
Composable Virtual Platforms for
Mixed-Criticality Embedded

Systems

Ashkan Beyranvand Nejad

Composable Virtual Platforms for
Mixed-Criticality Embedded Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Del,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzier van het College voor Promoties,

in het openbaar te verdedigen

op woensdag  november  om : uur

door

Ashkan BEYRANVAND NEJAD

Master of Science in Systems-on-Chip Design
Kungliga Tekniska Högskola (KTH), Zweden

geboren te Teheran, Iran

Dit proefschri is goedgekeurd door de promotor:
Prof. dr. K.G.W. Goossens

Copromotor: Dr. Anca M. Molnos

Samenstelling promotiecommissie:

Rector Magnificus voorzier
Prof. dr. Kees G.W. Goossens Technische Universiteit Del, promotor
Dr. Anca M. Molnos CEA LETI, copromotor
Prof. dr. Koen L.M. Bertels Technische Universiteit Del
Prof. dr. Ben Juurlink Technische Universität Berlin
Prof. dr. Henk Corporaal Technische Universiteit Eindhoven
Dr. Sorin D. Cotofana Technische Universiteit Del
Prof. dr. Piet F.A. Van Mieghem Technische Universiteit Del, reservelid

Ashkan Beyranvand Nejad
Composable Virtual Platforms for Mixed-Criticality Embedded Systems

Met samenvaing in het Nederlands.

ISBN ----

Cover design: e cover is designed by the author using theword cloud as the visual representation
of the Introduction chapter of this dissertation, where the frequency of appearing each word in
the text is shown relatively with its font size. e cloud is created using Wordle™ web-based tool.

Copyright ©  Ashkan Beyranvand Nejad
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmied, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without permission of the author.

Printed in e Netherlands

Dedicated to my dear parents
and

to the love of my life, Golnoosh.

Abstract

r
ecent trends show a steady increase towards concurrently executing more
andmore applications on a single embedded system. Multi-Processor System-
on-Chip (MPSoC) architectures are proposed to allow complex design of
embedded systems. is is achieved by integrating as many processing

resources as possible on a single chip and therefore enabling the execution of multi-
ple applications on a single embedded System-on-Chip (SoC). Due to cost implications,
the applications have to share some resources when executing concurrently on these
systems. To fully exploit the computational power of an MPSoC, an application is fur-
ther split into a number of concurrent tasks. Depending on the intrinsic behavior of an
application, its tasks may be either data- or time-interdependent, and accordingly, two
different models of computation, namely data-driven and time-driven, are used to imple-
ment such an application. Besides this, applications typically have timing requirements
expressed in three categories of firm, so, and non real-time requirements. In a mixed
time-criticality system, the applications that execute concurrently on a single embedded
platform have widely varying real-time requirements, where resource sharing causes
interference between the applications. In order to execute real-time applications on an
embedded platform, the system has to be predictable to ensure that the timing require-
ments of the applications are met. Moreover, to enable independent design, verification,
and integration of mixed-criticality applications, the system has to be strongly compos-
able, i.e., concurrently executing applications are temporally isolated in such a way that
the actual-case temporal behavior of each application is unaffected at the cycle-level. In
this way, temporal interference between the applications is completely prevented.

In this dissertation, we address two main challenges in designing and prototyping
mixed time-criticality systems: (i) realizing strongly composable Virtual Platforms (VPs)
for mixed-criticality embedded systems, and (ii) proposing a uniform abstract execution
layer for applications expressed with different models of computation. Here, we tar-
get time-driven models of computation and, Kahn Process Network (KPN) and dataflow
(specifically, Cyclo-Static DataFlow (CSDF)) as the two variants of data-driven models
of computation. On the basis of these challenges we answer the main research question
of how to design and execute multiple applications concurrently on an embedded system,
given that the applications are realized with different models of computation and having
different levels of time-criticality?

is dissertation proposes a solution to create a VP for every application by virtual-

ⅰ

izing all the hardware resources that are involved in the execution of the applications.
For this, a temporal partitioning technique is applied to the CompSOC hardware archi-
tecture. On top of this architecture, the CoMik microkernel is designed as a minimum
privileged soware layer to provide resource partitioning. CoMik creates, controls and
schedules processor partitions, and executes an application in its partition by virtualiz-
ing the processor’s soware hooks, offering anApplication Programming Interface (API)
to each application to use its allocated resources. Applications can therefore execute di-
rectly on their virtual platforms in the samemanner as on a dedicated hardware platform.
However there exists an execution abstraction gap between the models of computation’s
semantics and the platform’s primitive operations. To fill this gap, a model of execution
is proposed to define a common set of execution operations and their orchestrations in
order to implement an specific model of computation.

emodel of execution is implemented in the form of a lightweight operating system
library, namely CompOSe, which is instantiated in every partition of a VP. CompOSe is
designed in a number of soware units and is implemented in such a way that it does
not introduce any unpredictability in executing an application and complies with the
composability property of the system provided by the CoMik microkernel.

We demonstrate that our proposed technique enables concurrent composable, pre-
dictable execution of applications realized with multiple models of computation by using
two experimentation setups. One, a Matlab simulation environment is used to investi-
gate the temporal behavior of the CoMik microkernel. Two, an FPGA prototype of the
CompSOC platform is used to study the composability property and support of multiple
models of computation by the CompOSe Real-Time Operating System.

ⅱ

Acknowledgements

Well said by Ernest Hemingway, ”It is good to have an end to journey toward; but it is
the journey thatmaers, in the end”. My journey started from whenmy grandmother
R.I.P. had been teaching me at home how to read/write. It was two years later, ⁿᵈ of
September , the night before the day that I went to the first grade, my farther called
me in to tell me something very important: ”Tomorrow you are going to take the first step
towards a long journey. Since you know how to read/write, you are free to decide not to go
to school. But, if you would decide to go, you should know that it could be a long journey
that you cannot stop in the middle, and you have to go until the end. is is not what we
force you to do, but the journey itself is so fascinating that you yourself cannot stop”.

Now that you are reading this Ph.D. thesis, I obviously decided that night to start the
journey. I am now very satisfied with my decision, although I have been faced many ups
and downs along the way to this point. Here, I cannot name all the people who helped
and accompanied me in the first twenty years of this journey, before starting my Ph.D.
work, but I am thankful to all of them. I would also like to thank the commiee members
of my Ph.D. defense and you, the reader, who may find this thesis interesting to you.

From the last six years, first and foremost I would like to thank my thesis promotor
Prof.Kees Goossens for giving me the opportunity of working under his supervision. I
started working with him from  when I moved to the Netherlands for doing my
M.Sc. thesis on a topic proposed by him at the time he was still in NXP semiconductors.
Since then, I have always enjoyed working with him and learnt a lot of things from all
the technical and the non-technical discussions that I have had with him. I admire his
high-quality research work and his personality, specially his patience.

I am sincerely grateful for the contribution of my copromotor Dr.Anca Molnos in my
work. Anca has been not only a good colleague for me who I enjoyed all the moments
of working with her but also a very nice friend of mine. I should acknowledge her no-
ticeable influence on my writing skills for presenting a scientific work, and her valuable
feedback on the dra of this dissertation.

I wish to express my appreciation and thanks for my great office-mate, good friend,
and collaboration partner, Andrew Nelson. We have shared many memorable moments
during the last five years in the trips, themeetings, the discussions, andmost importantly
in the work that we have done together. I would never forget his help in the preparation

ⅲ

of my thesis, and I would also like to thank his girl-friend, Jorinde de Boer, for translating
my propositions into Dutch.

From the CompSoC team, my thanks go to Radu Stefan, Benny Akesson, Martijn
Koedam, Sven Goossens, Karthik Chandrasekar, Davit Mirzoyan, Manil Dev Gomony,
and Shubhendu Sinha for all the great collaborations and discussions that we have had
together. I should specifically thank Martijn and Sven for their kind help of having the
abstract of this dissertation translated into Dutch. I would like to extend my gratitude
to Bart Vermeulen who used to be the daily supervisor of my M.Sc. thesis and has been
a good friend of mine for the last six years.

From the Computer Engineering Laboratory of TUDel, my sincere appreciation
goes to Prof.Koen Bertels for all his supports during the last five years. I would like to
thank Lidwina Tromp, the secretary of the group, Erik de Vries and Eef Hartman, the IT
administrators, for all their facilitating services kindly provided to us. I would also like
to thank Arash Ostadzadeh, a good friend and colleague, for all the nice discussions that
we had, and acknowledge his kindness for sharing this thesis template with me.

Last but the most important, my greatest gratitude towards my parents, Reza and
Mehri, for all their encouragements and supports over the course of my life. Without
always feeling them with me, even from the long distance in the last eight years, I could
not have taken one step forward. I want to also thank my sister, Elham, for her support
and accompany in my life. Finally, from the boom of my heart, I would like to thank
the love of my life, Golnoosh, for making my life sweat by being beside me from the first
months of my Ph.D. work, and her endless support without which I could not finish this
dissertation.

Ashkan Beyranvand Nejad Del, e Netherlands, November 

ⅳ

Table of contents

Abstract ⅰ

Acknowledgements ⅲ

Table of contents ⅴ

List of figures ⅸ

List of tables ⅹⅲ

List of listings ⅹⅴ

List of Acronyms ⅹⅶ

Terminology ⅹⅸ

 Introduction 
. Challenges . 

. Overview of the Solution . 

. Contributions . 

. Organization . 

 Background 
. Predictability . 

. Composability . 

. Hardware Platform Architecture . 

.. CompSOC: A Composable & Predictable System-on-Chip Platform 

. Application Execution . 

ⅴ

.. Scheduling . 

.. Task Temporal Model . 

. Model of Computation . 

.. Data-driven Model of Computation 

.. Time-Driven Model of Computation 

.. Summary . 

 Composable Virtualization 
. Partitioning for Virtualization . 

. Composable Virtual Platforms . 

. CoMik: a Composable Partitioning Microkernel 

.. Composable Temporal Partitioning 

.. Scheduling & Swapping Partitions 

.. Memory Partitioning Layout . 

. A Hardware Support for Virtualization . 

.. Counters . 

.. Timers . 

.. Interrupt Controller . 

.. Frequency Controller . 

.. Control Unit . 

. Interrupt Virtualization . 

. Interrupt Management in CoMik . 

.. CoMik Interrupt Handler . 

.. Partition Interrupt Handler . 

.. Exception Management in CoMik 

. Critical Sections . 

.. Kernel-Mode Critical Sections . 

.. Partition-Mode critical sections . 

. CoMik Boot Loading . 

. Related Work . 

. Summary . 

 Realization of the Model of Execution 
. Model of Execution . 

.. Execution Operations: Computation & Communication 

.. Execution Operations: Scheduling 

ⅵ

.. Realization of Models of Computation 

.. Discussion on Realizing Models of Computation with the Model
of Execution . 

. CompOSe: an Operating System Library . 

.. CompOSe Data Structure . 

.. Partition Soware Hooks . 

.. Implementing the Model of Execution 

.. Soware Containers . 

. Related Work . 

. Summary . 

 Case Studies 
. Predictability of Time-Driven Applications 

.. Matlab Simulation . 

. Composability & Mixed Models of Computation 

. Summary . 

 Conclusions 
. Contributions . 

. Future Research Opportunities . 

A Soware-Based Interrupt Virtualization 

Bibliography 

List of Publications 

Samenvatting 

Stellingen 

Propositions 

About the Author 

ⅶ

ⅷ

List of figures

Chapter  

. An embedded system stack. 

. An overview of the composable virtual platforms for mixed-criticality
embedded systems. 

Chapter  

. Predictability and composability properties of the embedded system stack
layers. 

. e existing hardware architecture of the CompSOC platform. 

. A Task execution temporal model. 

. Analyzability versus expressiveness for common data-driven models of
computation. 

. Node graph of a data-driven model of computation. 

. Job graph of a time-driven model of computation. 

Chapter  

. An overview on the virtualization scheme of the CompSOC platform. . . 

. An overview on applying partitioning techniques on the resources of the
CompSOC platform to create Virtual Platforms (VPs). 

. A Time Division Multiplexing (TDM)-based processor partitioning tech-
nique illustrating virtual time-line of two partitions. 

. Applications running on their dedicated virtual platforms. 

. e architecture of the soware platform: CoMik in kernel mode, and
partition routines in partition mode. 

ⅸ

. Data structure of CoMik. 

. A TDM-based processor partitioning technique. 

. A detailed view on the kernel operations and timeline in a CoMik slot. . 

. e data memory partitioning layout. 

. eprocessor tile architecture including Timer-centric Interrupt and Fre-
quency Unit (TIFU). 

. e TIFU architecture. 

. CoMik interrupt handling flow. 

. Execution flow of the CoMik boot loader. 

Chapter  

. CompSOC platform stack. 

. e structure of the model of execution implemented in form of Com-
pOSe Operating System (OS) library. 

. Data structure of CompOSe . 

Chapter  

. An example of slots allocation to a partition (application) in a temporally-
partitioned system, illustrating the cumulative available processing time
and the (longest) blocking time of the partition. 

. Availability function of a partition in a -slot system. 

. Responsiveness of randomly generated applications. 

. Average responsiveness of two randomly generated applications. 

. Data-driven application use-cases. 

. Schedule trace of the applications running on an FPGA prototype. 

. Difference between response-time of the tasks in two runs, where the
processor allocation to ESC application is changed. 

. Two use-cases of a simple synthetic applicationmapped on (i) one proces-
sor tile, and (ii) two processor tiles . 

. Synthetic and H. application on a two-Tile Multi-Processor System-
on-Chip (MPSoC) Platform . 

. e finishing time difference between two execution scenarios of JPEG
and H. applications . 

Appendix A 

ⅹ

A. e General operational time-line of an application in a partition inter-
rupt handling interval. 

A. ree possible scenarios of programming the timer interrupt. 

ⅺ

ⅻ

List of tables

Chapter  

. Task scheduling overview of the models of computation. 

Chapter  

. List of the execution operations required for executing the models of
computation. 

. Implementation of the models of computation with the unified model of
execution when task scheduling is either cooperative or preemptive. . . . 

Appendix A 

A. Additional data structure required for Soware-based interrupt virtual-
ization. 

ⅹⅲ

ⅹⅳ

List of listings

Chapter  

. An example pseudo-code of a process in a Kahn Process Network (KPN)
model of computation. 

. An example pseudo-code of an actor in a Cyclo-Static DataFlow (CSDF)
model of computation. 

. An example pseudo-code of a process in a time-triggered model of com-
putation. 

Chapter  

. Execution operations corresponding to an example pseudo-code of a process
in a KPN model of computation. 

. Execution operations corresponding to an example pseudo-code of an
actor in a CSDF model of computation. 

. Execution operations corresponding to an example pseudo-code of an
actor in a time-driven model of computation. 

. Pseudo code representation of CompOSe boot-loader. 

. Pseudo code representation of CompOSe interrupt handler. 

. Pseudo code representation of task’s body container for KPN processes. 

. Pseudo code representation of the task’s body container for CSDF actors. 

. Pseudo code representation of the firing-rules container for CSDF actors. 

. Pseudo code representation of a task scheduler container for a CSDF actor. 

Appendix A 

A. Pseudo code representation of the Programming Timer Interrupt (PTI)
function. 

ⅹⅴ

ⅹⅵ

List of Acronyms

ACB Application Control Block . 

AMP Asymmetric Multiprocessing . 

API Application Programming Interface . 

ARINC Aeronautical Radio Incorporated . 

AUTOSAR AUTomotive Open System ARchitecture . 

CCB CoMik Control Block . 

CCM Clock Control Module . 

CSDF Cyclo-Static DataFlow . 

DDR Double Data Rate . 

DLMB Data Local Memory Bus . 

DPLB Data Processor Local Bus . 

DTL Device Transaction Language . 

ECU Electronic Control Unit . 

FCB FIFO Control Block . 

FIFO First-In-First-Out . 

FPGA Field Programmable Gate Array . 

FRT Firm Real-time . 

FSL Fast Serial Link . 

ILMB Instruction Local Memory Bus . 

IMA Integrated Modular Avionics . 

KPN Kahn Process Network . 

MMIO Memory-Mapped Input/Output . 

MMU Memory Management Unit . 

MPSoC Multi-Processor System-on-Chip . 

NI Network Interface . 

NOC Network-On-Chip . 

NRT Non Real-time . 

ⅹⅶ

OEM Original Equipment Manufacturer . 

OS Operating System . 

PCB Partition Control Block . 

PIT Programmable Interrupt Timer . 

PTI Programming Timer Interrupt . 

RISC Reduced Instruction Set Computer . 

RDMA Remote Direct Memory Access . 

RR Round-Robin . 

RTOS Real-Time Operating System . 

SC Soware Container . 

SDF Static Dataflow . 

SDRAM Synchronous Dynamic Random-Access Memory . 

SoC System-on-Chip . 

SRT So Real-time . 

TCB Task Control Block . 

TDM Time Division Multiplexing . 

TIFU Timer-centric Interrupt and Frequency Unit . 

VM Virtual Machine . 

VMM Virtual Machine Monitor . 

VP Virtual Platform . 

ⅹⅷ

Terminology

In this dissertation, we refer to several terms that are ambiguous and may specifically
cause confusion when used in the context of Computer Science, especially in the field
of embedded systems. In the following, we clarify the most important and frequently
used terms with references to the first place that each terms is defined and used in this
dissertation.

Application is a set of algorithmic computational operations that realize a functionality
which may be split is a set of communicating tasks [Section .].

Task is a piece of sequential code that implements a part of an application’s function-
ality [Section ..].

Model of Computation is a model that implements the application using a set of for-
mal semantics defined to express the computational operations [Section .]

Model of Execution is a model that defines a set of execution operations and their
orchestrations in order to implement an specific model of computation. It has to
explicitly define computation, communication, and scheduling operations for each
individual model of computation [Section .].

Node is a functional mapping from inputs to outputs in a model of computation [Sec-
tion ..].

Process is a node in the KPNmodel of computation and consists of a sequence of read,
compute, and write operations which may be interleaved in any order [Sec-
tion ..].

Actor is a node in the CSDF model of computation with a sequence of consume, com-
pute, and produce operations, in this strict order. A firing rule specifies, for one
actor activation, for each incoming and outgoing edge, the number of input tokens
consumed and the number of tokens produced, respectively [Section ..].

Job is a node in the time-driven model of computation. It is ready to execute at an
specificmoment in time, when it assumes the data and the space that it may require
for its execution are available [Section ..].

Time-Criticality is a level of timing requirements expressed in one of the three cat-
egories of firm, so, and non real-time requirements [e introduction of Chap-
ter ].

ⅹⅸ

Predictability is a system property which is defined as a level of how well the tim-
ing characteristics of the system are defined and implemented so that the system
temporal behavior is known before it actually starts running the applications [Sec-
tion .].

Composability is the property that the temporal (and functional) behavior of an appli-
cation is isolated and independent from the one of other concurrent applications.
A system is either weakly or strongly composable [Section .].

Virtualization is traditionally the technology to provide an illusion of execution re-
sources to applications so that the applications behave like running directly on
the bare resources [e introduction of Chapter ].

(Processor tile) Partition is created by the CoMik microkernel on every processor tile
and it includes a composable temporal processor partition, an spatial dmem par-
tition, a number of dedicated Remote Direct Memory Access (RDMA) modules
[Section .].

Virtual Platform (VP) is logically defined as a set of resource partitions allocated to
one application. Every VP provides the application with an illusion of a dedicated
actual physical hardware architecture [Section .].

Microkernel a minimum privileged soware layer that is designed to provide the es-
sential services of partitioning for the purpose of virtualization [Section .].

CompSOC is a System-on-Chip (SoC) template developed following composability and
predictability paradigm, and implements a tile-based multi-processor architecture
which consists of a number of processor and memory tiles communicating via an
on-chip interconnect [Section ..].

CoMik is a microkernel that, on each processor, creates, controls, and schedules a num-
ber of partitions each of which is allocated to one application [Section .].

CompOSe is a Real-Time Operating System (RTOS) library that could execute as part
of a partition created by the CoMik microkernel and implements the execution
primitives proposed by the model of execution [Section .].

Time-triggered scheduling is a scheduling category inwhich the scheduler is invoked
by a timed event, e.g., timer interrupt [Section .].

Event-triggered scheduling is a scheduling category in which the scheduler is in-
voked by any other event than a timed event, for example, an I/O interrupt or
data availability [Section .].

Preemptive scheduling is a scheduling class in which the invocation of the scheduler
preempts the executing task [Section .].

Cooperative scheduling is a scheduling class in which the executing task is allowed
to finish (or signal that it can yield the processor) before the scheduler is invoked
[Section .].

ⅹⅹ

CHAPTER1
Introduction

n
owadays embedded systems are widely used computing platforms in var-
ious domains such as automotive, consumer electronics, medical devices,
avionics, etc. e common increasing demand of all these domains is to
execute more and more applications concurrently on a single embedded

system platform. Applications are functionally-independent soware units that are de-
veloped by possibly different parties. e primary reason for such a demand varies
per application domain. For example, in automotive domain, there are more than 
individual Electronic Control Units (ECUs) developed by various Original Equipment
Manufacturers (OEMs) integrated and communicating inside a middle class car []. In
this domain, reducing the number of ECUs and increasing the number of applications
executing on each one, not only reduces the manufacturing cost but also improves the
reliability and maintainability of the systems since, for instance, the cabling complexity
is decreased []. However, in avionics domain, to some extend the cost of reducing the
number of electronic computing hardware modules is less important than reducing the
weight of the aircras and complexity of the systems is an important objective [, ].

Shrinking the feature size of the transistors has led to low-cost integration of more
and more number of processing resources on a single chip and consequently allows
designing complex embedded system platforms using Multi-Processor System-on-Chip
(MPSoC) []. Such platforms enable executing multiple applications on a single embed-
ded System-on-Chip (SoC) architecture by providing each application with the required
resources. However, since the requirements of applications grow faster, these archi-
tectures are still resource constrained. For cost reasons, the applications executing on
these platforms have to share some resources, such as processors, interconnect, memory
blocks, etc. An example of this trend is in avionics domain where the traditional feder-
ated computing architectures in which each subsystem occupied a physically separate
hardware component is replaced with integrated computing architectures following In-
tegrated Modular Avionics (IMA) design concept, in which multiple applications share
the common computing platform [, ].

Furthermore, belonging to various domains such as consumer electronics, automo-
tive, avionics, etc., the applications realize different functionality with different intrin-
sic behaviors. For example, multimedia applications have different functional behavior



Chapter  INTRODUCTION

Application N

MoC N

MPSoC Platform

Application 1 ...

MoC 1 ...

Figure .: An embedded system stack.

compared to an engine control application. One example of multimedia applications is
a video codec that typically receives an streaming input of data to which it applies some
computation and outputs an stream of data for illustration. Instead, the engine control
application, as an example of automotive applications, periodically reads some sensors,
applies some computation, and produces a signal to control an actuator at specific mo-
ment in time. us, different models of computation are required to implement different
applications. A model of computation implements the application using a set of formal
semantics defined to express the computational operations []. Traditionally, the appli-
cations are first implemented in a sequential model of computation using an imperative
programming language such as C. On MPSoC platforms multiple applications may exe-
cute in parallel. To fully exploit the computation power of an MPSoC, the parallelism is
not restricted to the application level, but each application is further split in a number of
concurrent tasks. Depending on the intrinsic behavior of an application, its tasks may
synchronize naturally either on the basis of data availability or on specific times. In other
words, the tasks may be either data- or time-interdependent. Accordingly, two differ-
ent models of computation, namely data-driven and time-driven, are used to implement
such inter-dependencies between the tasks.

Besides having different functional requirements, the embedded applications typi-
cally have timing requirements expressed in three categories of firm, so, and non real-
time requirements. ese requirements are categorized with respect to the time, known
as deadline, before which the application must produce an output and be finished. A
Firm Real-time (FRT) application has strict timing requirements that must never miss a
deadline otherwise damage may be caused to the system or environment []. While
FRT applications can be found in various industries, the automotive and avionics appli-
cations are typically from such a kind. A So Real-time (SRT) application however may
occasionally miss a deadline, whereas a Non Real-time (NRT) application do not have
to meet any timing requirement and it has no deadline. e SRT and NRT applications
exist in almost all the domains.

When the applications executing concurrently on a single embedded platform have
different real-time requirements, the system has mixed criticality property. e term
mixed-criticality may also apply to systems (mostly in automotive and avionics indus-
tries) with mixed-safety criticalities, however in this dissertation we aim at mixed time-
criticality systems.



CHALLENGES Section .

In summary, the ongoing trend of embedded systems is to designmixed time-criticality
MPSoC platforms in order to execute multiple applications from various domains such
as automotive, avionics, etc. e applications are implemented with either of data- or
time-driven models of computation each of which has its own timing and functional re-
quirements that has to be met when executing on the platform. Figure . illustrates an
abstract overview of such system’s stack. Now, let us explain the existing challenges in
designing and prototyping such systems.

. Challenges

To execute real-time applications on a platform, the system has to ensure that the tim-
ing requirements of the applications are met. For this purpose, the system has to be
designed in such a way that the timing characteristics of the system are so well defined
that the temporal behavior of the applications can be verified against their requirements
before actually executing on the platform. Conventionally, this implies the predictabil-
ity property of the system. Predictability is defined as a level of how well the timing
characteristics of the system are defined and implemented so that the system temporal
behavior is known before it actually starts running the applications.

In a mixed-criticality system in which multiple real-time applications execute con-
currently on an embedded platform, resource sharing causes interference between the
applications. Such interference might be either predictable (bounded) or unpredictable
(unbounded). e predictable interference is typically between real-time applications
with the bounded temporal execution behaviors; whereas the unpredictable interfer-
ences result from the non-real-time applications. In case of bounded unpredictable in-
terference, as the number of concurrent execution combinations of the applications may
grow exponentially, the verification and integration would become dramatically diffi-
cult []. It would be even worse when the applications are developed by different par-
ties and all the applications has to be available at design time to be verified against their
timing requirements. In the case of unbounded unpredictable interference, it is not pos-
sible at all to verify the timing requirements of the real-time applications and therefore
to integrate them with the non-real-time ones.

In order to prevent the interference, the applications have to execute temporally
isolated. For this, composability is proposed as one of the embedded system’s proper-
ties. It is defined as: the temporal (and functional) behavior of an application is isolated
and independent from of other concurrent applications [, ]. We denote a system as
either weakly or strongly composable. Weak composability is denoted as a temporal-
interference relaxed isolation between applications, where, with the help of predictabil-
ity, a system could make the worst-case temporal behavior of an application unaffected
by the other applications []. In this way, the system can guarantee a minimum service
provided to the applications. However, in the mixed criticality systems, weak compos-
ability does not help to reduce the complexity of system verification and integration as
it is not possible to come up with worst-case bounds for temporal behavior of the non
real-time applications. Strong composability [, ] however is the isolation between
the applications in such a way that the actual-case temporal behavior of each application
is unaffected. is enables independent design, verification, and integration of mixed-
criticality applications.



