potential pb.

raw id. traffic GT/BE link bw.
connection +id. connection connections link bw.
transaction +id. msg. messages msg. start
tr. event +event generation msg. features msg. start

Table 4.1 summarizes the capabilities of the analyzer, showing a comparison
between all analyzer modes focusing on the capabilities built into the transaction
monitor, the potential filtering and the potential problems in each of the modes.

4.9 Analysis

4.9.1 Implementation
Our final point is to prove that on chip run-time monitoring of NoC transactions
is feasible in resource-constrained NoC designs. Therefore, we have investigated
the area and traffic implications of our NoC analyzer and analyzer modes. For
the experimental validation of our NoC analyzer, we have built a flit accurate
SystemC model, and a cycle accurate synthesizable VHDL model of the transac-
tion monitor. We have used these models in conjunction with the Æthereal NoC
and design flow.

The placement of the transaction monitors at routers is a design time choice.
Currently, the Æthereal NoC design flow of Section 2.3 has been extended to
support monitoring in general, as further detailed in Chapter 6.

For our experiments all routers are instrumented using the monitoring-aware
NoC design flow with transaction monitors, thus resulting in a fully probed NoC.
For our traffic experiments with the SystemC models, we have used transaction



4. TRANSACTION-BASED MONITORING 77

monitors supporting all four analyzer modes. For our area experiments with the
VHDL models we have used transaction monitors supporting the first three ana-
lyzer modes (full transaction reconstruction without transaction abstraction). We
use preestablished GT connections for each of the employed transaction monitors
to transport the sniffed data from the transaction monitors to the MSA and for
their run-time configuration. The application and monitoring traffic share the
same NoC. For NoC design-time aspects related to monitoring, such as how to
provision the monitoring requirements for NoC dimensioning or how to automate
the insertion of monitors by means of a monitoring-aware NoC design flow refer
to Sections 6.3 and 6.5 respectively.

To quantify the complete effects of monitoring, we had a look at four differ-
ent SoC designs, using NoC mesh topologies, supporting combinations of several
MPEG instances (from one to four) with a single audio instance consisting of sam-
ple rate conversion, MP3, audio-postprocessing and radio as presented in [62], us-
ing the memory mapped and streaming data transport scenarios of Section 3.7.3.

4.9.2 Area Analysis
The area overview of three probes, corresponding to the first three analyzer modes
(raw, connection-based and transaction-based), realized in a 0.13µm CMOS tech-
nology is presented in Table 4.2. Since transaction monitors support both GT
and BE traffic classes, a comparison is made with the area of an Æthereal arity 6,
GT/BE router, presented in [41], which is 0.13mm2 in the same 0.13µm CMOS
technology.

Table 4.2: Area Impact
Probes area(mm2) comp. to router

raw 0.020 15%
connection-based 0.024 18%
transaction-based 0.026 20%

The results show that offering raw data monitoring capability would require
15% more area compared to a single router, while connection-based capabilities
would require around 18%. Full fledged on-chip transaction reconstruction is fea-
sible at the cost of 20% of the router area. The probe area presented includes the
configuration unit allowing to (re)configure the transaction monitors at run-time.
Configuration includes the start and end time of transaction monitor activity,
and the selection of the desired mode with the required characteristics. It also
includes three words of internal storage.

The first three analyzer modes realize the transaction reconstruction, by de-
coding the transaction components, while the fourth one is doing the transaction
abstraction. Therefore, the area cost of the probe supporting the first three modes
is fixed, while the area cost of a probe supporting all four analyzer modes may
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Figure 4.8: Monitoring traffic comparison

vary, depending on the transaction abstraction capability implemented. The area
cost of transaction abstraction is left for future work.

Looking at the NoC level, on average, for our designs, the overall monitoring
system adds 5% to the original NoC area (routers and NIs). This accounts for
the transaction monitors area, and the increase in the number of NI ports with
the corresponding buffers. These system-level area results are explained in more
detail in Chapter 6.

In Chapter 3, we have targeted an area of the NoCMS of roughly 15-20%
compared to the initial NoC area. The initial estimations for the watchpointing
case of the same chapter have shown an average of around 20%. The obtained
results of this chapter for the concrete case of transaction monitoring, with the
restrictions presented for each of the analyzer modes, are much better than the
mentioned estimations, showing that an efficient NoCMS may be constructed.
The remaining area up to the acceptable total of around 15% may be used to ease
these restrictions, e.g. by having the capability to select two connections that can
be monitored simultaneously.

4.9.3 Traffic analysis

A traffic comparison for all analyzer modes is presented in Table 4.3. The mon-
itoring targets are two user connections of 40 MB/s and 60 MB/s respectively.
The monitoring was done by activating a single transaction monitor for each of
the target connections, and configuring it in turns for each mode. Note that the
traffic figures of Table 4.3 correspond to a single transaction monitor and are
independent of the number of transaction monitors present in the NoC.

The IPs connected to the network operate in the memory mapped scenario
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Table 4.3: Monitoring traffic details
user data MB/s MB/s

user payload P 40 60
NoC payload P+C+A 59.84 89.68
NoC traffic P+C+A+H 65.20 95.04

raw
debug payload P’=

∑
(P+C+A+H) 255.28

(mm) NoC payload P’+C’+A’ 340.37
(mm) NoC traffic P’+C’+A’+H’ 355.76
(sd) NoC payload P’ 255.28
(sd) NoC traffic P’+H’ 270.88

connection-based
debug payload P’=P+C+A+H 65.20 95.04

(mm) NoC payload P’+C’+A’ 86.93 126.72
(mm) NoC traffic P’+C’+A’+H’ 92.08 131.84
(sd) NoC payload P’ 65.20 95.04
(sd) NoC traffic P’+H’ 70.40 100.24

transaction-based
debug payload P’=P+C+A 59.84 89.68

(mm) NoC payload P’+C’+A’ 79.79 119.57
(mm) NoC traffic P’+C’+A’+H’ 84.96 124.72
(sd) NoC payload P’ 59.84 89.68
(sd) NoC traffic P’+H’ 65.04 94.88

tr. event-based
debug payload P’=E 19.95 29.89

(mm) NoC payload P’+C’+A’ 39.89 59.79
(mm) NoC traffic P’+C’+A’+H’ 45.04 64.96
(sd) NoC payload P’ 19.95 29.89
(sd) NoC traffic P’+H’ 25.12 35.04

while the transaction monitors can operate in either memory mapped or streaming
data scenario. The user payload, e.g. 40 MB/s, denoted with P in Table 4.3,
represents the application data. To this user data, commands (C) and addresses
(A) still have to be added before the NIs; the value is shown as P+C+A in
Table 4.3. This represents the actual payload for the NoC. Taking into account
the slot allocation, due to packetization, headers are added in the NIs to the
actual payload, P+C+A+H in the table. P+C+A+H is the traffic going through
the network.

When monitoring in the raw mode the sum of P+C+A+H for all connections
passing the monitored link becomes the actual payload P’ for the debug connec-
tion. In our experiment, the two monitored connections share the same monitored
link, together with another 60MB/s GT user connection, which explains the large
payload in Table 4.3. Note that the raw traffic is only directly related to the



80 4.9. ANALYSIS

monitored link utilization and not to the size of a particular connection.
When monitoring in the connection-based mode P+C+A+H becomes the ac-

tual payload P’ for the debug connection. When monitoring in the transaction-
based mode P+C+A becomes the actual payload P’ for the debug connection,
because the headers are removed in this analyzer mode, assuming no further mes-
sage filtering which is the worst case for this mode. When monitoring in the
transaction event-based mode the actual payload E is computed in this example
by abstracting the 6-word messages (P=4 words, C=1 word and A=1 word) used
on this connection in 2-word events. In general, it may vary depending on the
abstraction capability of the event-model.

When using the memory-mapped scenario, the (mm) tag in Table 4.3, for the
transport of the monitored data, new addresses and commands are added to the
previously explained payload P’, denoted P’+C’+A’ in Table 4.3. New packeti-
zation is done, and new headers (H’) are added to this, getting the final debug
connection traffic to P’+C’+A’+H’. When using the streaming-data scenario, (sd)
in Table 4.3, for the transport of the monitored data, new addresses and com-
mands do not need to be added to P’. Headers are added though, getting the final
debug connection traffic P’+H’.

Figure 4.8 presents the NoC analyzer traffic for all analyzer modes in percent-
ages, compared to the initial NoC traffic of 65.20 MB/s and 95.04 MB/s for the
40MB/s and 60 MB/s connections respectively. This is done for both the memory-
mapped (mm) and streaming-data (sd) scenarios. In the raw analyzer mode, the
numbers show that there is a tremendous traffic on a link, several times bigger
than the considered user connections. Note that the raw mode shows the overall
link traffic comprising three connections in total. In the connection-based mode
the numbers show that we introduce in the NoC new traffic, bigger than the mon-
itored traffic. In the (mm) scenario this is 41% and 39% more, while in the (sd)
scenario it is only 8% and 5% more. In the transaction-based mode, we introduce
in the NoC new traffic around 30% higher than the monitored traffic in the (mm)
scenario, and comparable but slightly lower than the monitored traffic in the (sd)
scenario. In the transaction event-based mode, we introduce in the NoC new
traffic, lower than the monitored traffic, which is always the case for sufficiently
abstract events. This represents a real gain over the monitored connections. The
gain amounts to around 30% and 60% in the (mm), respectively (sd) scenario, in
the concrete example.

As expected, traffic wise it is a good idea to use transaction abstractions when
doing online transaction monitoring, in case other details are not of interest.
Combining them with a ’streaming-data’ scenario is beneficial. Monitoring at the
lowest level of detail would produce the most load for the NoC.

4.9.4 Debugging the NoC Configuration Master
As previously mentioned, the Æthereal NoC can be configured at run-time. In
the current Æthereal setup, a centralized programming module, e.g., an ARM
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processor, is doing all the configuration work. This centralized module is called
the Configuration Master, see the Cfg. Master IP in Figure 4.5. As support for
NoC debug, it is important to see what the Configuration Master is doing at run-
time, as all the inter-IP communication is going over connections. The observed
behavior can then be compared to the expected behavior in order to catch possible
errors.

The Configuration Master uses BE packets to configure the NIs. Our NoC
analyzer can monitor configuration in the connection-based mode. For this, we
take advantage of the Æthereal configuration details. All NIs have a port, with
qid 0, called a configuration port. Through this port the NIs are configured at
run-time. The observation of the Configuration Master requires a single probe.
Therefore, at run-time, a single transaction monitor was activated in one test NoC,
depicted in Figure 4.5, namely the transaction monitor attached to router R3.
This transaction monitor monitors the link between NI3, where the Configuration
Master is connected, and router R3. The transaction monitor was enabled in
the connection-based mode, and was configured only with the queue identifier
0 and not also with the path. In this way, all the outgoing traffic from NI3
towards any destination with qid=0 is filtered, and then sent to the MSA. This
amounted to 205 flits containing 529 (4-byte) words of configuration data for
the entire reconfiguration of all NIs. In this way, all the Configuration Master
behavior is observed. A single preestablished GT connection is used to transport
the monitored data to the MSA. As another experiment, the transaction monitor
was enabled in the transaction-based mode and the path was set. Transactions
are only monitored over this path, corresponding to NI4 being configured, and
this amounts to 24 write transactions.

Due to the centralized programming of the NoC using a single Configuration
Master in the current setup, one transaction monitor is currently sufficient to
monitor NoC configuration. However, in the near future, distributed program-
ming of the NoC may be another option. In order to keep up with this option
multiple Configuration Master monitors will have to be employed (or activated),
one for each Configuration Master.

4.10 Run-time reconfiguration
Up to 64 bits of configuration data are required by a single transaction monitor
during the configuration. This can be done using either one 64-bit DTL-MMBD
write operation or two 32-bit DTL-MMIO write operations. For the DTL details
see [75]. In the first case the configuration data can be packed into a 32-bit (one
word) command (C), 32-bit (one word) address (A), 64-bit (two words) payload
(P) write message which would enter the MSA connected NI. In the second case
the same data is packed into two (C,A,P) write messages. Note that in general the
amount of configuration data required per monitor may differ with the monitor
type, e.g. it may not be the same for a transaction monitor and a performance
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monitor, potentially resulting in more/less required write messages per monitor.
However, the same run-time configuration policies and techniques may apply.

It has been previously mentioned that transaction monitors can be (re-)configured
at run-time by means of write transactions. As a separate experiment we have
looked at complete monitoring service configuration and evaluated the configu-
ration options and the resulting configuration times. For this we have used the
example MPEG design case using a 2x3 mesh topology, which was fully probed, re-
sulting in six transaction monitors. We have used a centralized monitoring service
with one MSA. We have used a slot table size of 128. Each transaction monitor
uses a dedicated connection to the MSA. We have investigated both using the ex-
isting GT and BE communication services for monitoring system configuration.
When using GT connections we have reserved a single slot for each monitoring
connection.

11

Electronic Systems

Configuration of Mpeg_2x3  

2244136WR 32 _ WR_ACK 32

1521832WR_ACK 64

1743378WR 32 + WR 32

781212 WR 64

BE (ns)GT (ns)MPEG_2x3

2242600WR 32 _ WR_ACK 32

1521832WR_ACK 64

1741980WR 32 + WR 32

781212 WR 64

BE (ns)GT (ns)MPEG_2x3

1

2

12

(a) ALL

11

Electronic Systems

Configuration of Mpeg_2x3  

2244136WR 32 _ WR_ACK 32

1521832WR_ACK 64

1743378WR 32 + WR 32

781212 WR 64

BE (ns)GT (ns)MPEG_2x3

2242600WR 32 _ WR_ACK 32

1521832WR_ACK 64

1741980WR 32 + WR 32

781212 WR 64

BE (ns)GT (ns)MPEG_2x3

1

2

12

(b) FIRST

Figure 4.9: Multiple configuration messages

We have tried two monitoring system-wide policies for configuration. One
policy is based on simple write messages, which are not acknowledged by the
transaction monitors. The total configuration time in this case is the time elapsed
from the sending of the first message from the MSA to the first transaction monitor
to be configured until the last received message at any of the transaction monitors.
Note that the last message sent from the MSA may not be the last received
message at the transaction monitors.

A second monitoring system configuration policy is based on acknowledge-
ments. In this case, a 32-bit acknowledge is sent back from each of the transac-
tion monitors upon reception of a configuration message and completion of the
local transaction monitor configuration. The advantage of the second method is
that the MSA knows when the monitoring system is configured. In this case the
configuration time is the time elapsed between the time when the first message is
sent from the MSA and the last acknowledgement is received at the MSA. Note
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Table 4.4: ALL-FIRST
mpeg ALL GT(ns) ALL BE(ns) FIRST GT(ns) FIRST BE(ns)

WR64 1212 78 1212 78
2xWR32 3378 174 1980 174

WR ACK64 1832 152 1832 152
2xWR ACK32 4136 224 2600 224

that in general the acknowledgements are not received at the MSA in the sending
order of the configuration messages from the MSA.

In the case of multiple configuration messages required for the same transac-
tion monitor (e.g. two write messages) we have used two options. One option is
to send all the messages for the same transaction monitor first then followed by
all the messages for the second transaction monitor and so on. This is graphically
depicted in Figure 4.9(a) and further referred as the ALL case. A second option
is to send the first message to the first transaction monitor followed by the first
message to the second transaction monitor, and so on, and only send the second
message to all the transaction monitors when all the first messages for all trans-
action monitors have been sent, and so on. This is illustrated in Figure 4.9(b)
and further referred to as the FIRST case.

Table 4.4 show the configuration time experimental results. In the first column
we show the use of the write messages, where WR64 and WR32 corresponds to a
write with 64 bits or 32 bits of payload; 2xWR32 shows that two write messages
are used for the configuration, while the presence of ACK shows the presence of
a 32-bit acknowledgement in the configuration process for a single transaction
monitor. The table shows that using BE for configuration is several times faster
than using GT as the configuration data does not have to wait for the reserved
slot. This is expected because as soon as there is an empty slot or reserved but
not used slot the BE configuration would sneak on the link. When using multiple
configuration messages over GT monitoring connections for the same probe, it is
more efficient to do it the FIRST way than to do it the ALL way. This is because
in the ALL way the second configuration message for the first probe cannot be
sent to the corresponding NI queue until there is space in the queue, thus delaying
the first configuration message for the second probe. Table 4.4 finally shows the
expected result that the use of acknowledgements increases the configuration time.
Note that when using GT connections for configuration, the results in Table 4.4
do not account for the time required to set up these connections.

The results show that the run-time configuration is feasible for realistic cases,
and the configuration time required for it is acceptable.
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4.11 Transaction Monitoring Optimizations
Employing Multiple Monitors

Being able, in the previously described transaction monitor, to isolate and distin-
guish flits, messages, transactions and events, provides new options for efficient
monitoring of data traffic inside the NoC.

Multiple monitors can be provided along a connection’s path, wherein each
monitor can sniff one or more connections. Particularly, in the cases where it is dif-
ficult and sometimes impossible to setup high bandwidth monitoring connections
in a network-on-chip NoC resource constrained environment, it is advantageous
to schedule more debug connections with lower-bandwidth; e.g. this can happen
when monitoring in the raw mode. The sniffing of a high-bandwidth connec-
tion can be performed by providing multiple monitors on paths of connections or
communications, wherein each of the monitors merely partly sniff the respective
connection. Data is then sent over multiple monitoring connections to a central
MSA where the complete connection trace is restored from the partial traces from
the monitors.