Chapter  INTRODUCTION

In order to implement a composable system, virtualization technology has gained re-
cently a lot of aentions as a design trend in embedded systems []. In this technology
an illusion of the execution resources are provided to the applications so that the appli-
cations behave like running on the bare hardware platform even though the resources
are shared. Such an illusion of the system is called a Virtual Platform (VP). Implementing
the composability property for the system is then the challenge of creating temporally
isolated VPs for the applications.

To virtualize the resources they have to be either dedicatedly allocated to an applica-
tion or they have to be partitioned. Depending on the service provided by a resource, it
can be partitioned either temporally or spatially []. For instance, in this context, two
well-known standards, namely Aeronautical Radio Incorporated (ARINC) and AUTo-
motive Open System ARchitecture (AUTOSAR), have been developed in the automotive
and the avionics domains, respectively. Real-Time Operating Systems (RTOSs) that are
designed based on these standards are to support the partitioning of hardware resources
in order to enable realization of VPs for mixed-criticality systems.

In the avionics domain, ARINC standard is a specification for time and space par-
titioning in mixed-criticality avionics RTOSs []. It specifies partitions at application
level, where one or more applications with different criticality can belong to one par-
tition []. e standard also specifies Application Programming Interfaces (APIs) for
abstraction of the application from the underlying hardware and soware platform. e
RTOSs developed based on this standard guarantee the minimum amount of service that
a partition receives. us, an application executing in a partition is affected by the pres-
ence/absence of other partitions.

In the automotive domain, AUTOSAR is a standard automotive soware architec-
ture, jointly developed by automobile manufacturers, suppliers and tool developers [].
It contains an RTOS specification which defines real-time performance, scheduling strat-
egy and temporal partitioning for executing applications with mixed-criticality. In this
standard the partitions are implemented with a schedule table, and a time monitoring
mechanism is used to limit the worst-case execution time of the applications. us, an
application timing behavior can be possibly affected by the execution of other applica-
tions.

None of this existing systems fully comply with the definition of strong composabil-
ity. As we argued, strong composability is very strict in the sense that the actual-case
behavior of the applications has to be isolated. is means that the actual (and worst-
case) timing properties of the an application are cycle-accurately independent of the
other applications. A challenge here is to create VPs that comply with this strict defini-
tion of the composability.

Furthermore, the applications that are going to execute onVPs are possibly expressed
with different models of computation, i.e., data- or time-driven. Each model of compu-
tation has its own execution primitives for computation and communication operations.
Besides this, in the case of concurrent models of computation where an application is
split into a number of tasks, scheduling operation comes into the application execution
play. In order to hide the execution details of the implementation on the platform, these
operations are typically specified at a high level of abstraction. For example, in a data-
driven model of computation where inter-task communication is performed by means



OVERVIEW OF THE SOLUTION Section .

of First-In-First-Out (FIFO) queues, a read operation of a task is an abstraction of check-
ing a queue for available data and retrieving the data from possibly a remote memory
location on the platform. us, there is a gap of execution abstraction between the mod-
els of computation’s semantics and the primitive execution operations supported by the
platform. is gap causes a huge design effort to support the applications with various
models of computation. A design challenge here is therefore to fill this gap by an in-
termediate execution layer to support the different models of computation in a unified
manner.

In summary, in this dissertation we address two main design challenges: (i) realiz-
ing strongly composable VPs for mixed-criticality embedded systems, and (ii) proposing
a uniform abstract execution layer for applications expressed with different models of
computation on the VP. ese two challenges lead us to the main research question of
this dissertation that can be presented as follows:

How to design and execute multiple applications concurrently on an embedded
system, given that the applications are realized with different models of

computation and having different levels of time-criticality?

e rest of this chapter is going to explain our proposed solution to answer this ques-
tion, where the solution makes several contributions to address the two aforementioned
challenges.

. Overview of the Solution

In order to tackle the introduced research question our approach is to follow the ex-
plained design trends in embedded systems where the virtualization technology is ap-
plied to make the mixed-criticality systems predictable and composable.

In this approach the aim is to create a VP for every application by virtualizing all
the resources that are involved in the execution of the applications. For this, we use the
partitioning technique. is technique is applied to different resources of the platform.
Depending on the service type provided by a resource, it can be partitioned temporally
or spatially []. In the context of mixed-time criticality systems, our main focus is on
temporal partitioning of the resources. For this, we propose a complete platform-based
approach as illustrated in Figure .. is approach mitigates the complexity of a mixed-
criticality system stack by proposing a multi-layered virtualization soware platform on
top of an MPSoC heterogeneous hardware architecture.

Starting from the boom of the stack, in the hardware platform, each resource has
to be specially designed and implemented for the purpose of guaranteeing predictable
and composable execution of applications with mixed-time criticality. CompSOC is a
SoC template developed following composability and predictability paradigm []. Here,
we use this template as the basis of our hardware architecture. CompSOC has a tiled-
based MPSoC architecture which consist of a number of processor and memory tiles
communicating via a Network-On-Chip (NOC) [, , , ]. All its resources are
designed and arbitrated between the executing applications in such a way that they
realize predictable and composable system.



Chapter  INTRODUCTION

processor tile

m
ain

m
icrokernel boot loader

interrupt

interrupt handler

exception

exception handler

M
M

IO

drivers (D
M

A
, TIFU

)

P
artition abstraction layer (create, control, schedule)

m
ain

interrupt
exception

A
P

I

R
TO

S
 boot loader

interrupt handler
exception handler

m
odel of execution (com

putation, com
m

unication, and scheduling)

m
ain

interrupt
exception

A
P

I

application
initialization

preem
ptive or cooperative
task scheduler

exception handler

task (actor/process/job/thread) com
putation code and control

H
ardw

are platform
(heterogeneous N

oC
-

based m
ulti-processor-

tile S
oC

)

Softw
are platform

(m
ulti-layered

virtualization stack)

virtual platform
(m

ultiple heterogeneous
partitions)

application
(m

ulti-M
oC

 concurrent
tasks)

Chapter
2 & 3 Chapter 3 Chapter 4 Chapter 4 & 5

C
oM

ik
m

icrokernel

A
pplication

C
om

pO
Se

library

C
om

pSoC
tem

plate

m
odel of com

putation specific support (data-and tim
e-driven)

Figure
.:

A
n
overview

ofthe
com

posable
virtualplatform

s
for

m
ixed-criticality

em
bedded

system
s.



OVERVIEW OF THE SOLUTION Section .

To create a composable temporal partition of the processor tile, the arbitration scheme
has to provide a guarantee on when the service is exactly available to a partition in order
to prevent the interference of other partitions. Every application executes in a dedicated
partition. Time Division Multiplexing (TDM) is used as one of the arbitration schemes
that can provide such a guarantee. Using this technique a set of time slots are created as
fixed resource utilization time quanta. A temporal partition is then a set of these time
slots allocated to an application. Applying the composable partitioning technique to
all the resources involved in executing an application in a processor tile, a partition is
formed. A VP is then a set of these partitions allocated to one application from resource
in the platform.

On top of the hardware platform, a privileged soware layer is designed to provide
the essential services of partitioning for the purpose of virtualization. Our solution re-
alizes this layer in the form of a microkernel, namely CoMik. CoMik virtualizes the
underlying platform by executing the instruction routines in the form of three soware
hooks, i.e., main function, interrupt handler and exception handler, as illustrated in Fig-
ure .. Using these, CoMik creates, controls, and schedules processor tile partitions.
Moreover, it executes an application in its partition by virtualizing the soware hooks
and offering an API so that the application could use its allocated resources.

Created isolated partitions by the CoMik microkernel, an application can execute di-
rectly on its virtual platform. For this, the model of computation has to use the primitive
execution operations offered by CoMik via the partitions. In our solution, a model of ex-
ecution is however proposed to fill the gap of execution abstraction between the models
of computation’s semantic and the platform’s primitive operations. e model of exe-
cution categorizes the execution operations as: (i) computation, (ii) communication, and
(iii) scheduling operations.

e model of execution targets Kahn Process Network (KPN) and dataflow (specifi-
cally, Cyclo-Static DataFlow (CSDF)) as the two data-driven models of computation, and
time-driven models of computation. Supporting these, a wide range of time-criticality
application domains is covered. Data-driven models of computation typically require to
schedule their tasks cooperatively, while the time-driven model needs a preemptive type
of scheduler. e model of execution therefore proposes a unified manner to implement
both data-driven and time-driven models of computation, and for this, it identifies the
common operation primitives of these models.

e model of execution is implemented in form of a lightweight Operating Sys-
tem (OS) library, namely CompOSe. e CompOSe library is instantiated in every parti-
tion of the VP created by CoMik for an application. As illustrated in Figure ., CompOSe
is designed in a number of soware units for: (i) providing the main, interrupt handler,
and exception handler soware hooks required by CoMik from a partition, (ii) imple-
menting the execution primitives of the model of execution using the API provided by
CoMik, and (iii) giving model of computation specific support to the application by pro-
viding Soware Containers (SCs). CompOSe is implemented in such a way that it does
not introduce any unpredictability in executing an application on top of the CoMik mi-
crokernel and therefore it complies with predictability and composability of the system.

Finally, at the application layer, multiple applications can be expressed in different
models of computation each of which execute in a partition of a dedicated VP. e



Chapter  INTRODUCTION

applications may use its own arbitrary type of task schedules, and even handle their
own interrupts and exception in fully isolation of the other concurrent ones.

. Contributions

is dissertation makes six contributions to develop the solution of providing Compos-
able VPs for mixed-criticality systems, as follows.

. e temporal partitioning technique is applied to the CompSOC embedded tem-
plate for the purpose of creating composable VPs. For this, a Timer-centric Inter-
rupt and Frequency Unit (TIFU) is developed. is hardware unit enables com-
posable temporal partitioning of the processor, offers isolated virtual time man-
agement of the applications execute in a partition, and provides interrupt virtual-
ization support¹.

. eCoMikmicrokernel is designed and implemented as virtualizing soware layer
that creates strongly composable temporal partitions for each application, and ab-
stracts the execution operations of the underlying platform by providing a set
of higher level of abstraction API to the applications execute in their partitions.
CoMik implements a cycle-level composability between the partitionwithout need-
ing to modify the processor architecture¹.

. e unified model of execution is proposed to fill the gap of execution abstraction
between the models of computation’s semantics and the primitive execution oper-
ations supported by the VPs. It realizes the models of computation by using their
common execution operations and representing them with a sequence of regular
expressions.

. e CompOSe library is designed as a lightweight OS to implement the model of
execution. It is designed to run as an untrusted code in a partition and accesses
the underlying platform resources in controlled and restricted mode. By the set
of API and SC that it offers to applications, multiple models of computation with
different time-criticality can be implemented on the platform.

. e timing properties of the proposed composable platform are formalized by in-
troducing a response time analysis of time-driven applications to check for their
schedulability on the CompSOC platform. e formalization enables application
developers following two design options: (i) (re-)design (legacy) applications to be
schedulable on the CompSOC platform, and (ii) adjust the partition parameters,
i.e., slot allocations and slot sizes, so that the available (legacy) applications would
be schedulable.

. e predictability, the composability, and the support of multiple models of com-
putation are demonstrated empirically by using two major experiment setups.
One, a Matlab simulation of the virtual platform is prepared to investigate the

¹ is contribution is a joint research work done in collaboration with Andrew Nelson who also covers this
in his dissertation [].



ORGANIZATION Section .

temporal behavior of CoMik in partitioning the processor tiles. Two, an FPGA
prototype of the platform is used to study the composability property and support
of multiple models of computation. For this, a number of use-cases consisting of
real and synthetic applications execute on an MPSoC instance of the CompSOC
platform.

. Organization

In the rest of this dissertation, the solution is organized and presented according to Fig-
ure .. Immediately aer this introduction chapter, Chapter  gives an overview of the
background information, starting with the definition of the predictability and the com-
posability properties for embedded systems. Aerward, it introduces how these prop-
erties is implemented in the existing template of CompSOC architecture. e chapter
provides also a detailed description of data- and time-driven models of computation.

Chapter  first motivates the virtualization technique as the solution for composabil-
ity. en it proposes partitioning techniques that can be used for virtualization. Finally,
it described the details of CoMik soware architecture.

Chapter  presents the model of execution and its implementation in the form of the
CompOSe library. It details the complete structure of CompOSe soware units and how
an application can be implemented using this library.

Chapter  first proposes a response time analysis of time-driven applications to check
for their schedulability on the CompSOC platform. Second, it demonstrates the pre-
dictability, the composability properties of our system, and the support of multiple mod-
els of computation by Matlab simulation and Field Programmable Gate Array (FPGA)
emulation of the platform. It presents the empirical results of some real and synthetic
application use-cases.

Chapter  concludes this dissertation with respect to the contributions introduced in
the introduction chapter. It proposes several opportunities for future research work.





CHAPTER2
Background

t
hemain objective of an embedded system is to carry out a set of algorithmic
tasks realizing a number of applications. For this purpose, system develop-
ers have to follow three main steps. ese steps are presented in Figure .
together with their corresponding levels in an embedded system stack.

At the design step, the applications’ tasks are expressed in high-level algorithms. At
the implementation step, every application is then implemented using a model of com-
putation. At the execution step the application is executed on the hardware/soware
platform. e execution step refers to two levels in the system stack: a model of ex-
ecution and the execution platform. A model of execution fills the gap of execution
abstraction between the model of computation’s semantics and the primitive execution
operations supported by the platform.

Nowadays, embedded applications have a time-criticality level, i.e., real-time or non
real-time requirements. A mixed critical system therefore has applications with more
than one criticality level. In case of real-time applications, the system has to ensure that
the timing requirements of the applications are met. For this purpose, the system has to
be designed in such away that the timing characteristics of the system are sowell defined
that the temporal behavior of the applications can be verified against their requirements
before actually executing on the platform. Resource sharing between applications with
mixed time-criticality concurrently executing on a single platform causes interference
between the applications. e interferencemay cause unpredictable (temporal) behavior
of the applications. In order to prevent this, the applications have to execute temporally
isolated.

Predictability and composability are two system properties that are proposed to deal
with these challenges []. As depicted in Figure ., predictability applies to the imple-
mentation and the execution steps. It therefore covers the model of computation, the
model of execution and the platform layers of the system stack. Composability instead
involves the layers that are shared between the applications, i.e., the model of execution
and the platform layers.

In this chapter, we first define the predictability and the composability properties
for an embedded system. Following that, starting from the boom of the stack, we
elaborate on the state-of-the-art approaches that are used to realize the predictability and



Chapter  BACKGROUND

Application N

MoC N

MoE

PlatformC
om

po
sa

bi
lit

y

P
re

di
ct

ab
ili

ty

design

implementation

execution

Application 1

...

MoC 1 ...

Development StepsEmbedded System Stack

Figure .: Predictability and composability properties of the embedded system stack layers.

the composability properties at each layer. e main contribution of this dissertation is
in themodel of execution layer, hence, it will be discussed separately in the later chapters.

. Predictability

Predictability is a property of a system and is defined as a level of how well the timing
characteristics of the system are defined and implemented so that the system temporal
behavior is known before it actually starts running the applications []. In other words,
a system is predictable if it is possible to derive a temporal-behavior model of the system
so that the timing requirements of the running applications can be verified at design
time [].

A predictable temporal model can be either very detailed such that it corresponds to
the actual case of the system, or less detailed such that provides a boundedworst-case be-
havioral model of the system []. In the detailed model, the temporal behavior of every
resource of the system at eachmoment in time is known and therefore an exact execution
trace of an application’s temporal behavior can be derived from this model. Whereas in
the bounded model, the worst-case temporal behavior of the system’s resources can be
extracted, and therefore, the worst-case temporal behavior, i.e., minimum throughput
and maximum latency, of applications is known. In order to guarantee real-time re-
quirements of applications executing on dedicated resources of a system, it is necessary
and enough to come up with the worst-case behavioral model for all the components
involved in execution of applications.

Predictability is a boom-up property, meaning that it is not possible to have a pre-
dictable system developed on top of an unpredictable resource. erefore, in the em-
bedded system stack illustrated in Figure ., every resource of the execution platform
and the model of execution has to be predictable so that the temporal behavior of the
applications implemented in the models of computation is predictable, as well.

Later, this chapter introduces the architecture of the predictable execution platform
and the models of computation that are used to implement the applications with mixed
temporal criticality.



COMPOSABILITY Section .

. Composability

To reduce the cost when a number of applications execute concurrently on a single
platform, the resources are shared between the applications. Resource sharing causes
temporal interference between the applications. In a mixed-criticality system, such in-
terference might be either predictable or unpredictable. e predictable interference
is typically between the real-time applications with the bounded temporal execution
behaviors; whereas the unpredictable interferences result from the non-real-time ap-
plications. In case of predictable interference, as the number of concurrent execution
combinations of the applications may grow exponentially, the verification and integra-
tion would become dramatically difficult []. In the case of unpredictable interference,
it is not possible at all to verify the timing requirements of the real-time applications and
therefore to integrate them with the non-real-time ones.

Composability is the property that the temporal (and functional) behavior of an ap-
plication is isolated and independent from of other concurrent applications. A system is
either weakly or strongly composable. Traditionally, weak composability is denoted as
a relaxed isolation between applications, where with the help of predictability a system
could make the worst-case temporal behavior of an application unaffected by the other
applications []. is enables a compositional computation of worst-case bounds of the
real-time applications. However, in the systems with mixed criticality applications the
weak composability does not help to reduce the complexity of system verification and
integration as whenever one of the applications changes or a new application has to be
integrated with the existing ones, the overall process of verifying all the applications’
timing requirements has to be repeated.

Recently, a stricter definition of composability, which is orthogonal to predictability,
is proposed as strong composability [, ]. In this definition, the isolation between the
applications is in such a way that the actual-case temporal behavior of each application is
unaffected, i.e., the exact starting, finishing, and actual and worst-case timing properties
of an application are cycle-accurately independent of the other applications. is enables
independent design, verification, and integration of mixed-criticality applications. From
now on, in this thesis, where we denote composability we mean such a strict definition.

Since composability is defined as an inter-application property, it only applies on
the layers of the system stack that deal with shared resources between the applications.
ese are the model of execution and the platform layers in Figure .. e layers have
to implement the resources or manages the access of the applications to resources such
that the temporal isolation between the applications are guaranteed at cycle-level. e
technology to implement composability differs per resource type. Later, this chapter
introduces how the composability is implemented in the existing architecture of the
execution platform.

. Hardware Platform Architecture

Shrinking the feature size of the transistors has led to low-cost integration of more and
more number of processing resources on a single chip and consequently allows designing



Chapter  BACKGROUND

complex chip multiprocessor architectures []. However, since the requirements of
applications grow ever faster, these architectures are still resource constrained. For cost
reasons, the applications executing on these platforms have to share some resources,
such as processors, interconnect, memory blocks, etc.

In order to guarantee predictable and composable execution of applications with
mixed time-criticality, each resource has to be specifically designed and implemented for
this purpose. CompSOC is a system-on-chip template developed following composabil-
ity and predictability paradigm []. In the rest of this section we are going to describe
the CompSOC hardware architecture as the platform layer of the system stack depicted
in Figure .. All the other layers are developed on top of the CompSOC architecture.

.. CompSOC:AComposable&Predictable System-on-ChipPlat-
form

e CompSOC template implements a tile-based multi-processor architecture which
consists of a number of processor andmemory tiles communicating via an on-chip inter-
connect, as depicted in Figure .. Multiple applications may run on each processor tile
and the communicating tasks of one application may be mapped onto multiple proces-
sor tiles. us, the processor tiles, the interconnect, and the memory tiles are possibly
shared between and within the applications. All these resources have to be designed and
arbitrated in such a way that they realize predictable and composable execution of appli-
cations. In the rest of this section, we are doing to describe the detailed architecture
properties of these resources.

Processor Tile

A processor tile consists of a processing core, a data and an instruction memory, a num-
ber of communication memory blocks, a Programmable Interrupt Timer (PIT), a Clock
Control Module (CCM), and a number of Remote Direct Memory Access (RDMA) mod-
ules each of which is equipped with a dedicated memory block.

e processing core is a MicroBlaze [] embedded so core which is highly con-
figurable for some specific set of features that are necessary for the purpose of pre-
dictability and composability. e Microblaze is a -bit Reduced Instruction Set Com-
puter (RISC) architecture, optimized to be implemented on Xilinx Field Programmable
Gate Arrays (FPGAs) []. e processor can be configured for either three or five stage
instruction pipelining.

In the CompSOC platform, the instruction cache is disabled to remove the interde-
pendency between the applications due to cache misses/hits. e instruction code of the
applications are therefore stored locally in an instruction memory (imem in Figure .),
which is single-cycle accessible via the Instruction Local Memory Bus (ILMB). Ideally
private data of an executing application on a tile should also reside in the local data mem-
ory (dmem in Figure .) of the tile to minimize the data access latency. However, practi-
cally an embedded application has to transfer data to/from other tile’s memory locations
(when part of the application is mapped and executed on another tile), to/from off-tile
memory blocks such as Double Data Rate (DDR) Synchronous Dynamic Random-Access



HARDWARE PLATFORM ARCHITECTURE Section .

M
em

ory tile m

P
rocessor tile n

Processor tile i

MicroBlaze
soft-core

imem

dmem

cmemcmemcmems

cmemcmemdmamemscmemcmemRDMAs

PIT

CCM

Tile clkSystem clk

ILMB

D
LM

B

DPLB

DTL
D

TL

cl
k

FSL

clk

FS
L

on-chip interconnect

P
rocessor tile 1

M
em

ory tile 1

mem. cntrlr

SRAM/DDR
mem.

M
em

ory tile j

D
TL

D
TL

Figure .: e existing hardware architecture of the CompSOC platform.

Memory (SDRAM), or Memory-Mapped Input/Outputs (MMIOs). For this purpose, the
application initiates data read/write transactions over the interconnect.

When the processor directly performs such a data transfer over the interconnect,
it blocks until the transaction finishes. As the size of data being transferred may be
variable (or even infinite, for example in case of continuously streaming in/out data),
the blocking time is not known a priori. It is even worse when the processor executes a
misbehaving application: the processor may be blocked indefinitely. is compromises
the composability of the system when multiple applications execute concurrently on the
processor.

For such off-tile communication, RDMA modules, each of which is associated with a
memory block, denoted as dmamem in Figure ., are used. Every RDMA is assigned to
one application and can be programmed by the processor via the Data Processor Local
Bus (DPLB) to transfer data (with the granularity of  to  words) from/to a location in
its associated dmamem to/from another memory-mapped location through the intercon-
nect, e.g., remote memory of other tiles. Aer being programmed, each RDMA performs
off-tile communication independently of the application executing on the processor, and
its status may be read by the application to check if the transaction is done.



Chapter  BACKGROUND

Furthermore, other tiles in the system can use MMIO to transfer data to/from the
tile through communication memory blocks, denoted as cmems in Figure .. ese dual
port memories, from one side, are locally accessed by the processor via the Data Local
Memory Bus (DLMB) as scratchpad memories, and from the other side, they interface
with the interconnect via a Device Transaction Language (DTL) bus [].

Traditionally, to protect against unwanted memory accesses by a running applica-
tion, aMemoryManagement Unit (MMU) accompanies the processor. For the CompSOC
platform, a predictable and composable MMU is proposed in []. Due to a large cost
of this scheme, the module is not regularly instantiated in the platform. For stack pro-
tection, however, the Microblaze has an internal feature which is always enabled in the
CompSOC platform. In the next chapter, we present how this feature is used by the
soware architecture.

e PIT, which is programmable from the processor via a Fast Serial Link (FSL), is
used for two purposes: () to keep track of the time, and () to generate an interrupt
at a given moment in time. e first one is necessary for performance monitoring of
real-time applications. e laer is essential for implementing timed-event based func-
tionality in the system. Keeping such basic functionality of the PIT, in this thesis, we
later replace this component with a more advanced module, namely Timer-centric In-
terrupt and Frequency Unit (TIFU).

Every processor tile can run on a different clock frequency, for example, for the
purpose of power management []. In an FPGA prototype of the CompSOC platform,
this is emulated by the CCM which can divide the system clock frequency and provide
the tile clock. To perform such clock division, the CCM has to be tightly coupled with
the PIT. is technology leads to having two clock domains in every tile, as illustrated
in Figure ., with the tile clock and the system clock.

Memory Tile

ememory tile consists of a front-endmemory controller and a back-endmemory tech-
nology which can be a SRAM and/or DDR. e memory controller arbitrates between
the number of requester connections that want to access the back-end memory in such
a way that the accesses are predictable and composable []. e details are out of scope
of this dissertation, and for further information we refer to the literature [].

On-Chip Interconnect

e interconnect consists of traditional bus technology and the Æthereal Network-On-
Chip (NOC) architecture [, , , ]. A connection over this interconnect is recog-
nized as a request channel from a master port to a slave port, and a response channel
from a slave port to a master port. A master port may have a connection to multiple
slaves, and multiple masters may also have connections to a single slave. In these cases,
a master-bus at the master side and a slave-bus at the slave side are used to de-multiplex
and multiplex the connections, respectively.

e basic building blocks of the NOC are Network Interfaces (NIs) and routers. e
topology of Æthereal is arbitrary, where more than one NI may connect to a router. e



APPLICATION EXECUTION Section .

physical communication NI-router and router-router links are shared between multiple
connections. In order to provide predictable and composable communication for the
connections, a circuit switching routing algorithm is implemented with a Time Division
Multiplexing (TDM) scheme at NI sides. A design-time tool flow [] calculates the
size of the TDM slot table and allocates the slots to each connection according to the
given throughput and latency requirements of each connection. In this way, a bound on
latency and throughput of the connections over the interconnect is guaranteed.

Summary

e underlying execution architecture of the platform is a tile-based System-on-Chip
(SoC) with distributed shared memory. Every component of the architecture and the
overall platform is composable and predictable. e architecture is designed follow-
ing the Asymmetric Multiprocessing (AMP) scheme []. It means that the processor
tiles can be architecturally different. From hardware architecture perspective, at design
time, each processor tile can be configured to include different number of RDMA mod-
ules, different number of communication memory blocks, and different instruction, data,
communication and RDMA memory sizes []. Besides this, if required by an applica-
tion, any processor tiles can be equipped with dedicated hardware peripherals such as
I/O device controllers, e.g, TFT or Ethernet. From the soware architecture perspective,
each processor executes its own instruction code resident in its local instructionmemory
(imem), and can communicate via MMIO data transactions to distributed shared memo-
ries.

e scope of our work from now on is the composable and predictable execution
technology on a single processor tile. e next section goes one layer higher in the
system stack of Figure . to describe the preliminaries of executing the applications on
a processor tile.

. Application Execution

Traditionally, a soware stack running directly on top of a hardware infrastructure is
responsible for managing the execution of the applications to comply with the applica-
tion’s execution requirements. Such soware stack typically is an Real-Time Operating
System (RTOS) including drivers of the underlying hardware components. One of the
main responsibilities of an RTOS is to schedule different soware components on the
platform. In this section we present the preliminaries of scheduling operations on an
embedded system. Based on this discussion, in the following chapters, we present our
soware architecture for CompSOC platform. On top this architecture we will then
propose a model of execution.

.. Scheduling

Scheduling is to allocate time for use of a resource to a set of requesters. In case multiple
resources are available, a scheduler has to first assign a resource to the requester and
then allocate the time.



Chapter  BACKGROUND

For us, the finest grain granularity of a requester is a task, i.e., a task is a scheduling
unit for a processor. An application is then a set of communicating tasks. When multi-
ple applications are to execute concurrently on a multi-processor platform, a set of the
applications’ tasks have to be scheduled on the processors.

Global Vs. Partitioned Scheduling

Traditionally, the multi-processor scheduling can be done by following either a global or
a partitioned scheme []. In the global scheme, a central scheduler (as part of a global
Operating System (OS)) first assigns the tasks to the processors and then schedules them
to execute on the processors. In a partitioned scheme, the tasks are statically assigned
to the processors and a separate scheduler per processor allocates the processing time
to the tasks. e partitioned scheme is scalable comparing to the global scheme and
fits the best to the AMP scheme because the separate instance of the scheduler on the
processors can potentially use different scheduling policies. us, the soware stack
of the CompSOC platform has to implement the partitioned multi-processor scheduling
scheme.

Hierarchical scheduling

e statically partitioned set of tasks that are allocated to a processor tile may belong
to different applications. In such a case, conventionally, the scheduling is done at two
hierarchical levels []. At the first level, an inter-application scheduler selects an appli-
cation for which at the second level, an intra-application scheduler assigns the processor
time to one of its task.

Considering the embedded stack presented in Figure ., the composability is at the
application-level. erefore, when following hierarchical scheduling scheme, only the
inter-application scheduler has to comply with composability property. is allows the
applications to use different intra-application schedulers for their own purposes. In the
following chapters, we propose a soware architecture for the platform and we discuss
the implementation details of the hierarchical scheduling scheme.

Scheduling Classifications

Generally, based on the type of the triggers that invoke the schedulers, two scheduling
schemes can be distinguished: () time-triggered, i.e., when the scheduler is invoked by a
timed event, e.g., timer interrupt; () event-triggered, i.e., when the scheduler is invoked
by any other event than a timed event, for example, an I/O interrupt or data availability.

Furthermore, scheduling can be either preemptive or cooperativewith respect to how
the scheduler deals with the executing task. If the invocation of the scheduler preempts
the executing task, the scheduling is preemptive; whereas, in case of cooperative sched-
uling, the executing task is allowed to finish (or signal that it can yield the processor)
before the scheduler is invoked.

e invocation schemes of schedulers are orthogonal to their cooperativeness. is
means that event- or time-triggered schedulers can be preemptive or cooperative. Pre-



APPLICATION EXECUTION Section .

emptive schedulers are invoked immediately when the triggers are raised, while in case
of cooperative ones, a time delay may exist between the time that a trigger is raised and
the time that the scheduler is invoked.

From an application perspective, these schemes affect its task’s execution timing.
We will discuss the effect of each scheduling scheme as part of our model of execution
proposed in the future chapters. For this purpose, in the rest of this section, we introduce
the applications’ task temporal model that we consider in this thesis.

.. Task Temporal Model

In an execution platform, a task is a piece of sequential code that implements a part of an
application. It is then translated into a sequence of processor instructions that executes
as the body of the task, implementing its functionality. is sequence of instructions
are known as the task’s workload, denoted as C , and measured in number of processor
clock cycles needed execute the code entirely. In case of real-time applications, every
task’s (worst case) workload has to be known before the task actually executes on the
processor. Whereas for non-real-time applications this is oen not the case.

Assuming that a task with workload of C cycles executes on a processor, we define
the execution temporal model of the task as illustrated in Figure .. In what follows,
the characteristics of the temporal model for a task (τi) are described.

release time (also known as arrival time) (ri): the time moment at which the task is
ready to execute.

start time (si): the time at which the task receives the control of the processor and
starts to execute.

finish time (fi): the time at which the task finishes.

due time (also known as deadline) (di): the time before which the workload of the
task must be finished. In real-time applications, the deadline is a key requirement
that imposes constraints on the execution of the tasks. Tasks of non-real-time
applications do not have deadlines.

preempt time (pri j): the j th time at which the executing task is preempted and the
task loses the control of the processor. Note that a task may never get preempted
during its execution.

resume time (rsi j): the time at which the task preempted at the time pri j receives back
the control of the processor to resume its execution.

(actual) execution time (eti): the sum of all the time durations in which the tasks has
been executing and it is equivalent time to the task’s workload. Mathematically,
assuming that the task is preempted n times, and rsi 0 = si and pri n = fi , then,
eti =∑n

1 (pri j − rsi (j−1)).

logical execution time (leti): the duration between the finish time and start time of
the task, i.e., leti = fi − si . It is called logical time since the task has been actually
executing only in some parts of this time.



Chapter  BACKGROUND

re
le

as
e

tim
e

st
ar

t t
im

e

pr
ee

m
pt

 ti
m

e

re
su

m
e

tim
e

pr
ee

m
pt

 ti
m

e

re
su

m
e

tim
e

fin
is

h
tim

e

du
e

tim
e

(d
ea

dl
in

e)

re
le

as
e

tim
e

response time

logical execution time

(actual) execution time
+

blocking time
+

inter-release time

Figure .: A Task execution temporal model.

blocking time (bli): the sum of the all time durations in which the task has been pre-
empted. Mathematically, bli = leti − eti .

response time (rspi): the duration between the finish time and release time of the task,
i.e., rspi = fi − ri .

inter-release time ti : the duration between the two consecutive release times of the
same task. Depending on the task’s model of computation, its inter-release time
could be periodic, aperiodic, or non-periodic.

Such a temporal model of a task is general and it has different interpretations in
different applications’ models of computation. To show this, in the following section, we
introducemodels of computation that we use in this thesis to implement the applications.

. Model of Computation

At the top of the embedded system stack in Figure ., an application is a set of algorith-
mic computational operations that realize a functionality. To execute each application
on the platform, amodel of computation implements the application using a set of formal
semantics defined to express the computational operations [].

As embedded applications belong to various domains such as consumer electronics,
automotive electronics, avionic, industrial control, medical electronics, etc., the appli-
cations realize different functionality with different intrinsic behaviors. For example,
multimedia applications have different functional behavior comparing with an engine
control application. One example of multimedia applications is a video codec that typ-
ically receives an streaming input of data on which it applies some computation and
outputs an stream of data for illustration. Instead, the engine control application, as an
example of automotive applications, periodically reads some sensors, applies some com-



MODEL OF COMPUTATION Section .

putation, and produces a signal to control an actuator at specific moment in time. us,
different models of computation are required to implement different applications.

Traditionally, the applications are first implemented in a sequential model of com-
putation using an imperative programming language such as C. Due to recent advances
in execution platforms that enable concurrent execution of multiple tasks, concurrent
(parallel) models of computation are used to implement an application by parallelizing
its functionality into a number of individual tasks.

Depending on the intrinsic behavior of an application, its tasks may synchronize
naturally either on the basis of data availability or on specific times. In other words,
the tasks may be either data- or time-interdependent. Accordingly, two different models
of computation, namely data-driven and time-driven, are used to implement such inter-
dependencies between the tasks.

In this section, we first introduce these two types of models of computation. Second,
the predictability of the models is discussed. Finally, we conclude this section by pre-
senting how each model of computation realizes the tasks based on the model presented
in the previous section.

.. Data-driven Model of Computation

In the literature, various parallel models of computation are proposed for implementing
data-driven applications [], also known as streaming applications. Each of these mod-
els has its own properties that makes it suitable for various application domains [].
One of the two important properties of these models is expressiveness, i.e., the level of
computation primitives that a model of computation offers to express the applications’
functionality. For example, how algorithms that are dependent on the values of input
data could be expressed by the model of computation. e second property is analyz-
ability for predictability, i.e., how amenable the model is for timing analysis so that the
minimum throughput and maximum latency could be estimated. For example, in a real-
time application, once started, tasks may execute without any blocking, and therefore,
a worst-case bound for their logical execution time could be estimated. Usually, there is
a trade-off between the analyzability and the expressiveness of a model of computation.

e comparison between the relative analyzability and the relative expressiveness
of the most widely used data-driven models of computation is presented in []. Here,
Figure . presents this comparison among the sequential programming models, the
Kahn Process Network (KPN) model and three variants of dataflow model, namely Sta-
tic Dataflow (SDF), Cyclo-Static DataFlow (CSDF), and Variable Rate Dataflow (VRD). In
general, sequential models of computation have no restrictions in using the primitives
of imperative programming languages such as C, and therefore they can be highly ex-
pressive in modeling different behavior of applications, except for parallelism, but the
analyzability of the models may be lost.

Adhering to coding restrictions, sometimes a sequential model of computation can
be automatically transformed into parallel models of computation [, ], such as Kahn
Process Network (KPN) [], and dataflow [], and can be used in Firm Real-time (FRT),
So Real-time (SRT), and Non Real-time (NRT) application domains.



Chapter  BACKGROUND

expressiveness

analyzability

no
n-

re
al

tim
e

re
al

tim
e

so
ft

fir
m

ap
pl

ic
at

io
n

cr
iti

ca
lit

y

dataflow
VRDCSDF

SDF

KPN

se
qu

en
tia

l p
ro

gr
am

m
in

g

Figure .: Analyzability versus expressiveness for common data-driven models of computation.

eKPNand dataflowmodels are networks of concurrent nodes, referred to as processes
in KPN and as actors in dataflow terminology []. A node is a functional mapping from
inputs to outputs. Each node executes for a possibly infinite number of activations. Nodes
communicate along unidirectional channels by means of data tokens that are sent and
received in a First-In-First-Out (FIFO) order, as presented in Figure ..

N1

N2 N4

N3 N5

N6 N7

FIFO channel

Figure .: Node graph of a data-driven model of computation.

In the following subsections, we describe the characteristics of the KPN and the
dataflow models in details.

Kahn Process Network

A KPN process body, presented in Listing ., consists of a sequence of read, compute,
and write operations. ese operations may be interleaved in any order, and a process
may read or write an arbitrary number of tokens from or into a FIFO. Although theoret-
ically the FIFO sizes are infinite, practically, each FIFO is implemented with a bounded
capacity []. A process blocks on a read or write when the FIFOs does not have enough
data or space, respectively. With limited size FIFOs, the presence or absence of deadlock



MODEL OF COMPUTATION Section .

/* Start of process body */
initialization();

For (i=0; i<N; i++) {
x = read(<f4,1>); /* Read 1 data token from FIFO 4 */

P5_compute1(x);

if (x == 0) {
y = read(<f5,1>); /* Read 1 data token from FIFO 5 */

} else {
y = P5_compute2(x);

}
z = P5_compute3(y);

write(<f6,1>, [z]); /* Write 1 data token to FIFO 6 */
}

write(<f6,1>, [a_final_token]); /* Write 1 data token to FIFO 6 */

finalization();
/* End of process body */

Listing .: An example pseudo-code of a process in a KPN model of computation.

can be computed at design time for any KPN graph []. A KPN process is activated once
and the process itself has to implement any iterative execution, as presented in Listing .
with the main loop inside the body.

Dataflow

A dataflow actor body is a sequence of consume, compute, and produce operations,
in this strict order, as presented in Listing .. A firing rule specifies, for one actor
activation, for each incoming and outgoing edge, the number of input tokens consumed
and the number of tokens produced, respectively. For example, in Listing ., the firing
rules of the task check for different number of tokens on FIFO  and , in its two cycles.
Once the firing rule is satisfied, an actor executes its entire body without blocking on
input or output. e actors is activated whenever their firing rules are satisfied. An
actor executes for an infinite number of activations. In dataflow, each activation of an
actor corresponds to one iteration over its body.

Different variants of dataflowmodels exist, e.g., SDF, CSDF [], Variable RateDataflow
(VRD) []. SDF and CSDF are analyzable, i.e., the worst-case timing behavior of their
graph can be computed, when their sequential actors have bounded execution time. is
is due to the fact that the execution time of a dataflow actor does not depend on its com-
munication with the other actors and therefore aer the actor firing rules are satisfied,
the input an output tokens are ready for the entire execution of it computation with-
out any blocking. us, given the worst-case execution time of all actors, the worst-
case latency and throughput of the graph can be calculated. Given a predictable Multi-
Processor System-on-Chip (MPSoC) platform, the communication time between the ac-
tors can be also bounded. erefore, existing formalisms can analyze an application and
derive an end-to-end latency, throughput, and buffer sizes for it [].



Chapter  BACKGROUND

/* Cyclo static firing rules */
switch cycle
case 0:
wait_until (data_token_available_on_fifo(<f4, 1>, <f5, 1>)

AND
space_token_available_on_fifo(<f6, 2>));

case 1:
wait_until (data_token_available_on_fifo(<f4, 1>, <f5, 0>)

AND
space_token_available_on_fifo(<f6, 1>));

End

/* Start of actor body */
x = consume(<f4,1>); /* Consume 1 token from FIFO 4 */

IF (cycle == 0) y = consume(<f5,1>); /* Consume 1 token from FIFO 5 */

w = P5_compute1(x);

IF (cycle == 0) z = P5_compute2(y);

IF (cycle == 0) {
produce(<f6,2>, [w,z]); /* Produce 2 tokens to FIFO 6 */

} ELSE {
produce(<f6,1>, [w]); /* Produce 1 token to FIFO 6 */

}

/* End of actor body */

cycle = (++cycle) MOD 2; /* Increment cycle for the next activation */

Listing .: An example pseudo-code of an actor in a CSDF model of computation.

Our target platform can execute all three mentioned variants of the dataflow. How-
ever, in this dissertation, we only focus on CSDF. In CSDF every actor has a set of
cyclically changing static firing rules. As illustrated in Listing ., depending on the
cycle of the firing-rules set that an activation is in, a static firing rule checks different
FIFOs against the expected number of available tokens.

Analyzability Vs. Expressiveness

KPN and dataflow have different properties that make them suitable for different ap-
plication domains. Some variants of the dataflow are suitable for the FRT domain that
demands timing analysis, since the actors execute their entire body without blocking.
However, dataflow is not expressive enough to model dynamic application behavior,
e.g., the production and consumption of a data-dependent number of tokens on a chan-
nel. Such behavior is common in the signal processing domain, e.g., variable-length
encoding and decoding.

KPN is a suitable model for such dynamic applications, as it allows arbitrary pro-
duction and consumption rates and arbitrary interleaving of communication and com-
putation inside a process. On the other hand, KPN is not amenable to timing analysis
required for FRT applications for exactly those reasons. However, this unpredictable
timing behavior may be analyzed statistically to come up with a probabilistic timing be-
havior that may cause occasional deadline misses at run-time, which is acceptable for



MODEL OF COMPUTATION Section .

SRT applications []. us KPN can only fit NRT and SRT applications.

e execution of both KPN and dataflow models on an MPSoC platform enables our
model of execution to support several application domains.

.. Time-Driven Model of Computation

Traditionally, real-time applications are implemented using time-driven models of com-
putation. In this model, an application’s functionality is split into a number of (concur-
rent) jobs. Each job is ready to execute at an specific moment in time, when it assumes
the data and the space that it may require for its execution are available.

J1

J2 J4

J3 J5

J6 J1

memory-mapped location

memory access

Figure .: Job graph of a time-driven model of computation.

e jobsmay communicate with each other throughmemory-mapped data locations,
as illustrated in the job graph of Figure .. In this model, no job blocks on data or space
that it needs for its execution. us, the applications implemented with this model is
predictable, if the (worse-case) execution time of each job is bounded. A pseudo code
example of a time-triggered job is presented in Listing ..

If there is more than one job ready to execute at a time, the one that has given higher
priority starts executing and it may preempt a running lower priority job.

/* Wait until a given time to fire */
wait_until (time);

/* Start of job body */
x = *memory_location_ptr_1;

y = J7_compute(x);

*memry_location_ptr_2 = y;

/* End of job body */

Listing .: An example pseudo-code of a process in a time-triggered model of computation.



Chapter  BACKGROUND

.. Summary

In this section we presented two common models of computation, i.e., data- and time-
driven, that are used to implement real-time applications. In these models, each appli-
cation is parallelized into a number of concurrent process, actor, or jobs.

To execute the applications on the platform, each of the processes, the actors, and
the jobs, have to be realized by the task model introduced in Section ... However,
some of the general task characteristics refer to different intrinsic behavior of tasks in
each model of computation. Here, we explain the most important ones.

In the KPN model, every process corresponds to a task. As there is no specific con-
dition for a KPN process to start executing, it is released once the system starts, and it
may ormay not finish its execution in the system life-time. No deadline and inter-release
time is therefore defined in this case. e performance of an application depends on its
actors’ execution times.

In the CSDF model, every actor corresponds to a task. An actor is released when its
firing rules are satisfied. e minimum inter-release time of an actor is therefore equal
to its minimum response time, i.e., an actor is released immediately aer it finishes one
iteration if the firing rules are satisfied. Similar to the KPN process, no deadline is defined
for CSDF actors, and the performance of an application depend on its actors’ execution
times.

In the time-driven model, every job corresponds to a task. e release time, deadline,
and inter-release time of the jobs are given at design time. If the the inter-release time
is always fixed the task is released periodically, whereas, in the case of variable inter-
release time the task is aperiodic.

Considering all these characteristics of themodels of computation tasks and based on
the scheduling classification presented earlier in this chapter, we can summarize com-
mon scheduling schemes in each model of computation in Table ..

In the KPN and the CSDF models production of data tokens in FIFOs are the events
that can trigger the schedulers cooperatively. In KPN, process may also block at any
moment in time on a FIFO read or write. In this case, the process either cooperatively
yield the control of the processor to the scheduler or it waits until an interrupt preempts
it. e preemption is necessary to avoid deadlock. In CSDF, yielding or preemption is
not necessary since actors do not block on acquiring tokens at all. In the time-triggered
model, unless execution of jobs are exclusive in time, preemptive task scheduler is re-
quired.

In the later chapters, where we propose our model of execution, we explain in details
how the KPN processes, CSDF actors, and time-driven jobs are actually implemented and
executed in our execution platform, and we reason further how a scheduling scheme
suits a model of computation the best with respect to Table ..



MODEL OF COMPUTATION Section .

Table .: Task scheduling overview of the models of computation.

Task Scheduling Invocation Scheme Scheduling Class

KPN process Event-Triggered cooperative or preemptive

CSDF actor Event-triggered usually cooperative, sometimes preemptive

Time-driven job Time-Triggered (almost) always preemptive





CHAPTER3
Composable Virtualization

v
irtualization is the technology to provide an illusion of execution re-
sources to applications so that the applications behave like running di-
rectly on the bare resources [, ]. Such an illusion is provided by creating
a virtual instance of the actual platform, known as Virtual Machine (VM)

or Virtual Platform (VP), by a Virtual Machine Monitor (VMM) or a hypervisor [].

e objective of virtualization is different fromone application domain to the next [,
]. e most important ones can be enumerated as: () isolating applications execu-
tion, () load balancing, () power management, () security, () supporting legacy ap-
plications by running different OSs. In this work, we use virtualization technology to
perform predictable, composable verification, integration, and concurrent execution of
mixed-criticality applications on the CompSOC platform. Moreover, this also enables us
to run different OSs concurrently on the same platform.

Depending on whether the VP is created directly or indirectly on the hardware plat-
form, the Virtualization technology is classified into two types. In virtualization of type-
I, the VP is created directly on the hardware platform, whereas in type-II, an OS typically
hosts the VP. Due to resource constraint in embedded systems, the type-I VP is typically
created by a microkernel. A microkernel is a minimal super-privileged soware layer
that provides only essential services of partitioning for the purpose of virtualization [].

In the context of the CompSOC platform, we propose a microkernel, namely CoMik,
to achieve the objective of a virtualized predictable and composable platform. CoMik
creates a VP for every application. All the resources that are involved in the execution
of an application on the platform are virtualized. Figure . presents an abstract view on
the virtualization architecture. In order to create a virtual platform, different techniques
have to be applied to every resources. For this purpose, in general, we use either of two
techniques: () dedicating the resource, or () partitioning the resource.

Dedicating a resource to a VPmeans that the resource is assigned to a specific VP, and
only the application executing on that VP is allowed to use this resource. In this work,
such technique is only applied to RDMA modules in the processor tiles. As explained
in Section .., every RDMA is exclusively assigned to one application that executes in
a VP.



Chapter  COMPOSABLE VIRTUALIZATION

Processor tiles NOC Memory tiles

Hardware Platform

Processor tiles NOC Mem. tiles

VP1

Processor tiles NOC Mem. tiles

VP1

Processor tiles NOC Mem. tiles

VP1

Application 1 Application 2 Application 3

Figure .: An overview on the virtualization scheme of the CompSOC platform.

All the other resources are virtualized using the partitioning technique. In the rest
of this chapter¹ we first explain how the partitioning technique is applied to differ-
ent resources of the platform, and we then describe the concept of composable VPs
in the CompSOC platform. Following these, we present the implementation details of
the CoMik microkernel. We motivate the needs of hardware support for virtualization
where we detail the design architecture of TIFU². Using this new hardware, we demon-
strate how the interrupts are virtualized by CoMik. Before introducing howCoMik deals
with critical sections, the interrupt handling routines are explained. Finally, the boot
loading procedure of CoMik is presented.

. Partitioning for Virtualization

Depending on the service type provided by a resource to its requesters, the resource can
be partitioned temporally or spatially []. Temporal partitioning is applied to the re-
sources whose utilization time is shared between a number of requesters, for instance,
interconnect or processor. Spatial partitioning is typically applied to memory resources,
for instance, the data memory of a processor. In this section, we discuss how the re-
sources of target platform are partitioned either temporally or spatially.

In case of temporal partitioning of a resource, an arbitration scheme has to be used
to manage the access time of the requesters to the resource, and therefore, to create a
partition for every requester. A predictable and composable system imposes specific
constraints on the arbitration schemes. In a predictable system, an arbitration scheme
has to guarantee a minimum service provided by the resources to the requesters with
real-time requirements. Moreover, in a composable system, the arbitration scheme has
to also provide a guarantee on when the service is exactly available to a requester in
order to prevent the interference of other requesters. TDM is one of the arbitration
schemes that can be used for such a purpose.

TDM creates a set of time slots as fixed resource utilization time quanta. A temporal

¹ e content of this chapter is partially based on the following publications from the author of this disserta-
tion and his colleagues:[, , , , , , ]
² is module replaces the CCM and PIT modules existing in the CompSOC processor tile architecture pre-
viously.



PARTITIONING FOR VIRTUALIZATION Section .

processor imem
dmem

DMA
(& cmem) PIT

NOC Mem.
tile

processor imem
dmem

DMA
(& cmem) PIT

Partition 1 Partition 2
Space 1

Space 2
Partition 1 Partition 2

conn. 1

Conn. 2

Processor tile 1 Processor tile 2

composable
temporal partitioning

spatial partitioning Dedicated resource

HW platform

Virtual
platform

Virtual Platform 1 Virtual Platform 1

Figure .: An overview on applying partitioning techniques on the resources of the CompSOC
platform to create VPs.

partition is then a set of these time slots allocated to a requester following a periodic
allocation table. We define the size of a partition as the number of allocated slots in a
period of the table. Since the allocation table is fixed during the life time of a requester, a
minimum service of the resource and the exact time that the resource is available to the
requester can be guaranteed. In what follows, we discuss how this scheme is applied to
the resources of our predictable and composable platform, when it is needed.

Assuming that we are going to execute two applications mapped on a two-tile in-
stance of our target platform, Figure . presents all the hardware resources that might
be involved in executing these applications. e techniques that are used to partition
every individual resource in the granularity of their service units are visualized in the
partitioning layer of the figure.

In the processor tile, we use TDM to create composable temporal partitions of the
processor. In this way, we realize cycle-accurate temporal isolation between the appli-
cations. In Figure ., two temporal partitions, i.e., green and blue, are created for two
applications. An example of the TDM table for a platform accommodating these two
partitions is illustrated in Figure .. Every time slot is assigned to one partition, and
each slot is further split into two fixed sub-slots. e first sub-slot in which the system
soware, e.g., OS, VMM, or hypervisor, executes the system services such as scheduling
the applications, is denoted as the system slot. In the subsequent interval, denoted as
the partition slot, the application code executes. Later in this chapter, where we intro-
duce our soware architecture, we discuss the implementation details of how temporal
partitions are created on a processor.

e system time progresses based on the wall clock. However, for an application
executing inside a partition, the time progress is seen differently. In a partition’s slots,
the time progresses normally and follows the system time. When a partition is swapped
out with another partition, the time progress from this partition’s perspective is being
paused until the time that next slot of the partition is active. en, the partition time
resumes from the exact moment that has been paused in its previous slot. As illustrated
in Figure ., such a paused-resumed progress in system time for the partitions could be
seen as a continuous virtual time progress. is time virtualization is implemented by



Chapter  COMPOSABLE VIRTUALIZATION

TDM period
TDM time-

slot

TDM period

system
slot

timeline of
partition 1

timeline of
partition 2

partition
slot

Partition 1 Partition 2

system time

virtual time

Idle Partition

Figure .: A TDM-based processor partitioning technique illustrating virtual time-line of two
partitions.

applying partitioning techniques to the timer module available in the processor tile of
the platform. is technique is explained later in this chapter.

e instruction and the data memory, i.e., imem and dmem, can be partitioned to
allocate dedicated memory regions to every partition code and the system soware that
execute on a processor tile. Practically, partitioning the imem is not necessary in our
system, since all the system and applications code are compiled together at design time
and are statically put in the instruction memory. Instead, the dynamic partition of dmem
is created for every application at run time to be used for stack and scratch-pad memo-
ries. Figure . illustrates three spatial partitions of the processor tiles’ dmems, that are
created for application  and application , colored in blue, and green, respectively. e
same spatial partitioning could be also done for the shared memory tiles.