Figure 4.10: NoC Monitoring Service

Figure 4.10 shows an example NoC, with several IPs connected to it and the
example connection C, established between NI6 and NI1, serving for the commu-
nication of IP6 with IP1. For example purposes we assume this user connection
to have a bandwidth of 100MB/s. A monitoring service access unit is provided
as a central access point for monitoring the data.

Figure 4.11 shows the same SoC as in Figure 4.10. The only difference is the
provision of a monitor Pl which is attached to the router R2. The monitor is able
to sniff data like flits, messages, transactions or other granularity depending how
much intelligence is built in the monitor, as previously explained in this chapter.
Here, as an example the monitor can sniff flits. The output of the monitor Pl is
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Figure 4.11: NoC Monitoring Service

coupled to the network interface NI2. The monitor Pl is able to sniff all flits of
the connection C when the flits pass the router R2. The sniffed flits are passed
to the network interface NI2 and is forwarded to the monitoring service access
unit MSA. A monitoring connection MC1 from the second network interface NI2
to monitoring service access unit MSA is required in order to transport the data
of the monitor, i.e. the monitoring data. The bandwidth BD of the monitor-
ing connection MC1 is bandwidth B + a packetization overhead added by the
network interface NI2, i.e. the bandwidth BD is at least of bandwidth B, e.g.
BD=120MB/s.

Although a router link, for example for Æthereal routers, may offer a raw
bandwidth of 2GB/link/s, part of this bandwidth may be already used by the
existing mapping of user connections on the network on chip NOC. If the links
(NI2-R2) and (R3-R5) can only allow a lower bandwidth connection than the
bandwidth BD, e.g. 70MB/s, as the rest is in use due to the existing mapping of
user connections on the network on chip NoC, the sniffing cannot be performed,
as the bandwidth BD cannot be offered by the network on chip NoC on any single
route from the network interface NI2 to network interface NI5 (NI5 connects the
MSA where the sniffed data must go).

Figure 4.12 shows the same SoC as in Figure 4.10, which now comprises mul-
tiple monitors, e.g. all routers can be instrumented with monitors, ensuring a full
coverage of all possible connections or communication paths to be set up.

Accordingly, N monitors may be present on the path of connection C. Here, a
first monitor Pl is attached to the router R2 and a second monitor P2 is attached
to the router R4. Therefore, N monitoring connections are required, namely a
first monitoring connection MC1 and second monitoring connection MC2 with the
bandwidth BMC1 and BMC2. The first monitoring connection MC1 is provided
for the data of the first monitor and the second monitoring connection MC2 is
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Figure 4.12: NoC Monitoring Service

provided for the data of the second monitor. The data from both monitors are
sent to the MSA. Thus, the bandwidth previously required for sniffing can now be
shared by these N or 2 connections, i.e. BD = BMC1 + BMC2, BMC1=60MB/s,
BMC2=60MB/s. These two monitoring connections can be setup, if the resources
are available.

As an example, each monitor can sniff one flit per slot. Therefore, the monitors
comprise a counter, with respect to the number of flits which have passed the link.
Each of the monitors can alternatively sniff a number of flits either in a balanced
or an imbalanced way.

According to the balanced way the monitors Pl and P2 sniffs the same number
of flits (evenly splitting the bandwidth required), e.g. monitor Pl sniffs odd flits
and monitor P2 sniffs the even flits), as depicted in Table 4.5. According to
an imbalanced way the monitors Pl and P2 sniffs different numbers of flits e.g.
monitor P2 sniffs 1 flit after monitor Pl sniffs 2 flits, as depicted in Table 4.6.

Table 4.5: Monitoring Flits, Balanced Scheme
Flit counter P1 P2

s1 Flit1 -
s2 - Flit2
s3 Flit3 -
s4 - Flit4
s5 Flit5 -
s6 - Flit6

The monitoring service access unit MSA reorders the flits by reading the flits
according to the sniff schedule from the network interface NI it connects to, e.g.
NI5 in our figure. The network interface NI5 requires two buffers, one for each
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Table 4.6: Monitoring Flits, Unbalanced Scheme
Flit counter P1 P2

s1 Flit1 -
s2 Flit2 -
s3 - Flit3
s4 Flit4 -
s5 Flit5 -
s6 - Flit6

connection (MC1 and MC2). The monitoring service access unit MSA reads in
the first example 1 flit from each of the debug connections alternatively, and in
the second example 2 respectively 1 flit. Hence, the entire connection activity can
be reconstructed.

If more intelligence is added to the monitors, e.g. like in the case of our
transaction monitors, the sniffing can be done per message, which is in turn
reconstructed from flits. The counter will just count the number of messages
passing the router. The monitoring per message can be done in a balanced or
unbalanced way, similar to the flits scheme.

Generalizing, N probes may be placed onto the same connection. In this case,
the bandwidth BD can se shared over N debug or monitor connections (utilizing
all probes). Additionally a single monitor may have multiple connections with
the monitoring service access unit MSA with different paths, in order to avoid a
constrained link on the path from monitor to the monitoring service access unit
MSA.

In principle, this method can be used in any interconnect, e.g. networks on
chip, where resource reservations can be made for traffic, for related monitoring
activities. The above described solution guarantees a distributed sniffing of a con-
nection and the distribution of bandwidth required for sniffing that connection
into multiple lower bandwidth connections, depending on the number of available
monitors. Furthermore, the reconstruction of the original (sniffed) connection in-
formation at the monitoring service access point MSA now received from multiple
(distributed) monitors. This is in particular advantageous as a working solution
in the case of bandwidth constrains on certain links is provided, due to physical
limitations of links or mapping of connections.

4.12 Conclusions
Networks-on-chip are a scalable interconnect solution to multiprocessor systems
on chip and a suitable place to monitor the internals of a SoC at multiple levels of
abstraction. NoCs transport data in packets which are fragments of transactions,
such as read and write actions of IPs. For debug purposes in general, reconstruct-
ing transactions at run-time is essential. Run-time analysis of the NoC behavior
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at transaction level makes the complete MPSoC easier to understand.
We have presented a NoC analyzer able to perform run-time NoC transaction

monitoring. The proposed NoC analyzer alleviates the run-time observability
problem by providing hardware transaction monitors able to work on four different
levels of abstraction. They correspond to four analyzer modes, ultimately being
able to on-chip reconstruct transactions from low-level monitored router data and
abstract them to events. All of the analyzer modes can be enabled and configured
at run-time. They match difficult debug situations, and are a valuable asset when
debugging multiprocessor NoC-based SoCs.

In NoC monitoring, it is important to go beyond the raw low-level data (bits),
to understand what data means (transactions). Due to nonalignment of packets
and messages, it is generally difficult to (re)construct a transaction-level view from
the data stream of a connection. We have conceptually shown how this problem
can be solved for all existing NI packetization schemes. Thus our concepts can be
reused for any existing NoC.

A transaction monitor for the most difficult packetization scheme was im-
plemented at the cost of one fifth of the router area. A transaction monitor
has an area cost of 0.026mm2 in a 0.13µm CMOS technology, and for several
MPEG/audio SoC case studies, the entire monitoring system adds an average of
5% to the NoC area, much better than the initial target of 15-20% and the initial
estimations of Chapter 3. The latter is due to the specialization of the transac-
tion monitoring system, whereas the estimates of Chapter 3 were done for a very
generic system.

A traffic analysis of analyzer modes has been presented. The traffic introduced,
compared to the traffic of the monitored connection, varies from a penalty of
41% in the connection-based mode memory-mapped scenario, to a gain of 63%
in the transaction event-based mode streaming-data scenario. We have shown
the versatility of our NoC analyzer by monitoring the NoC configuration master.
Finally we have investigated various scenarios for run-time reconfiguration of the
NoC monitoring system and shown that it is feasible for realistic monitoring cases.

This work on transaction monitoring merely provides the knobs and controls
for establishing and tuning a structured transaction-based debugging method.
The development of such a method is left for future work.



Chapter 5

Monitoring-assisted QoS

We have proposed a generic NoC monitoring service as a basis of this thesis.
This chapter is one more link in the chain of proofs spread throughout this work
regarding the generic character of this service. After the specific instance tar-
geted for transaction monitoring derived in Chapter 4, this chapter presents a
second NoCMS instance targeted to run-time performance monitoring, showing
the versatility of our proposed NoCMS. The performance monitoring NoCMS is
presented together with two brief case studies showing its applicability.

The chapter starts with introducing the motivation for NoC run-time mon-
itoring in the context of NoC services and application level QoS. Related work
is discussed in Section 5.2. A brief introduction to performance measures is pre-
sented in Section 5.3. The general setup of the proposed performance monitoring
NoCMS is detailed in Section 5.4. It relies on a specialized, run-time configurable
performance monitor connected to NoC routers able to track the number of units,
e.g. flits passing the monitored links. The internal details of the performance
monitor, including its block architecture, its monitoring capabilities and configu-
ration aspects including the synchronous start of multiple monitors are presented.
Section 5.5 presents an evaluation of the main performance monitoring bandwidth
requirements and area costs, including a comparison with the transaction mon-
itoring of Chapter 4. Two small cases studies showing the added value of the
performance monitoring NoCMS are briefly explained in Section 5.6. The chap-
ter ends with the main conclusions.

The author’s contribution in the form of a NoCMS instantiated for perfor-
mance monitoring has been presented in part as a secondary topic in: ”Congestion-
controlled best-effort communication for networks-on-chip”; Jan Willem van den
Brand, Calin Ciordas, Kees Goossens, and Twan Basten; In Proceedings of De-
sign, Automation and Test in Europe Conference and Exhibition (DATE 2007),
April 2007. [94]

The use of the performance NoCMS as input for an application QoS manager
was detailed in: ”Mixed adaptation and fixed-reservation QoS for improving Pic-
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ture Quality and Resource Usage of Multimedia (NoC) Chips”; Milan Pastrnak,
Peter H.N. de With, Calin Ciordas, Jef van Meerbergen, Kees Goossens; In Pro-
ceedings of International Symposium on Consumer Electronics (ISCE 2006), Jun
2006. [71]

5.1 Motivation
A general motivation on the necessity of monitoring has been detailed in Chap-
ter 1. Chapter 4 refines the general monitoring motivation to the particular case
of transaction monitoring, as part of the functional, system-level debugging, or
even run-time assertion checking. This section offers an overview of the main
performance monitoring beneficiaries.

One of the first performance monitoring beneficiaries is the run-time perfor-
mance analysis. Used as a very general term, performance analysis is the process
of interpreting and understanding the gathered performance monitoring data.

Run-time performance analysis and the associated performance monitoring are
needed to understand what the system is currently doing, what it has done in the
past and eventually to predict its future behavior. Part of performance analysis,
generally referred to as performance debugging, is concerned with the question
whether the existing NoC is currently achieving the performance requirements
of the running applications, directly in terms of the application or indirectly in
terms of NoC resources.

Gathering of such performance statistics over a period of time can show
whether the response of the NoC to certain corner cases of the application can af-
fect performance behavior; such performance anomalies can normally be detected
in real-time systems. In general this is referred to as anomaly detection.

In a case not related with performance debugging or with anomaly detection,
performance monitoring reflects whether the NoC can support or accommodate
new applications and/or services and to what degree. This is based on the trends
identified by monitoring and predictions of impact of the future application re-
quirements impact on the performance. In more general terms this is related with
quality of service (QoS).

5.2 Related Work
When investigating performance analysis for NoCs, it is a good starting point
to look at internet-like networks. At lot of work has been done in this area for
such networks, ranging from the identification of appropriate metrics, monitoring
architectures, monitoring agents, and standardized monitoring services to perfor-
mance visualization or network management. Some of the performance metrics
are: round trip delay, packet loss, reachability, availability, and router and link
utilization. Most of such monitoring data is collected by monitoring agents resid-
ing on the monitored entities, e.g. a host. One good place to start is the standard
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simple network management protocol (SNMP) or the remote network monitoring
specification (RMON) described in virtually all network related books.

In the related field of network management, network monitoring is widely
used. The employed mechanisms for network monitoring can be classified into
two categories [51]: end-to-end network monitoring and distribution monitoring.
This is done according to the level of information that can be obtained from the
monitoring. In an end-to-end monitoring approach, only the end-to-end proper-
ties between the sender and receiver of a flow are monitored. However, in the
distribution monitoring approach, the quality of service distribution experienced
by the flow in different network segments is monitored. This is needed to clearly
locate the network segments (e.g. links) causing possible QoS degradation. In
network monitoring works [51, 91], the focus is on the mere task of locating rele-
vant network monitors that can meter the present flows in multiple points in their
paths.

We have to point out here that monitors can be added in a real network at any
time if desired, while this is not the case for a system on a chip. Our proposed
NoCMS instance for performance monitoring fits in the distribution monitoring
class, for networks on chip, although there is no conceptual limitation to extend
this NoCMS with NI monitors for end-to-end monitoring.

A set of framework and performance metric definitions targeted at NoCs in
particular is presented in [36]. The intention of the authors is to present a generic
and common set of performance oriented NoC metrics as a first step towards
network-on-chip benchmarking. The end purpose is to be able to fairly compare
very different NoCs based on this framework with the associated metrics. The per-
formance metrics defined are mainly suited for end-to-end NoC properties. This
work is focused towards the design phase of NoCs, mainly for simulation environ-
ments where performance tests can immediately reveal performance problems, or
the impact of the design decisions on the NoC performance.

In a rare combination of NoCs and run-time monitoring [69], the use of end-
to-end monitors is proposed in order to assist the operating system controlling
the NoC. This work fits in the end-to-end monitoring class as employed in the
regular (internet-like) network management. The work focuses on the use of such
performance monitors to optimize communication resource usage. The monitored
data uses a separate NoC, called the control NoC and does not reuse the NoC
resources used by the application. It fails however to show what are the associated
costs or implications of using monitoring, for example whether it is area efficient
or not. Chapter 6 shows that the use of a separate NoC for monitoring, in general,
regardless its use for performance or for transaction monitoring, is expensive in
terms of area.

[1] proposes a dynamic routing scheme for reducing jitter in the latency of
BE traffic, only in the combination with GT traffic, which can benefit from mon-
itoring. In a manner similar to [69] the work requires NI statistics for packet
injection control. In fact, the work assumes a monitoring system to be in place,
solved by a third party. Our NoCMS can fulfill this role. The work fails to show
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the associated costs, or to detail a monitoring scheme.
With the exception of the work targeted at performance measures and bench-

marking [36] the rest of the related work is focused on statistics gathered at NIs,
and not on the monitoring itself. All present approaches do not identify or tackle
NoC monitoring problems, worry about a generic or scalable monitoring solu-
tion or even quantify area implications or other costs, e.g., required bandwidth
or additional area. The focus is on the statistics gathered at NIs, or end-to-
end monitoring, as opposed to monitoring at routers, or distribution monitoring.
Our proposed NoCMS of Chapter 3 instantiated for run-time performance anal-
ysis reigns into these issues, showing a generic monitoring solution, supporting
distribution monitoring and quantifying performance monitoring costs.

5.3 NoC Performance
As this chapter deals mainly with run-time performance monitoring it is important
to first understand the main performance measures associated with the NoCs,
where the measurements for obtaining or computing such measures can be done.
This section details these NoC performance measures as well as their associated
measurements.

As mentioned in the previous section, two works [36, 95] have already presented
complementary parts of a performance framework targeted at NoC performance
analysis. The used terminology distinguishes the notions of performance metrics,
measures and measurements. Some of the most common performance metrics for
NoCs, and also for networks in general, are throughput, utilization, latency or
jitter. In general throughput is defined as the amount of units going though a
resource during a defined period of time. Utilization is the percentage showing
the actual usage of a resource from the total possible usage. Latency is the time
taken by a unit to travel through one or more resources. Jitter is simply the
deviation of a measure.

The performance measures are obtained by applying a performance metric to a
performance target (or resources in the previous definitions). These performance
targets can be physical NoC entities, e.g., routers, NIs, the entire NoC, buffers
or ports, or logical NoC entities, e.g. connections, channels or messages. Some
examples of performance measures are connection throughput, link utilization,
router latency, network interface latency, or latency jitter.

Note that some measures can be computed based on other measures; e.g., an
overall NoC utilization is computed based on router utilization which in turn can
be computed based on link utilization. In general, they are composable; e.g., the
end-to-end latency is composed of the NI latencies, router latencies, link latencies.

The measurements are the physical actions required to effectively gather data
from the on-chip network, in order to be able to compute the performance mea-
sures. An example is the process of measuring the time difference between the
time a message is offered to the sending NI and the time the same message is fully
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delivered to the destination NI over a connection, in order to compute connection
latency.

Performance measurements can be performed at different points in a NoC,
and are in this work directly associated with the monitoring. The simplest differ-
entiation between various measurements is whether these measurements are done
at NIs or at routers. Our proposed NoCMS allows to perform the performance
measurements at both the NI or at the routers. Similar to transaction monitoring
of Chapter 4, we further assume in the rest of this work that performance mea-
surements are always performed at routers; in the NI case there is no conceptual
difference.

5.4 NoCMS for Run-time Performance Analysis

5.4.1 General Setup
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Figure 5.1: 2x3 MPEG Codec with NoCMS for run-time performance monitoring

As an example for our run-time performance monitoring work we have used
the Æthereal NoC detailed in Section 2.3. The concepts presented in this chapter,
however, similar to the ones concerning transaction monitoring of Chapter 4, are
more general and can be reused for other NoCs, as they rely on the shared features
of the NoCs as described in Chapter 2.