Each RDMAmodule with its associated memory is dedicated to one application. e
number of these modules allocated to one application depends on the application’s com-
munication requirements.

In the discussion of the interconnect architecture in Section .., we explained that
the predictable and composable communication is provided at the granularity of the
connections. A TDM scheme is then used to arbitrate the connections each of which
belongs to one application [].

Finally, the memory tiles are partitioned spatially and temporally. Spatial parti-
tioning is applied for the back-end memory block, whereas the temporal partitioning
technique is used for the front-end memory controller unit, as described in the litera-
ture [, ].

e following section explains how these partitioning techniques are used to create
a VP for every application.



COMPOSABLE VIRTUAL PLATFORMS Section .

Application 1 Application 2

Virtualization

System/User
Application

VP 1 VP 1

main interrupt exceptionmain interrupt exception

HW Platform
CompSoC

main interrupt exception main interrupt exception

Figure .: Applications running on their dedicated virtual platforms.

. Composable Virtual Platforms

Figure . presents partitioning of all the resources. A processor tile partition is formed
by a composable temporal processor partition, an spatial dmem partition, a number of
dedicated RDMA modules, and a temporal PIT partition. A logical connection between
two tiles is a temporal partition of the NOC, and finally, a dedicated memory block to an
application is an spatial and temporal partition of the memory-tile.

A hardware architecture of a VP is logically defined as a set of resource partitions
allocated to one application. In this way, every VP provides the application with an illu-
sion of a dedicated actual physical hardware architecture. is is the first step towards
the virtualization of an execution platform. e second step is to virtualize the execution
of tasks’ bodies of an application on each VP.

Typically, to execute an application directly on bare hardware, three instruction rou-
tines of the application have to be executed by a processor. ese routines, which we
denote as the soware hooks, are: () main function, () interrupt handler, and () excep-
tion handler. e main function is the routine that implements the primary functionality
of the application. e interrupt handler is the routine that is executed whenever the
processor receives an interrupt, and similarly, the exception handler is the code that is
executed when an exception (e.g., out of stack memory access) is raised. Every appli-
cation is therefore expected to provide these soware hooks to the processor. Conse-
quently, as illustrated in Figure ., every VP also provides a logical equivalence of these
hooks so that the application feels no difference when comparing its execution in the
VP to the actual bare platform.

In the rest of this chapter, we present the system soware architecture that imple-
ments all the aforementioned partitioning techniques for creating VPs on the processor
tiles, and executes the applications by providing virtual soware hooks.

. CoMik: a Composable Partitioning Microkernel

In the context of a predictable and composable system, the minimum services provided
by a microkernel are distinguished as, () to create, control and schedule processor-tile
partitions, () to execute an application in its partition by virtualizing the soware hooks
(i.e., the main function, the interrupt handler, and the exception handler), and () to



Chapter  COMPOSABLE VIRTUALIZATION

processor tile

main

microkernel boot loader

interrupt

interrupt handler

exception

exception handler

MMIO/FSL

drivers (DMA, TIFU)

Partition abstraction layer (create, control, schedule)

Hardware platform

Software platform

CoMik
microkernel

main interrupt exception APImain interrupt exception APImain interrupt exception API

Partition 1

Partition 2

Partition 3

Kernel mode

partition mode

Figure .: e architecture of the soware platform: CoMik in kernel mode, and partition rou-
tines in partition mode.

provide an Application Programming Interface (API) so that the applications could use
its allocated resources, for example, data send/receive API for using RDMA modules for
communication purposes.

In order to implement such services in the CompSOC platform, we develop CoMik
microkernel as illustrated in Figure .. Every processor tile of the system executes one
CoMik instance. On each processor, CoMik creates, controls, and schedules a number
of partitions each of which is allocated to one application.

CoMik runs in kernel mode as it is a trusted soware code with unrestricted resource
access. e application soware routines that execute in a partition, run in a partition
mode as they are basically untrusted code and their accesses to the underlying resources
are controlled and restricted by the microkernel. ese application soware routines
may implement a user application or a guest OS. e focus of this chapter is on the
structure of CoMik and generic partition-mode soware architecture. Later Chapter 
details the architecture of the soware that executes inside a partition.

e boot loader of CoMik is the main function that a processor starts executing at
the system start-up. Depending on the number of applications mapped to a processor at
design time, CoMik creates and initializes a number of partitions. is is done by using
the partition abstraction layer, as depicted in Figure ..

Initially a CoMik Control Block (CCB) is instantiated on the processor. A number of
Partition Control Blocks (PCBs) are created and linked to the CCB. Every PCB is asso-
ciated to a partition and is linked with the partition’s main function, interrupt handler,
exception handler, and all control blocks of the temporal and spatial partitions of the
other resources (e.g., a number of RDMA control blocks) allocated to this processor-tile
partition. Figure . presents an overview of the CoMik control block structure. e
temporal and spatial partitions of the processor-tile resources are statically created and
linked to PCBs.

Aer creating partitions, CoMik uses these control blocks to schedule and control
each application executing in the partition. Moreover, by wrapping the soware drivers



COMIK: A COMPOSABLE PARTITIONING MICROKERNEL Section .

CoMik Control Block
(CCB)

Partition Control
Block (PCB)

Partition Control
Block (PCB)

...

Main function

Interrupt handler

Exception handler

other resource control
blocks

RDMA CB

Memory CB

Frequency CB

Interrupt CB

Timing CB
Control Block function pointer

Figure .: Data structure of CoMik.

of virtualized hardware resources, CoMik provides a set of API to the applications so that
the applications can access to the resources. e API ensure controlled and restricted
access of every application to its own temporal/spatial partitions of the resources. For
example, each application can only allocate/free memory in its dmem spatial partition
and it cannot affect the memory usage of allocation of other applications.

In the rest of this section, we first describe how CoMik realizes and schedules the
temporal partitions. Second, we introduce the data memory partitioning layout imple-
mented by CoMik. Following that, the extra hardware support required for our purpose
of virtualization is introduced, and we explain the techniques that CoMik uses to vir-
tualize the interrupts and exceptions. Finally, the general execution flow of CoMik is
presented.

.. Composable Temporal Partitioning

eTDM-based technique for temporal partitioning of the processor is described in Sec-
tion ., and illustrated in Figure .. Since CoMik plays the role of a VMM in our system,
we denote the system slot as the CoMik slot in the rest of this thesis. CoMik implements
the TDM technique using a periodic timer interrupt, denoted as the system interrupt,
that signals the end of the partition slots. For this purpose, CoMik programs the PIT
module with the fixed value of CoMik-slot size plus partition-slot size. More important,
every partition slot has to start exactly periodically. e start time of a partition slot
time is immediately aer the CoMik slot that comes aer the interrupt time of the last
partition-slot’s end, as illustrated in Figure .. is implies that every CoMik slot has
to also end at an exact moment in time. is is non trivial for CoMik to implement such
a fixed slot due to the two following phenomena.

First, when a system interrupt is raised in the middle of executing either an uninter-
ruptible critical region of the partition (application) routine or a multi-cycle instruction,
the interrupt may be prevented from being handled immediately by the microkernel.
is causes a variable jier in the start time of the microkernel operations (ta in Fig-
ure .), i.e., scheduling and swapping the partitions, that should be performed in the
CoMik slot. Second, these kernel operations may take a variable number of execution
cycles from one slot to another, and consequently an undesired jier in the start of the
next partition slot appears (tb in Figure .).



Chapter  COMPOSABLE VIRTUALIZATION

TDM period TDM period
partition slot

TDM time-slot

system slot Partition 1 Partition 2 Idle Partition

ta tb

Figure .: A TDM-based processor partitioning technique.

e proposed technique is to implement the CoMik slot by taking always into ac-
count the worst case of the both jiers. Figure . illustrates the details of this technique,
given the fixed size of the CoMik slot is C time units. Assuming that the system inter-
rupt notifies the end of the previous partition slot at time t in an uninterruptible section
(of at maximum Uwc time units), it takes an actual delay of Uac (≤ Uwc) time units for
the processor to start handling the interrupt. In order to remove the undesirable effect
of such a jier, when the interrupt is handled at t +Uac time, the processor is halted (by
clock gating) until the time of t +Uwc, where Uwc is the worst-case bound on the jier
and it is given at design time. us, the microkernel operations always start at a fixed
moment in time.

Similarly, as illustrated in Figure ., at the end of partition scheduling and swapping
which take Kac time units, the processor is halted until the time t + (C −R). erefore,
the following condition always holds true: Uwc+Kwc = (C −R). Here, R is the time that
is needed to switch back to the next partition stack and load the processor context of the
partition plus the time needed to preload the instructions of the next partition routine
in the processor pipeline to compensate for the pipeline flushing done last time when
this partition is interrupted. e stack switching and loading the context is implemented
with the fixed execution time, and in case of the Microblaze processor, in the CompSOC
platform, preloading part takes just  cycles.

Since the CoMik slot is generally an overhead of partitioning, it is desirable to min-
imizes its size. Based on the previous formalization, two approaches can be taken to
minimize the CoMik overhead: (i) minimize Kwc by efficient implementation of CoMik
code, and (ii) minimize Uwc by reducing maximum size of the critical (uninterruptible)
application code section.

.. Scheduling & Swapping Partitions

As illustrated in Figure ., themain operations performed by CoMik in its slot are sched-
uling and swapping the partitions. As each partition corresponds to an application, basi-
cally the partition scheduling implements preemptive, time-triggered inter-application
scheduling as described in Section ..

Swapping the partitions is done by swapping out the running partition, and then
scheduling the next partition. First, the context of the interrupted partition is stored.



COMIK: A COMPOSABLE PARTITIONING MICROKERNEL Section .

previous partition slot next partition slot

schedule & swap partitions clk gateprevious partition routine next
partition routine

uninterruptable
section ≤ Uwc

kernel operation (Kac)

System (CoMik) slot [C]

Uwc

t+
C

t+
C

-R

R

t Uwc + Kwc = C-R
time

clk
gate

Uac

Kwc

Figure .: A detailed view on the kernel operations and timeline in a CoMik slot.

e context of a partition includes the processor registers, and possibly the status of
other hardware resources that are shared between the partitions. An example of such
resources is the TIFU that we introduce later in this chapter. e processor registers are
stored on the dedicated stack space of the partition, while the rest of the context is kept
in the control blocks associated with the partition’s PCB.

In the partition scheduling step, the next partition is selected according to the TDM
table. If a TDM slot is not allocated to any application in the table, the idle partition is
chosen. When the idle partition is scheduled, the processor is halted for the duration
of the partition slot to reduce energy consumption. Aerward, the context of the next
partition is read from its PCB and loaded from its stack, the corresponding hardware
resources are programmed and the the processor’s registers are set.

.. Memory Partitioning Layout

e data memory (i.e., dmem) is statically divided into three logical sections by the linker
script³ at design time: () global data, () system heap, and () system stack, as illustrated
in Figure .. e first section is reserved to hold the global and constant variables of the
compiled code including the CoMik code. e system heap and stack sections are used
and managed by CoMik at run time.

Every partition requires isolated heap and stack memory sections. For this purpose,
as demonstrated in Figure ., CoMik allocates a fixed amount of memory space for every
partition’s private heap and stack by partitioning the system heap dynamically at run
time. e idle partition (Partition 0) does not need any heap memory, but since it may
be interrupted, a very small stack section is required.

e size of allocated heap and stack memory to each partition can be different from

³ A linker script describes the memory layout of the target machine, and specifies where each program section
should be placed in memory.



Chapter  COMPOSABLE VIRTUALIZATION

partition 1 heap

CoMik stack

partition 1 stack

Idle Partition stack

global data section

partition 2 heap

partition 2 stack

da
ta

 m
em

or
y

(d
m

em
)

sy
st

em
 h

ea
p

sy
st

em
 s

ta
ck

remaining system heap
managed by CoMik

Figure .: e data memory partitioning layout.

the others’ depending on the routines executing in the corresponding partitions. us,
the memory control blocks linked to each PCB has to keep the start, the end, the size,
and the current pointer of heap and stack sections.

e CoMik code uses exclusively the system stack (known therefore as CoMik stack)
and the remaining part of the system heap, while executing the main function, interrupt
handler and exception handler.

. A Hardware Support for Virtualization

e hardware architecture of the CompSOC processor tiles has to assist CoMik with
the basic functionality required to virtualize the platform. Timer-based functionality is
an essential required feature for this purpose. is motivates us to develop TIFU as a
hardware module that assist CoMik for virtualizing the platform. Figure . presents
the architecture of the processor tile including TIFU. TIFU interfaces with the processor
via FSL, generates tile clock, and issues an interrupt signal to the processor.

In the rest of this section, we explain the functions and detailed architecture of TIFU,
as presented in Figure .. TIFU has amodular architecture and is built around twomain
clock counters that trigger three timers and a frequency controller module. e interrupt
control module receives all the timer interrupts and the external interrupts to signify the
processor via the interrupt line. CoMik manages all these modules via the control unit.



A HARDWARE SUPPORT FOR VIRTUALIZATION Section .

MicroBlaze
soft-core

imem

dmem

cmemcmemcmems

cmemcmemdmamemscmemcmemRDMAs

CU
Tmrs

tile clksystem clk

ILMB

D
LM

B

DPLB

DTL

D
TLcl

k

FSL

clk

Processor
tile

IC
FC

TIFU

D
TL

Figure .: e processor tile architecture including TIFU.

.. Counters

A counter is a module that increments a register value based on clock ticks. e TIFU
contains two counter modules: () system counter, () tile counter. As the names suggest,
the system counter works on the system clock, while the tile counter works on the tile
clock which is a scaled version of the system clock and is generated by the frequency
controller module. e both counters are implemented with -bit registers to prevent
an overflow of the counters in a reasonable lifetime of the system.

e tile counter keeps track of the executing partition’s virtual time. When a system
interrupt signifies the end of the corresponding partition slot as illustrated in Figure .,
the tile counter is stopped and its register value is stored as part of the hardware context
of the previous partition. Later, the counter is loaded with the last value of the next
partition from when it has been stopped and the counter resumes from this value at the
start of the next partition slot. For this purpose, CoMik is able to get/set the register
values of the both counters.

.. Timers

A timer is a module that generates timed interrupts based on a time reference. e TIFU
is equipped with consists of three timer modules: () the system timer that generates
system interrupts based on the system counter, () the tile timer that generates interrupts
based on the tile counter, and () the mix timer which is exactly the same as the system
timer but generates interrupts to be used inside the partitions. e rationale behind the
mix timer is that if an application needs to use a timer based of the system counter, it
must not interfere with the functionality that is needed to create temporal partitions by
the system timer.

A timer interrupt is generated by comparing the value of a programmable register
inside the timer with the value of the corresponding counter. In order to set this register,
the timer can be programmed in either of two methods: () an absolute value of the time



Chapter  COMPOSABLE VIRTUALIZATION

system counter tile counter

frequency
controller

CoMik timer mix timer partition timer

interrupt
controller control unit

n

TIFU

external
interrupts

system
clk

tile clk

tile clkFSL link
Processor
interrrupt

interruptinterruptinterrupt

Figure .: e TIFU architecture.

moment at which the interrupt has to be generated is given, () a relative value of the
time moment with respect to the current value of the corresponding counter is given.
In the second method, the timer automatically adds up the relative value to the current
value of the counter and sets the programmable register.

Furthermore, the timers are designed to generate interrupts in two different modes:
one-shot and periodic mode. In the first mode, the timer is programmed with a time
moment to generate an interrupt once. In the second mode, the timer is programmed
with a time duration to generate a sequence of interrupts periodically aer an already
programmed interrupt.

e tile and mix timers can be set in one-shot or periodic mode by the routines of
an executing partition, while CoMik always programs the system timer in the periodic
mode to implement TDM-based temporal partitions. When swapping the partition in a
CoMik slot, the register values of the tile and mix timers are stored/loaded as part of the
hardware context of a partition. For this purpose, CoMik can get/set the programmable
register values of the timers.

.. Interrupt Controller

e interrupts that a processor may react to in the CompSOC platform are categorized
from the perspective of TIFU as internal and external interrupts, depending on the source
of an interrupt. Internal interrupt sources that generate timed interrupts, are the three
timers explained previously in this section. e system timer-interrupt is used by CoMik
to implement temporal partitions. e mix and the partition timer, each generates an
interrupt. ese interrupts are ORed together in a signal called partition timer-interrupt,



A HARDWARE SUPPORT FOR VIRTUALIZATION Section .

as illustrated in Figure .. An external interrupt source is either an in-tile or off-tile
resource intending to notify the processor that an event has been occurred. For instance,
an external I/O module.

Inside TIFU, the internal and the external interrupts are registered by the interrupt
controller in an interrupt vector register. Since the processor accepts an interrupt via the
one interrupt line, whenever any of the internal and external interrupts are raised and
a bit in the interrupt vector is set, the processor gets signified through that line.

Moreover, in partition time, the processor does not always have to react to all the
interrupts forming the interrupt vector register. In order to ignore some of the interrupts
that do not belong to the executing partition, the interrupt controller is equipped with
a masking register. When a bit is set in this register means that the processor has to
handle the interrupt linked with the corresponding bit in the interrupt vector register.
is is implemented by ANDing the masking and the interrupt vector register to create
a masked interrupt vector register. e processor interrupt line is then sensitive to this
register.

When the interrupt line of the processor is set, the source of the interrupt has to
be identified. For this purpose, CoMik has to access the registers. Additionally, when
swapping the partition in a CoMik slot, the masking and the interrupt vector registers
are stored/loaded as part of the TIFU context of a partition. us, CoMik can get/set all
these registers.

.. Frequency Controller

e frequency controller is implemented in TIFU, following a clock division technique,
as illustrated in Figure .. e TIFU receives the system clock as an input and based on
the given scaling ratio generates the tile clock with a frequency lower or equal than the
system frequency. e frequency change of the tile clock may be programmed in two
different modes, as one-shot or interval.

In the first mode, the frequency change is done for either an absolute or relative time
in the future with respect to the system or tile counter time references. In the second
mode, the frequency is changed for a duration of time, and aer the interval is finished,
the tile frequency is changed back to the original one. e duration can be expressed by
giving a relative value to the current time, or by giving an end time in the future.

Using these frequency change modes, the CoMik and any of the partitions routines
may run with different clock frequencies. In general, to reduce the overhead of CoMik
slot, the code executing in this time runs on highest possible frequency of the tile clock,
which is equal to the system frequency. For this purpose, the frequency controller re-
ceives the system interrupt so that when the interrupt is raised and a CoMik slot starts,
it increases the tile frequency.

Inside a CoMik slot, the interval frequency change mode is used to implement the
processor halting by changing the tile frequency to zero until the given moment in time
(as explained in Section ..).

e programmed frequency changes and the state of the frequency controller are
registered as part of the TIFU context, and CoMik can store/load them when swapping



Chapter  COMPOSABLE VIRTUALIZATION

the partitions in its slot. us, when a CoMik slot ends, the next partition starts with
the tile frequency that had been running on the last time that the partition was swapped
out.

.. Control Unit

e control unit of TIFU is designed following an instruction-based architecture. e
processor interfaces with TIFU by giving the instructions to the control unit via an FSL.
e control unit is then decodes the instructions and forwards them to the target mod-
ules.

e instruction are generally categorized in two sets of set and get instructions,
which are used to access the register values of the counters, the timers, the interrupt
controller, and the frequency controller module. All the instructions are provided as
part of a soware driver to be used by CoMik, as illustrated in Figure ..

. Interrupt Virtualization

e interrupts are categorized generally as system- and partition-level interrupts. e
system-level interrupt targets the microkernel. e only example of such an interrupt is
the system timer interrupt that is handled by CoMik to implement temporal partitions
and realize preemptive time-triggered partition (inter-application) scheduling.

e partition-level interrupts however target a specific partition. When a partition
level interrupt occurs, it has to be handled in its corresponding partition time, compos-
ably. is means that not only the other partitions are not notified that any interrupt
has been occurred, but also handling the interrupt does not affect their temporal and
functional behavior. An example of such an interrupt is when an application execut-
ing in a partition uses a timer interrupt to implement preemptive time-triggered intra-
application scheduler.

e TIFU supports partition-level interrupts including the non-timer ones. Inter-
rupts virtualization in this approach is not the maer of co-existing partition and sys-
tem interrupts, but it enables CoMik to virtualize partition-level interrupts between the
partitions.

All the partitions may use mix and tile timers. When the programmable and status
registers of the timers, together with the tile counter are stored/loaded in the CoMik
slot, as the partitions gets swapped. us, every partition uses mix and tile timers in full
isolation with the other partitions.

e timer and external interrupts are registered in the interrupt vector by the inter-
rupt controller. At the partition time, it is the interrupt mask vector that determines
to which interrupt a partition has to react to. Every partition has its own mask vector
which can change dynamically at run time independently from the other partitions. e
only interrupt that is not mask-able by the partition-mode code is the system interrupt
to prevent invalidating the system composability.



INTERRUPT MANAGEMENT IN COMIK Section .

. Interrupt Management in CoMik

When the processor is signified via the interrupt line that an interrupt has been occurred,
the running application routine (if it is not in a critical section, otherwise aer such
a section) is preempted and the CoMik interrupt handler receives the control of the
processor.

Depending on the interrupt source(s), CoMik has to distinguish between the system
and partition interrupts. e system interrupt is handled in the CoMik interrupt handler,
while the partition interrupts are handled by the interrupt handler of the running parti-
tion. In what follows, we describe the execution flow of handling system and partition
interrupts, in order.

.. CoMik Interrupt Handler

Figure . illustrates the CoMik interrupt handling flow. When the running application
is interrupted, the handling routine starts storing the processor context on the stack
memory of the interrupted partition. In order to be able to load this context later, the
pointer to the interrupted stack memory is kept in the CCB, and the working stack is
switched to the CoMik stack.

In order to find out the source of the interrupt, the masked interrupt vector is read
fromTIFU interrupt controller. If the system timer is the source of the interrupt, a CoMik
slot has to be implemented as illustrated in Figure .. Note that, if the partition and the
system interrupts are both set in the interrupt vector, the precedence is always given
to handling the system interrupt, since it implements the CoMik slot. Following the de-
scription in Section .., the interrupt handler then implements the partition scheduling
and swapping.

e handler first stops the partition timer and reverts the value back to the exact
time of the end of the previous partition. Following that, the system interrupt is ac-
knowledged by reseing the corresponding signal in the hardware.

e variable jier in start of the CoMik slot is removed by halting the processor until
an specific moment in time. When the processor wakes up, the current context of TIFU
for the interrupted partition is stored, and the TIFU is checked for errors.

Before scheduling the next partition based on the TDM table, we switch the working
heap space to CoMik’s heap. Aer the next partition is scheduled: first the TIFU context
of the partition is loaded; second, we switch the heap memory to the partition’s heap;
and third, the jier in scheduling operations is removed by halting the processor again
until an specific moment in time.

Finally, when the processor wakes up, we switch back to the next partition stack
and load the processor context of the partition. Aer preloading the instructions of the
next partition routine in the processor pipeline to compensate for the pipeline flushing
done last time when this partition is interrupted, at the end of the interrupt handler the
control returns to the next partition routine. If it is the first time that the partition is
scheduled, the control returns to the main function of the partition.

When the processor receives an interrupt signal and aer it enters the interrupt han-



Chapter  COMPOSABLE VIRTUALIZATION

dler the processor interrupt is disabled automatically by seing the processor status reg-
ister. e interrupt remains disabled during the handler execution, and at the end when
the control returns from the interrupt handler, the interrupt is enabled automatically.

.. Partition Interrupt Handler

Every partition has a partition interrupt handler. When the CoMik handler finds out
that the interrupt is a partition one, the corresponding partition interrupt handler has to
be called. We support two types of the partition interrupt handlers in CoMik, integrated
and standalone.

e integrated partition interrupt handler relies on the fact that the part of the CoMik
handler has been executed before, and it will eventually return back to the CoMik han-
dler. Instead, the standalone interrupt handler is totally independent from what CoMik
handler has done before, and it will never come back to it.

In what follows, we explain how CoMik handler passes the control to each of these
two types of partition interrupt handlers, as depicted in Figure ..

Integrated Handler

An integrated partition interrupt handler is developed with the assumption that the in-
terrupted context has been already stored on the corresponding partition stack by the
CoMik interrupt handler. us, maximum size of the corresponding application’s crit-
ical section has to be taken into account to estimate the worst-case jier bound of the
CoMik slot, i.e., Uwc illustrated in Figure ..

In order to call such a partition interrupt handler, first, CoMik switches back to the
partition working stack. It then disables the partition interrupts by changing the inter-
rupt mask vector in the TIFU, and it enables the processor interrupt so that the system
interrupt is not going to be missed. Aer this, the partition interrupt handler is called.

is type of the interrupt handler is implemented and called like a function, meaning
that it has to return back to the callee which is CoMik in this case. Aer it has returned,
the processor interrupt is immediately disabled so that the loading context of the inter-
rupted stack is protected. e rest of the operations are done as explained for the system
interrupt handler, and it is depicted in Figure ..

Standalone Handler

An standalone interrupt handler is developed totally independent of what the CoMik
handler has been doing before its call. It therefore does not contribute to any worst-case
jier bound of the CoMik slot.

As a typical interrupt handler takes care of storing and loading the interrupted con-
text, the standalone handler prepares a fully virtualized environment for such an inter-
rupt handler used by an application in a partition.

In order to call the standalone type partition interrupt handlers, the processor con-
text has to be reverted back to the same state as it was when it has been interrupted. For



INTERRUPT MANAGEMENT IN COMIK Section .

CoMik Interrupt
handler

save context

store interrupted
stack pointers

get the interrupt
vector

system timer
interrupt?

ack. the system
timer interrupt

switch to CoMik
stack

store partition HW
context (e.g. TIFU)

switch to CoMik
heap

partition scheduler

load partition HW
context (e.g. TIFU)

switch to the next
partition heap

interrupt jitter
removal

CoMik operations
jitter removal

switch to the next
(interrupted)

partition stack

load context

switch back to the
partition stack

disable partition
interrupts

integrated
partition interrupt

handler

integrated partition
interrupt handler?

stop & adjust the
partition timer

HW error check &
timing report

HW error check &
timing report

enable processor
interrupt

disable processor
interrupt

disable partition
interrupts

reserve space on
CoMik stack

enable processor
interrupt

disable processor
interrupt

remove space on
CoMik stack

standalone
partition interrupt

handler

switch back to the
partition stack

reload context

enable processor
interrupt

Y

N

Y

N

Return to next
partition routine

possibly return to any
point in the partition

routine

interruptible section

kernel-mode code

partition-mode code

integrated partition
interrupt hanlder

standalone partition
interrupt handle

Figure .: CoMik interrupt handling flow. 