For the basic access to the flits passing to NoC routers we have used the generic
NoCMS of Chapter 3 instantiated for performance monitoring. Our specialized
performance monitor, PM in Figure 5.1, replaces the generic event generator.
Figure 5.1 shows an example, in the form of a 2x3 MPEG Codec augmented with
a NoCMS for run-time performance monitoring. The same NoC example has been
used in Chapter 4 as an example for transaction monitoring. Note the similarities
between figures 5.1 and 4.5, with the only difference being that the former uses
a performance monitor (PM) and the latter a transaction monitor (TM), in the
place of the generic event generator, showing the ease of instantiating a NoCMS
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targeted at a specific monitoring task.
Similar to the transaction monitoring, the run-time performance monitoring

process works as follows. The sniffer, S in Figure 5.1, obtains the raw flits (bit-
level) from the NoC components and passes this information to the performance
monitor. The performance monitor performs local processing on the sniffed data,
in general simple filtering and counting. Multiple performance monitors are usu-
ally employed in a performance monitoring NoCMS. Individual performance mon-
itors might measure different metrics at different points in time while multiple per-
formance monitors might operate in the same or in different ways at the same point
in time, e.g., counting different units, flits, headers or payloads. Our proposed
performance monitor together with its capabilities is detailed in Section 5.4.2.

The performance monitors forward the results to the MNI. The MNI packetizes
the result as payload and sends them over the network to the Monitoring Service
Access point (MSA), over a previously established monitoring connection, just
like any other data in the NoC. The monitoring connections can be BE or GT or
a combination of them, as presented in Section 3.7.2.

Throughout this chapter we make the assumption that we use the same NoC
for the resulting performance monitoring traffic as well as for the user traffic.
This choice was made, as already mentioned in Chapter 4, because this solution
allows a logical, dynamic partitioning of NoC resources; resources can be used
for monitoring when needed, and freed when not. The alternative architectural
options like a separate interconnect only for performance monitoring or just extra
resources reserved only for the monitoring purpose may be used as well, as later
described in Section 6.3 of this thesis.

5.4.2 Performance Monitor

Monitoring Measures

A very simple NoC wide map of link utilization is a very powerful tool in un-
derstanding the status of the NoC at certain moments in time, or understanding
the QoS distribution. As in NoCs links are shared by multiple connections, link
utilization is also a very good indicator for bottleneck identification. This informa-
tion can be coupled as input to NoC control mechanisms, like the ones described
in Section 5.6. Therefore, we focus our run-time performance monitoring of link
utilization measures.

General NoC information has been presented in Chapter 2. The flit formats,
and the information related to packetization in the particular case of the Æthereal
NoC have been presented in Section 2.3. Summarizing, the IPs connected to
the NoC communicate by means of transactions which in turn are composed of
messages. Messages are packetized in packets and packets into flits. Flits are the
minimum transfer or flow-control unit between hops: routers and NIs.

The means of identifying flits and headers, as well as the run-time header
analysis by a monitor, the transaction monitor, has already been presented in the
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previous chapter. The flit format was presented in Figure 2.8, in the general case
when the flit contains a packet header as the first word.

Monitoring Capabilities

This work builds upon the work of Andre Boon as described in ”The Hardware
Design of Monitoring Probes for the Æthereal NoC”, Internship Report, Eind-
hoven University of Technology, Department of Electrical Engineering, 2006. In
particular the author fully acknowledges the contribution of Andre Boon for the
VHDL implementation of the performance monitors.

We propose a simple yet effective performance monitor able to count the num-
ber of units passing the set of links connected to the router it monitors, over a
predefined period of time. Link utilization is computed in a generic way, per unit,
by accumulating units that cross a link during a period of time, divided with the
maximum number of such units that can potentially cross the link during the
before mentioned period of time. In our view, these units can be

(1) flits,

(2) words, or

(3) payload words

Our proposed performance monitor in fact only counts the number of units
passing the links, and does not effectively compute the utilization in terms of
these units. The responsibility for this is taken by the MSA. From the predefined
period of time, the MSA can infer the maximum number of units, e.g. as one flit
corresponds to one TDMA slot.

link utilization =
number of units

maximum number of units
(5.1)

By aggregating link utilization we can get router utilization, which in turn, by
aggregation can reveal the overall NoC utilization. Nevertheless, the most impor-
tant is the link utilization as this shows the distribution of utilization throughout
the NoC enabling network control entities, e.g. QoS or network managers, to
react.

To achieve this capability, the schematic of the performance monitor’s internal
architecture is depicted in Figure 5.2. The architecture is defined as a set of
N unit counters, with N being the number of monitored router links, together
with an enable/configuration block. In the mentioned figure, four unit counters
are depicted, but N is a design-time constant, that means that we can generate
a performance monitor with any N. All the router links are sniffed by the sniffer
which provides this info to the corresponding unit counter. As opposed to the
transaction monitor where a single link is selected for further processing, the
performance monitor passes all flits to the corresponding unit counters.
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Figure 5.2: Performance Monitor

The information to be counted (the units) can be enabled and configured at
run-time through the enable/configuration block. Two ports connect the perfor-
mance monitor to the MNI, one slave port (SP in Figure 5.2), for programming
the performance monitor, and one master port (MP in Figure 5.2), for sending
the performance monitor data to the MSA.

(A) Counting Flits. When the units to be counted are set to flits then all the flits
passing a link are counted, regardless of the fact whether the flits contain
a header or only payload. Counting the flits gives an overall view of the
NoC traffic in terms of flits. This measure is important as input for network
management, or resource management at network level.

(B) Counting Words. If we count words both the header and the payload words
are counted. While a flit may contain the packet header and useful payload,
particular cases of flits may also contain only the header or only payload.
First, if it exists, the header is counted. A header can be detected by looking
at the second sideband bit of the first word of the flit. Looking at the both
sideband bits of the second word Counting words gives an overall view in
of the NoC traffic in terms of words; opposite to counting flits this measure
reflects the under utilized flits. This measure is important as input for fine
grain network management, or resource management at network level.

(C) Counting Payloads. When counting payloads, first, if it exists, the header
is discarded (not counted). After this, the two sideband bits of the second
word are checked. This reflects the actual payload of the flit and the result
is added by the counter. Counting payloads gives an overall view of the
NoC traffic in terms of the real load, the payloads, which does not account
for the packetization. This measure is more suited as input for application
management, or resource management at application level.
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It makes no particular sense to make a particular performance monitor mode
to count only headers, except perhaps to check the impact of the packetization
on the NoC. This is an issue that has to be investigated at NoC design time, and
has no extra value if it is done at run-time.

Monitor Configuration

Performance monitors are programmed using memory-mapped I/O, by means of
write transactions. This is similar to the way NIs are programmed by means of
write transactions, as explained in Chapter 3, and similar to the way transaction
monitors are programmed, as explained in Chapter 4.

The content of performance monitor configuration data is kept in the config-
uration register. The memory map of the configuration register in our prototype
implementation contains 20 bits: 10 bits for the counting interval timer, 8 bits for
the start timer, and 2 bits for the unit configuration. Each of the unit counters
outputs a 12 bit value.

Unit configuration. The unit configuration is valid for the configured perfor-
mance monitor, for all the monitored links, and not for selected monitored links.
This means that for a single performance monitor a single measure for all the
monitored links can be selected. With two bits for unit configuration, the four
possible settings for the transaction monitors are:

(00) not counting; this is the default setting for all performance monitors, all the
other modes being only possible through configuration. This configuration is
used also to stop the performance monitor. When the performance monitor
receives this option it will immediately stop, regardless the values for the
other configuration fields.

(01) counting flits, the performance monitor will count the flits

(10) counting words, the performance monitor will count the words

(11) counting payloads, the performance monitor will count the payloads

Start timer. For performance monitors, it is particularly important to be
able to start their activity, the monitoring, at the exact same time, to have a
synchronized start. Otherwise this data might be of less or even no value. Here
is where the start timer gets into the picture, as a means of synchronizing the
performance monitors. The eight bits of the start timer specify the time at which
all probes in the system should start counting. If the unit configuration bits are
set to anything different than (00), the performance monitor will start counting
at the time indicated by the start timer. The unit of the start timer, these 8 bits,
is 256 flit clocks.

We use a 16 bit time counter that is incremented each flit clock period, capable
of counting 256 time periods of 256 flit clocks. The use of a 16 bit counter also



98 5.5. ANALYSIS

makes sure this counter does not wrap around too quickly for all the performance
monitors to synchronize. The 8 bits provided in the configuration register are
matched against its most significant 8 bits. The usage of the most significant 8
bits reduces the resolution of the time, but this granularity of 256 flit clock periods
is considered sufficient for the synchronization of all performance monitors. In the
particular Æthereal example, with a flit clock period of 6ns, this means that the
performance monitors can synchronize at a granularity of 256*6ns = 1536ns.

Counting interval timer. The ten bits for the counting interval timer specify
the time for which the performance monitor counts. After each of these periods,
the probe puts the accumulated amount of flits, words or payloads to its output,
in a 12 bit form. This time is given in the amount of flit clock periods; therefore,
in our hardware implementation, at most 1024 flit clock periods can be counted
before an output is generated. A larger counting interval timer means monitoring
larger periods of time, and generates less often the output resulting in less traffic.
A small counting interval timer generates results more often, and increases the
traffic load.

The probe stops counting in the case of re-programming it, by using the (00)
option in the unit configuration bits. The MSA, will give the command to stop the
counting, after the moment it knows the counting must stop. The counting data
received after the stop command is given is ignored. The monitors immediately
stop counting, but not in synchronization like their start. Therefore counting
data, e.g. from the most distant performance monitors may still arrive at MSA.

The value for the counting interval timer is used at the MSA to infer the
maximum number of units, e.g. the maximum number of flits which could have
passed one of the monitored link. Note that this number is the same for all the
monitored links.

5.5 Analysis

5.5.1 Bandwidth requirements

In general the bandwidth required for a performance monitor to operate is given
by:

required bwPM (N, interval counter time) =
N ∗ nr bits

interval counter time ∗ flit period
(5.2)

where N is the number of links desired to be monitored, nr bits is the number
of monitoring counter output bits per link, interval counter time is the moni-
toring period, flit period is the duration of the flit clock. For any given network
nr bits, interval counter time, and flit period are fixed; N is a design time pa-
rameter, and interval counter time can be configured at run-time;
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For the particular Æthereal example with four monitored links, and an
interval counter time of 1024, this becomes:

required bwPM (4, 1024) =
4 ∗ 12

1024 ∗ 6
= 7.8

Mb

s
(5.3)

Compared to the transaction monitoring, we can see that the bandwidth re-
quirements of performance monitoring are small.

5.5.2 Area results
Single Performance Monitor

In order to prove that on chip run-time performance monitoring is feasible in
resource-constrained NoC designs, we have investigated the area of our hardware
performance analysis monitors. For the experimental validation of our NoCMS
for performance analysis, we have built a flit accurate SystemC model, and a cycle
accurate synthesizable VHDL model of the performance analysis monitors. We
have used these models in conjunction with the Æthereal NoC.

We implemented the hardware performance analysis monitors. The area overview
of several performance monitors, corresponding to a number of supported links,
or N, between 2 and 8, realized in a 0.13µm CMOS technology and the other
three parameters fixed to the already mentioned Æthereal NoC values, is pre-
sented in Table 5.1. The performance monitor area presented includes the en-
able/configuration unit allowing to (re)configure the performance monitors at
run-time. In general the area of the designed performance monitor for an arity N
router can be estimated in mm2 in a 0.13µm CMOS technology as:

APM (N) = N ∗ 0.0023 + 0.007 (5.4)

where N is the number of links desired to be monitored.
Note that in this work area is associated with the arity of the router, because

we use the assumption that in order to achieve a full link coverage all routers in
the performance monitoring NoCMS must be probed with a performance mon-
itor. This might not always be needed, depending on the monitor, e.g. when
performance monitors supporting 2 ∗ arity links are placed on the routers in a
vertex cover set of the NoC, which also covers all links of the NoC.

In order to see how good these results are, a comparison with the area num-
bers of the Æthereal router is made, as well as with the transaction monitor of
Chapter 4. The results of this comparison are presented in Table 5.2.

The area results for the performance monitor attached to an arity 6 GT/BE
router is 0.018mm2 in an 0.13µm CMOS technology. The area of the correspond-
ing Æthereal arity 6, GT/BE router, presented in [41], is 0.13mm2 in the same
0.13µm CMOS technology. Compared to this router the performance monitor is
not bigger than 14% of its target router, showing an acceptable area cost. Even
when compared with the smallest arity 6 Æthereal router, the GT only router
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Table 5.1: Performance monitor area results
Nr. of links Area (mm2)

2 0.009
3 0.011
4 0.014
5 0.016
6 0.018
7 0.021
8 0.023

with an area of 0.033mm2 [41] in a 0.13µm CMOS technology, the performance
monitor is roughly about 50% of its size. The area of the routers employed in a
NoC design (and implicitly the area of a single router) does not account for much
of the total NoC area, the area of NIs dwarfing the area of routers even for very
simple NoC instances.

Table 5.2: Performance Monitor area comparison
Modules PM TM R (GT/BE) R (GT)

Area (mm2) 0.018 0.020 0.13 0.033
0.024
0.026

The area of the transaction monitor is roughly constant and does not depend
on the number of links being tracked for monitoring, as a single link is selected
inside the monitor for identifying transactions. The area results of Chapter 4 show
that a transaction monitor offering raw data monitoring capability requires 15%
more area compared to the earlier mentioned arity 6 GT/BE router, or 0.020mm2

in an 0.13µm CMOS technology. Adding connection-based capabilities requires
around 18%, or 0.024mm2. Full fledged on-chip transaction reconstruction is
feasible at the cost of 20% of the router area, or 0.026mm2. The area required
for the performance monitor is even less than the area required for the simplest
transaction monitor, i.e. the one offering only raw data monitoring capability.

5.6 NoCMS-assisted QoS
This section presents the applications of the NoCMS for performance analysis.
The author was involved in this work, his contribution being the monitoring
system and how the run-time monitored data can be interpreted in useful infor-
mation about the network status. The author’s claim does not intend to cover
the QoS mechanisms, or the congestion-control mechanisms in the form of the
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controllers, for which the author fully acknowledges the first authors of [94, 71].
Both techniques are similar, but differ in the layer where the monitoring feedback
is employed and the context or the use case. Parts of [94] and to a lesser extent
of [71] works are presented in this work, as part of this section, only for the pur-
pose of consistency and self containment, with as the main goal to demonstrate
the genericity and versatility of the NoCMS.

5.6.1 Congestion-controlled BE
General Setup

Congestion has negative effects on the NoC run-time performance. [94] proposes
a novel congestion control strategy for NoCs. For this purpose, a new communica-
tion service, called congestion controlled best-effort (CCBE) service is introduced.
This service extends the original Æthereal BE service; this means that three ser-
vices coexist now in the Æthereal NoC. The highest quality offered service is GT,
followed by the CCBE, and the lowest quality service is the regular BE.

Congestion-Controlled Best-Effort Communication for Networks-on-Chip

J.W. van den Brand1, C. Ciordas2, K. Goossens1 and T. Basten2

1 NXP Research, 2 Eindhoven University of Technology
contact: jan.willem.v.d.brand@nxp.com

Abstract. Congestion has negative effects on network per-
formance. In this paper, a novel congestion control strat-
egy is presented for Networks-on-Chip (NoC). For this pur-
pose we introduce a new communication service, congestion-
controlled best-effort (CCBE). The load offered to a CCBE
connection is controlled based on congestion measurements
in the NoC. Link utilization is monitored as a congestion
measure, and transported to a Model Predictive Controller
(MPC). Guaranteed bandwidth and latency connections in
the NoC are used for this, to assure progress of link utilization
data in a congested NoC. We also present a simple but effec-
tive model for link utilization for the model-based predictions.
Experimental results show that the presented strategy is effec-
tive and has reaction speeds of several microseconds which
is considered acceptable for realtime embedded systems.

1. Introduction
Modern multimedia applications require extensive compu-

tation power. Chips with multiple processing units (IPs) can
provide this power. Networks-on-Chip (NoCs) provide these
so-called Multi Processor Systems-on-Chip (MP-SoCs) with
a scalable and flexible interconnect [8]. Examples of NoCs
are Æthereal [10], Mango [4] and Xpipes [3].

NoCs provide communication services to IPs. Commu-
nication services with guarantees on throughput and latency
(GS) enable predictable system design. Guarantees are given
by reserving communication resources in the NoC (e.g. wires
and buffers). Although necessary for hard real-time applica-
tions, this results in poor resource utilization for applications
that require variable-bitrate (VBR) communication. Best-
effort (BE) is a communication service with no guarantees on
latency and bandwidth. It can give high resource utilization
by using unreserved or unused resources. However, BE traffic
is prone to network congestion. Æthereal [10] and Mango [4]
are examples of NoCs that provide both GS and BE services.

Network congestion has a negative effect on network per-
formance [22]. The problem occurs in packet-switched net-
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Figure 1. Shared resource without CCBE.
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Figure 2. Network latency of an Æthereal BE con-
nection as a function of offered load.

works when resources, such as links, get saturated. The re-
sulting performance degradation is experienced by BE net-
work users as an increase of latency and loss of bandwidth.
Figure 1 shows a shared link transporting both constant-
bitrate (CBR) BE traffic and VBR GS traffic with the reserved
bandwidth depicted with a dashed line. BE traffic follows the
variations of the GS traffic. It improves resource utilization
but at certain moments the shared resource is congested.

Figure 2 shows network latency of a BE connection as a
function of offered load measured for a single connection in
a small Æthereal NoC instance. The graph shows that latency
is small and almost constant up to a certain turning point after
which the latency grows steeply. In this example, the latency
saturates at 2600 ns because queuing between IPs and net-
work interfaces is not taken into account.

Networks with BE services should have a strategy to avoid
congestion. However, without global knowledge of the net-
work state, such a strategy can never assert that the network
does not reach a congested state [22]. Therefore, a network
should also have a strategy for resolving congestion. Many
strategies for congestion control have been proposed for off-
chip networks [1, 15, 12, 22]. On-chip networks pose differ-
ent challenges. For instance, off-chip environments force net-
works to allow packet loss and dropping of packets is often
used as a means to control congestion [21]. The reliability
of on-chip wires and more effective link-level flow-control
allows NoCs to be loss-less. This allows use of a simple pro-
tocol stack which results in less traffic for the same amount
of useful data sent. Therefore, NoC congestion control is a
novel problem for the resource constrained on-chip designs.

We propose a strategy for controlling congestion for on-
chip networks. The strategy introduces a new communica-
tion service level, congestion-controlled best-effort (CCBE),
allowing control of offered load based on real-time shared

Figure 5.3: Normal BE traffic combined with GT traffic in the NoC
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Figure 3. Shared resource with CCBE.

resource utilization measurements. CCBE connections trade
bandwidth for constant and reduced latency. Figure 3 shows
a shared resource with CCBE and VBR GS traffic. It is also
possible to combine CCBE with regular BE connections. In
such a configuration, regular BE also benefits from the con-
trol efforts of CCBE and can be seen as a better quality ser-
vice because BE IP loads are not controlled.

We use link utilization as congestion measure. Measure-
ments are performed by hardware probes (as proposed in [6])
and are transported to a controller by GS connections in the
NoC to assure that this communication is not subject to con-
gestion. The path from controller to IP to communicate the
computed loads can be implemented in a similar way.

The controller, a Model Predictive Controller (MPC) [20],
determines the appropriate loads for the CCBE connections.
It uses a simple link model. Our method requires that routing
in the NoC is not dynamic.

The key contributions of this paper are:
i A new service, congestion-controlled best-effort (CCBE),

which bounds latency by controlling NoC load.
ii The use of Model Predictive Control for on-chip conges-

tion control.
iii A simple but effective model for link utilization.
The organization of the paper is as follows: related work

is discussed in Section 2. In Section 3 we introduce the con-
gestion control method, the controller inputs and its outputs.
Then, in Section 4, we quantify the cost of the presented
method. Section 5 experimentally demonstrates the effec-
tiveness of MPC for congestion control by showing reaction
speeds for different small MPC setups and an MPEG case.
Section 6 concludes.

2. Related work
Different solutions for dealing with congestion have been

proposed for off-chip networks. For instance, TCP [1] uses
a sliding window scheme where packets are allowed to enter
the network until packet drop is detected. NoCs are lossless
due to the reliability of the on-chip environment; therefore
this method can not be used.

Predictive control methods have been presented for off-
chip networks because of their ability to deal with uncertain
delays. Model predictive control (MPC) is proposed for con-
gestion control for asynchronous transfer mode (ATM) net-
works in [12]. Buffer filling is modeled in the presented ap-
proach. We propose to model link utilization, because link
contention is the root cause of congestion.

In [19], a prediction-based flow-control strategy for on-
chip networks is proposed where each router predicts fu-
ture buffer fillings to detect future congestion problems. The
buffer filling predictions are based on a router model. The
router buffer filling information is used for toggling the
sources. Our approach allows both toggling and fluent con-
trol of loads offered by IPs.

Dyad [14] deals with congestion by switching from de-
terministic to adaptive routing when the NoC gets congested.
The method can not guarantee that congestion is resolved (i.e.
the alternative paths might also be congested); our method al-
ways resolves congestion if all BE connections are CCBE.

In [2], an OS communication management scheme is pre-
sented that addresses congestion of a BE NoC. The work sep-
arates a data from a control NoC to guarantee that control data
is not affected by congestion. NI statistics are used as conges-
tion measure. Link-based congestion measurements are more
accurate because this is where congestion takes place.

3. NoC congestion control strategy
In this section, we present a novel communication service

for on-chip networks. This service, congestion-controlled
best-effort (CCBE), controls IP loads to resolve network con-
gestion based on real-time congestion measurements.

We use link utilization as congestion measure, model pre-
dictive control (MPC) as controller and IP load as means of
control. The principle of CCBE is shown in Figure 4. The
figure shows the MPC which gets measured link utilization
and desired link utilization as input. Based on these inputs
and model-based predictions the controller decides appropri-
ate offered load values for the CCBE connections. These load
values go to the cores that use the CCBE service. MPC, the
means of control, the congestion measure and the model used
for MPC are discussed in this section.

3.1. Model Predictive Control
Model predictive control (MPC) is a technique that com-

bines model-based predictions with actual system measure-
ments [18, 9]. MPC is an optimal control method. These
type of controllers are designed by optimizing a cost function
and are known for their ability to deal with varying latencies
which is critical for our control problem. MPC distinguishes
itself from other optimal control methods by solving the op-
timization problem at runtime. These optimization problems
are typically solved by quadratic programming (QP) [20]. We
use the MPC from the Matlab MPC toolbox [16] which uses
Dantzig Wolfe’s method [7] for QP. Stability of MPC can be
proved by using a Lyapunov function. See [17] for a detailed
discussion on stability of MPC.

In this paper we use a centralized MPC strategy which
matches the centralized monitoring service of [6] and copes

Controller
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link utilization

CCBE
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Figure 4. Feedback loop for congestion control.

Figure 5.4: CCBE traffic combined with GT traffic in the NoC

The load offered to a CCBE connection is controlled based on multiple router
congestion measurements, in the form of router link utilization, inside the mon-
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itored NoC; this implies that the NoC-connected IP itself has its own means of
controlling its generated traffic; IP load can be controlled by using for instance
voltage scaling, degrading audio or video quality, or by partially or completely
disabling jobs. All NoC routers are instrumented with the performance monitors
previously described in this chapter. Link utilization is chosen to be monitored as
a congestion measure, and transported to a centralized MSA which connects to a
Model Predictive Controller (MPC). GT connections are used for this, to assure
continuous progress of link utilization data in a congested NoC.

The mentioned work also presents a simple but effective model for router
link utilization for the model-based predictions, with experimental results show-
ing that the presented strategy is effective and has reaction speeds of several
microseconds which is considered acceptable for realtime embedded systems.

The general CCBE principle can be observed in the Figures 5.3 and 5.4. The
first figure shows a shared link transporting both constant bit rate regular BE
traffic and a variable bit rate GT traffic with the reserved bandwidth depicted
with a dashed line. It can be immediately observed that the BE traffic gracefully
follows the variations of the GS traffic. The mixture of BE and GT traffic improves
resource utilization but at certain moments in time the shared link is congested.
The second figure shows the mentioned CCBE service which still follows the GT
traffic but will not pass the value set up as the congestion limit.

Prediction Method

CCBE relies on model predictive control (MPC) as the means for controlling the
offered IP loads. The general process works as shown in Figure 5.5. The MPC
inputs are the measured link utilizations coming from the monitors, and the MPC
outputs are the loads allowed by CCBE connections respectively. The desired link
utilization is also initially specified as the target where the link utilization should
be maintained. BE latency measurement for the Æthereal NoC have indicated
80% of link utilization as the congestion limit. In general, the MPC is not bound
to this value. A centralized MPC strategy is employed matching the centralized
monitoring service employed. A set of IPs to be controlled are receiving the MPC
outputs, and increase or decrease their offered load.
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Figure 3. Shared resource with CCBE.

resource utilization measurements. CCBE connections trade
bandwidth for constant and reduced latency. Figure 3 shows
a shared resource with CCBE and VBR GS traffic. It is also
possible to combine CCBE with regular BE connections. In
such a configuration, regular BE also benefits from the con-
trol efforts of CCBE and can be seen as a better quality ser-
vice because BE IP loads are not controlled.

We use link utilization as congestion measure. Measure-
ments are performed by hardware probes (as proposed in [6])
and are transported to a controller by GS connections in the
NoC to assure that this communication is not subject to con-
gestion. The path from controller to IP to communicate the
computed loads can be implemented in a similar way.

The controller, a Model Predictive Controller (MPC) [20],
determines the appropriate loads for the CCBE connections.
It uses a simple link model. Our method requires that routing
in the NoC is not dynamic.

The key contributions of this paper are:
i A new service, congestion-controlled best-effort (CCBE),

which bounds latency by controlling NoC load.
ii The use of Model Predictive Control for on-chip conges-

tion control.
iii A simple but effective model for link utilization.
The organization of the paper is as follows: related work

is discussed in Section 2. In Section 3 we introduce the con-
gestion control method, the controller inputs and its outputs.
Then, in Section 4, we quantify the cost of the presented
method. Section 5 experimentally demonstrates the effec-
tiveness of MPC for congestion control by showing reaction
speeds for different small MPC setups and an MPEG case.
Section 6 concludes.

2. Related work
Different solutions for dealing with congestion have been

proposed for off-chip networks. For instance, TCP [1] uses
a sliding window scheme where packets are allowed to enter
the network until packet drop is detected. NoCs are lossless
due to the reliability of the on-chip environment; therefore
this method can not be used.

Predictive control methods have been presented for off-
chip networks because of their ability to deal with uncertain
delays. Model predictive control (MPC) is proposed for con-
gestion control for asynchronous transfer mode (ATM) net-
works in [12]. Buffer filling is modeled in the presented ap-
proach. We propose to model link utilization, because link
contention is the root cause of congestion.

In [19], a prediction-based flow-control strategy for on-
chip networks is proposed where each router predicts fu-
ture buffer fillings to detect future congestion problems. The
buffer filling predictions are based on a router model. The
router buffer filling information is used for toggling the
sources. Our approach allows both toggling and fluent con-
trol of loads offered by IPs.

Dyad [14] deals with congestion by switching from de-
terministic to adaptive routing when the NoC gets congested.
The method can not guarantee that congestion is resolved (i.e.
the alternative paths might also be congested); our method al-
ways resolves congestion if all BE connections are CCBE.

In [2], an OS communication management scheme is pre-
sented that addresses congestion of a BE NoC. The work sep-
arates a data from a control NoC to guarantee that control data
is not affected by congestion. NI statistics are used as conges-
tion measure. Link-based congestion measurements are more
accurate because this is where congestion takes place.

3. NoC congestion control strategy
In this section, we present a novel communication service

for on-chip networks. This service, congestion-controlled
best-effort (CCBE), controls IP loads to resolve network con-
gestion based on real-time congestion measurements.

We use link utilization as congestion measure, model pre-
dictive control (MPC) as controller and IP load as means of
control. The principle of CCBE is shown in Figure 4. The
figure shows the MPC which gets measured link utilization
and desired link utilization as input. Based on these inputs
and model-based predictions the controller decides appropri-
ate offered load values for the CCBE connections. These load
values go to the cores that use the CCBE service. MPC, the
means of control, the congestion measure and the model used
for MPC are discussed in this section.

3.1. Model Predictive Control
Model predictive control (MPC) is a technique that com-

bines model-based predictions with actual system measure-
ments [18, 9]. MPC is an optimal control method. These
type of controllers are designed by optimizing a cost function
and are known for their ability to deal with varying latencies
which is critical for our control problem. MPC distinguishes
itself from other optimal control methods by solving the op-
timization problem at runtime. These optimization problems
are typically solved by quadratic programming (QP) [20]. We
use the MPC from the Matlab MPC toolbox [16] which uses
Dantzig Wolfe’s method [7] for QP. Stability of MPC can be
proved by using a Lyapunov function. See [17] for a detailed
discussion on stability of MPC.

In this paper we use a centralized MPC strategy which
matches the centralized monitoring service of [6] and copes

Controller

desired link
utilization

set of
cores
using
CCBE

link utilization

CCBE
loads NoC

Figure 4. Feedback loop for congestion control.
Figure 5.5: Complete CCBE control process

Model predictive control (MPC) is a technique that combines model-based
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predictions with actual system measurements, provided by performance monitor-
ing in our case. MPC is an optimal control method. MPC controllers are designed
by optimizing a cost function and are known for their ability to deal with vary-
ing latencies which is critical for our control problem. MPC distinguishes itself
from other optimal control methods by solving the optimization problem at run-
time. These optimization problems are typically solved by quadratic programming
(QP) [77]. The chosen MPC here is the MPC from the Matlab MPC toolbox [58]
which uses Dantzig Wolfes method [26] for QP. MPC allows constraints to be spec-
ified for controller inputs and outputs. Minimum and maximum values can be
specified, as well as rise and fall speeds (i.e. how many MBytes/s an IP can raise
or drop its load per control interval). MPC takes these constraints into account
when making control decisions to ensure that the system will not oscillate.

The two most important parameters that affect performance and cost of the
MPC are the control interval and the prediction horizon. Each control interval δ
the MPC decides on new values for the controlled variables (in our case CCBE
allowed loads). An important parameter in deciding an appropriate value for δ for
NoCs that use time division multiplexing (TDMA) is the size of the slot wheel,
and δ should at least be a multiple of the slot wheel (e.g. five times the slot
wheel). During δ, future states are explored over a prediction horizon p. So, each
δ, an optimization problem has to be solved by means of QP while considering the
effect of decisions over p control steps. In practice, choosing a p value between
1 and 5 gives reasonable performance results. Experiments have shown that a δ
between 200 and 1000ns will maintain the reaction speed below 25µs. Measuring
link utilization over a small sample period of 1000ns only requires 0.3 MBytes/s
which is only 0.015% of the available link bandwidth of 2 GBytes/s. Furthermore,
it has been shown that it is possible to run MPC for a realistic control problem
on a modest FPGA chip [47]. MPC is therefore well suited for controlling the
CCBE traffic.

NoC model

MPC uses a model of the controlled system, in our case the NoC, to iteratively
compute future behavior which must be as simple as possible to minimize the
amount of computation for the online QP algorithm. In our case link utilization
is modeled by taking the sum of the loads of the CCBE connections that share the
link. A communication overhead factor k is included for each connection to model
the difference between IP load and actual load in the network. For instance, for
the Æthereal NoC, BE data is transported through the network as packets. Each
packet has a packet header of one word. If a packet size of 36 words is used, k =
1/36. Unit delays following the communication overhead factor model the forward
propagation delay from CCBE IP to shared link. The delay from a shared link
to the MPC is modeled with a unit delay. By dividing the link load with link
bandwidth (2 GBytes/s for Æthereal) we obtain link utilization. Unit delays are
used rather than an estimate of propagation delays to keep the model as simple
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as possible. Estimates improve controller behavior at the cost of a more complex
model. In the model, u = [u1, u2, ..., um] is the input vector which represents the
loads of the CCBE IPs. y = [y1, y2, ..., yp] is the output vector which represents
utilization of the links. x = [x1, x2, ..., xq] is the state vector where q equals the
number of delays in the model.
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Figure 5. Example of utilization model of two links that are shared by three CCBE connections.

well with current NoCs. The use of distributed MPC [5] is re-
garded as future work and is outside the scope of this paper.

MPCs allow constraints to be specified for controller in-
puts and outputs, which are the measured link utilizations and
the loads offered to CCBE connections respectively (see Sec-
tion 3.2). Minimum and maximum values can be specified,
as well as rise and fall speeds (i.e. how many MBytes/s an
IP can raise or drop its load per control interval). MPC takes
these constraints into account when making control decisions
to ensure that the system will not oscillate.

Control interval and prediction horizon are MPC parame-
ters that affect performance and cost. Each control interval δ
the MPC decides on new values for the controlled variables
(in our case CCBE offered loads). An important parameter in
deciding an appropriate value for δ for NoCs that use time di-
vision multiplexing (TDM) is the size of the slot wheel. Dur-
ing a slot wheel, link utilization is highly dynamic. There-
fore, δ should at least be a multiple of the slot wheel (e.g.
five times the slot wheel). In Section 5, experiments show the
influence of δ on the performance of our approach.

During δ, future states are explored over a prediction hori-
zon p. So, each δ, an optimization problem has to be solved
by means of QP while considering the effect of decisions over
p control steps. These values must be chosen in such a way
that computation, area and power cost are acceptable. In prac-
tice, choosing 1 ≤ p ≤ 5 gives reasonable performance re-
sults.

3.2. Means of control
We distinguish two ways of steering network congestion

namely control of availability of resources (space) and con-
trol of source load (usage). Resource availability can for in-
stance be scaled at runtime by changing the NoC frequency.
This is not trivial due to the change in timing behavior of all
connections reserved on the NoC. At a source, load can be
controlled by using for instance voltage scaling, degrading
audio or video quality, or by partially or completely disabling
jobs. We choose the option of controlling source loads. The
source introduces limits to the amount of control that can be
applied. As we saw in Section 3.1, MPC allows constraints
to be specified and thus fits well to this means of control.

3.3. Congestion measure
The goal of our congestion control strategy is to bound

network latency. Congestion is a resource sharing prob-
lem. Links and buffers are the shared resources in packets

switched networks. We use link utilization rather than buffer
fillings because we think that this is the most direct conges-
tion measure. A link is shared by multiple buffers and lack of
space in router buffers is the result of link contention.

Hardware probes, as proposed in [6], are used to measure
link utilization. Monitor data is transported from the probes
to MPC, by using connections in the NoC. In order to have
a reliable system, congestion must have no effect on these
connections. Therefore GS connections are used to transport
monitor data. This is one of the costs of the proposed conges-
tion control method as further explained in Section 4.

3.4. Network model
MPC uses a model of the controlled system to iteratively

compute future behavior. This model must be as simple as
possible to minimize the amount of computation for the on-
line QP algorithm. We model link utilization by taking the
sum of the loads of the CCBE connections that share the link.