Chapter  COMPOSABLE VIRTUALIZATION

this purpose, as illustrated in Figure ., the stack is switched back to the partition stack
and the context that has been stored at the beginning of the CoMik interrupt handler,
is loaded. But, before this, the partition interrupt has to be disabled by changing the
interrupt mask vector.

As the processor interrupt is still disabled at this stage, we enable and disable the
interrupt immediately so that to break having a long critical section that the system
interrupt cannot react to. We again disable the processor interrupt just before calling
the standalone partition interrupt handler.

When the control is passed to the partition interrupt handler, the processor context
is exactly the same as the moment it has been initially interrupted, but, the processor
interrupt is enabled and only the partition interrupts are disabled. is partition inter-
rupt handler may then do whatever it needs to without any obligation to return back to
any specific routine.

.. Exception Management in CoMik

e procedure of handling an exception is very similar to the one of the interrupts. e
CoMik exception handler is the first entry point of the exception, it is to identify how to
handle each exception. If an exception has to be handled by the partition particularly,
the partition exception handler is called; otherwise, the CoMik handles the exception.

Currently, all the exceptions are handled by the CoMik in the way that it first re-
ports the exception that has been occurred and then it stops the running partition. e
faulty partition is replaced with the idle partition in the TDM table so that it will not get
scheduled in any of the future slots.

. Critical Sections

eCompSOCplatform defines a critical section as a piece of code that has to be executed
uninterruptedly. An example of such a section is the TIFU driver API that sends two -
bit values consecutively via FSL (which a -bit wide link) to program a -bit register
in the hardware, and the code must not be interrupted in between sending these two
values.

In order to implement a critical section, all or some of the interrupts have to be
disabled for the duration of executing the section. For this purpose, there are two mech-
anisms available in the CompSOC platform: () disabling the processor interrupt using
the processor status register so that the processor does not react to any interrupt, () dis-
abling the interrupts by masking them in the interrupt mask register of TIFU so that it
does not issue any interrupt to the processor. Depending on the mechanism that is used,
we categorize the critical sections in two classes of kernel-mode and partition-mode. In
the following, we discuss each of these two classes in detail.



CRITICAL SECTIONS Section .

.. Kernel-Mode Critical Sections

During the execution of a kernel-mode critical section, we disable the processor interrupt
using the status register. e processor therefore is not signified by any of the system
and partition interrupts.

Since the system interrupt implements the composable temporal partitions, any de-
lay in handling this interrupt is acceptable only if it is less than or equal to the jier-
bound (Uwc) presented in Figure .. us, a kernel-mode critical section is a fully trusted
code with bounded execution time.

In order to implement such class of critical sections in the CompSOC platform, the
Microblaze processor comes with an API to disable/enable the processor interrupt by
manipulating its status register.

.. Partition-Mode critical sections

During the execution of a partition-mode critical section, we disable the interrupts by
seing the corresponding bits in the interruptmask register of TIFU. e partition-mode
critical section is an application code that executes in a partition. erefore it is not a
trusted code because if it were to execute too long it must be possible to swap out the
partition composably.

Using the interrupt mask register, both system and partition interrupt may be dis-
abled. Disabling only the partition interrupts is not a big challenge, however, if the
system interrupt is also disabled, there would be a significant challenge in enforcing the
required execution time bound to the critical section, in order to not compromise the
system composability. We therefore introduce two subclasses of partition-mode critical
sections, as described in what follows.

System-interruptible

In this class of partition-mode critical sections, only the partition interrupts are masked
in the interrupt mask register, and the code may be interrupted by the system interrupt.
Examples of such a critical section are the (integrated and standalone) partition interrupt
handlers described in Section ...

In order to implement this class of critical sections, CoMik provides applications with
an API to mask/unmask the interrupts by seing/reseing all the corresponding bits (to
the running partition) in the interrupt mask register.

Non-interruptible

In this class of partition-mode critical sections, all the interrupt including the system
interrupt are disabled. e mechanism of disabling the interrupts is similar to the one
of the system-interruptible class.

Maximum size of such a critical section has to be less than the worst-case jier bound
of the CoMik slot, i.e., Uwc illustrated in Figure .. To enforce the execution bound, a



Chapter  COMPOSABLE VIRTUALIZATION

watchdog timer technique is implemented. In this technique, at the beginning of the
critical section, when the interrupts gets disabled, the state of the mix timer is stored
and it is programmed to perform as a watchdog timer with the value of the jier bound.
In a normal case, if the critical section ends before the watchdog fires, the mix timer is
set back with its state as it was before the critical section. However, if the watchdog fires
before the critical section ends, it means that the execution time of the section goes over
the acceptable jier bound and it can possibly invalidate the system composability. In
this case, the interrupt that is issued by the watchdog is handled by the CoMik in such a
way that the running partition is stopped, an error is reported, and the system continues
without any problem. e faulty partition gets never scheduled back in the system in
any of the following partition slots, and it is replaced with the idle partition in the TDM
table.

. CoMik Boot Loading

e process of booting up a virtual platform on the corresponding processor tiles starts
by creating and initializing its partitions. In each processor tile, the CoMik main routine
is the first entry point of execution when the system boots up. A flow diagram of this
routine is presented in Figure .. In general, this routine creates a CoMik instance on
the processor tile, realizes the static temporal and spacial partitions of the resources, at
run time, and starts scheduling and executing the partitions.

e CoMik main routine is logically composed of two sections, as depicted in Fig-
ure .: () a boot loader which is a user-wrien section, and () a start-up which is
CoMik trusted code. In the first section, the user can statically configure the partitions
on the processor tile; following that, the start-up section actually starts executing the
partitions.

At the beginning of the boot loader, the TDM table, where each slot is allocated
to one partition, is initialized. e allocation is given at design time according to the
requirements of an application running on each partition. Aerward, a CCB is created
with the structure presented in Figure .. e initialized TDM table is then linked to
this CCB.

As every resource, such as the RDMAs, has its own control block that its driver
operates on, these control blocks need to be initialized before they are actually used. For
example, every RDMA control block is initialized with the memory-mapped address of
the actual hardware resource. is has to be done before linking the resources to the
partitions.

At the end of the boot loader, a number of partitions are created according to a
design-time recipe. e recipe determines the number of partitions with their parame-
ters and the size of a partition slot. Each partition is linked with three pointers to main,
interrupt handling and exception handling routines. Moreover, based on the given re-
quired memory space, for every partition, a memory control block is created following
the layout presented in Section ...

Aer the boot loader section, in the start-up section, CoMik first initializes TIFU
with the given parameters. It set the system timer with the value for an initial interrupt.



COMIK BOOT LOADING Section .

CoMik main routine

initialize partition
scheduler TDM tab.

initialize CCB

initialize resource control
blocks drivers

create & initialize PCBs

initialize TIFU

context switch to the idle
partition

set initial interrupt time

wait for the system
interrupt

CoMik interrupt handler

N
on

-In
te

rr
up

tib
le

se

ct
io

n
In

te
rr

up
tib

le
se

ct
io

n

C
oM

ik
 b

oo
t l

oa
de

r
(u

se
r-w

rit
te

n
co

de
)

C
oM

ik
 s

ta
rt-

up
(C

oM
ik

 c
od

e)

enable processor
interrupt

Figure .: Execution flow of the CoMik boot loader.

e periodic scheduling and executing of the partitions starts aer this initial interrupt.
Before enabling the processor interrupt and waiting for the initial interrupt, CoMik first
switches the context to idle partition’s so hat once the interrupt occurs, the interrupt
handler routine (as depicted in Figure .) follows its normal execution flow.



Chapter  COMPOSABLE VIRTUALIZATION

. Related Work

With respect to the context of this chapter, a large body of work has been published in us-
ing virtualization technology and partitioning technique to offer composability property
for embedded systems []. is section gives an overview some of the most relevant
efforts to our approach.

Virtualization technology has gained recently a lot of aentions as a design trend
in embedded systems [, , , ]. To virtualize the resources they have to be either
dedicatedly allocated to an application [] or they have to be partitioned [, , ].
Depending on the service provided by a resource, it can be partitioned either temporally
or spatially []. Two of the main standards in the domain of automotive and avionic
applications are Aeronautical Radio Incorporated (ARINC) and AUTomotive Open Sys-
tem ARchitecture (AUTOSAR). RTOSs that are designed based on these standards are
to support the partitioning of hardware resources in order to enable realization of VPs
for mixed-criticality systems.

In the avionic domain, ARINC standard is a specification for time and space par-
titioning in mixed-criticality avionics RTOSs []. It specifies partitions at application
level, where one or more applications with different criticality can belong to one parti-
tion []. e standard also specifies APIs for abstraction of the application from the un-
derlying hardware and soware platform. e RTOSs developed based on this standard
guarantee the minimum amount of service that a partition receives. us, an application
executing in a partition is affected by the presence/absence of other partitions.

In the automotive domain, AUTOSAR is a standard automotive soware architec-
ture, jointly developed by automobile manufacturers, suppliers and tool developers [].
It contains an RTOSs specification which defines real-time performance, scheduling
strategy and temporal partitioning for executing applications with mixed-criticality. In
this standard the partitions are implemented with a schedule table and a time monitor-
ing mechanism is used to limit the worst-case execution time of the applications. us,
an application timing behavior can be possibly affected by the execution of other appli-
cations.

Typically, in a virtual platform, a hypervisor manages a number of VMM that run
guest OSs. e scheduler of virtual machines may follow different policies and it is not
fully decoupled from the scheduler inside the guest OSs. Specially in case of RTOSs, the
two scheduling levels cooperate with each other to ensure the timing requirements of
the time-critical applications are met []. In our composable approach, the function of
the hypervisor is realized by CoMik, where instead of a guest OS, the applications can
directly schedule their own tasks. is approach suits embedded systems as it avoids
overhead of having guest OSs in terms of execution time and memory footprint, in the
cost of losing high-level services that an OS could provide to applications. Moreover,
many other VM-based embedded systems exist, especially in the automotive domain [,
, ]. Among all, the approach in [] is the closest to our technique as it also targets
time-driven applications. It implements two-level scheduling, where in the first level,
the hypervisor allocates a single time slot to every virtual machine, and at the second
level, inside each virtual machine, a guest RTOS may use a preemptive scheduler. To the
best of our knowledge, none of the existing work offer a fully composable platform (by



RELATED WORK Section .

our definition of composability) that executes time-triggered applications.

None of these aforementioned approaches and consequently the system compliant
with them are fully comply with the definition of strong composability, and therefore
are distinguished as weakly composable systems.

Other examples that employ temporal resource partitioning are presented in []
and []. ey execute multiple non-time-triggered applications concurrently, ensuring
that they are not affecting each other’s worst-case timing behavior. e authors of []
utilize two-level scheduling, TDM inter-application and cooperative static-order intra-
application. e work in [] analyzes applications individually to enable reasoning
about their overall worst-case behavior when executing them on the same platform.
ese works offer composability of worst-case bounds of applications, and therefore
they can be categorized as weakly composable systems. is makes them suitable for
systems containing only firm-real-time applications.

Our proposed approach is however strongly composable in the sense that, inter-
application interference is completely prohibited at cycle-level. us the actual-case
performance of applications is independent, enablingmixed-criticality applications to be
designed, verified, integrated (without re-verification), and executed on the same plat-
form.

e implication of strong composability for processor resources of a system is to be
instruction level predictable so that the cycle-level isolation between the applications
with mixed-criticality executing on the same processor is guaranteed. To achieve this, a
large body of researchwork has been done [, , , ]. A common taken approach in
all the existing work is that they propose a new or modified hardware architecture in or-
der to enforce predictable timing of the processing elements and consequently make the
isolation between applications composable. In contrary, our approach, as implemented
by CoMik, is not really processor architecture dependent. Here, we use the technique of
processor clock gating until an exact given moment in time, by which we create a time-
predictable behavior of the processor. Although this approach does not require any
hardware (processor) modifications, it comes with some limitations. Currently, some
of these limitations are: (i) the processor has to not use any level of data/instruction
caching mechanism, (ii) worst-case execution time of the code critical sections have to
be bounded and known at design time, (iii) the processor cannot use branch prediction,
and (iv) instructions out-of-order execution is not allowed.

In the context of interrupt virtualization, some existing approaches, such as uC-OS/II,
multiplex multiple timed events on a single tick generator, i.e., a periodic interrupt timer.
ey therefore offer soware-based virtual timers [, ]. In these approaches, the
granularity of the virtual timed interrupts is restricted to the actual underlying hypervi-
sor or RTOS ticks. Whereas in our approach, we virtualize a single timer interrupt line
of the processor that is used by each application using the TIFU. Every application has
access to the physical timer that access is exclusive. In each partition, an application
can set its own timed events independent of the other partitions, and the granularity of
the events can be wither the granularity of the system or the tile counter. CoMik takes
care that interrupts of an application are always mapped to its temporal partitions, and
never interfere with other partitions (and hence behavior) of other applications.



Chapter  COMPOSABLE VIRTUALIZATION

. Summary

In this chapter, we use the virtualization technology for the purpose of creating a pre-
dictable and composable platform. is technology is realized by the CoMik microker-
nel, which creates a VP for every application by temporal and spacial partitioning of
all the resources that are involved in the execution of the application on the CompSOC
platform.



CHAPTER4
Realization of the Model of

Execution

t
he model of execution fills the gap of execution abstraction between the
models of computation’s semantics and the primitive execution operations
supported by the platform. In the context of the CompSOC platform, the
CoMik microkernel creates a virtual platform for each application that is

expressed in either of the KPN, the CSDF, or the time-driven model of computation. e
model of execution is therefore an intermediate layer in the platform stack, as illustrated
in Figure ..

e model of execution is implemented in form of an OS, namely CompOSe, in-
stantiated as library in every partition of the virtual platform created by CoMik for an
application.

In this chapter¹, we first motivate the requirements of the model of execution and
introduce a realization of such a model on CompSOC’s virtual platforms. Second, we
present the implementation of the model of execution by the CompOSe library and we
detail the structure and architecture of the library. Here, we show how different mod-
els of computation can be developed to execute on the platform. Finally, we give an
overview on the related work.

MoE

Virtual Platform

MoC

Figure .: CompSOC platform stack.

¹ e content of this chapter is partially based on the following publications from the author of this disserta-
tion and his colleagues:[, –]



Chapter  REALIZATION OF THE MODEL OF EXECUTION

. Model of Execution

A model of execution defines a set of operations and their orchestrations in order to
implement an specific model of computation. As discussed in Section ., an application
is typically expressed in a model of computation, e.g., KPN or CSDF. is is done by
defining high level operations for computation and communication such as FIFO read
and produce. Moreover, when it comes to share the execution resources within and
between the applications, scheduling operations and the time at which the computation
and communication operations execute play a significant role in executing the applica-
tions. us, a model of execution has to explicitly define computation, communication,
and scheduling operations for each individual model of computation.

In this section, we first define computation and communication operations of our
model of execution for the data-driven and time-driven models of computation, in-
troduced in Section .. Besides this, we propose the scheduling operations for each
model of computation in accordancewith the scheduling classification introduced in Sec-
tion .. Finally, in the context of the CompSOC platform, we present different variants
of the model of execution in implementing a task’s equivalence of a data-driven process
and actor, and a time-driven job.

.. Execution Operations: Computation & Communication

e execution operations are categorized as: (i) computation, (ii) communication, and
(iii) scheduling operations. In order to propose a unified model of execution that imple-
ments both data-driven and time-drivenmodels of computation, we identify the common
operation primitives required for executing these target models of computation. ese
common operations are presented in Table ..

As presented in Table ., when it comes to execution platforms, depending on an
application’s model of computation a task is equivalent to a KPN process, a CSDF ac-
tor, or a time-driven job. Having introduced the task temporal model in Section ..,
the execution state of a task is therefore either ready, blocked, running, interrupted, or
possibly finished. In this section, the execution operations of a task is described with
respect to these task states.

In order to describe the essence of each execution operation in the different mod-
els of computation, we first abstract from the scheduling operations and focus on the
computation and communication ones.

Table .: List of the execution operations required for executing the models of computation.

Operation Category Description

C computation Performs the computational functions

FC communication Checks if a (shared) data or space is present. If not, it blocks.

FA communication Accesses a (shared) data or space

ST scheduling Selects a next task to be scheduled as part of intra-application scheduling

W Scheduling Waits idle for an event or an interrupt to trigger the intra-application scheduler



MODEL OF EXECUTION Section .

A computation operation, C, is defined as the sequence of all instructions (except
the instructions for communication) that implements a process/actor/job’s functionality,
and it is usually between two consecutive communication operations. is operation
directly corresponds to the compute operation of the models of computation introduced
in Section ..

e communication between an application’s tasks can be inter- or intra-processor-
tile, depending on the mapping of the data producing and consuming tasks on the tiles.
In a MPSoC platform with distributed shared memories, such as CompSOC, the differ-
ence between these two inter-tasks communication scenarios is in the actual memory
locations that are accessed from a tile’s processor. Our model of execution however
abstracts from these two scenarios and proposes general communication operations for
memory-mapped FIFO-based communication of data- and time-drivenmodels of compu-
tation. In this method, the model of execution hides the details of FIFOs implementation
and the actual memory-mapped location from the perspective of the applications exe-
cuting on the processor. e model of execution ensures a transparent access to inter-
and intra-tile memory locations, while the memory consistency is guaranteed by the
communication model of the underlying platform [].

A FIFO typically requires separate administration and access operations. A FIFO
administration operation is to check for availability of space or data denoted with FC.
A FIFO buffer access, i.e., placing/retrieving data into/from the buffer, is represented as
FA. In data-driven models of computation such as KPN and CSDF, FA may be performed
only aer making sure that space or data exist by an FC operation. In the time-driven
model of computation however FA may be performed without any FIFO check required.
As described in Section .., the reason for this is that inter-jobs communication is
realized by one-space FIFOs and a job assumes that the data and the space is always
available.

In the rest of this section, the implementation of the models of computation by our
model of execution, using these execution operations, are represented with a regular
language sequence []. In this representation, if A and B are two operations, the regular
expression language is defined as follows:

A0 = ϵ

AN+1 = AAN , where 0 ≤ N <∞
AB= {ab|a ∈ A,b ∈ B}

(A+B) = A∪B

A# =A[0,N] = {ϵ, A, A A, ..., AN }, where N <∞
A+ =A[1,∞) = {A, A A, A A A, ...}

A∗ =A[0,∞) = {ϵ, A, A A, A A A, ...}

Data-Driven Models of Computation

In what follows we present how the FIFO-based inter-task communications of KPN
processes and CSDF actors are implemented with the aforementioned execution oper-
ations. A KPN process and a CSDF actor activation corresponds to a task firing in the



Chapter  REALIZATION OF THE MODEL OF EXECUTION

model of execution. We define a task’s status as ready if it can execute. If a task is not
ready, its status is either blocked or finished.

A KPN process is initially ready by default, i.e., the body of the process starts exe-
cuting, until it is either blocked on a FIFO read/write or it finishes. In other words, a
KPN process (or its corresponding task) is activated once, and its body is implemented
with a loop inside the process body over an interleaved sequence of computation and
communication operations.

A KPN process may immediately start (it is ready), and it blocks whenever it exe-
cutes a read or write for which there is not enough data and/or space. Once it has been
activated, a KPN task is not guaranteed to finish without blocking, thus the task status
is not fixed for its entire entire execution aer an activation.

KPN read and write operations require both FIFO check and FIFO access. Formally,
these operations are implemented as FCFA. Since FC is blocking, this implies that a task
possibly waits for data/space to becomes available for an unknown time and then can
access it.

In the KPN model the read and write operations may be arbitrarily interleaved with
compute, (C+FCFA)∗. Note that FC represents a blocking check on a FIFO and ∗ models
the possible infinite loop inside a process.

A CSDF actor is ready when it has enough data and space in the consuming and/or
producing FIFOs, respectively. e task corresponding to an actor is activated when
its firing rule is satisfied, and therefore, it can fire possibly for an infinite number of
activations. For a CSDF actor, the corresponding task’s status is unchanged for an entire
iteration, namely ready.

e CSDF produce and consume operations require only FIFO access since the check-
ing has been done by the firing rule before an actor becomes ready. Consequently, these
operations are implemented as just FA.

In CSDF the execution order is strict: it starts witch checking, i.e., FC, all producing
and consuming FIFOs according to the firing rules. en the body begins with consume
operations, i.e., FA, continues with the compute, C , and ends with all produce operation,
i.e., again FA. us, the execution of a CSDF task can be represented by (F#

CF
#
ACF#

A),
where # models the number of FIFOs that has to be checked/accessed.

Such correspondence of each model of computation’s operation with an execution
operation is also presented in Listing . and Listing . beside an example pseudo code
of a KPN process and a CSDF actor.

Time-Driven Models of Computation

In the case of the time-driven model of computation, when a job is ready to execute at
an specific moment of time, it assumes that its required data and space are available. e
model of execution therefore implements a job in a simple orchestration of interleaved
one-place FIFO accesses and compute operations as (C+ FA)∗. Such correspondence
of the model of computation’s operation with an execution operation is also presented
in Listing . beside an example pseudo code of a time-driven job.



MODEL OF EXECUTION Section .

MoE |
Operations	KPN Process

|/* Start of process body */
C |initialization();

|
|For (i=0; i<N; i++) {

FC FA | x = read(<f4,1>); /* Read 1 data token from FIFO 4 */
|

C | P5_compute1(x);
|
| if (x == 0) {

FC FA | y = read(<f5,1>); /* Read 1 data token from FIFO 5 */
| } else {

C | y = P5_compute2(x);
| }

C | z = P5_compute3(y);
|

FC FA | write(<f6,1>, [z]); /* Write 1 data token to FIFO 6 */
|}
|

FC FA |write(<f6,1>, [a_final_token]); /* Write 1 data token to FIFO 6 */
|

C |finalization();
|/* End of process body */

Listing .: Execution operations corresponding to an example pseudo-code of a process in a KPN
model of computation.

MoE |
Operations	CSDF Actor

|/* Cyclo static firing rules */
|switch cycle
| case 0:

FC | wait_until (data_token_available_on_fifo(<f4, 1>, <f5, 1>)
| AND
| space_token_available_on_fifo(<f6, 2>));
| case 1:

FC | wait_until (data_token_available_on_fifo(<f4, 1>, <f5, 0>)
| AND
| space_token_available_on_fifo(<f6, 1>));
|End
|
|/* Start of actor body */

FA |x = consume(<f4,1>); /* Consume 1 token from FIFO 4 */
|

FA |IF (cycle == 0) y = consume(<f5,1>); /* Consume 1 token from FIFO 5 */
C | w = P5_compute1(x);
C |IF (cycle == 0) z = P5_compute2(y);

|
|IF (cycle == 0) {

FA | produce(<f6,2>, [w,z]); /* Produce 2 tokens to FIFO 6 */
|} ELSE {

FA | produce(<f6,1>, [w]); /* Produce 1 token to FIFO 6 */
|}
|
|/* End of actor body */
|cycle = (++cycle) MOD 2; /* Increment cycle for the next activation */

Listing .: Execution operations corresponding to an example pseudo-code of an actor in a CSDF
model of computation.



Chapter  REALIZATION OF THE MODEL OF EXECUTION

MoE |
Operations	Tim-Driven Job

|/* Start of job body */
FA |x = read(<f0,1>);
C |y = J7_compute(x);
FA |write(<f1,1>, [y]);

|/* End of job body */

Listing .: Execution operations corresponding to an example pseudo-code of an actor in a time-
driven model of computation.

.. Execution Operations: Scheduling

Whenmultiple applications execute on a single platform, conventionally, the scheduling
is done at two hierarchical levels of inter- and intra-application. In CompSOC platform,
since every application is executing in a dedicated virtual platform which corresponds
to a partition on every processor tile, the inter-application scheduling is handled by
the CoMik kernel, as explained in Chapter . However, when it comes to executing an
individual application implemented by a model of computation, the intra-application
scheduling operations have to be realized by the model of execution.

e intra-application scheduler, known also as the task scheduler, determines the
next task of the application to execute. In general, the model of execution defines ST as
the execution operation that selects a task according to a given policy, e.g., TDM and
Round-Robin (RR). As described in the scheduling classification of Section ., a task
scheduling policy may be either cooperative/preemptive time- or event-triggered. In
general, if a ready task is not found, an idle task is scheduled. e idle task does nothing
other than waiting until the next invocation of the task scheduler.

For each model of computation, the scheduling operations are composed and or-
chestrated by considering the properties of the model. In KPN any policy can be used to
schedule a task although scheduling a ready task is more reasonable and efficient. us
scheduling a KPN task can be implemented as just an ST operation. In CSDF the task
scheduler has to first find a ready task. For this, it selects a task, ST, and then, it checks
each of its FIFOs, F#

C, repeatedly. is sequence formally results in (STF#
C)+.

In the time-driven model of computation, when the scheduler is invoked all the jobs
(tasks) are already ready. erefore, the next task can be simply selected based on a
policy (for example, select the task that has earliest deadline) by an ST operation among
all the ready tasks.

e model of execution does not care about the triggering mechanism of the sched-
uler. However, whether the scheduler is preemptive or cooperative, the execution oper-
ations of a task may differ. In case of cooperative scheduler, the executing task is allowed
to finish and then the scheduler is invoked. Whereas, in case of preemptive scheduler,
the executing task is either gets preempted by an event or when it has finished its entire
execution it has to wait for an event. In the laer case, an extra waiting operation, de-
noted as W, is defined by the model of execution. is operation implements a waiting
time for an event or an interrupt that triggers the scheduler. For example, when a KPN
task’s body, (C+FCFA)∗, executes and it has to wait for an interrupt to occur, the model



MODEL OF EXECUTION Section .

of execution is realized like this: (C+FCFA)∗W .

e following section presents how the model of execution realizes the models of
computation with the operations that have been introduced here.

.. Realization of Models of Computation

Table . presents the model of execution that realizes KPN, dataflow (specifically,
CSDF), and time-driven models of computation. For the sake of clarity we demonstrate
the representation of the model of execution for each model of computation in the case
of cooperative and preemptive scheduling separately, although it is possible to come up
with a more complex compact version of the model of execution.