A communication overhead factor k is included for each
connection to model the difference between IP load and ac-
tual load in the network. For instance, for the Æthereal NoC,
BE data is transported through the network as packets. Each
packet has a packet header of one word. If a packet size of 36
words is used, k = 1/36.

Unit delays following the communication overhead fac-
tor model the forward propagation delay from CCBE IP to
shared link. The delay from a shared link to the MPC is mod-
eled with a unit delay. By dividing the link load with link
bandwidth (2 GBytes/s for Æthereal) we obtain link utiliza-
tion. Unit delays are used rather than an estimate of propaga-
tion delays to keep the model as simple as possible. Estimates
improve controller behavior at the cost of a more complex
model.

In the model, ū = [u1, u2, ..., um] is the input vec-
tor which represents the loads of the CCBE IPs. ȳ =
[y1, y2, ..., yp] is the output vector which represents utiliza-
tion of the links. x̄ = [x1, x2, ..., xq] is the state vector where
q equals the number of delays in the model.

In Figure 5(b), two links (y1 and y2) from Figure 5(a) are
modeled. Connections are represented by dotted lines. Link
y1 shares u1 and u2, link y2 shares u1 and u3.

The state space description of the small example of Figure
5(b) is as follows, where n is the discrete time variable, C
is the output matrix, A the state-transition matrix and B the
input matrix (see for instance [18]):

ȳ(n) = Cx̄(n), x̄(n + 1) = Ax̄(n) + Bū(n),

Figure 5.6: NoC Example
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Figure 5. Example of utilization model of two links that are shared by three CCBE connections.

well with current NoCs. The use of distributed MPC [5] is re-
garded as future work and is outside the scope of this paper.

MPCs allow constraints to be specified for controller in-
puts and outputs, which are the measured link utilizations and
the loads offered to CCBE connections respectively (see Sec-
tion 3.2). Minimum and maximum values can be specified,
as well as rise and fall speeds (i.e. how many MBytes/s an
IP can raise or drop its load per control interval). MPC takes
these constraints into account when making control decisions
to ensure that the system will not oscillate.

Control interval and prediction horizon are MPC parame-
ters that affect performance and cost. Each control interval δ
the MPC decides on new values for the controlled variables
(in our case CCBE offered loads). An important parameter in
deciding an appropriate value for δ for NoCs that use time di-
vision multiplexing (TDM) is the size of the slot wheel. Dur-
ing a slot wheel, link utilization is highly dynamic. There-
fore, δ should at least be a multiple of the slot wheel (e.g.
five times the slot wheel). In Section 5, experiments show the
influence of δ on the performance of our approach.

During δ, future states are explored over a prediction hori-
zon p. So, each δ, an optimization problem has to be solved
by means of QP while considering the effect of decisions over
p control steps. These values must be chosen in such a way
that computation, area and power cost are acceptable. In prac-
tice, choosing 1 ≤ p ≤ 5 gives reasonable performance re-
sults.

3.2. Means of control
We distinguish two ways of steering network congestion

namely control of availability of resources (space) and con-
trol of source load (usage). Resource availability can for in-
stance be scaled at runtime by changing the NoC frequency.
This is not trivial due to the change in timing behavior of all
connections reserved on the NoC. At a source, load can be
controlled by using for instance voltage scaling, degrading
audio or video quality, or by partially or completely disabling
jobs. We choose the option of controlling source loads. The
source introduces limits to the amount of control that can be
applied. As we saw in Section 3.1, MPC allows constraints
to be specified and thus fits well to this means of control.

3.3. Congestion measure
The goal of our congestion control strategy is to bound

network latency. Congestion is a resource sharing prob-
lem. Links and buffers are the shared resources in packets

switched networks. We use link utilization rather than buffer
fillings because we think that this is the most direct conges-
tion measure. A link is shared by multiple buffers and lack of
space in router buffers is the result of link contention.

Hardware probes, as proposed in [6], are used to measure
link utilization. Monitor data is transported from the probes
to MPC, by using connections in the NoC. In order to have
a reliable system, congestion must have no effect on these
connections. Therefore GS connections are used to transport
monitor data. This is one of the costs of the proposed conges-
tion control method as further explained in Section 4.

3.4. Network model
MPC uses a model of the controlled system to iteratively

compute future behavior. This model must be as simple as
possible to minimize the amount of computation for the on-
line QP algorithm. We model link utilization by taking the
sum of the loads of the CCBE connections that share the link.

A communication overhead factor k is included for each
connection to model the difference between IP load and ac-
tual load in the network. For instance, for the Æthereal NoC,
BE data is transported through the network as packets. Each
packet has a packet header of one word. If a packet size of 36
words is used, k = 1/36.

Unit delays following the communication overhead fac-
tor model the forward propagation delay from CCBE IP to
shared link. The delay from a shared link to the MPC is mod-
eled with a unit delay. By dividing the link load with link
bandwidth (2 GBytes/s for Æthereal) we obtain link utiliza-
tion. Unit delays are used rather than an estimate of propaga-
tion delays to keep the model as simple as possible. Estimates
improve controller behavior at the cost of a more complex
model.

In the model, ū = [u1, u2, ..., um] is the input vec-
tor which represents the loads of the CCBE IPs. ȳ =
[y1, y2, ..., yp] is the output vector which represents utiliza-
tion of the links. x̄ = [x1, x2, ..., xq] is the state vector where
q equals the number of delays in the model.

In Figure 5(b), two links (y1 and y2) from Figure 5(a) are
modeled. Connections are represented by dotted lines. Link
y1 shares u1 and u2, link y2 shares u1 and u3.

The state space description of the small example of Figure
5(b) is as follows, where n is the discrete time variable, C
is the output matrix, A the state-transition matrix and B the
input matrix (see for instance [18]):

ȳ(n) = Cx̄(n), x̄(n + 1) = Ax̄(n) + Bū(n),

Figure 5.7: Corresponding Flow Graph

An example NoC is shown in Figure 5.6, together with its corresponding model
for the two links (y1 and y2) is presented in Figure 5.7. Connections are repre-
sented by dotted lines. Link y1 shares u1 and u2, link y2 shares u1 and u3. The
state space description of the small example is as follows, where n is the discrete
time variable, C is the output matrix, A the state-transition matrix and B the
input matrix: y(n) = Cx(n), x(n+1) = Ax(n)+Bu(n) The A, B, and C matrixes
corresponding to the example in Figure 5.7 are shown in Figure 5.8.
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A =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 0 1 0 0


 , B =




k 0 0
0 k 0
0 0 k
0 0 0
0 0 0


 ,

C =
[
0 0 0 1/2000 0
0 0 0 0 1/2000

]

The state-space model of link utilization is straight-
forward and its generation can easily be automated from the
NoC topology, CCBE connections and routing.

4. Implementation costs
In this section we quantify some of the costs associated

with NoC congestion control as proposed in this paper.
We implemented the hardware performance analysis

probes. Table 1 shows the area in 0.13 µm CMOS technol-
ogy for different numbers of monitored links per probe. The
area is small compared to an Æthereal router. For instance,
a hardware probe that can monitor all ports for link utiliza-
tion of a six port router has area 0.018 mm2 which is 10 %
compared to the area of a six-port router which is 0.175 mm2

[10].

#links area (mm2)
1 0.006
2 0.009
3 0.011
4 0.014
5 0.016
6 0.018
7 0.021
8 0.023

Table 1. Area of hardware probes.

We measure link utilization by accumulating the number
of flits that pass a link during a period of time which for our
control system is equal to the control interval. The measure-
ment data is sent to the MPC using GS connections in the
NoC. Figure 6 shows the load generated by the performance
analysis probes as a function of the sample period. For small
sample periods, the rate at which monitor data is sent to the
MPC is high but the packets are small. Large sample periods
result in low rates but require larger packets. We represent
the number of flits passing a link during one sample period in
bytes. The discontinuity in the figure indicates an extra byte
needed for representing the maximum number of flits.

The results show a trade-off between control speed and
bandwidth costs. The required bandwidth is small compared
to the raw link bandwidth of 2 GBytes/s per link. In the next
section we show that good reaction speeds can be obtained
for acceptable bandwidth.

In our solution, the MPC controls IP loads. The connec-
tions between MPC and IPs is another cost. The required
bandwidth for this connection is generally low. It is equal
to the number of bits that specify the load divided by the
sample period. Bandwidth in the Æthereal NoC is reserved
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Figure 6. Probe load as a function of sample period.

by reserving a certain amount of slots in a slot wheel. Hav-
ing many low bandwidth connections can result in slot wheel
fragmentation. This may need attention when scaling to large
numbers of CCBE connections.

A final cost is for implementing the MPC. This can be
done in software on an embedded processor such as an ARM
or via dedicated hardware. The work in [13] shows that it
is possible to run MPC for a realistic control problem on a
modest FPGA chip. Quantifying the precise cost for imple-
menting MPC for our control problem is regarded as future
work. In this context, it is important to observe that the time
it takes the MPC to compute new output values is a lower
bound for the control interval.

5. Experimental results
In this section we quantify the performance of our NoC

congestion control strategy by means of three experiments.
First we show the reaction speed of the system by means of
pulse responses. Then we show the ability of the system to
cope with VBR traffic by means of sine sweeps. Finally, we
demonstrate the feasibility of our method by means of a re-
alistic MPEG case study. The NoC and IPs are simulated
with a flit accurate SystemC simulator. The MPC controller
is modeled in Matlab and a C version is obtained by using
the Matlab real-time workshop. The delay of the MPC is not
taken into account. The pulse responses and sine sweeps are
generated on GS connections by means of traffic generators
that are attached to the NoC.

Our BE latency measurements for the Æthereal NoC have
shown that 80 % link utilization results in reasonable laten-
cies before the congestion limit in Figure 2. This value is
therefore chosen as the target link utilization in the presented
experiments. Note that our method works for any target
value.

5.1. Pulse responses
For this experiment we use a small NoC consisting of three

routers and three network interfaces as shown in Figure 7.
The connection from MPC to IP is implemented by a direct
link for this test case.

The configuration has two connections, a GS and a CCBE
connection. The GS connection offers a constant load to the
NoC. The second connection is a CCBE connection which is
used for controlling congestion.

Figure 5.8: Corresponding A,B and C

Example

In this subsection the already known MPEG 2x3 example, employed in Chapters 3
and 4, is used as a test bench for the CCBE service. The example is shown in
Figure 5.9. This MPEG NoC example has a slot table size of 30 slots (180 ns).
The increase in link utilization due to the presence of CCBE is measured together
with the reaction speeds of the various congested links in the system.
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Figure 9. MPEG example.

CCBE2 and CCBE3 share links L7 and L2.
The maximum loads of IP CCBE1 to CCBE3 are chosen

in such a way that the NoC reaches a congested state. They
are: 1000 MBytes/s, 400 MBytes/s and 400 MBytes/s respec-
tively. Attaching these CCBE IPs to the NoC results in an
increase of overall link utilization of 16 %. Utilization of
link L1−3, L6−7, L10 and L11−13 are increased significantly
by these new loads. However, link L6 and L7 are congested
(utilization of L6 equals 100 % and that of L7 equals 95 %).

We have observed that choosing a control interval of five
times the slot wheel size typically results in stable system
behavior (see Section 3.1). If this still results in unstable be-
havior or if smaller control intervals are required, another so-
lution is to constrain rise and fall speeds of CCBE IPs.

We repeat the pulse response experiment by applying the
aforementioned loads as pulses to the NoC. To obtain a sta-
ble system with the slot wheel of 180 ns but with the con-
trol intervals from the previous experiment, we constrain rise
and fall speed of the loads of the CCBE IPs to -10 and 10
MBytes/s per control interval. The measured reaction speeds
for the two congested links are shown in column 3 and 4 of
Table 2 (of Section 5.1). As expected, the reaction speeds for
link L6 are slightly higher than those of the previous experi-
ment (column 2). The reaction speeds for link L7 are better
than those for link L6. Link L7 is shared by two CCBE con-
nections. The load of both CCBE IPs are allowed to rise and
fall at the same speed as the load of CCBE1 that uses link L6.

With the MPEG case we have shown that CCBE is feasible
for an example with realistic traffic and for multiple shared
links and controlled loads in the system.

6. Conclusions
We proposed a congestion control strategy for on-chip net-

works. The proposed strategy introduces Congestion Con-
trolled best-effort (CCBE) as a new service level. CCBE con-
nections trade bandwidth for constant and reduced latency.

Link utilization is used as congestion measure because
link contention is the root cause for congestion. Measure-
ments obtained by hardware analysis probes are sent to a
model predictive controller (MPC) which decides CCBE
loads based on this information and model-based predictions.

MPC is able to cope with the uncertain delays that charac-
terize the NoC congestion control problem. Furthermore, it
allows specifications of constraints for the controlled IPs and
is scalable in terms of number of controlled IPs and moni-
tored links.

The area of the hardware probes is only 10 % compared
to the size of an Æthereal router. Traffic generated by the
probes only consumes a small amount of available NoC ca-
pacity. Measuring link utilization over a small sample period
of 1000 ns only requires 0.3 MBytes/s which is only 0.015 %
of the available link bandwidth of 2 GBytes/s.

Experiments show that reaction speeds can be in the or-
der of several microseconds which is generally considered
acceptable for realtime embedded systems. An MPEG case
study shows that the approach is feasible for realistic systems.
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Figure 5.9: CCBE MPEG Example

Overall link utilization, i.e. the sum of all link utilizations averaged over the
number of links, is equal to 24% for the original configuration. In order to improve
utilization 3 CCBE connections are introduced in the original design, which for
example represent connections of another application using the same platform.
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Table 5.3: Reaction speeds for various control intervals
reaction speed µs

Ctrl. interval (ns) MPEG L6 MPEG L7

200 5 4

400 10 8

600 12 10

800 20 12

1000 25 16

These connections follow the paths as displayed in Figure 5.9 with dashed lines.
Monitors are attached to each router, each monitoring all router links.

The connection for IP CCBE1 traverses three links, none of which is used
by other CCBE connections. CCBE2 and CCBE3 share links L7 and L2. The
maximum loads of IP CCBE1 to CCBE3 are chosen in such a way that the
NoC reaches a congested state. They are: 1000 MBytes/s, 400 MBytes/s and
400 MBytes/s respectively. Attaching these CCBE IPs to the NoC results in an
increase of overall link utilization of 16%. Utilization of link L1-3, L6-7, L10 and
L11-13 are increased significantly by these new loads. However, link L6 and L7
are congested (utilization of L6 equals 100% and that of L7 equals 95%).

We have observed that choosing a control interval of five times the slot wheel
size typically results in stable system behavior. If this still results in unstable be-
havior or if smaller control intervals are required, another solution is to constrain
rise and fall speeds of CCBE IPs.

We perform a pulse response experiment by applying the aforementioned loads
as pulses to the NoC. To obtain a stable system with the slot wheel of 180 ns but
with the control intervals from the previous experiment, we constrain rise and fall
speed of the loads of the CCBE IPs to -10 and 10 MBytes/s per control interval.
The measured reaction speeds for the two congested links are shown in Table 5.3.
The reaction speeds for link L7 are better than those for link L6. Link L7 is
shared by two CCBE connections. The load of both CCBE IPs are allowed to
rise and fall at the same speed as the load of CCBE1 that uses link L6. With the
MPEG case we have shown that CCBE is feasible for an example with realistic
traffic and for multiple shared links and controlled loads in the system.

5.6.2 Run-time application QoS
To improve the run-time resource utilization or improve and maintain Quality
of Service (QoS), run-time monitoring can be employed. Many NoCs practice
reservation policies, where resources are provisioned for worst case executions.
Monitoring helps in observing what resources are used, giving a run-time overview
of resources, in an aggregated form or per traffic class, potentially allowing other
applications to use the NoC slack. For example, QoS relies on estimating resource
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usages of applications on hardware platform. However, due to the dynamic nature
of future applications , e.g. object based MPEG, a great advantage is the coupling
of the estimations of resource usage with the concrete observations of resource
usage, results obtained by monitoring. This may result in increasing the quality
level or a more efficient resource usage. NoC monitoring has the advantage that
is being decoupled from the application, while using other application will still
benefit from the same monitoring system.

A two layer QoS manager is employed in the [71]. It combines a single global
QoS manager with multiple application local Q0S managers. The general setup
of this approach is presented in Figure 5.10. The depicted Global QoS manager
assigns appropriate resources and quality levels to each application. this assumes
that the applications are aware of multiple quality levels. The main part of it
is the resource estimator which calculates for each application the amount of
required resources for processing the set of new data. The targeted application is
a MPEG-4 video decoding, where we decided to lock it to the size of the GOV.
The resource request is evaluated with the available resources and the highest
quality is set by the Global QoS manager. These resources are reserved for the
application until the end of the GOV or any exceptional situation occurs. The
Global QoS is aware of all running applications and estimates resources for them,
controlling their long-term settings for each application.

The Local QoS manager is responsible for monitoring the prediction model and
real resource consumption via monitoring. The LocalQoS controls an individual
application and translates the settings into a scalable setting of the tasks. The
monitoring of execution is done at fine granularity, in our case at the VOP level.
The Local QoS sets the parameters for scalable communication connections and
scalable tasks at run-time, based on the resource availability.

The Local QoS connects to run-time monitors of resources; both CPU mon-
itors and network monitors. to have up to date information about the resource
utilization status. In fact it is a normal extension form previous work using only
computation monitors to include network monitors. An instance of our perfor-
mance NoCMS is employed which features a fully probed NoC, a 2x4 mesh with
8 NIs and 8 cores, with performance monitors. A centralized approach is used for
collection monitoring data to the MSA local to the LocalQoS.

The Local QOS may decide to modifies the functional task execution of its
application to a higher level, if processing at a higher quality level is possible;
this enables a higher quality level for a short time, for a fragment of the GOV.
The Local QoS temporary sets parameters for scalable tasks to a higher quality
level for decoding of the next VOP within the actual GOV. This quality level
is higher than the quality level that was assigned by the Global QoS manager.
Statistical experiments showed that a worst-case approach is not necessary in
80% of the execution time. This effectively means that in general the Global QoS
manager is overestimating the required resources. These reserved resources are
actually used only 20% of the time and during the remaining time can be used by
other applications. If we would have only a reservation-based solution, the system



108 5.7. CONCLUSIONS

Figure 5.10: Two layer QoS Manager

would have to wait until the next suitable time for changing the quality level and
the corresponding reconfiguration (end of GOV). In the new solution, the Local
QoS calculates for each VOP the resource requirements of the succeeding VOP
and compares it with the run-time information from the network monitors and
CPUs monitors. If the centralized MSA reports sufficient available resources for
the communication, the Local QoS allows the computation at higher quality level.

More details about the Global QoS and Local QoS and their operation can be
found in the original work of the authors [71] and in [72]. The instantiation and
inclusion of the performance NoCMS into this setup is the addition made to their
work.

5.7 Conclusions
This chapter has shown the versatility of our proposed NoCMS with an instance
for performance monitoring. This instance is based on a performance monitor able
to count flits, words, or headers. The area of the performance monitor is small
compared with the area of a transaction monitor. The bandwidth requirements
of the performance monitor are also small compared e.g. with the bandwidth
requirements of a transaction monitor employed e.g. in raw mode. The proposed
instance has been successfully employed in the provision of a congestion-controlled
best effort service by [94] and in a application level QoS manager by [71]. Both
approaches have tried to leverage the advantages of monitoring resource utilization
of best-effort systems, but in different ways.



Chapter 6

A Monitoring-Aware NoC Design
Flow

With the debug instance of the generic NoC monitoring service for transaction
monitoring presented in Chapter 4 and the instance for performance monitoring
presented in Chapter 5, it is time now to investigate whether there are implications
for the NoC design flow, specifically the implications driven by monitoring. As one
of the main thesis contributions, this chapter binds the generic NoC monitoring
service in general and the NoCMS instances in particular to the NoC design
flows, completing the overall monitoring picture. In particular it looks into the
means of deploying only the required number of monitors for a given monitoring
task, into interconnecting the spatially distributed monitoring probes and into
the automation of this task.

After exposing a brief motivation in Section 6.1, this chapter continues with the
related work. Section 6.3 presents several scalable alternatives for interconnecting
the NoCMS monitors. These alternatives are independent of any specific NoC. All
options are based on the reuse of NoC components and (parts of) the NoC design
flow. As all are based on a NoC interconnect, they are all scalable solutions. For
each of the proposed solutions, we explain the main concepts and the architectural
details. We evaluate all the proposed solutions with respect to four aspects: (1)
impact on the overall NoC design flow, (2) non-intrusiveness, (3) area cost, and
(4) reuse potential of monitoring resources. All our options are exemplified with
the Æthereal NoC and design flow.

In the second part of this chapter we propose a concrete monitoring-aware
NoC design flow for one of the alternatives, namely the one in which the NoC
resources are all shared between the application and the monitoring service. The
proposed flow is able to take into account the monitoring requirements at all steps
in the NoC design flow. This is done in a generic way, for any NoC, for any kind
of monitoring. As an example, we illustrate the proposed monitoring-aware NoC
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design flow with a debug driven monitoring case study as presented in Chapter 4
in the now familiar context of Philips’ Æthereal NoC, with the corresponding
ASIC NoC design flow UMARS.

Simple, area-efficient transaction monitors as detailed and evaluated in Chap-
ter 4, attached to selectively chosen NoC routers, are used to enable debugging
of the NoC-based SoC at transaction level. This is one of the most difficult cases,
where the monitoring requirements are only known after the path selection step
in the NoC design flow. In the context of application specific designs using an
application-aware monitor placement method as sketched in Section 6.4, the pro-
posed monitoring-aware NoC design flow of Section 6.5 is able to automatically
insert transaction monitors, by determining the number and placement of these
transaction monitors and accounting for their communication requirements. The
smallest NoC which satisfies the application requirements, as well as the moni-
toring requirements is generated as a result.

The area implications are quantified and compared to original NoCs without
monitoring, and with the area target and initial estimations of Chapter 3. In order
to alleviate the NoCMS area-cost woes, the efficiency of the proposed monitoring-
aware NoC design flow is shown on several realistic and synthetic examples in
Section 6.6. Section 6.7 concludes this chapter with a rehearsal of its main ideas.

The work presented in the first part of this chapter regarding the intercon-
nection of spatially distributed monitoring probes has been published as ”NoC
Monitoring: Impact on the Design Flow”; Calin Ciordas, Kees Goossens, An-
drei Radulescu, Twan Basten; In Proceedings of the International Symposium on
Circuits and Systems (ISCAS), May 2006. [22]

The remaining of the work in this chapter targeting the seamless integration
of monitoring related activities in the NoC design flow has been published as
”A Monitoring-Aware Network on Chip Design Flow”; Calin Ciordas, Andreas
Hansson, Kees Goossens,Twan Basten; In Proceedings of the 9th EUROMICRO
Conference on Digital System Design, Architectures, Methods and Tools (DSD),
August 2006. [23]

An extended version of the latter has been published as ”A Monitoring-Aware
Network on Chip Design Flow”; Calin Ciordas, Andreas Hansson, Kees Goossens,
Twan Basten; in Elsevier’s Journal of Systems Architecture. [24]

6.1 Motivation
With the need for multiple monitors introduced in Chapter 3, the problem of their
interconnection has become clear. The significant challenges of interconnecting
the multiple, spatially distributed monitors have also been presented in the same
chapter. This has been shown together with the preference for a NoC as a natural
fit for monitoring interconnect. In all the previous chapters, it has been tacitly
assumed that the same NoC is used for both application data and monitoring data,
as the focus was on the general aspects of the NoC monitoring service of Chapter 3
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or on the more specialized instances of it: the performance analysis of Chapter 5
and the transaction monitoring of Chapter 4. This is however not necessarily the
case; multiple possibilities exist. In the related work of Section 1.6, monitors and
the traffic they generate were added into the SoC by using a separate monitoring
NoC. A separate NoC for monitoring traffic may not always be desirable for the
associated high area costs, and a more efficient solution is to use the same NoC
for both monitor data and user data, as already suggested in Chapters 4 and 5.
We argue that the options like sharing or not sharing a single (NoC) interconnect
for functional and monitoring traffic are key to monitoring system design. These
options have to be evaluated to determine which one results in area efficient
solutions, and this is where this chapter lays its emphasis in the first sections.

Networks on chip require design flows to aid in design-time decisions, as de-
tailed and exemplified in Chapter 2. The need for NoC monitoring must be
accounted for in the design phase, regardless the choice for the mentioned options
for the monitoring interconnect; the design of the single shared NoC or of the
separated NoCs must be done with the NoC design flow. This is done in any of
the debugging or performance monitoring contexts. In this case, the monitoring
problem must be solved within or at least coupled with the NoC design process
having an impact on the NoC design flow. When monitoring traffic uses an in-
terconnect of its own, it can be dimensioned after the user data NoC is designed.
This merely adds an extra step in the design flow. However, when monitor and
user data must share the same NoC, the overall design flow must be revised.

As the NoC design flow revision comes into sight, we have to look at the num-
ber and placement of monitors and their associated monitoring communication
requirements. While the mentioned NoC design flows require as input the commu-
nication requirements, some monitoring probe communication requirements are
not known beforehand, but only after the NoC to be probed has been designed,
or at least some steps in the NoC design flow have been performed. For exam-
ple, some requirements may be known only after topology generation, such as the
number of routers employed in the NoC, which is relevant if all routers or a cover-
age of routers need to be probed e.g. with router monitors showing link utilization
or with transaction monitors. In this case, the number of routers determines the
number of probes and their placement, while their communication requirements
are fixed, depending only on the number of links being traced. Other monitoring
communication requirements may be known after the path selection step in the
design flow, e.g. router monitors able to trace a connection, e.g. the functional
traffic for debug reasons (or for connection utilization). In this case, assuming a
desired full coverage of the connections, the number of probes and their placement
is given by the routers in a cover of all the connections. Their communication
requirements depend on the number of connections passing the probed router and
their sizes in terms of bandwidth.

We observe the existence of two interdependent problems: the one of func-
tional dimensioning of the NoC and mapping of cores while accounting for their
communication requirements (as already solved by the NoC design flow), and the
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other of monitor placement and monitoring bandwidth specification (which has
to be solved in the frame of monitoring). If these two problems are solved sequen-
tially, the monitoring communication requirements can be pre-computed. Note
that all the previous chapters tacitly assumes that the monitoring traffic fits on
top of the user traffic on the existing shared NoC. In the case of a shared NoC
there is also a reasonable chance that the newly created monitoring traffic may
not fit directly on top of the existing user traffic on the generated application
NoC. In this case, a new NoC must be generated, e.g., by increasing the topology
and repeating the process. By increasing the topology, the number of NoC routers
may increase. In turn, the mapping, path selection and allocation of resources
may change and the number of required monitoring probes may increase as well
and their communication requirements may change. Thus, the monitoring prob-
lem must be solved within or at least tightly coupled with the NoC design process.
The task of placing the specific monitors has to be automated and integrated in
the NoC design flow.

6.2 Related Work
As already mentioned throughout this work the problem of how many NoCMS
monitors are needed, their automatic placement in the NoC-based SoC by means
of a monitoring-aware NoC design flow and the associated area cost implications
have not been previously investigated. In this chapter we evaluate a monitoring
aware design flow that fully integrates the design of the NoC and its monitoring
service, solving all the above mentioned issues, in the context of the ASIC NoC
design case.

In a few rare combinations of NoCs and monitoring [69, 63, 1], the use of
NoC monitors is proposed. These monitors are employed in real ICs or in FPGA
prototypes mainly with the purpose of performance improvement at run-time or
at design time. For the run-time, this is done via an operating system controlling
the NoC, or a dynamic routing scheme for reducing jitter in the latency of BE
traffic. For the design time, it is simply another iteration in the design process.

All this previous work ignores the effects of monitoring on the NoC design
flow, the automation aspects of monitoring, e.g. whether monitoring support can
be added in an automatic way or not, or what is the required number of monitors
to be employed. For example, in the ASIC NoC case and in the context of
transaction monitoring, the final target is the automatic insertion of the (minimum
number of required) transaction monitors in an automated way based on the
known application requirements, with all the effects and costs of this compared
to the original NoC. Furthermore, the existing work on the NoC design flow, as
presented in Section 2.1, simply ignores all the impact of monitoring on the NoC
design flows.

All previous works assumes that, the placement of the monitors is known
and the monitoring generated traffic or communication requirements are known
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in advance. They also assume that the monitoring/debugging this traffic fits
directly on top of the dedicated interconnect for this purpose, dedicated wires, test
infrastructure or even a NoC. For NoC monitoring, in general, these assumptions
are not valid. Furthermore, one shared NoC may be a more area efficient solution.

In this chapter we propose a monitoring aware design flow that fully integrates
the design of the NoC and its monitoring service, solving all the above mentioned
issues.

6.3 Monitoring Interconnect Options
In this section, we consider and explore several monitoring options for the inter-
connection of spatially (NoC-wide) distant monitors which are to be employed for
monitoring purposes. For this, we took into account two criteria:

(first) separate or common physical interconnect (NoC) for the user application
and for the NoCMS

(second) shared or not shared resources (e.g. router links) for the user application
and for the NoCMS

This separation has resulted in three considered options:

(A) Separate Physical Interconnect for the original NoC application and the
NoCMS

(B) Common Physical Interconnect but Separate Physical NoC Resources

(C) Common Physical Interconnect and Shared Physical NoC Resources

Note that we cannot have separate NoCs for the user application and for the
NoCMS with shared resources.

All these three interconnection options are generic. They are also supported
in our reference Æthereal NoC design flow. As a reference example we have cho-
sen an MPEG codec with a 2x3 mesh NoC interconnect as originally presented
in [40]. The cost of the original NoC interconnect is 2.35mm2. In the following
subsections, for each option, we explain the concepts, the impact on the NoC de-
sign flow, the non-intrusiveness aspect, the reuse potential of monitoring resources
for application traffic, and the interconnect area cost. Figure 6.1(a) serves as il-
lustration to differentiate the different options. Each of the options is compared
to:

(1) the original NoC, called user NoC in the remainder, as shown in Fig-
ure 6.1(a) and

(2) the typical NoC design flow, split in four steps as shown in Figure 6.2(a)
and presented in Chapter 2: topology selection, mapping, path selection
and slot allocation.
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Note that the area numbers which are further presented in this section only
account for the interconnect and not for the associated monitors because the area
of the probes is the same in all cases. Also, in all forthcoming examples we have
used GT connections for monitoring purposes.

6.3.1 Separate Physical Interconnect

In this case, a separate physical interconnect is chosen for monitoring. Although
any interconnect may be used, we have chosen to use a NoC, the monitoring NoC,
because it is scalable. Figure 6.1(b) shows the resulting system. The monitoring
NoC is used for transporting the monitoring data from probes to the MSA and
for monitoring configuration traffic from MSA to the probes. The monitoring
NoC can be similar in topology with the user NoC interconnect. For simplicity,
we only show a fully probed NoC in Figure 6.1(b), with probes attached to all
routers. A more advanced, selective NoC probe placement at routers is possible,
e.g. ensuring a coverage of all physical NoC links. In the remainder, only a fully
probed NoC is assumed as well. For each of the probed routers, we add a new
router and an NI. The NI is used by the probe to connect to the monitoring
NoC. Please note that probes can be attached also to NIs or IPs in the system, in
which case these will connect to the monitoring router corresponding to the user
router these NIs or IPs connect to in the user NoC. Each of the probes and the
MSA connect to the monitoring NoC through a separate NI. Optionally, taking
into account the monitoring requirements driven e.g. by debugging, some of the
monitoring NoC links (in between routers) may be removed, as long as each probe
can still connect to the MSA.

Design Flow Impact: During the NoC design process, the NoC design flow is
applied twice: (1) for the user NoC, taking into account the user communication
requirements as shown in Figure 6.2(a), (2) for the monitoring NoC, taking into
account the monitoring communication requirements as shown in Figure 6.2(b).
Dimensioning of the monitoring communication requirements and of the number
of monitoring IPs (e.g. router probes) required, which are dependent on the user
NoC topology, mapping, and path selection, is simple as all these aspects for the
user NoC are not influenced in any way by the monitoring system and are already
done beforehand. While applying the NoC design flow for the monitoring NoC,
topology is already given by the original NoC, and mapping is given by the probe
placement in the original NoC, as previously explained. Therefore only the path
selection and slot allocation have to be done for the monitoring NoC.

Non-intrusiveness: This solution is non-intrusive because only the monitor-
ing NoC is used for transporting the monitoring data. No interference between
monitoring NoC and user NoC is possible, because they are physically disjoint.

Area cost: A total NoC area cost of 3.82mm2 (2.35mm2 original + 1.47mm2

extra) was determined based on the addition of 7 NIs for the 6 probes and one
MSA, and of 6 routers.
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Reuse: No reuse potential due to complete separation of monitoring and user
NoCs.

6.3.2 Common Physical Interconnect but Separate NoC Resource

An alternative monitoring option is to have within the user NoC a separate mon-
itoring subnetwork. No new routers are added, but following the NoC topology,
separate links and their corresponding router ports are added to the existing NoC.
Each probe and the MSA gets its own NI to connect to the NoC. This is visually
depicted in Figure 6.1(c).

Design Flow Impact: During the NoC design process the NoC design flow is
applied twice: Considering the user requirements, the user NoC is obtained, by
going through the NoC design flow. In this way, the topology, mapping, path
selection and slot allocation are computed for the user NoC as shown in the
reference design flow of Figure 6.2(a). At the second run of the design flow,
as shown in Figure 6.2(c), the monitoring communication requirements and the
required monitoring IPs, e.g. one probe for every router in the original NoC,
are derived. This is done based on the user NoC topology. The user NoC is
then extended with the monitoring resources, router links. In the path selection
and slot allocation steps, the newly added router links are only scheduled for the
monitoring traffic. Optionally, taking into account the monitoring requirements,
driven e.g. by debugging, some of the monitoring router ports and links may be
removed from the monitoring subnetwork, as long as each probe can still connect
to the MSA. Dimensioning of the monitoring communication requirements which
are dependent on the user NoC topology, mapping, or path selection is simple as
the user NoC path selection and scheduling is not influenced in any way and done
beforehand.

Non-intrusiveness: This solution is non-intrusive as only the monitoring sub-
network consisting of dedicated links is used for transporting the monitoring data.
Although the routers are shared, the set of user links and the set of monitoring
links are disjoint. No interference between the monitoring subnetwork and the
user subnetwork is therefore possible. Existing user NoC scheduling in the original
NoC (Figure 6.1(a)) is kept also in the new NoC (Figure 6.1(c)).

Area cost: This solution has a high NoC area cost: 3.88mm2 (2.35mm2 original
NoC + 1.53mm2 extra). This was due to increasing the arity of all six routers,
e.g., from 3 to 6, and the addition of 7 separate NIs, from which 6 for the probes
and one for the MSA.

Reuse: One advantage is that after the completion of the monitoring task, e.g.
after debugging, some monitoring communication resources (the set of monitoring
links) can be used partially or totally for functional user traffic.