Moreover, the underlined operations in the table indicate the body of tasks, i.e., KPN
processes, CSDF actors, and time-driven jobs.

Table .: Implementation of the models of computation with the unified model of execution
when task scheduling is either cooperative or preemptive.

Model of Computation
Model of Execution

Cooperative Preemptive

KPN (ST(C+FCFA)∗)∗ (ST(C+FCFA+FA)∗W)∗

CSDF (dataflow) (STF#
C(F#

ACF#
A))∗ (ST(F#

CF
#
ACF#

A+F#
ACF#

A+CF#
A+F#

A)+W)∗

Time-Driven (ST(C +FA)∗)∗ (ST((C +FA)W)∗)∗

For KPN, in case of cooperative scheduling, the model of execution is simply im-
plemented by composing a number of interleaved computation and communication op-
erations immediately aer a scheduling operation. A task selection has to be repeated
whenever a task has finished. In details, aer a task is initially selected, i.e., ST in Ta-
ble ., the task may compute, C , or, read or write. In case of read or write, the FIFO
has to be first checked, FC. If the check fails, basically the current task is blocked, thus in-
stead of polling for data or space, the task may yield the execution to the task scheduler
(i.e, cooperatively invoke the scheduler) so that another task is selected. In such sce-
nario, the execution continues from executing another ST. Otherwise, the FIFO check
returns successfully and the FIFO buffer is accessed, FA. Aer this access, another FIFO
may be read or wrien, thus the procedure may be repeated. when a KPN task finishes,
it would not be scheduled anymore.

For KPN, in case of preemptive scheduling, the normal execution is exactly the same
as the cooperative one, but, the task can be possibly preempted in the middle of C or FA
operations. In such cases, the execution continues by a scheduling operation and a new
scheduled task’s operation. When the preempted task is scheduled back, its execution
resumes from the operation that has been preempted, which is either C or FA operation.
To cover this case, the model of execution, in Table ., includes an individual FA in
the body of the process. Furthermore, when a task finishes, the task has to wait for an
interrupt. is is modeled by the W in Table ..



Chapter  REALIZATION OF THE MODEL OF EXECUTION

e model of execution for CSDF, in case of cooperative scheduling, is basically a
composition of F#

ACF#
A, as the task body, and STF#

C, as the task scheduling. Since a CSDF
actor activates for as many times as its firing rules are satisfied, the task body in this
model possibly repeats for an infinite number of times. us, a CSDF task never finishes.
But, at the end of each activation of a task, the task scheduler is called immediately to
re-decide about the task that has to execute next.

For CSDF, in case of preemptive scheduling, the model of execution is similar to the
case of preemptive scheduling for KPN. e CSDF task’s body may be preempted in the
middle of C or FA operations, and when it comes back to resume, the possible execution
operations are distinguished as: (i) F#

ACF#
A: when it has been preempted in consume

operation which is the first FIFO access of the body, (ii) CF#
A: when it has been preempted

in the compute operation of the body, and (iii) F#
A: when it has been preempted in the

produce operation which is the final FIFO access of the body. Furthermore, when a task
finishes, in this case, it has to wait for an interrupt to occur. is is modeled by the W
in Table ..

For the time-driven model of computation, the model of execution implements each
job’s body with a sequence of interleaved one-place FIFO access (without any need to
check for data or space) and computation operation as (C+FA)∗, where each task (job)
starts with an ST operation. In case of preemptive scheduling, the model of execution is
presented the same as the cooperative one, although the tasks may possibly preempted
int the middle of C or FA operations. Besides this, in preemptive scheduling, the task
finishes with a waiting operation for an interrupt.

.. Discussion on Realizing Models of Computation with the
Model of Execution

Having presented how the model of execution implements each model of computation
in Table ., in this section, we elaborate on predictability of the model of execution.
Furthermore, we discuss the performance trade-offs between the cooperative and pre-
emptive scheduling variants of the model of execution for each model of computation.

Predictability

As one of the dataflow variants, CSDF model of computation is analyzable, since the
status of its task is constant during an activation aer the firing rules have been checked.
is constant status is visible in the realization of the dataflow with the model of exe-
cution in Table ., where no FC operation exists in a CSDF actor/task’s body to cause
unpredictable blocking time on a communication ². e operations in the CSDF body ex-
ecute for a bounded number of repetitions (including only #, and no ∗ or +). Assuming
that each operation finishes in a bounded time (as described in Chapter , it is a valid
assumption on the CompSOC platform), the model of execution corresponding to the
CSDF model is predictable and therefore amenable to temporal analysis. Consequently,
the CSDF model suits FRT applications as well as so and NRT ones.

² A task’s body is distinguished with the underlined operations.



COMPOSE: AN OPERATING SYSTEM LIBRARY Section .

In KPN, as presented in Table ., since FC executes before a FIFO access in the body,
the task may be blocked. Moreover, a possibly infinite loop in the body, that is modeled
by ∗, results in an unknown execution time of the task. ese make the exact timing
analysis of the KPN impossible. us, KPN does not suit FRT applications, but only SRT
and NRT applications. Moreover, KPN can model dynamic behavior of applications,
since the order and orchestration of reads and writes and the number of tokens that can
be accessed are arbitrary. As a result, the status of a KPN task is not available before
giving the control to that task, and leads to less possible scheduling optimizations.

Scheduling Trade-offs

In case of preemptive scheduling of the models presented in Table ., when a KPN
process, a CSDF actor or a time-driven job has been finished, a waiting operation, W,
executes until the moment that an event/interrupt occurs. is time is therefore wasted
and this approach is non-work-conserving, potentially leading to a low processor utiliza-
tion. To prevent such an undesirable situation, the waiting time has to be made as small
as possible, preferably zero, by aligning the occurrence of events or interrupts with the
exact moment that a task finishes (i.e., the time that it produces output data tokens, that
can make other tasks become ready). e intrinsic behavior of the time-driven models
of computation allows such a practice as the start and finish time of each job is a-priori
known. us, the preemptive scheduling well suits this model.

On the other hand, the blocking times that may occur in a KPN process body are not
predictable and therefore it is not really possible to shrink/remove the waiting times.
Subsequently, as a work-conserving method, the cooperative scheduling is the best fit for
executing KPN model of computation when a worst-case execution time analysis can
be done [, ]. Even when a KPN task is predictably blocked on a FIFO check, it can
cooperatively yield the control so that the task scheduler is invoked. However, when
the behavior of a KPN task is not predictable, in order to avoid deadlock, preemptive
scheduling is preferred.

In case of CSDF, although there exist some research efforts to align the finishing time
of actors with preemptive scheduling interrupts [], the intrinsic behavior of the CSDF
models (as explained in Section .) is well compatible with cooperative schedulers that
a new task may be scheduled immediately aer a finished task.

. CompOSe: an Operating System Library

e model of execution is implemented on the CompSOC platform in a form of an OS
library, namely CompOSe. As illustrated in Figure ., the CompOSe library executes in
a partition created by the CoMik microkernel to execute an application. CompOSe im-
plements the execution primitives proposed by the model of execution. e application
uses the API provided by CompOSe in order to execute its computation, communication,
and scheduling operations according to its model of computation. In principle, Com-
pOSe is an untrusted code that runs in partition-mode while its access to the underlying
platform resources are controlled and restricted by the microkernel.



Chapter  REALIZATION OF THE MODEL OF EXECUTION

main interrupt exception API

RTOS boot loader interrupt handler exception handler

model of execution (computation, communication, and scheduling)

model of computation specific support (data- and time-driven)

main interrupt exception API

application
initialization exception handler

task (actor/process/job/thread) computation code and control

CoMik
microkernel

CompOSe
library

application

Kernel mode

Partition mode

Patition mode

User mode

preemptive or cooperative
task scheduler

Figure .: e structure of the model of execution implemented in form of CompOSe OS library.

In the context of the predictable system, the CompOSe is implemented in such a
way that it does not introduce any uncertainty in executing an application on top of the
CoMik microkernel. CompOSe can be seen as a simple RTOS since it schedules tasks of
an application on the basis of both data and time events.

e detailed structure of the CompOSe library is presented in Figure ., where its
implementation is clearly divided into the soware units for: (i) providing the main,
interrupt handler, and exception handler soware hooks required by CoMik from a par-
tition, (ii) implementing the execution primitives of the model of execution using the
API provided by CoMik, and (iii) giving model of computation specific support to the
application by providing Soware Containers (SCs).

In the rest of this section, we are doing to describe detailed structure of the CompOSe
OS library, and we demonstrate how different models of computation can be supported
in the implementation of the model of execution.

.. CompOSe Data Structure

e CompOSe library is created in the form of an Application Control Block (ACB) and
linked to its corresponding PCB. As described in Section .., every partition has its own
dedicated heap memory section. e ACB is created at the beginning of the partition’s
heap, and the pointer to the parent partition is kept in the ACB for further partition’s
resources access. Figure . illustrates an abstract overview of an ACB generic structure.

Every application, expressed in either of KPN, CSDF, or time-driven models of com-
putation, consists of a set of tasks. e tasks are created with a unique identification
in a linked list of Task Control Blocks (TCBs). Besides this, the model of computation
that the application is expressed with is stored in the ACB for performing the model of
computation specific operations.



COMPOSE: AN OPERATING SYSTEM LIBRARY Section .

Possibly, every application uses its own task scheduler, and therefore, the scheduler
has to be provided to CompOSe. Depending on the given scheduling strategy, i.e., co-
operative or preemptive, CompOSe schedules the tasks of the application accordingly,
and sets the current running task.

Furthermore, the execution timing information of the application is updated and kept
for performance monitoring in a timing control block.

A task control block is generic enough to support KPN processes, CSDF actors, and
time-driven jobs. Each of these different tasks needs a computation function, a dedicated
stack memory, state, and timing control block. e reason for a dedicated stack memory
is that in case of preemptive task scheduling, every task may get interrupted in the
middle of its execution and later it has to be resumed exactly from the same point. us,
its execution status has to be stored and recovered from its own dedicated stack.

Depending on the model of computation, the computation control block of the tasks
is different for each application. is is due to the fact that the application’s task in every
model of computation has different computation properties. For example, a CSDF task
needs to be provided with a firing rule updating function so that CompOSe can check
its firing rules before each activation, according to the model of execution. As another
example, in case of preemptive scheduling, a time-driven task needs to be provided with
the task properties such as release time, inter-release time, deadline and workload (in-
troduced in Section ..).

In theory, every application may use its own communication mechanism between its
tasks. In practice, in the CompSOC platform, the all our target models of computation
uses FIFO-based communications. us, for each task, the communication control block
includes a set of FIFO Control Blocks (FCBs) each of which is created and instantiated
for a FIFO in the model of computation. Each FCB consists of all the necessary data
elements for FIFO administration, such as the pointers to its consuming and producing
tasks, buffer size, data and space pointers, read and write counters, etc..

Application Control
Block (ACB) parent PCB

Link list of Task
Control Blocks (TCB)

task scheduler

MoC (KPN, CSDF, or TD)

Scheduling strategy
(Cooperative/Preemptive)

Timing CB

Current running task

...

Task Control Blocks
(TCB)

Task Control Block
(TCB) Stack Memory CB

State

Computation function

Computation CB

Communication CB

Timing CB

FIFO CB

KPN/CSDF/TD CB

FIFO CB

...

Control Block function pointer data variable

Figure .: Data structure of CompOSe

Aer initializing the application, CompOSe uses these control blocks to schedule
and control each application’s task. For this purpose, CompOSe has to, (i) provide the
soware hooks of main, interrupt and exception handler to CoMik in order to aach the
library to the virtual platform, (ii) implement the model of execution by realizing the
primitive execution operations in form of an API, and (iii) provide the a set of SCs so



Chapter  REALIZATION OF THE MODEL OF EXECUTION

void OS_main() {

/* Allocate memory for the ACB */
os_initialise_libcompose();

/* Creating and initializing the task scheduler arguments */
...

/* Add an application to the current partition */
os_add_application(Application_ID, NUM_TASKS, TASK_SCHEDULER);

/* Set the application’s model of computation */
os_set_application_moc([KPN, CSDF, or time-driven]);

/* Set the task scheduling strategy */
os_set_task_scheduling_strategy([COOPERATIVE_TASK_SCHEDULING or

PREEMPTIVE_TASK_SCHEDULING]);

/* Add tasks with their corresponding IDs */
os_add_task(TASK1_ID, TASK1_STACK_SIZE, TASK1_COMPUTATION_FUNCTION);
os_add_task(TASK2_ID, TASK2_STACK_SIZE, TASK2_COMPUTATION_FUNCTION);
...
os_add_task(TASKn_ID, TASKn_STACK_SIZE, TASKn_COMPUTATION_FUNCTION);

/* Set the computation control block */
...

/* Set the communication control block */
...

/* Start the application */
os_application_start();

}

Listing .: Pseudo code representation of CompOSe boot-loader.

that the various applications expressed in the different models of computation can be
executed. In the rest of this section we explain each of these points, in turn.

.. Partition Soware Hooks

CompOSe uses themain, the interrupt handler, and the exception handler soware hooks
offered by CoMik, as illustrated in Figure ..

e boot-loader of CompOSe is the main function that a partition starts executing
aer it is created by CoMik. In this function, the CompOSe library is initially created in
the form of an ACB and linked to its corresponding PCB. Aerward, the control is im-
mediately given to the application initialization procedure. Listing . presents a pseudo
code of the main function. Using the underlying API provided by CompOSe, this func-
tion properly populates the ACB according to the application’s model of computation.

e CompOSe interrupt handler is required to be provided to CoMik only in the
case that the application uses preemptive (time-triggered) scheduling. In this case, the
interrupt handler hooks the preemptive task scheduler to the CoMik scheduler as an
integrated partition interrupt handler as described in Section .. For this purpose, the
CompOSe interrupt handler, as presented in Listing ., simply calls the task scheduler.



COMPOSE: AN OPERATING SYSTEM LIBRARY Section .

void os_interrupt_handler() {

/* Acknowledge the partition interrupt */
os_ack_current_partition_interrupt();

/* Call the task scheduler registered to the ACB */
os_schedule_task();

/* Enable the partition interrupt for the next interrupt */
os_enable_current_partition_interrupt();

}

Listing .: Pseudo code representation of CompOSe interrupt handler.

e task scheduler itself is provided by the user, and it runs in user-mode.

Regarding the exception handling, currently all the exceptions are handled by CoMik
and there is no need for CompOSe to provide its own exception handler.

.. Implementing the Model of Execution

CompOSe runs in partition mode meaning that it is only allowed to use the API provided
by CoMik to access the underlying platform resources that belong to its own partition.
In turn, CompOSe provides a high-level API to the applications running in user-mode.
In this mode, the applications are only allowed to use the API that realizes the model
of execution corresponding to their model of computation. is consists of the API for
communication and scheduling operations, whereas the computation operation does not
need any special aention.

Communication API

For the FIFO-based communication operations, CompOSe follows the C-HEAP proto-
col []. To implement this protocol, the following functions are realized by CompOSe:

• claim_fifo_data_token() to acquire a data token for data consumption.

• claim_fifo_space_token() to acquire a space token for data production.

• release_fifo_data_token() to release a produced token.

• release_fifo_space_token() to release a consumed token.

e number of tokens that can be claimed/released from a FIFO at a time is defined as
the FIFO rate. Using the above APIs, one token can be accessed at a time. For accessing
more than one token the above APIs has to be executed in a loop. e following API is
proposed to set the consumption and production rate of a FIFO:

• os_set_fifo_consumption_rate(fifo_id,rate) to set the consumption rate
of the FIFO.



Chapter  REALIZATION OF THE MODEL OF EXECUTION

• os_set_fifo_production_rate(fifo_id,rate) to set the production rate
of the FIFO.

In case of claiming a data/space token, if the aforementioned functions returns with
a NULL pointer, it means that the token is not available. is result can be used to
implement FIFO check operations as follows:

• os_check_fifo_data_token(fifo_id,rate) to check if a given number of
data tokens are available in the FIFO.

• os_check_fifo_space_token(fifo_id,rate) to check if a given number of
space tokens are available the FIFO.

Furthermore, the common FIFO access operations proposed by the model of execu-
tion for all the models of computation, is to set or get data tokens. Using the above
functions, CompOSe provides the following API for high-level FIFO access operations:

• os_get_fifo_data(fifo_id,rate,*data_in) to get a number of data to-
kens from the FIFO.

• os_set_fifo_data(fifo_id,rate,*data_out) to set a number of data to-
kens into a FIFO.

In case of the KPN and the time-driven models of computation, the FIFO read and
write operations are implemented using the claim and release API before these get and
set API. As a result, the following high-level API is available to developers:

• os_read_fifo(fifo_id, rate,&data_in) to check the FIFO for the available
data tokens and receives them.

• os_write_fifo(fifo_id, rate,&data_out) to check the FIFO for the avail-
able space tokens and sends them.

In case of CSDF, as the FIFO checks happens in scheduling time, the following API
is provided to developers to access the data and space tokens from a task’s body:

• os_get_csdf_task_data_in_ptrs() to get pointers to the data tokens.

• os_get_csdf_task_data_out_ptrs() to get pointers to the space tokens.

Using these high-level API all the communication operations of the model of execu-
tion can be implemented for the models of computation.

Scheduling API

For every application, CompOSe is provided with a task scheduler. Although every task
scheduler may use different policy, there are a number of common facilities needed by



COMPOSE: AN OPERATING SYSTEM LIBRARY Section .

them in order to perform the scheduling operations. e common facilities can be dis-
tinguished as a set of API to access each task’s computation and communication control
blocks in its TCB, as well as the restricted API to access the corresponding ACB. Since
the first API is different per model of computation, here, we give two examples of such
API for CSDF and time-driven models of computation.

In case of CSDF, CompOSe enables the application’s scheduler to check the firing
rules of a task using the following API:

• os_check_firing_rules(task_id) to check the firing rules of a task with ID
of task_id in the application.

Internally, the implementation of the API goes over all the FIFOs associated to a task
and, using the lower level communication API introduced earlier in this section, checks
for required data/space in the FIFOs.

A firing rule is the number of tokens (or rate) that has to be consumed/produced
in an activation of a CSDF task in its associated consuming/producing tasks. In order
to enable a CSDF modeled application to set its tasks firing rule, the application has to
provide a firing rule updating function for every task. In this function, the application
can set each FIFO’s rate in every activation according the cycle of the task. For this,
CompOSe provides the following API:

• os_get_csdf_task_cycle() to return the cycle that the task currently execute
in.

• os_get_cons_fifo_rate_table() to return the rate table of all consuming
FIFOs associated to the tasks. Using this table, the consumption rates of all the
consuming FIFOs is set for the next activation.

• os_get_prod_fifo_rate_table() to return the rate table of all producing
FIFOs associated to the tasks. Using this table, the production rates of all the
producing FIFOs is set for the next activation.

To exemplify the use of this API, assume that a CSDF task has the firing rule of
fr= {(< 1,3 >,< 3,2 >), (< 1,2 >,< 2,1 >)}, which means the task has two cycles: () FIFO
 has to be checked for  tokens and FIFO  has to be checked for  tokens, and () FIFO 
has to be checked for  tokens and FIFO  has to be checked for  token. Here, we ignore
the details of which FIFO is producing or consuming. Depending on the cycle that task
is in, the above API has to be called by the firing-rule updating function to set the rate
of FIFOs  and  to  and , respectively, in the first cycle, and to set the rate of FIFOs 
and  to  and , respectively, in the second cycle.

In case a time-driven application, CompOSe enables the application’s scheduler to
get for example a task’s properties such as work-load, priority, deadline, release time,
etc. Based on these information, a task may then gets scheduled.

e common facilities that are required by all kinds of scheduler in every model of
computation is provided by CompOSe in a set of the following API:



Chapter  REALIZATION OF THE MODEL OF EXECUTION

• os_get_task_state(task_id) return a task’s state which can be either inter-
rupted or ready.

• os_get_current_task() return the tasks that has been running before the
scheduler is invoked either preemptively or cooperatively.

• os_set_next_task(task_id) set the next task to be scheduled by CompOSe.

Using these scheduling API, an application can perform all the necessary operations
introduced by our model of execution in order to schedule the tasks in either of KPN,
CSDF, or time-driven model of computation.

.. Soware Containers

CompOSe proposes a set of SCs for developers to implement applications expressed in
one of the KPN, CSDF, and time-driven models of computation. ese soware con-
tainers are realized to match the model of execution corresponding to each model of
computation. Here, we describe each of these containers to implement tasks’ computa-
tion, communication, and scheduling operations.

Computation & Communication

e computation SCs includes a task’s body and some task’s model of computation-
specific containers. e body container is a generic void function with no specific ar-
gument needed to implement all the different tasks of the models of computation. List-
ing . presents an example implementation of the KPN task, introduced in Listing .,
using the body container and the computation and communication API.

e implementation of the time-driven task is very similar to the KPN’s one. In case
of CSDF, however, Listing . presents an example implementation of the actor, intro-
duced in Listing ., using the body container and the computation and communication
API.

An example of the model of computation-specific containers is the one needed for
implementing the firing rules of CSDF actors. Listing . presents an instance of such
container that implements a set of firing rules using the API introduced earlier in this
section. In this example, the task may fire if it has one data and one space tokens in its
first consuming and producing FIFO.

Scheduling

e SC of task scheduler has to support both preemptive and cooperative schedulers
with different scheduling policies. For this purpose, the container is a generic void
function with no specific argument. Any specific data structure needed for scheduling
can be held in the computation and communication control blocks per task.

Using the scheduling API introduced earlier in this section, different types of task
scheduler can be then implemented in the container. An example of such container is



COMPOSE: AN OPERATING SYSTEM LIBRARY Section .

void task_body_container () {

int N;
int i;
int x,y,z;

/* Initialization */
int N = 100;

For (i=0; i<N; i++) {

/* Read one token from FIFO 4 */
os_read_fifo(FIFO_ID_4, 1, &x);

/* Do some computation */
x += 10;

if (x==0) {
/* Read one token from FIFO 5 */

os_read_fifo(FIFO_ID_5, 1, &y);
} else {

y = x * 10;
}

z = y ^ 2;

/* Read one token from FIFO 6 */
os_write_fifo(FIFO_ID_6, 1, &z);

}

/* Finalization */
z = N;
os_write_fifo(FIFO_ID_6, 1, &z);

}

Listing .: Pseudo code representation of task’s body container for KPN processes.



Chapter  REALIZATION OF THE MODEL OF EXECUTION

void task_body_container () {

int* data_in, data_out;
int x, y;
int w, z;

/* Get the current CSDF cycle */
int csdf_cycle = os_get_csdf_task_cycle();

/* Get the tokens */
data_in = (int*) os_get_csdf_task_data_in_ptrs();
data_out = (int*) os_get_csdf_task_data_out_ptrs();

x = data_in[0];

if (csdf_cycle == 1) y = data_in[1];

/* Do some computation */
w = x * 10;

if (csdf_cycle == 1) z = y ^ 2;

/* Write the produced data into producing tokens */
if (csdf_cycle == 1) {
data_out[0] = w;
data_out[1] = z;

} else {
data_out[0] = w;

}

}

Listing .: Pseudo code representation of the task’s body container for CSDF actors.

void firing_rule_container () {

int* cons_fifos = os_get_cons_fifo_rate_table();
int* prod_fifos = os_get_prod_fifo_rate_table();

int csdf_cycle = os_get_csdf_task_cycle();

Switch cycle
case 1:

cons_fifos[0]=1;
cons_fifos[1]=1;

prod_fifos[0]=2;

case 2:
cons_fifos[0]=1;
cons_fifos[1]=0;

prod_fifos[0]=1;
End

}

Listing .: Pseudo code representation of the firing-rules container for CSDF actors.



RELATED WORK Section .

void task_scheduler_container (){

bool can_fire = 0;
int current_task_id;
int next_task_id;

current_task_id = os_get_current_task();

if (current_task_id == 1) {

selected_task_id = 2;
can_fire = os_check_task_fr(next_task_id);

} else {
selected_task_id = 1;
can_fire = os_check_task_fr(next_task_id);

}

if (can_fire) {
/* Schedule the next task */
os_set_next_task(next_task_id);

} else {
/* Schedule an IDLE task */
os_set_next_task(0);

}
}

Listing .: Pseudo code representation of a task scheduler container for a CSDF actor.

presented in Listing . for a CSDF task. In this example, the task scheduler switches
alternatively between two tasks. It checks the firing rule for the tasks, and if the selected
task cannot fire, it schedules the IDLE task.

In summary, using these soware programming containers, CompOSe enables de-
velopers to implement any application expressed in KPN, CSDF, or time-driven models
of computation. Consequently, a unified support for different models of computation is
provided by the model of execution.

. Related Work

In the context of proposing and realizing a model of execution using a RTOS, existing
work falls into three categories: (i) mapping and implementation of the various models
of computation, specifically the KPN and dataflow, (ii) design strategies for multiple ap-
plications execution on MPSoC platforms, (iv) high level models of computation refine-
ment towards different models of execution. In what follows, we position our approach
with respect to the existing work in these categories.

Generally, the existing models of execution are either tailored to a single model of
computation, or assume no parallel execution of multiple applications on a processor.
Moreover, targeting a composable system distinguishes our approach from the similar
existing work. Various definitions of composability exist [, , ]. Our definition
however is more restrictive in that inter-application interference is completely prohib-
ited at cycle-level. e advantage is that a mix of FRT, SRT and NRT applications can be
easily, independently designed, verified, and integrated on the same MPSoC platform.



Chapter  REALIZATION OF THE MODEL OF EXECUTION

Several execution platforms for KPN applications were proposed [, , , , , ,
, ]. Except the work presented in [], none of them targets MPSoC platforms. e
authors of [] propose anMPSoC platform that supportsmultiple real-time applications.
e system performance is estimated using the applications individual timing profiles
and a model of the inter-application interference. When the applications are developed
by different parties and not all of them are available at design time, it is not possible
to come up with such estimation. us, this approach is quite restrictive comparing to
our technique that targets a composable system which enables design, verification and
integration of the applications in isolation. Furthermore, the approaches in [] and []
differ from ours in the sense that in [] KPN processes are scheduled and executed on
hardware reconfigurable accelerators, and in [] not multiple applications may execute
concurrently on the platform.

In case of dataflow models, applications performance can be accurately analyzed
using several dataflow models [, , ]. us dataflow is used to express real-time
applications executed onMPSoCs [, ]. All these approaches allow the design of real-
time applications, however the analysis requires bounds on the execution time of each
task or preemption in bounded time. is is not generally the case for non-real-time
applications, thus their integration on a common platform is not straightforward. e
authors of [] use an MPSoC similar to our platform, and target a system that permits
reasoning about the worst case overall behavior of applications when they are analyzed
in isolation. is means that the running applications can affect each other’s timing
behavior and the worst case still holds true. is definition of (weak) composability is
very similar to the ones in [] and [], and, as mentioned above our definition, i.e.,
strong composability, is more restrictive than theirs.

Typically, the programming and implementation models of embedded applications
start from a highly abstract model and refine the model to less abstract implementa-
tion models. ForSyDe [] provides a disciplined mixture of models of computation for
embedded systems designs. ForSyDe starts from a high level functional description of
applications using Haskell as the modeling language, and refines it step by step to an im-
plementation model. us the approach does not necessarily target an MPSoC platform.
In this approach, the refined implementation model may be for example another model
of computation such as a KPN, or a dataflow. We can consider its generated model as
an equivalent for our model of execution, however, here we are explicit about the im-
plementation of the models of computation with the model of execution and we target
only the KPN and dataflow models. Our model of execution not only represents the
execution operations of these models but also maps the operations to the time model of
the composable platform.

Furthermore, PTIDES [] and Gioo [] are models of computation that target
real-time applications. PTIDES focuses on the automotive application domains that in-
clude sensors and actuators and proposes the execution strategy for time-driven mod-
els []. It only supports applications with FRT requirements, and introduces a local
notion of the real, physical time for the applications. eir definition of the local time
is similar to the logical execution time of applications in []. Gioo is a time-triggered
language for embedded programming that targets embedded control applications. It
achieves time predictability but no composability, and the application timing may influ-
ence each others’ timing properties. Gioo does not specify where, how and when the



SUMMARY Section .

task are scheduled and executed, an the model is generic to be implemented by differ-
ent models of execution. Gioo and PTIDES aim to provide independent programming
models (models of computation) from the underlying platform, and their models support
only time-driven applications.

Moreover, CASSE [] proposes a high level execution model for simulating the ap-
plications that are functionally modeled in KPN. It bridges the gap to system implemen-
tation by refining the KPN model, and enabling transaction-level simulation at different
abstraction levels in the model refinement procedure. In the context of hardware/so-
ware co-design, the work presented in [] deals with parallel programming models to
abstract both hardware and soware interfaces in the case of heterogeneous MPSoC de-
sign. e authors of this work discuss different models of API and how an MPSoC simu-
lation may benefit from high level models. Unlike these approaches that aim to simplify
the functional simulation of applications, our model of execution bridges the gap be-
tween the actual MPSoC platform and the model of computation. Using our time model,
the designers can verify the requirements of each application in isolation at design time,
and using the operations of the model of execution, different data- and time-driven mod-
els are implemented easily on the actual MPSoC platform.

. Summary

In this chapter, we have introduced the requirements of the model of execution and
how such a model is realized on CompSOC’s virtual platforms. We have presented the
implementation of the model of execution by the CompOSe library, and how different
models of computation can be developed to execute on the platform.





CHAPTER5
Case Studies

t
he purpose of the composable virtual platform, described in this disserta-
tion, is to execute mixed criticality applications realized with either data-
driven or time-driven models of computation. In order to demonstrate
empirically how the platform achieves this objective, we have to study

the specific features of the platform as (i) predictability, (ii) composability, and (iii) the
model of execution that implements multiple models of computation.

In this chapter, case studies are performed on two experiment setups: (i) Matlab
simulation of a virtual platform, specifically simulating temporal behavior of CoMik in
partitioning the processor tiles, to investigate the predictability of time-driven applica-
tions executing on the platform, and (ii) actual execution of real application use-cases
on an FPGA prototype of the platform, to investigate the composability and multiple
models of computation. Here, we skip the predictability experiments for data-driven
application as the dataflow analysis for the similar systems has already been performed
completely in the literature [, ], and explicitly for CompSOC platform when using
CoMik in this thesis [].

e rest of this chapter, therefore, continues with focusing on the experiment results
of the two setups. In each section, we first introduce the details of each setup, following
with explaining the use-cases that are going to be used in each study. e experiment
results are then investigated with respect to predictability, composability, and support
for multiple models of computation.

. Predictability of Time-Driven Applications

A system is predictable if it is possible to define the timing behavior of the applications
at design time. For this, timing analysis of the system is performed. Timing analysis
of a real-time system is based on response time (rsp as defined in Section ..) of run-
ning applications. e response time of an application can be computed using a model
methodology from response time of its tasks. Response time of a task is defined as the
duration between the task’s release time and the time that it finishes its execution, i.e.
the output data/result is released in the corresponding producing FIFOs. e task τi is



Chapter  CASE STUDIES

schedulable on a system, if and only if rspi ≤ di in all situations. is condition states
that the response time of a task should be always less than or equal to its relative dead-
line. When a processor is shared by multiple tasks, the logical execution time (as defined
in Section .. of Chapter ) and ultimately the response time of a task may increase if
there is any higher priority task that is ready to execute. In the case that the processor is
further shared between multiple applications each running in an isolated partition, such
as in the CompSOC platform, the response time of all tasks of an application increases
because they are blocked for the slots of other partitions. Besides this, the relative dead-
line of the tasks may be logically moved earlier because the exact moment of a deadline
is in the blocking time of the application and therefore the task should finish before the
end of the last allocated slot to the application’s partition so that it meets the deadline.
As a result, in such systems, the response time analysis takes also the allocation of sys-
tem slots to applications (i.e., partitions’ parameters) into account, and the condition of
rspi ≤ di becomes tighter.

A number of different approaches that address these problems exist in the litera-
ture. Various analysis methods for so called temporal-partitioning systems have been
proposed [, , , ]. ese methods are not directly applicable to our platform, since
contrary to all the existing systems, in our case, composability implies a fixed system
slot overhead before every application slot, as illustrated in Figure .. us, a response
time analysis of applications running on the CompSOC platform is necessary in order
to enable application developers following two design options:

. (re-)design (legacy) applications to be schedulable on the CompSOC platform.

. adjust the partition parameters, i.e., slot allocations and slot sizes, so that the avail-
able (legacy) applications are schedulable.

We first formalize the timing properties of the composable platform. As an example,
a TDM inter-application schedule with the system period of T time-units and M = 6
number of slots is presented in Figure .. e size of each slot, which consists of a
partition slot, Sp , plus the system slot, Ss , is S = T

M time-units. Application j is allocated
a partition with a set of m j = 3 distributed slots (blue blocks) in the system period.

e cumulative processor time that is exclusively available for the execution of ap-
plication j until a time moment, t , depends directly on the size of its partition. is
cumulative time corresponds to sum of all the allocated slots to the application j until
time t , e.g., the blue slots in our example. e function that calculates this cumulative
time is called server characteristic function in [], server supply function in [], resource
supply bound function in [], and availability function in []. Here, we also use the term
of availability function and define it for an application j as follows.

A j (t) =
⌊

t

T

⌋
× A j (T)+ A j (∆t) (.)

where, A j (T) = m j ×Sp is the cumulative available time for the application j in a system
period and, ∆t is the time duration le until t in the last system period as depicted



PREDICTABILITY OF TIME-DRIVEN APPLICATIONS Section .

T (System period)

S

T (System period)

t
Δt

lbt Δt'

Δt''

S
p

Ss

Distributed allocation >

Bursty allocation >

bl bl

Figure .: An example of slots allocation to a partition (application) in a temporally-partitioned
system, illustrating the cumulative available processing time and the (longest) blocking time of
the partition.

in Figure ., and it is calculated as follows:

∆t =
{

t −T ×⌊ t
T

⌋
t < T

t t ≥ T
(.)

A j (∆t) depends on how the system slots are allocated to the application j . In other
words, it depends on when the application is blocked by the execution of other appli-
cations. According to an existing theorem [], when the processor allocation to an
application is distributed, schedulability should be tested for every task at all the critical
instances, i.e., the timewhen all the tasks are released at the beginning of a blocking time.
Here, we propose a conservative approachwhich considers the longest blocking time (lbt)
instance of an allocation. is is the case when all the slots that are not allocated to the
application are consecutive at the beginning of the system period, as illustrated in Fig-
ure .. In other words, the longest blocking time instance is when the allocation of slots
to an application is bursty. Given such an allocation, the longest blocking time for an
application j in a period is calculated with the following equation.

lbt j = T ×
(
1− m j

M

)
(.)

erefore, the lower bound on A j (∆t) is defined as Al
j (∆t) and it is calculated as

follows.

Al
j (∆t) =

{
Al

j (∆t ′) ∆t > lbt j

0 otherwise
(.)

where, ∆t ′ = (∆t − lbt j), and Al
j (∆t ′) is calculated as follows.

∆t ′′ =
(
∆t ′−S ×

⌊
∆t ′

S

⌋)
,and S′

p =
⌊
∆t ′

S

⌋
×Sp

Al
j (∆t ′) =

{
S′

p ∆t ′′ ≤ Ss

S′
p + (∆t ′′−Ss) ∆t ′′ > Ss

(.)



Chapter  CASE STUDIES

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Allocated TDM slots out of 10 slots

A
va

ila
bi

lit
y

in
 p

er
ce

nt
 o

f T
D

M
 ta

bl
e

pe
rio

d

Figure .: Availability function of a partition in a -slot (M = 10) systemwhen the slot allocation
(m) is changing from  to . In each case, CoMik slot overhead (Ss) is varied from  to  percent
of a partition slot, resulting in the different color bars.

Finally, using the longest blocking time of an application, a lower bound on the avail-
ability function is given with the following equation.

Al
j (t) =

⌊
t

T

⌋
× A j (T)+ Al

j (∆t) (.)

Every application has its own constraints over the minimum required availability
of the processor in a system’s TDM period in order to meet its timing and functional
requirements. Figure . illustrates the availability function of a partition in a -slot
system, when the size of the partition, i.e., the number of slots allocated to it, is varied
in different cases. Each case is experimented with different sizes of system slot, from 
to  percent of a partition slot. ere is a predictable linear relationship between the
number of slots allocated to a partition and the processor availability. e partitions can
therefore be configured to deliver a predictable level of service. Moreover, as can be seen
in Figure ., the maximum availability of the processor in case of temporal partitioning
is less than %. is is due to the CoMik slot overhead.

Depending on an application requirement, it may or may not possible to run the
application with particular size of the partition. erefore, care must be taken at design



PREDICTABILITY OF TIME-DRIVEN APPLICATIONS Section .

timewhen dimensioning the TDM table. For instance, shorter TDMslots allow for higher
throughput of partition context switches, enabling lower application response times,
but increase context switch overhead. e proposed lower bound on the availability
function may be used to analyze the timing properties of applications and to perform
the schedulability analysis for different task scheduling policies at design time. As an
example, here, we propose a schedulability analysis for the cases when the preemptive
fixed-priority task scheduler is used.

e traditional response time analysis method of real-time applications using the
fixed-priority scheduling is well known from the literature []. Following this method
for our platform, we propose theworst-case response time calculationmethod as follows.

wcrsp j i =Ci +
(

i−1∑
k=1

⌈wcrsp j i

Tk

⌉
×Ck

)

+
⌈wcrsp j i

TS

⌉
× lbt j ×

Sp

S
+

⌈wcrsp j i

S

⌉
×Sm (.)

For solving this equation, we refer to the existing approaches for traditional methods
in the literature []. An application is schedulable with a fixed priority scheduler if and
only if for all its tasks the condition of Al

j (wcrsp j i) < Al
j (d j i) holds true.

Using the above presented formulas, developers could analyze the worst case tim-
ing behavior of applications when using different intra-application scheduling policies,
before actually running the applications on the platform, and design the applications
for the worst-case scenarios. On the other hand, having the timing requirements of an
application, the system and each partition properties could be tuned in such a way that
the application is schedulable in its partition on the composable system.

Using the proposed availability function and the response time analysis method, in
what follows we setup a Matlab simulation environment to study the timing behavior of
a number of applications.

.. Matlab Simulation

Based on the availability function introduced in Equation (.), an instance of the plat-
form is modeled in Matlab to simulate the timing behavior of a number of applications.
For this purpose,  applications each consists of five tasks are generated randomly
with a modified version (to generate random periodic tasks) of TORSCHE toolbox [].
Each application is schedulable on a dedicated system in which the application owns the
processor exclusively. is corresponds to a dedicated, non-composable system. Here,
we consider a system TDM with period of  slots where we composably run multi-
ple applications. Starting with the minimum partition size of one slot, in each run, we
increase the size of the partition with one slot resulting in performing  different runs.

To investigate the variations in timing behavior, we define the responsiveness of a task
as

(rsp
T

)
. is gives us a normalized metric to compare the timing behavior of the tasks in

our randomly generated applications with different timing properties, i.e, deadline and
period. If the responsiveness of a task is greater than one, the task will miss its deadline.



Chapter  CASE STUDIES

Figure .: Average responsiveness of randomly generated applications, together with the min-
max illustration of responsiveness in the partitioned-system distributed-allocation scenario.

Figure . illustrates the responsiveness of the applications in three different cases.
e first case demonstrates the average of the worst-case responsiveness of the tasks
in each application when executing on a dedicated system. For the other two cases we
present the min-max bar and the average of the tasks’ responsiveness in each applica-
tion when executing on a partitioned system in the  different runs. In the second case
the slot allocations to the partitions are bursty, while in the third case the allocations
are as evenly distributed as possible. As expected, the results indicate that the average
responsiveness of the tasks for all applications in both partitioned scenarios are always
higher than the dedicated system scenario. is is a drawback of the partitioned system.
e responsiveness in bursty allocations is also higher than the distributed allocations,
since the applications experience longer bursty blocking time. Finally, we can observe
that in this set of applications, % of the applications could not meet their timing re-
quirements on the partitioned system regardless of their partition size as the maximum
responsiveness of (at least one o) their tasks (is) are greater than one.

Figure . illustrates the responsiveness of the tasks of two applications, namely Ap-
plication  & , when executing with different partition sizes. According to the Matlab
simulation results, Application  is schedulable on the partitioned system as the max-
imum responsiveness of the its tasks are smaller than one in all runs, as illustrated in
Figure .(a). While, Application  is not schedulable in the run with the partition size
of one, as illustrated in Figure .(b). However, using Equation (.), the results of the
worst-case responsiveness analysis of the both applications indicate that none of them
are schedulable with the smallest partition size. In Figure ., the differences between



PREDICTABILITY OF TIME-DRIVEN APPLICATIONS Section .

(a) Application .

(b) Application .

Figure .: Average responsiveness of two randomly generated applications.



Chapter  CASE STUDIES

the maximum responsiveness results of bursty allocations obtained from theMatlab sim-
ulation and the analysis results are because of not long enough simulation time during
which the worst-case blocking situation between the tasks of the application could not
occur. Moreover, as expected, by increasing the size of the applications’ partitions the
average responsiveness of the tasks is decreased.

. Composability & Mixed Models of Computation

CoMik is designed and implemented as a composable micro-kernel that guarantees iso-
lated and independent temporal (and functional) behavior of concurrent applications.
Each application runs in a dedicated partition directly or indirectly on top of an OS li-
brary. In order to support execution of multiple applications implemented with different
models of computation, CompOSe offers our unified model of execution. In this section,
we demonstrate how the applications with different models of computation are imple-
mented and executed using CompOSe on top of CoMik micro-kernel in the CompSOC
platform. We also visualize the composability property of this system. Moreover, the
performance of using preemptive and cooperative scheduling classes for some example
use-cases of data-drive applications are discussed based on the empirical results.

All the experiments are performed on an FPGA prototype of the platform. A VHDL
implementation of the CompSOC platform running with clock frequency of  MHz
is prototyped on a Xilinx ML FPGA board []. is prototyped instance of the
platform contains two processor tiles interconnectingwith the an on-chip network. Each
processor tile includes two RDMAs to be used for out-tile communications. Moreover,
an external SDRAM is also available. CoMik is configured to use a system slot duration
of  cycles and a partition slot duration of  cycles.

We set up five use-cases.Use-case  has two applications.e first application is a
workload of an electronic stability control (ESC) application having four periodic tasks,
and the second one is a tick generating application having three periodic tasks. is use-
case execute on one processor tile of the platform. We use this use-case to demonstrate
concurrent, composable execution of multiple applications (in this case two time-driven
ones) on the platform. Note that each application runs in its own partition, uses its own
copy of CompOSe library, and therefore two preemptive task schedulers and one TDM
partition scheduler are present.

e use-cases  &  use a simple synthetic data-driven application in a one-tile and
two-tile mappings on the platform, respectively, as shown in Figure .(a) and .(b) .
is data-driven application is composed of two tasks, one producer and one consumer,
communicating via a FIFO. ese use-cases are to demonstrate the basic insights into
how data-driven models of computation behave on the CompSOC platform when im-
plemented in our model of execution. Moreover, by using preemptive and cooperative
task schedulers we study the performance trade-off involved in using each class of the
schedulers.

To investigate more in depth the trade-offs in implementing different models of com-
putation with the model of execution, we set up the use-case  & , as illustrated in Fig-
ure .(c) and .(d). e fourth use-case consists of two applications, namely, a synthetic



COMPOSABILITY & MIXED MODELS OF COMPUTATION Section .

producer

consumer

Processor Tile 1

f1

(a) Use-case 

consumerproducer

Processor Tile 1 Processor Tile 2

f1

(b) Use-case 

Task
5

Task
1

Task
3

Task
2

Task
4Synthetic application

f2

f3

f4

f1

streamBuffer

nalUnitDecode

parseSliceHeader

parser

calvc

idct

intra prediction

deblocking filter

printMB

Processor Tile 1 Processor Tile 2

f1

f2

f3

f4

f5

f7

H.264 decoder

f6

(c) Use-case 

streamBuffer

nalUnitDecode

parseSliceHeader

parser

calvc

idct

intra prediction

deblocking filter

printMB

vld

idct

cc

JPEG decoder

f1

f2

f3

f4

f5

f7

H.264 decoder

f6

Processor Tile 1 Processor Tile 2

f1
f2

f3

(d) Use-case 

Figure .: Data-driven application use-cases.



Chapter  CASE STUDIES

one and and H. decoder. e synthetic application is a five-task application imple-
mented with both KPN and CSDF models of computation, where each task has the same
computation workload. e H. decoder is a six-task application, also realized in the
two models of computation.

e use-case  consists of the H. application and a JPEG decoder application.
We use this case to verify the composability of the system when multiple applications
execute concurrently on the platform.

In the rest of this section, we demonstrated and discuss the experiment results of
each use-case.

Composablity: Use-case 

e time-driven applications in use-case  use fixed-priority task scheduling in their own
partition. Figure . illustrates the schedule traces of two different runs measured on
the FPGA prototype with the inter-application TDM and intra-application fixed-priority
scheduling of the applications. e TDM period of the inter-application scheduler is 
slots. In the first run, the ESC and the synthetic applications are assigned two and one
slots, respectively, as illustrated in Figure .(a). In the second run, each application
is assigned one slot, and the last slot is allocated to the idle application, as illustrated
in Figure .(b). In the figures, the vertical gray bars represent the OS slots, and between
each two consecutive bars is an application slot. e colored boxes illustrate the execu-
tion times of the tasks, and the black boxes illustrate the duration between the logical
execution time (as defined in Section ..) of the tasks.

e tasks of the ESC application are scheduled in its slots fully independent of the
synthetic application’s tasks. In the run illustrated in Figure .(a), the longest blocking
time for the ESC application is one slot and for the synthetic application is two-slot, i.e.,
the ones that are allocated to the ESC application. While, in Figure .(b), the longest
blocking time for the both application is two-slot, namely, the one slot that is allocated
to the application itself, plus the slot of the idle application. eworkload of ESC tasks is
much less than an application slot size and all the tasks could always finish in the same
slots that they start in. is is not the case for the tasks of the synthetic application. For
example, the first execution of the task  starts in the second slot and it finishes in the
fih slot, and consequently, the response time of the task is more than the case that it
runs on a dedicated system.

To illustrate the composability of the system, we compare the response time of the
tasks in the two runs, as illustrated in Figure .. e response times of ESC tasks are
increased in the second run because the ESC application is allocated one less slot than
the first run. As it is also expected from Equation (.), the longest blocking time of
the ESC application in the second run is greater than in the first run, and therefore, its
tasks start executing later (farther to its release time) and subsequently finish later. In
spite of the variations in the timing behavior of the ESC tasks in these two runs, the
response times of the synthetic tasks are remained unchanged. is observation shows
that the timing properties of an application are not affected when the behavior of other
applications is modified, and therefore, the applications are independent and the system
is composable.



COMPOSABILITY & MIXED MODELS OF COMPUTATION Section .

E
S
C

S
y
n
.s
y
s
te

m
 T

D
M

E
S
C

S
y
n
.

E
S
C

(a
)


e
ES

C
an

d
th
e
sy

nt
he

ti
c
ap

pl
ic
at
io
ns

ar
e
as
si
gn

ed
tw

o
an

d
on

e
sl
ot
s,
re
sp

ec
ti
ve

ly
.

s
y
s
te

m
 T

D
M

E
S
C

S
y
n
.

ID
L
E
 a

p
p
.

E
S
C

S
y
n
.

ID
L
E
 a

p
p
.

(b
)


e
ES

C
an

d
th
e
sy

nt
he

ti
c
ap

pl
ic
at
io
ns

ar
e
ea

ch
as
si
gn

ed
on

e
sl
ot
.

Fi
gu

re
.
:

Sc
he
du

le
tr
ac
e
of

th
e
ap
pl
ic
at
io
ns

ru
nn

in
g
on

an
FP

G
A
pr
ot
ot
yp

e.



Chapter  CASE STUDIES

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18 20

D
iff

er
en

ce
 in

 r
es

po
ns

e-
tim

e
(x

10
00

 c
yc

le
s)

Iteration

ESC.task1
ESC.task2
ESC.task3
ESC.task4
Syn.task1
Syn.task2
Syn.task3

Figure .: Difference between response-time of the tasks in two runs, where the processor allo-
cation to ESC application is changed.

Mixed Model of Computation Support: Use-case  & 

In use-case , the entire application is mapped on one processing tile, and in the third
use-case, the producer task is mapped on the first processor tile and the consumer task
is mapped on the second one.

Figure .(a) and Figure .(b) present the performance of the application in the two
use-cases, when the application’s share of the processor is changed from % to %.
For each set-up, we perform one experiment with preemptive task scheduling and one
with cooperative task scheduling.

In both use-cases, the application performs beer if the tasks are scheduled coop-
eratively than preemptively. is is due to the fact that the application waits for the
scheduler interrupt if the application finishes earlier. Whereas, in cooperative schedul-
ing case, the task scheduler immediately schedules the next task. e difference between
the results of preemptive and cooperative scheduling in Figure .(a) and Figure .(b)
for each use-case, shows the wasted processor time in case of preemptive scheduling.

Regardless of the fact that the communication overhead increases in use-case ,
comparing to use-case , beer performance results are obtained, as illustrated in Fig-
ure .(b). is is because of executing the tasks in parallel on the two processors on
each of which each task owns the whole partition time exclusively.

e finishing time graph for the cooperative scheduling case, when the application
has % of the processor time, is presented in Figure .(b). Unlike when the application
has % of the processor time, this graph is not perfectly linear. is is due to the wait-
ing time caused by the fact that the application on the second tile is swapped out of the
processor. In this time, the consumer task cannot start processing the data and it should
wait until its next partition slot. e waiting time directly depends on how the TDM



COMPOSABILITY & MIXED MODELS OF COMPUTATION Section .

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 0 50 100 150 200 250

M
ea

su
re

d
R

es
po

ns
e

T
im

e
(

x1
03 c

yc
le

s)

Task Computation Work-Load (x107 cycles)

100%-Preemptive
100%-Cooperative
50%-Preemptive
50%-Cooperative

(a) Use-case : single-tile mapping of the application.

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 0 50 100 150 200 250

M
ea

su
re

d
R

es
po

ns
e

T
im

e
(

x1
03 c

yc
le

s)

Task Computation Work-Load (x107 cycles)

100%-Preemptive
100%-Cooperative
50%-Preemptive
50%-Cooperative

(b) Use-case : two-tile mapping of the application.

Figure .: Two use-cases of a simple synthetic application mapped on (i) one processor tile, and
(ii) two processor tiles; illustrating finishing time for  iterations of each use-case.

slots of an application’s partitions on the resources, in this case the processor and the
on-chip interconnect, are aligned. Ignoring the allocation on the on-chip interconnect
as it is not changed in the two experiments, if the % slots allocated to the tasks on each
processor are aligned perfectly, meaning that once the data is produced, the consumer
reads it, the results would be perfectly linear as it is linear in the case of Figure .(a).



Chapter  CASE STUDIES

Otherwise, if data arrives on the other processor tile when the application has just lost
the first processor, the consumer task should wait for the next coming slot to start pro-
cessing. is is not the case when the application has % of the processor in which
the tasks can start processing once data/space is available. is TDM misalignment af-
fect also explains the beer performance in some cases in Figure .(b) even if the task
work-load increases. When designing a real-time application, the worst-case TDM slots
miss-alignment should be taken into account to estimate the bounds on timing proper-
ties of the applications.

Preemptive vs. Cooperative Scheduling: Use-case  & 

Figure .(a) presents the performance of the synthetic application for various partition
slot sizes, in use-case . Except for small slot sizes, cooperative task scheduling leads to
beer performance, in both KPN and CSDF, because the cooperative scheduling is work-
conservative and utilizes the entire partition slot. ere is a large waste of partition
time in the case of preemptive scheduling. Here, for CSDF the performance differences
between preemptive and cooperative scheduling are minor.

In the case of KPN, preemptive scheduling performs poorly, because the status of a
task is not known when the task is selected and when the task is blocked the entire time
until the next interrupt, when the scheduler is being invoked, is wasted.

Figure .(b) illustrates the performance of the H. modeled in KPN and CSDF.
Similar to the synthetic application, in H. cooperative scheduling leads to beer per-
formance, small slot sizes have large overhead, and the KPNwith preemptive scheduling
has the worst performance.

In use-case , to verify the composability of the system when multiple applications
execute on the platform, we present two scenarios for this use-case when the task sched-
uling class is changed for one of the applications and for the other one is kept unchanged.

First, we execute the H. with the cooperative task scheduling, while the JPEG
executes once with preemptive task scheduling in and another with cooperative task
scheduling. Figure .(a) presents the response time difference between the results of
the experiments. e JPEG application shows no response time difference in two exper-
iments, indicating that the timing properties of JPEG are unchanged, when the H.
changes.