Disadvantage: One potential disadvantage of this solution is that the routers
are limited to a maximum number of ports.
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6.3.3 Common Physical Interconnect and Shared Physical NoC Resources
A third possibility is to use the existing user NoC for the user traffic and also for
the monitoring traffic. Both would share all the NoC resources but we keep the
NoC user traffic and the monitoring traffic separated. In this way, a virtual NoC
for monitoring is created.

Design Flow Impact: Considering the user requirements, the user NoC is
obtained, by going through the reference NoC design flow from Figure 6.2(a).
In this way, the topology and mapping are computed. After this, the monitoring
communication requirements and monitoring IPs are computed and probes are
added to the design. Figure 6.1(d) shows that probes are connected to the existing
NoC by means of an extra port on the existing user NIs, as opposed to separate
NIs for monitoring in the previous two cases. All the links, NI and router links,
are considered shared between the user and the monitoring traffic. The mapping
of the probes to existing NIs is based on the closest available NI. Path selection
and slot allocation is computed together for all the communication requirements:
user and monitoring. There are two possible cases:

(1) Everything fits on the existing user NoC. This means that the user NoC
can accommodate the monitoring communication requirements on top of
the existing user communication requirements. Topology of the NoC will
therefore not change. This is exactly the situation shown in Figure 6.1(d). In
this case, we have the lowest area cost, as no new NoC components, routers
and NIs for monitoring, are added, except the new NI ports to connect the
probes to the NoC.

(2) It does not fit on the existing user NoC. In this case, a new NoC must be
generated, e.g., by increasing the topology and repeating the process. By
increasing the topology, the number of user NoC routers increases and in
turn the number of required monitoring probes may increase as well (e.g.
if probing all routers is required). This leads to the recomputation of the
monitoring communication requirements and monitoring IPs as shown in
Figure 6.2(d). However, this process may not converge, i.e., a solution may
not be found.

Non-intrusiveness: By sharing NoC resources, non-intrusiveness is potentially
not guaranteed and must be enforced. The monitoring traffic can in this case
interfere with the user traffic. For our Æthereal examples, this was not needed
because we use GT for both functional and monitoring traffic and they cannot
interfere. However, in general, extra steps may be required in order to enforce
the non-intrusiveness.

Area cost: The total NoC area cost for our example is 2.75mm2 (2.35mm2

original + 0.4mm2 extra). This was based on the addition of seven network
interface ports, six for connecting the probes and one for the MSA. The added
monitoring traffic fits in the original network.
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Table 6.1: Comparison

A B C

Design Flow ++ + -

Non-intrusiveness + + +/-

Area Cost - - +

Reuse after debugging - + +

Reuse: After completion of the monitoring task, the monitoring communica-
tion resources can be used for functional user traffic, e.g. by BE traffic.

6.3.4 Comparison
A brief overview, summarizing the advantages and disadvantages, of each of the
proposed solutions is shown in Table 6.1. A, B and C are the solutions proposed
in Sections 6.3.1, 6.3.2 and 6.3.3 respectively.

The table shows that having separate NoCs or NoC resources just for mon-
itoring, as A and B, is both non-intrusive and basically straightforward in the
NoC design flow; however it shows a high area cost in both cases.

Having shared resources for user traffic as well as for monitoring traffic is a
good idea area-wise but may have strong implications on both the NoC design flow
and the non-intrusiveness. However, both of these can be alleviated, as previously
explained. Furthermore, it enables reuse of the shared resources by the functional
traffic after the monitoring task is done.

Based on this evaluation, we work out option C in more detail, in the following
sections, although the discussion on application-aware placement of monitors in
the next section, is valid for the other options as well with only little change. It
is the most challenging option from the design-flow point of view.

6.4 Application Aware Placement
Monitoring at routers versus NI versus IP

Three options are possible for attaching monitors in NoCs: to routers, to NIs and
to IPs. In Chapter 3 we have presented our choice to attach monitors to routers
and not to NIs or IPs. We now elaborate on the choice we have made in this
work. This is related with the possible IP-NI-R relations depicted in Chapter 2,
which are common in current NoC designs.

Figure 6.3 presents three 2x2 mesh NoC examples which covers the three IP-
NI-R relations depicted in Chapter 2: (1) one IP per NI combined with one NI per
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router, (2) one IP per NI combined with more NIs per router, and the most general
case (3) multiple IPs per NI combined with more NIs per router. For the sake of
comparison we assume that all IPs can be instrumented with ETM-like monitors.
Figure 6.4 show the original NoCs instrumented with monitors at IP level, one per
IP. Figure 6.5 depicts the same three NoCs, now with monitors attached to NIs,
one monitor per NI. The same NoCs of Figure 6.3 are now depicted with router
monitors in Figure 6.6. Table 6.2 shows the comparison regarding the required
number of monitors for the three NoCs at IP, NI and router level.

• (probing at IPs) The IP monitors, e.g. like ETM [5], can be attached to
the IPs in the design. We have to point out that there are no generic
IP monitors, e.g. ARM uses ETM monitors, and even these ETMs are
specific (in architecture, hence in cost) to the ARM processor used; e.g.
the ETM7 is used for ARM7 family of processors, while the ETM10 is
used for the ARM10 family of processors. Also, some IPs do not posses
any IP monitor as this was never provided or made by the IP provider;
therefore, these IPs cannot be traced. The IP monitors operate directly at
the IP transaction level; their main activity is to track these transactions,
although some IP monitors offer more advanced options e.g. watchpointing.
Transaction decoding is not required here, as these transactions are directly
visible at the IP level (e.g. no packetization did previously occur). Relative
to our proposed NoC monitoring interconnect, the monitoring NoC, they
can be attached like any other IP. IP monitors can also be attached to NIs,
on the IP side, one for each IP involved, but this case is considered here as
probing at IPs. It can be seen from the three IP-NI-R options that probing
at IP level becomes more expensive (in number of monitors) as more IPs
get clustered per NI and more NIs get clustered per router. However, when
using one IP per NI and one NI per router, it makes no difference whether
the probing is done at IPs or at other levels, NIs or routers.
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Table 6.2: Number of NoC Monitors
Designs NoC1 NoC2 NoC3

IPs 4 10 21

NIs 4 10 10

routers 4 4 4

monitors at IPs 4 10 21

monitors at NIs 4 10 10

monitors at routers 4 4 4

• (probing at NIs) NI is the place where the packetization of the IP data takes
place. Therefore, monitoring can be done at two levels here: at IP level,
on the IP side of the NI, or on the router side of the NI. For the latter,
the transaction monitors described in Chapter 4 can be used. The latter is
also the NI monitoring case considered in this work, in Figure 6.5. The NI
also takes care of handling of multiple IPs with multiple connections; this
means that NI is a point where traffic from multiple IPs converges, making
it a better point of observation than a single IP. It can be seen from the
three IP-NI-R options that instrumenting NIs with monitors is in most cases
better than instrumenting IPs with monitors, as IPs get clustered per NI,
while it is still worse than instrumenting at routers when multiple NIs get
clustered per router.

• (probing at routers) the transaction monitors described can be attached to
routers. Routers are NoC components where traffic from many NIs con-
verges, which make them more suitable from monitoring than the NIs. The
IP level transactions are not directly visible at this level. They should be
able to do at least transaction decoding from the router link data stream,
which involve the process of intercepting the data stream, the isolating the
proper connection and then depacketize its data and rebuild the messages
which compose the transactions, as depicted in Chapter 4. This process will
bring the capabilities of the router monitor to the IP monitor level. It can
be seen from the three IP-NI-R that probing at routers is always the most
effective in number of monitors, and tends to be much better when both IPs
and NIs get clustered per NI and router respectively.

While this comparison is only quantitative in the number of monitors and not
in overall area or monitor hardware design complexity, as previously pointed out,
it is important to note that the number of monitors is relevant in many aspects.
Each of the employed monitors has to be configured, and reconfigured at run-time;
less monitors means less data for configuration and higher overall configuration
latency for the monitoring system as each of the monitors has to be configured
in isolation. Each of the connections employed has to be handled by the NoC
design flow, and the fewer monitoring connections would make it easier. Also, the
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integration aspects for fewer monitors must be noted. The number of monitors is
also a main factor relative to the overall area.

To conclude, the placement of monitors at routers would reduce the overall
number of needed monitors at the cost of a higher monitor complexity, by placing
the monitors at routers, the points in the NoC where traffic from multiple IPs via
multiple NIs converges.

Placing Transaction Monitors

To work out in detail the previously selected option of sharing a single NoC for
monitoring as well as for the application traffic we use the NoC monitoring service
of Chapter 3. This was instantiated for debugging with transaction monitors,
using centralized monitoring with a single MSA, and only considering transaction
monitors attached to routers.

The transaction monitoring problem has been presented in Chapter 4, with
the focus on the capabilities of single transaction monitors. The chapter showed
how single transaction monitors can ultimately track transactions over any single
channel passing any of the router’s links, with the tracked channel being (re-
)programmed at run-time.

The problem of how many transaction monitors are needed relates to the de-
sired coverage of the user communication flows. In general a full channel coverage
is desired; this means that we want to be able to monitor all the possible transac-
tions in the system. However, it is prohibitively expensive to duplicate all traffic
in the NoC; therefore the coverage may be full but has to be selective at cer-
tain moments in time. This means that the transaction monitors must cover all
channels, but not at the same time. At run-time, any (potentially more) of the
desired channels can be selected to be monitored. The concurrent observation of
multiple channels or the number of simultaneously active transaction monitors in
the system is only bounded by the number of transaction monitors deployed, as
each transaction monitor can only track a single channel.

As a requirement, at least one transaction monitor is required on the path
of each channel, regardless whether it is a request or response channel. This
means that any of the existing channels can be probed, achieving a full channel
coverage. At run-time, the monitored channels per probe may change by means of
programming the transaction monitors. This selectivity is acceptable as usually
not all streams are required to be monitored at once.

Since we are considering ASIC-like design, the application is known at design
time. For the NoC-based SoC, it means that also the set of connections (all
request and response channels) is known at design time. The bandwidth and
latency constraints of the channels are determined beforehand by means of static
analysis or simulation. This implies the placement of transaction monitors in
order to offer a full channel coverage of the system, the placement of the MSA,
and the dimensioning of the communication requirements of these monitors, as
this data should go to the MSA via the NoC.
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In ASIC design, a full coverage of routers with monitors may potentially be
avoided while maintaining a full coverage of the user communication flows. See for
example the four monitors in Figure 6.8(a) covering each one of the four channels,
versus the two monitors in Figure 6.8(b) covering each the two channels passing
through. Both offer a full coverage of the flows while only the former offers also
a full router coverage. This leads to a reduction of the total monitoring solution
area cost. Note that in all the previous chapters a full router coverage has been
assumed. Note also that assuming a full coverage of NoC routers with transaction
monitors (1) implies a full coverage of the user communication flows, and (2) the
communication requirements of these monitors are also not known before the path
selection step in the NoC design flow, as we do not know earlier what channels
will pass over each of the monitored routers. Therefore, the problem of modifying
the design flow to support monitoring constraints cannot be avoided. In order to
illustrate the required design flow modifications in the following section, we use
the UMARS NoC design flow.
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An application aware placement of monitors has a positive impact on the
overall monitoring costs. In this particular case, the problem of the cost implica-
tions of the monitoring relates to the area of the resulting NoC which supports
both the application and monitoring communication requirements, the area of the
monitors, and also to the number of transaction monitors involved. The resulting
NoC, potentially larger than the original NoC, accounts for the extra NIs, NI
ports or enlarged topology to support monitoring in addition to the application
communication.

6.5 NoC Design Flow Revisited

An important property of UMARS, as presented in Chapter 2, that we exploit
in this work is the fact that channels are naturally allocated ordered on their
bandwidth requirements. This ordering assures us that no channel succeeding
the one currently being allocated has higher bandwidth requirements.

The proposed monitoring-aware NoC design flow is depicted in Figure 6.9.
The coupling of mapping, path selection and time-slot allocation from the original
UMARS is extended with the mapping of transaction monitors to routers such
that a full coverage of user channels is achieved. Here, we do not discuss the
mapping, path selection and slot allocation; for these please refer to [46]

As a preprocessing step to the modified UMARS, transaction monitors are
virtually added to all routers (as this would be the maximum set of transaction
monitors that we consider). These virtual monitors are added to the set of IPs
present in the system. They are connected to the closest local NI, attached to the
router they monitor.

Due to centralized monitoring used, a single MSA is further added to the set of
IPs and it gets its own NI. A single GT connection is assumed from any monitor to
the MSA although yet of unknown required bandwidth. We consider monitoring
connections as latency insensitive, so no latency constraints are added to them.
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Figure 6.9: Monitoring-aware design flow
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Monitor Placement. The loop of Algorithm 2.3.1 is extended with a fourth
step, after a channel is allocated. This step is described in Algorithm 6.5.1.
First, we check whether we need to insert additional monitoring. If the channel
passes through a router that is monitored, we know, as channels are traversed
in decreasing bandwidth order, that the monitor is able to monitor also this
channel. Hence, nothing changes in this case. However, if none of the routers
that the channel passes through are yet monitored, we select one router on the
path in Step 1a of Algorithm 6.5.1. We select a router with the highest arity on
the channel path, because it maximizes the number of potential observed channels
for this monitor. Once we select the router to be probed we are sure that the
router will stay in the final set of transaction monitors. Therefore, the virtually
probed router is added to the set of probed router.

In Step 1b of Algorithm 6.5.1 we then add a channel from the now monitored
router (and its associated NI) to the MSA. This channel is added to the set of
unallocated flows.

Dimensioning. The requirements in terms of bandwidth is derived as a func-
tion of the channel that mandated the insertion of the probe. Note that the
way in which the communication requirements are dimensioned does not impact
the overall proposed design flow. For the transaction monitoring example, we
set the traffic numbers for the monitoring channels equal to the bandwidth re-
quired by the monitored channel. The next channel to be monitored by the same
monitor, whose monitoring channel has been allocated, is guaranteed to require
a lower bandwidth. As one monitor can only monitor one channel at a time,
the previously allocated monitoring channel would be reused. The same holds
if the monitoring channels would require, e.g., 10% of the monitored connection
bandwidth, due to a higher abstraction power of the monitors.

Algorithm 6.5.1 Step four

1. If the path does not pass a monitored router

(a) Select a router on the path

(b) Add a channel from this router to the MSA

The newly added channel is a monitoring channel. The only difference be-
tween a genuine user channel and a monitoring channel is that we only want to
monitor the user channels. Besides allocating the user and monitoring channels
we also take care not to monitor the monitoring channels. Therefore, Step 1b of
Algorithm 6.5.1 is only executed for user channels.

Results. If UMARS completes the allocation with success, we have as results
the mapping, routing, slot allocation, monitor placement and monitoring dimen-
sioning. After UMARS completes the allocation for all flows, all the routers in the
set of probed routers have monitors attached. All the rest of the virtual monitors
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are removed, as well as all the unallocated monitoring flows.
Iterations. If an allocation was not found by varying the slot table size till some

predefined upper limit, the topology can be increased and the process repeated.

6.6 Experiments

6.6.1 Application Examples

Real Examples

We have used two real applications. (mpeg) an mpeg2 encoder/decoder using
the main profile (4:2:0 chroma sampling) at main level (720x480 resolution with
15Mb/s) supporting interlaced video up to 30 frames per second. This application
consists of 15 processing cores and an external SDRAM, and has 42 channels (with
an aggregated bandwidth of 3GB/s), all configured to use guaranteed throughput,
as presented in [40].

(audio) this application performs sample rate conversion, MP3, audio-postprocessing
and radio. It closely resembles the chip presented in [62]. The application consists
of 18 cores and has 66 channels all configured to use guaranteed throughput.

We have combined the two applications into four cases to be used as examples:
mpeg (Design1 ), mpeg + audio (Design2 ), 2 × mpeg + audio (Design3 ), 4 ×
mpeg + audio (Design4 ).

Synthetic Examples

We have also generated synthetic application benchmarks for testing our proposed
design flow. These benchmarks are structured to follow the application patterns
of real SoCs. We have generated applications into two classes of such benchmarks,
as presented in [65]:

(i) Spread communication benchmarks (Spread), where each core communi-
cates to a few other cores. These benchmarks characterize designs such as the TV
processor that has many small local memories with communication evenly spread
in the design.

(ii) Bottleneck communication benchmarks (Bottleneck) where there are one or
multiple bottleneck vertices to which the core communication takes place. These
benchmarks resemble designs using shared memory/external devices such as the
set-top boxes.

We have used spread communication of 12 IPs, in which every IP communi-
cates with three others. We have used bottleneck communication with two con-
verging points and 12 IPs. We have generated 500 synthetic application examples
with spread and 500 with bottleneck communication.



128 6.6. EXPERIMENTS

Table 6.3: Real Examples
Designs area inc size mon slot table

1NI/R

Design1 5.15 - 2x4 - 21
Design1+M 5.43 +5.5% 2x4 5 27

Design2 8.75 - 3x3 - 30
Design2+M 10.16 +16.1% 3x4 10 27

Design3 12.03 - 3x4 - 44
Design3+M 13.95 +16% 3x4 9 60

2NIs/R

Design1 4.03 - 1x4 - 21
Design1+M 4.12 +2.2% 2x2 3 20

Design2 7.88 - 2x3 - 20
Design2+M 8.2 +3.9% 2x3 6 20

Design3 10.82 - 3x3 - 22
Design3+M 11.64 +7.6 % 2x4 8 29

3NIs/R

Design1 3.62 - 1x2 - 30
Design1+M 3.85 +6.3% 1x3 3 18

Design2 6.97 - 1x3 - 27
Design2+M 7.16 +5.4% 1x3 3 30

Design3 10.26 - 2x3 - 21
Design3+M 10.78 +5% 2x3 6 22

Design4 18.45 - 3x4 - 21
Design4+M 19.07 +3.4% 2x4 8 36

6.6.2 Results

Setup

For both the real and synthetic application examples, we have investigated what
the original UMARS vs. the monitoring-aware UMARS output is. The original
UMARS generates the minimal NoC on which only the application requirements
fit, while the monitoring-aware UMARS generates the minimal NoC on which both
the application and monitoring requirements fit. To evaluate the performance of
our approach, we looked at:

(i) required number of transaction monitors,
(ii) resulting topology size,
(iii) resulting slot table size and
(iv) resulting area.

For each application, we have evaluated all possible meshes, from one by one
up to seven by seven. For each of these topologies we have added one, two and
three NIs per router, as depicted in Figure 6.10 and evaluated slot table sizes
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up to 65 TDMA slots. A larger slot table size mitigates overprovisioning due
to granularity, but is often associated with a growth in buffer sizes as network
consumption tends to become more bursty. Out of all the configurations for which
UMARS finds an allocation, we present the one with lowest total area cost.
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Figure 6.10: NIs per router

Table 6.3 summarizes the results for the real examples, when one, two or
three NIs per routers are tried. Due to the large communication demands, and
given the constraints on topology and slot-table size we set for our experiments,
Design4 only fits on a topology using three NIs per router. For the synthetic
examples, Figures 6.11 and 6.12 summarize the results for bottleneck and spread
communication respectively. Each of the four aspects is discussed in detail in the
following paragraphs.

Number of transaction monitors

For the synthetic cases with bottleneck communication, we see that the number
of routers needed to be probed for full coverage varies between 50% and 100%
with an average of 75%. Figure 6.11(a) displays the distribution. For spread com-
munication, Figure 6.12(a) displays the distribution. We see that the number of
routers requiring a probe is higher compared to the bottleneck cases, but that is
no surprise as the communication is more balanced (spread out) over the routers.
The minimum is 60% while the maximum is 90%. Hence, the interval is narrower
than with bottleneck communication, the maximum is actually lower, and cover-
age of all routers was never required. Looking at the diagrams it is obvious that
the number of routers needing probes is focused around the 80-90% bins.

Please note that the number of transaction monitors required is high because
the Æthereal NoC allows multiple IPs to be connected to the same NI and multiple
NIs to be connected to the same router. Therefore, channels can be very short,
e.g., a channel between a master and a slave connected to the same NI will go
through the NI starting from the master, then through one router and back to
the same NI to the slave, see Section 2.1 for more details. All routers having at
least one channel like this passing through will require one transaction monitor.
Other NoCs may require a channel to pass through two different NIs, potentially
lowering the number of transaction monitors being required.
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(d) Area Implications

Figure 6.11: Bottleneck

For the real examples, see column mon in Table 6.3, showing the number of
monitors and compare it to column size showing the mesh size. On average 87%
of the routers need to be probed, but full coverage of routers with probes was
required in 60% of the cases. Relating this with the area numbers from the same
table, it is interesting to observe that the most area-efficient solutions required all
routers probed. Therefore probing all routers must not be associated with area-
inefficient solutions, the number of monitoring probes (in our case transaction
monitors) being just one component which influences the total area cost of the
monitoring solution.

Topology size

For the topology size, we looked at the total number of routers employed. Fig-
ures 6.11(b) and 6.12(b) display the distribution for the synthetic examples. On
average, topology stays the same (no extra routers required) or one or two extra
routers are required. Increases in topology size with more than two routers, but
with a maximum of 8, are required in some cases, especially in the bottleneck
applications. This can be explained because in bottleneck designs it is harder to
accommodate the new monitoring channels due to the existing bottleneck vertices.
Interesting is the fact that in 3-4% of the cases the number of routers actually
decreased. This we can attribute to the heuristic nature of UMARS and to the
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Figure 6.12: Spread

higher number of slots used in the NoCs with monitoring.
For the real examples, we see the number of routers kept constant in six cases,

and both an increase and a decrease in two cases. The latter is accountable to an
allocation found with a higher slot table size, see column slot table in Table 6.3.

In both real and synthetic examples, we see that there is a good chance(30-
60%) to find a solution on the same NoC topology, without requiring extra routers.

Slot Table size

Figures 6.11(c) and 6.12(c) display the distribution of the slot table size variation
for the synthetic examples. In general, we can see a similar shape for both bot-
tleneck and spread communication examples. In a small number of cases (up to
10%) the slot table size is constant. It varies within a limit of +/- 5 slots on a
cumulated 50% of the cases. In roughly 30% of the cases the variation is between
5 and 10 slots, either in the negative or positive part. Higher variations than 10
slots are least visible in the figures.

For the real examples, we can observe the slot table size being constant in
one case, bigger in six cases and smaller in three. Clearly, there exists a relation
between the NoC topology and the slot table size.

In general, a higher number of slots corresponds to adding the monitoring
communication requirements on the same (or eventually smaller) NoC topology
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than the one used for user only communication requirements. A lower number
of slots corresponds to a bigger NoC topology in the resulting shared NoC. The
adapted UMARS design flow tries to balance these aspects.

Area

The total NoC area is derived according to the model in [37] extended with the
area of the transaction monitors, 0.026mm2 per monitor in 0.13µm CMOS tech-
nology. Note that the total area presented includes NIs, routers and probes (trans-
action monitors). The area of NIs also accounts for buffer sizing in the NIs/NI
ports corresponding to the real communication requirements of the users and
monitors. The area numbers do not include the area of other IPs in the SoC, but
refer to the NoC together with the complete monitoring service.

For bottleneck communication, area wise the cost is continuously below 50%
with an average of 15%. Figure 6.11(d) shows the distribution of area overhead
over the test cases and it is obvious that most lie in the left half of the span.

For spread communication, Figure 6.12(d) shows the distribution. From an
area point of view, the overhead is between 10% and 40%, which again is a
narrower interval than for bottleneck communication. In all, it ends up on an
average of 15% also for uniform traffic. No major difference in the area overhead
is noticeable between uniform and bottleneck communication.

For the real examples, the total area increase, see column inc in Table 6.3,
amounts to between 2.2% and 16.1%. The area overhead is between 3% and
7% in the most area efficient case of three NIs per router which succeeded for
all four designs. We consider the resulting four designs the end results of the
monitoring-aware NoC design flow.

85%

90%

95%

100%

Examples

Probes
Routers
NIs

Figure 6.13: Overall distribution of area

It is also interesting to see the overall distribution of this area between NIs,
routers and monitors. This is presented in Figure 6.13 for the four designs in their
most area-efficient case using 3NIs/R. For the original designs, the distribution
of area between NIs and routers is shown. The main remark is that in all cases
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area of the transaction monitors is insignificant relative to the total area of the
designs, dominated by the area of the NIs. Furthermore, in all designs, the area
of the monitors is even several times lower than the area of the routers involved.
These overall area numbers confirm the previously mentioned area numbers as
well as the target area and initial estimation of Chapter 3.

6.7 Conclusion
In this chapter, we have presented three architectural options for a NoC moni-
toring service supporting a chip-wide monitoring system. All options are generic
and can be applied to any NoC. Each of the presented options is NoC-based
and scalable. Non-intrusiveness, influences on the overall NoC design flow, area,
and reuse potential are evaluated for all these options. An interesting trade-off
is presented showing that what is good for area and reusability requires efforts
in modifying the NoC design flow and in preserving the non-intrusiveness of the
monitoring system. Sharing all NoC resources among the application and the
NoCMS provides the most area efficient and reusable design, but it has the most
impact on the design flow and on the intrusiveness.

Based on the area efficiency, we propose a NoC design flow for the case in
which NoC resources are shared between application and NoCMS. The flow takes
monitoring into account at design time and it is fully integrated in the flow,
automating the insertion of the monitors whenever their communication require-
ments are known, leading to a monitoring-aware NoC design flow. Our flow was
exemplified with the concrete case of transaction monitoring, in the context of
the Æthereal NoC and UMARS design flow.

We are the first to quantify the complete cost of the complete monitoring
solution accounting for the monitors, extra NIs, NI ports or enlarged topology
to support monitoring in addition to the original application communication.
Results show an area efficient solution for integrating monitoring in NoC designs.
Monitors alone do not add much to the overall area numbers as the designs remain
dominated by the area of NIs.
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Chapter 7

Conclusions

This last chapter of this work presents the main conclusions. It is the intention of
the author to summarize and integrate all chapter conclusions in order to present
a consistent overall picture of the achievements. A few remaining open problems
and some interesting future research ideas are also detailed here. This is done
to show that there are options to continue this work. The chapter ends with the
author’s personal view on the future of NoC monitoring.

7.1 Contributions

As one of the main contributions of this work we have presented the generic con-
cepts of a NoC monitoring service, the first one described in the scientific litera-
ture. This is the basis of our contributions, the rest of them building upon it. The
monitoring service offers communication observability at run-time. It is generic
and can be instantiated for the monitoring task at hand. We have instantiated it
for application and system-level debugging, and for run-time performance analy-
sis in the form of a transaction monitoring system and performance monitoring
system respectively.

The monitoring service can be configured and used at arbitrary moments dur-
ing run-time, offering increased flexibility. The monitoring service is integrated in
the NoC and uses the NoC communication services (e.g. guaranteed throughput
services) for configuration as well as for the run-time generated monitoring traffic.
It can be instantiated automatically together with the NoC, saving design time.
The monitoring service consists of monitors attached to NoC components, allow-
ing easy scalability of the service, and monitoring service access points, the points
where the monitoring service can be setup and monitored data can be accessed.
The generic architectural concepts of the monitor feature a programmable mod-
ular design composed of a sniffer, a monitoring network interface and an event
generator, providing flexibility to target the service to the monitoring task at

135
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hand. Proof of concept is achieved via implementation for the Æthereal NoC,
for all the particular cases presented in this work, although the generic concepts
presented allow to re-target our proposed NoC monitoring service to other NoCs.

For debug purposes in general, reconstructing transactions at run-time is es-
sential. The transaction level analysis of the NoC behavior makes the complete
MPSoC easier to understand. The NoC is a suitable place to monitor the internals
of a SoC at multiple levels of abstraction, including transaction level. We have
proposed one specific instance of the generic NoCMS, a transaction monitoring
system, in the form a NoC analyzer able to perform run-time NoC transaction
monitoring. This NoC analyzer alleviates the run-time observability problem by
providing hardware transaction monitors able to work on four different levels of
abstraction. They correspond to four analyzer modes, ultimately being able to on-
chip reconstruct transactions from low-level monitored router data and abstract
them to events.

Due to nonalignment of packets and messages, it is generally difficult to go
beyond the raw low-level data (bits), to understand what data means (transac-
tions), in order to (re)construct a transaction-level view from the data stream of
a connection. We have conceptually shown how this problem can be solved for all
existing packetization schemes. Thus our concepts can be reused for any existing
NoC.

The two specific instances of our NoCMS that we developed are both based on
an architecture in which the NoC resources are shared between applications and
the NoCMS. In total, we explored three architectural options for a NoC monitoring
service supporting a chip-wide monitoring system, the one already mentioned, one
option that completely separates the application NoC from the monitoring NoC,
and one in which the applications and the NoCMS are connected by the same NoC
but share separate resources. All options are generic and can be applied to any
NoC. Each of the presented options is NoC-based and scalable. Non-intrusiveness,
influences on the overall NoC design flow, area, and reuse potential are evaluated
for all these options. An interesting trade-off is presented showing that what is
good for area and reusability requires efforts in modifying the NoC design flow
and in preserving the non-intrusiveness of the monitoring system. Sharing all
NoC resources among the application and the NoCMS provides the most area
efficient and reusable design, but it has the most impact on the design flow and
on the intrusiveness.

Based on the area efficiency, we propose a NoC design flow for the case in
which NoC resources are shared between application and NoCMS. The flow takes
monitoring into account at design time and it is fully integrated in the flow,
automating the insertion of the monitors whenever their communication require-
ments are known, leading to a monitoring-aware NoC design flow. Our flow was
exemplified with the concrete case of transaction monitoring, in the context of
the Æthereal NoC and UMARS design flow.

For the area cost for the entire NoC monitoring service, the experiments show
that the target of 15-20% of the total NoC area for monitoring only, is realistic in
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general. The same NoCMS is remarkably diligent in the two specialized instances
we developed, the transaction monitoring and the performance monitoring, the
overall monitoring area being dwarfed by the rest of the NoC area, e.g., only
5% of the NoC area is used for the transaction monitoring system for several
MPEG/audio SoC case studies.

A transaction monitor for the most difficult packetization scheme was imple-
mented at the cost of one fifth of the router area. A transaction monitor has an
area cost of 0.026mm2 in a 0.13µm CMOS technology. The area results for the
performance monitor employed to track link utilization, attached to an arity 6
GT/BE router is 0.018mm2 in the same 0.13µm CMOS technology.

We are the first to quantify the complete cost of the complete monitoring solu-
tion accounting for the monitors (including complex transaction monitors), extra
network interfaces and ports, or enlarged topology need to support monitoring in
addition to the original application communication. Results show an area efficient
solution for integrating monitoring in NoC designs. Monitors alone do not add
much to the overall area numbers as the designs remain dominated by the area
of network interfaces.

7.2 Open Problems and Future Research
This entire work on monitoring merely provides the knobs and controls for estab-
lishing and tuning a structured NoCMS for either transaction-based debugging
or performance debugging and optimization. The development of such a methods
using the NoCMS is a separate challenge in its own. Therefore, one first open
research item is an actual transaction-based debugging method based on or using
our transaction monitors and the NoCMS. To effectively debug systems, besides
monitoring we also need control; therefore, at least, control will have to be added
to our work. Furthermore, in order to achieve a complete SoC monitoring solution
future work will have to include the integration of computation observability with
the NoC monitoring service

Run-time performance monitoring at a reasonable cost enables the develop-
ment of QoS-like methods at different levels, e.g. at the application or network
manager levels. The development of for example a network manager, that man-
ages all the NoC resources and interacts with one or several application/system
QoS managers, is still open.

Methods and the tools based on our NoCMS will actually show the gains of
using the NoCMS, and will make the NoCMS an indispensable part of future
NoCs.

As opposed to ASICs, a new generation of general chip multiprocessor systems
arises. In these systems the set of applications to be mapped onto such a multi-
processor is not known at design time, as is the case for ASICs. For this reason,
one has to assume a given (minimal) placement of monitors, e.g. transaction mon-
itors, given certain design requirements and constraints. The development of such
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placement methods for large NoCs is an interesting topic for future work. For a
given placement of monitors, connections will have to be routed through trans-
action monitors, and the effects and costs of placement and routing compared to
the original NoCs and to the already presented solution (for ASICs) needs to be
quantified.

7.3 Personal Opinions
At the end of this work I feel that I finally have the occasion to say what I felt
form the beginning of my work, and I think that this is the proper place to do it. I
strongly believe that NoC monitoring will become an important issue in the future
and it will develop into a standard component for basically all next-generation
NoCs, in one form or another. While this is a (strong) personal opinion, I do not
try to prove it but I can give a brief two-way reasoning supporting it: why is this
not yet the case, and why will it be the case in the future.

The reasons why this is not yet the case are twofold. First, we should consider
that current NoCs are fairly small and predictable design of systems based on
such small NoCs offering hard timing guarantees is possible. The second reason is
that NoCs are just at the beginning of their presumably long life and the research
community is still eager to prove their value, by looking at their design, and the
design of systems using them, in particular trying to show the advantages over
busses or the ease of design via automated NoC design flows. The monitoring for
either performance analysis or debugging is therefore not yet a hot topic.

The reasons why monitoring will finally arrive in NoCs are also twofold, a per-
fect image of the former reasons. First, there is a huge difference between today’s
small NoCs and tomorrow’s required huge NoCs; summarizing, size matters. Such
NoCs will only be able to offer overall statistical guarantees, coupled with hard
guarantees for small parts of the NoCs. If such situations arise then the monitor-
ing will be in one form or another indispensable for run-time management of such
systems. There will be no other way of saying what is going on in the NoC at a
certain time. Also with the size of such systems, run-time monitoring at higher
levels of abstraction (transactions) will become the only way of debugging.

The second reason is the personalization. This is because we move towards the
time when NoC-based SoCs are incorporated into devices surrounding us which
tend to be intelligent and personifiable. Therefore the set of applications running
onto them will be dependent of us, not known in advance, and probably unique
for each person and learning our habits, as opposed to today’s devices that run
the same software/firmware for everyone, the trend of personalization just arising.
This will make monitoring the only means to enable the run-time resource and
quality management.
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Gangwal. Cost-performance trade-offs in networks on chip: A simulation-
based approach. In Proc. Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE), pages 764–769, Feb. 2004.

[38] K. Goossens and C. Ciordas. Electronic device, system on chip and method
of monitoring data traffic. NXP, BV., Jan. 2008. Patent Application
WO2008004187.



142 BIBLIOGRAPHY

[39] K. Goossens, C. Ciordas, and A. Rădulescu. Electronic device, system on
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A. Rădulescu, and E. Rijpkema. A design flow for application-specific net-
works on chip with guaranteed performance to accelerate SOC design and
verification. In Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 1182–1187, Mar. 2005.

[41] K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal network on
chip: Concepts, architectures, and implementations. IEEE Design and Test
of Computers, 22(5):21–31, Sept-Oct 2005.

[42] K. Goossens, O. P. Gangwal, J. Röver, and A. P. Niranjan. Interconnect
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