Second, we perform the two experiments while the H. executes once with pre-
emptive task scheduling and anotherwith cooperative task scheduling, for the casewhen
the JPEG task scheduling is kept unchanged. As expected, Figure .(b) presents the
same results of no change in timing properties for the two executions of the H..

e experiments indicate that the timing properties of the applications are not af-
fected when the behavior of other applications are modified, and therefore, the applica-
tions are independent. In other words, the system is composable.



COMPOSABILITY & MIXED MODELS OF COMPUTATION Section .

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5

F
in

is
hi

ng
 T

im
e

(
x1

08 c
yc

le
s)

Partition Slot Size (10x cycles)

CSDF/Preemptive
CSDF/Cooperative

KPN/Preemptive
KPN/Cooperative

(a) e synthetic application

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5

R
es

po
ns

e
T

im
e

(
x1

08 c
yc

le
s)

Partition Slot Size (10x cycles)

CSDF/Preemptive
CSDF/Cooperative

KPN/Preemptive
KPN/Cooperative

(b) H. video decoder.

Figure .: Synthetic and H. application on a two-Tile MPSoC Platform; illustrating finishing
time for  iterations of each application, when they are realized in KPN and CSDF models of
computation, and cooperative and preemptive task scheduler used to execute each model.



Chapter  CASE STUDIES

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40

D
iff

. o
f F

in
is

hi
ng

 T
im

e
(x

10
6 c

yc
le

s)

Application Iteration

H264 (Preemptive vs. Preemptive)
JPEG (Preemptive vs. Cooperative)

(a) JPEG uses preemptive and cooperative task scheduler.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40

D
iff

. o
f F

in
is

hi
ng

 T
im

e
(x

10
6 c

yc
le

s)

Application Iteration

JPEG (Preemptive vs. Preemptive)
H264 (Preemptive vs. Cooperative)

(b) H. uses preemptive and cooperative task scheduler.

Figure .: efinishing time difference between two execution scenarios of JPEG and H. ap-
plications. In each scenario task scheduling of one of the applications is changed from preemptive
to cooperative.



SUMMARY Section .

. Summary

In this chapter we have demonstrated empirically how the platform executes mixed crit-
icality applications realized with either of data- or time-driven models of computation.
For this, we studied the specific features of the platform as (i) predictability, (ii) compos-
ability, and (iii) support for mixed models of computation.

e study has been performed using two experiment setups. First, Matlab simula-
tion of the virtual platforms is used to show predictable temporal behavior of CoMik in
partitioning the processor tiles for time-driven models of computation. For this exper-
iment, we first formalized the timing properties of the composable platform, and pro-
posed a response time analysis method for time-driven applications using fixed-priority
task scheduling. en, we simulated the timing behavior of a number of randomly gen-
erated applications on a simulating instance of the platform. With this, we have shown
how the behavior of the applications changes predictably when the size of their allocated
partitions are changed.

Second, FPGA emulation of a prototyped instance of the platform when executing
different application use-cases is used. With this, we have shown the composability and
support for mixed models of computation features of the system.





CHAPTER6
Conclusions

t
his chapter concludes this dissertation with respect to the main contribu-
tions and the implementation of the solution described throughout this
dissertation. It also proposes several opportunities for future research
work.

. Contributions

is dissertation answers the major research question of how to design and execute mul-
tiple (real-time) applications concurrently on an embedded system, given that the appli-
cations are realized with different models of computation and they have different level
of time-criticality. is question has been raised as a result of two design challenges that
exist in the field of embedded systems. ese challenges have been addressed as: (i) re-
alizing strongly composable Virtual Platforms (VPs) for the mixed-criticality embedded
systems, and (ii) proposing an abstract execution layer in implementation of applications
expressed with different models of computation on the VP in a unified manner.

e solution to this question is to use virtualization technology to make the mixed-
criticality systems predictable and composable. is approach creates a VP for every
application by virtualizing all the resources that are involved in the execution of the ap-
plications. For this, the partitioning technique is used. is technique is applied to dif-
ferent resources of the platform to partition them temporally or spatially. In the context
of mixed-time criticality system, our focus is on temporal partitioning of the resources.
For this, a complete platform-based approach is used to mitigate the complexity of a
mixed-criticality system stack by proposing a multi-layered virtualization soware plat-
form on top of a Multi-Processor System-on-Chip (MPSoC) hardware architecture.

In the hardware platform, each resource is specially designed and implemented for
the purpose of guaranteeing predictable and composable execution of applications with
mixed-time criticality. CompSOC is a System-on-Chip (SoC) template developed follow-
ing composability and predictability paradigm. is template is used as the basis of the
hardware architecture.

Composable temporal partitions of the processor tile are created by using Time Di-



Chapter  CONCLUSIONS

vision Multiplexing (TDM) arbitration scheme that provides a guarantee on when the
service is exactly available to a partition. is scheme prevents the interference of other
partitions, while every application executes in a dedicated partition. Applying the com-
posable partitioning technique to all the resources involved in executing an application
in a processor tile, a partition is formed. A VP is then a set of these partitions allocated
to one application from all over the platform.

On top of the hardware platform, a minimum privileged soware layer is designed
to provide the essential services of partitioning for the purpose of virtualization. is
layer is realized in the form of a microkernel, namely CoMik. CoMik creates, controls
and schedules processor tile partitions. It executes an application in its partition by
virtualizing the soware hooks and offering anApplication Programming Interface (API)
so that the application could use its allocated resources.

Furthermore, a model of execution is proposed to fill the gap of execution abstraction
between the models of computation’s semantic and the platform’s primitive operations.
e model of execution categorizes the execution operations as: (i) computation, (ii)
communication, and (iii) scheduling operations.

e model of execution is implemented in form of CompOSe Operating System (OS)
library which is instantiated in every partition of the VP created by CoMik for an appli-
cation. CompOSe is designed in a number of soware units for: (i) providing the main,
interrupt handler, and exception handler soware hooks required by CoMik from a par-
tition, (ii) implementing the execution primitives of the model of execution using the
API provided by CoMik, and (iii) giving model of computation specific support to the
application by providing Soware Containers (SCs). CompOSe is implemented in such
a way that it does not introduce any uncertainty in executing an application on top of
the CoMik microkernel and therefore it complies with predictability and composability
of the system.

Finally, the predictability, the composability, and the support of multiple models of
computation are demonstrated empirically by using two major experiment setups: (i) a
Matlab simulation of virtual platform, that investigates predictable temporal behavior of
CoMik in partitioning the processor tiles; (ii) an FPGA prototype of the platform, that
studies the composability property and support of multiple models of computation. For
this, a number of use-cases consisting of real and synthetic applications execute on a
MPSoC instance of the CompSOC platform.

. Future Research Opportunities

e work that has been presented in this dissertation can be extended for further im-
provement. Here, we elaborate on two of the possibilities with this regard.

• In the current system, processor temporal partition are created by uniforming ar-
bitrating the utilization time of the processor using the TDM scheme. When a
number of consecutive time slots are allocated to one partition (an eventually to
one application), since each slot comes with a fixed overhead of the CoMik slot at
the start, it results in a non necessary overhead and consequently under-utilizing



FUTURE RESEARCH OPPORTUNITIES Section .

the system. Instead on such uniform TDM arbitration, a nun-uniform scheme can
be used to improve this situation. is scheme defines a finest possible grain slot
sizes, namely slot unit, for the system. When allocating slots to the partitions, it
initially analyzes the allocations using the slot units. In the second step, where
a number of consecutive unit slots are allocated to one partition, these slot can
be merged together and form a bigger size partition slot with just one CoMik slot
overhead at the start. is scheme is fully compliant with the composability prop-
erty of the system, as no maer what the size of an slot is, the partitions are fully
isolated and independent from each other. e complexity of the solution relies
in the fact that the CoMik has to then schedule possibly different size slots in each
partition scheduling time which is also feasible using the current design of Parti-
tion Control Block (PCB) and Timer-centric Interrupt and Frequency Unit (TIFU).

• Sizing partitions for every application is a challenging task for designers. In the
case that the application is expressed in a data-driven model of computation, there
exists automatic tool flows to perform analysis of the application model and come
up with the proper sizing of partitions such as the wok in []. ere is a research
opportunity in the context of extending this work in order to integrate the pro-
posed system analysis formalization in this dissertation with application analysis
methods so that the process of creating a proper size partition for a time-driven
application can be done automatically. In this way, the design flow can come up
with possibly various partition sizes and the system slot allocation. is brings
more flexibility when integrating multiple applications with mixed-criticality on
the platform.





APPENDIXA
Soware-Based Interrupt

Virtualization

c
onsidering the architecture for the processor tile of the CompSOC platform
without having TIFU as depicted in Figure .. In such a architecture, the
only partition-level interrupt that may be supported is the timer interrupt.
But, only CoMik uses Clock Control Module (CCM) for the system-level

interrupt, and if an application executing in a partition needs to use the timer interrupt
functionality, the application would interfere with CoMik in using CCM. Consequently,
the system interrupt may be affected, and the system composability is compromised. In
order to prevent this, in this section we propose a soware-based approach to virtualize
CCM and enable the system- and partition-level timer interrupts to co-exist.

We propose a soware-based technique to virtualize the CCM physical timer to be
used for the purpose of generating both system and partition timer interrupts. e sys-
tem interrupt timer has to be active in the whole system lifetime to implement compos-
able temporal partitions. us, when a partition needs to use the timer interrupt, there
are logically two virtual timers active in the partition time. e virtualization technique
realizes these two logical timer interrupts while preserving the system composability.
is means using this technique the timing properties of the other partition slots, i.e.,
start and end time of the slots, are not altered.

is technique is implemented in a kernel-mode function denoted as Programmable
Interrupt Timer (PIT) function. is function is called inside the partition interrupt
handling routine to program CCM for the next timer interrupt. Figure A. illustrates the
operational time-line of a partition interrupt handling routine when a timer interrupt is
occurred at time t . Aer a small delay (which is the result of executing a critical section
or a multi-cycle instruction), the processor starts executing the operations to handle the
partition interrupt. When the interrupt is handled, before returning from the interrupt
handler, the Programming Timer Interrupt (PTI) function executes to program the timer
for the next interrupt.

e value for the next partition interrupt is typically given relatively to the end of
the previous interrupt handling interval, and therefore, the overhead of handling the



Appendix A SOFTWARE-BASED INTERRUPT VIRTUALIZATION

partition slot partition slot

interrupt handling
operationspartition previous routine Partition

next routine

constant
[C1]

partition interrupt handling interval

Calculated [L]

t+It
time

boundable
jitter

interrupt return
operations

PIT
function

constant
[C2]

I = L+ C1 + C2

Figure A.: e General operational time-line of an application in a partition interrupt handling
interval.

interrupt has to be taken into account by the PTI function to calculate how much time
of the partition current slot is le. Such an overhead is not constant. us, the PTI
function calculates the time that it has been taken to execute the handling operations.
is is L time units, as depicted in Figure A.. Moreover, the PTI function itself and the
operation to return from the handler are implemented with constant execution times of
C 1 and C 2 time units, respectively. erefore, the partition interrupt handling interval
would be I = L+C 1+C 2 time units.

In the rest of this section, we present the detailed implementation of the PTI function
in virtualizing the system and partition timer interrupts.

Implementation

e main idea behind the soware-based technique is that the PTI function updates all
the two logically active timer interrupts and program the physical timer, i.e., CCM, with
the value of the earliest one. e earliest interrupt may be either a system interrupt, or
a partition interrupt of the running partition (application). Between these two logical
interrupts, precedence is given to system interrupts, such that they always occur at fixed
moments in time and the system composability is not invalidated. e main challenges
here are to accurately calculate the moment when the timer interrupts should occur,
and to keep track of partition interrupt handling intervals so that the moment when
each partition slot starts remains unchanged.

e partition interrupts (for example in a time-triggered application) are either peri-
odic or aperiodic in the partition time, and the interrupts are not perfectly aligned with
the system interrupt. In order to keep the timing information and to update it as the time
progress, the data structures has to be supported in the CoMik Control Block (CCB) and
the PCB. e size of the CoMik (microkernel) slot and the partition slots, denoted as
mk_slot and par_slot, respectively, are part of the system properties and kept in the
CCB.

Table A. presents the extensions of additional data structures to the control blocks,
that are required by the PTI function to calculate the time of next interrupts as follows:



Table A.: Additional data structure required for Soware-based interrupt virtualization.

SW Control Blocks Data Structure

CCB
int mk_slot

int par_slot

int par_slot_rem

PCB
int pi_time

int pi_time_rem

int pih_interval

int pih_interval_rem

• at every interrupt handling interval, the relative time to the end of the interval for
the next partition interrupt time is given and denoted as pi_time.

• if the partition has already been preempted by the system interrupt before the next
partition interrupt is occurred, the remaining time to the next partition interrupt
time is calculated and denoted as pi_time_rem.

• assuming that the next partition interrupt time is occurred, the remaining time of
the partition slot is calculated and denoted as par_slot_rem.

• the duration of the current partition interrupt handling interval is calculated and
denoted as pih_interval. If a system interrupt is supposed to occur in the mid-
dle of the partition interrupt handling interval, it does not preempt the handling
operations, however, the duration between the moment of the system interrupt
until the end of the interval is denoted as pih_interval_rem to be considered
at the beginning of the next slot that belongs to this partition.

e time for the partition timer interrupts is typically given in the system (real world)
time, and it is need to convert this time into a moment in the partition virtual time. To
do this, PTI function calls a function, denoted as conv_st_to_pt, that implements the
conversion of a time moment in the system time to a moment in the partition time.
Such a conversion directly depends on the partition parameters and the availability of
the processor to the partition in the given partition interrupt time.

Listing A. details the implementation of the PTI function using the data structures
presented in Table A.. e PTI function calculates the new value of par_slot_rem
by deducting the sum of the next pi_time and the current pih_interval from the
remaining partition slot duration. According to the value of par_slot_rem, three dif-
ferent scenarios for the next interrupt are possible, as illustrated in Figure A.. Following
one of these scenarios, as presented in Listing A., the PTI function sets the timer with
the proper value for the earliest interrupt in the future.

In the first scenario, aer current_int interrupt has occurred, the partition interrupt
handling interval can finish its entire operations and set the next timer interrupt, i.e.,
next_int, for a partition interrupt at a time before the next system interrupt. In this case,
the par_slot_rem is greater than the current pih_interval plus the pi_time.



Appendix A SOFTWARE-BASED INTERRUPT VIRTUALIZATION

/* INPUT: CCB, current PCB */
/* OUTPUT: Sets proper timer interrupt value, and updates all the data structures

presented in~\reftab{data_struct} */

int pih_interval = calculate_pi_interval();
int pi_time_rem_virtual = conv_st_to_pt(pi_time_rem);
int par_slot_rem -= (pih_interval + pi_time_rem_virtual);
int pi_time_temp;

IF(par_slot_rem > 0) {
/* Scenario 1 */

pi_time_temp = pi_time_rem_virtual;
pi_time_rem = pi_time;
pih_interval_rem = 0;

} ELSEIF (par_slot_rem <= 0) {
pi_time_temp = pi_time_rem_virtual + par_slot_rem;

IF (pi_time_temp < 0) {
/* Scenario 2 */

pih_interval_rem = -task_interval_temp;
pi_time_temp = 0;

}{
/* Scenario 3*/

pih_interval_rem = 0;
pi_time_rem = pi_time_rem - pi_time_temp;

}
par_slot_rem = par_slot;

}

/* Set the next timer interrupt */
program_CCM(pi_time_temp);

Listing A.: Pseudo code representation of the PTI function.

CoMik
slot

CoMik
slot

Scenario
1

Scenario
2

Scenario
3

current_int
next_int

current_int

current_int

next_int

next_int

partition interrupt handling interval
partition main routine

timer interrupt end of interval

current partition slot Next
partition slot

...

...

...

Figure A.: ree possible scenarios of programming the timer interrupt.



In the second scenario, aer current_int interrupt has occurred, the partition in-
terrupt handling interval cannot finish its entire operations before the next interrupt
next_int which is the periodic system interrupt. is is because the par_slot_rem is
less than the current pih_interval. In this case, we let the partition interrupt han-
dling operations to be finished, and therefore the interval extends over the CoMik slot.
e CoMik slot has fixed size and it is designed in such a way that it can absorb the
worst case duration of the partition interrupt handling intervals for all the running ap-
plications and its size remains unchanged. e extended time of the interval over the
CoMik slot, or in other words, the remaining time of the interval from the current par-
tition slot, is calculated in pih_interval_rem. is remaining time is implemented at
the beginning of the next partition slot so that the application running in this partition
does not experience a shorter interrupt handling interval. If current_int happens exactly
at the moment of the periodic system interrupt, then the entire partition interrupt han-
dling interval is considered in pih_interval_rem and implemented in the next slot
that belongs to this partition.

In the third scenario, when the current interrupt current_int occurs, the partition
interrupt handling interval can finish its entire operations, but the system interrupt is
before the next partition interrupt, i.e., next_int. is is because the par_slot_rem is
less than the current pih_interval plus the pi_time. e remaining partition inter-
rupt time, i.e., pi_time_rem, is therefore implemented in the next slot that belongs to
this partition.

In summary, the proposed soware-based technique virtualizes CCM by implement-
ing the PTI function that manages the co-existence of system and partition timer inter-
rupts in each partition so that the timing properties of partition slots remain unchanged
and the system composability is preserved. e soware-based approach is generic in
the sense that it works with a minimum hardware requirement, i.e., only one timer,
while the hardware-based solution requires TIFU to extend the interrupt virtualization
functionality. On the other hand, the soware-based approach virtualizes only the timer
interrupts, whereas, the second approach includes also the support of external interrupts
for the partitions.





Bibliography

[] Aguiar, A., and Hessel, F. Embedded systems’ virtualization: e next challenge?
In International Symposium on Rapid System Prototyping (), pp. –.

[] Akesson, B., and Goossens, K. Memory Controllers for Real-Time Embedded Sys-
tems, first ed. Embedded Systems Series. Springer, .

[] Akesson, B., Goossens, K., and Ringhofer, M. Predator: A predictable SDRAM
memory controller. In IEEE/ACM International Conference on Hardware/Soware
Codesign and System Synthesis (CODES+ISSS) (), pp. –.

[] Akesson, B., Molnos, A. M., Hansson, A., Ambrose Angelo, J., and Goossens,
K. Composability and predictability for independent application development,
verification, and execution. In Multiprocessor System-on-Chip. November ,
pp. –.

[] Akesson, B., Steffens, L., and Goossens, K. Efficient service allocation in hard-
ware using credit-controlled static-priority arbitration. In International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA) (),
pp. –.

[] Akesson, B., Stuijk, E., Molnos, A., Koedam, M., Stefan, R., Nelson, A., Nejad,
A. B., and Goossens, K. Virtual platforms for mixed time-criticality applications:
e CoMPSoC architecture and SDF design flow.

[] Almeida, L., and Pedreiras, P. Scheduling within temporal partitions: response-
time analysis and server design. In International Conference on Embedded Soware
(EMSOFT) ().

[] Auge, I., Petrot, F., Donnet, F., and Gomez, P. Platform-based design from par-
allel C specifications. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on ,  (),  – .

[] AUTOSAR (AUTomotive Open System ARchitecture). http://www.
autosar.org/.

[] Axer, P., Ernst, R., Falk, H., Girault, A., Grund, D., Guan, N., Jonsson, B., Mar-
wedel, P., Reineke, J., Rochange, C., Sebastian, M., Hanxleden, R. V., Wilhelm,
R., and Yi, W. Building timing predictable embedded systems. ACM Transaction
on Embedded Computing Systems ,  (Mar. ), :–:.



http://www.autosar.org/
http://www.autosar.org/

BIBLIOGRAPHY

[] Bamakhrama, M., and Stefanov, T. Hard-real-time scheduling of data-dependent
tasks in embedded streaming applications. In International Conference on Embed-
ded Soware (EMSOFT) (), pp. –.

[] Bekooij, M., Wiggers, M., and van Meerbergen, J. L. Efficient buffer capacity and
scheduler seing computation for so real-time stream processing applications. In
International Workshop on Soware and Compilers for Embedded Systems (SCOPES)
().

[] Broy, M. Challenges in automotive soware engineering. In International Confer-
ence on Soware Engineering (ICSE) (), pp. –.

[] Bui, D., Lee, E., Liu, I., Patel, H., and Reineke, J. Temporal isolation on multipro-
cessing architectures. In Design Automation Conference (DAC) ().

[] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., and Baruah, S.
A categorization of real-time multiprocessor scheduling problems and algorithms.
In Handbook on Scheduling Algorithms, Methods, and Models ().

[] Castrillon, J., Velasquez, R., Stulova, A., Sheng, W., Ceng, J., Leupers, R., As-
cheid, G., and Meyr, H. Trace-based KPN composability analysis for mapping
simultaneous applications to MPSoC platforms. In Design, Automation & Test in
Europe Conference & Exhibition (DATE) (), pp. –.

[] Dyer, M., Platzner, M., and iele, L. Efficient execution of process networks on
a reconfigurable hardware virtual machine. In Field-Programmable Custom Com-
puting Machines (FCCM) (), pp.  – .

[] Eker, J., Eker, J., Janneck, J. W., and Janneck, J. W. A structured description
of dataflow actors and its application. In Technical Report UCB/ERL M/, EECS
Department, University of California, Berkeley, ().

[] Feng, X. A., and Mok, A. K. A model of hierarchical real-time virtual resources.
In Real-Time System Symposium (RTSS) ().

[] Ghosal, A., Henzinger, T. A., Kirsch, C. M., and Sanvido, M. A. A. Event-driven
programming with logical execution times. In International Workshop on Hybrid
Systems: Computation and Control (HSCC) ().

[] Goossens, K., Azevedo, A., Chandrasekar, K., Gomony, M. D., Goossens, S.,
Koedam, M., Li, Y., Mirzoyan, D., Molnos, A., Nejad, A. B., Nelson, A., and Sinha,
S. Virtual execution platforms for mixed-time-criticality systems: the CompSOC
architecture and design flow. SIGBED Review ,  (), –.

[] Goossens, K., and Hansson, A. e Aethereal network on chip aer ten years:
Goals, evolution, lessons, and future. In Design Automation Conference (DAC)
(), pp. –.

[] Goossens, S., Akesson, B., Koedam, M., Nejad, A. B., Nelson, A., and Goossens,
K. e CompSOC design flow for virtual execution platforms. In th FPGAworld
Conference (September ).



BIBLIOGRAPHY

[] Goossens, S., Kuijsten, J., Akesson, B., and Goossens, K. A reconfigurable
real-time SDRAM controller for mixed time-criticality systems. In IEEE/ACM
International Conference on Hardware/Soware Codesign and System Synthesis
(CODES+ISSS) (), pp. –.

[] Haid, W., Schor, L., Huang, K., Bacivarov, I., andiele, L. Efficient execution of
kahn process networks on multi-processor systems using protothreads and win-
dowed fifos. In Embedded Systems for Real-Time Multimedia (ESTIMedia) (),
pp.  –.

[] Hansson, A., Ekerhult, M., Molnos, A., Milutinovic, A., Nelson, A., Ambrose,
J., and Goossens, K. Design and implementation of an operating system for com-
posable processor sharing. Microprocessors and Microsystems ().

[] Hansson, A., and Goossens, K. On-Chip Interconnect with aelite: Composable and
Predictable Systems. Embedded Systems Series. Springer, Nov. .

[] Hansson, A., and Goossens, K. A quantitative evaluation of a network on chip
design flow for multi-core consumer multimedia applications. Springer Journal of
Design Automation for Embedded Systems (DAEM) ,  (), –.

[] Hansson, A., Goossens, K., Bekooij, M., andHuisken, J. CoMPSoC: A template for
composable and predictable multi-processor system on chips. ACM Transactions
on Design Automation of Electronic Systems ().

[] Hansson, A., Goossens, K., and Rǎdulescu, A. A unified approach to con-
strained mapping and routing on network-on-chip architectures. In IEEE/ACM
International Conference on Hardware/Soware Codesign and System Synthesis
(CODES+ISSS) (), pp. –.

[] Hansson, A., Subburaman, M., and Goossens, K. Aelite: A flit-synchronous net-
work on chip with composable and predictable services. In Proceedings of the
Design, Automation & Test in Europe Conference and Exhibition (April ).

[] Heiser, G. e role of virtualization in embedded systems. InWorkshop on Isolation
and integration in embedded systems (IIES) (), pp. –.

[] Heiser, G. Virtualizing embedded systems - why bother? In Design Automation
Conference (DAC) (June ), pp. –.

[] Heiser, G., and Leslie, B. e OKL microvisor: Convergence point of micro-
kernels and hypervisors. In ACM Asia-pacific Workshop on Workshop on Systems
(APSys) (), pp. –.

[] Henzinger, T. A. Two challenges in embedded systems design: predictability and
robustness. Philosophical Transactions of the Royal Society ,  (), –
.

[] Henzinger, T. A., Horowitz, B., and Kirsch, C. M. Gioo: A time-triggered
language for embedded programming. In PROCEEDINGS OF THE IEEE (),
Springer-Verlag, pp. –.



BIBLIOGRAPHY

[] Hergenhan, A., and Heiser, G. Operating systems technology for converged
ECUs. In Embedded Security in Cars Conference (ESCAR) (November ).

[] Holenderski, M., Cools, W., Bril, R. J., and Lukkien, J. J. Multiplexing real-time
timed events. In International Conference on Emerging Technologies and Factory
Automation (ETFA) ().

[] Hur, J. Y., Stefanov, T., Wong, S., and Vassiliadis, S. Customizing reconfig-
urable on-chip crossbar scheduler. In IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP) (), pp. –.

[] Hur, J. Y., Stefanov, T., Wong, S., and Vassiliadis, S. Systematic customization
of on-chip crossbar interconnects. In International conference on Reconfigurable
computing: architectures, tools and applications (ARC) (), pp. –.

[] Ito, M., and Oikawa, S. Mesovirtualization: lightweight virtualization technique
for embedded systems. In International conference on Soware technologies for
embedded and ubiquitous systems (SEUS) (), pp. –.

[] Jantsch, A. Modeling Embedded Systems and SoC’s: Concurrency and Time in
Models of Computation. Electronics & Electrical. Morgan Kaufmann, .

[] Jantsch, A., and Sander, I. Models of computation and languages for embedded
system design. IEE Proceedings of Computers and Digital Techniques, - ,  (Mar
), –.

[] Jerraya, A., and Wolf, W. Multiprocessor Systems-on-Chips (Systems on Silicon),
 ed. Morgan Kaufmann, Oct. .

[] Jerraya, A. A., Bouchhima, A., and Pétrot, F. Programming models and HW-SW
interfaces abstraction for multi-processor SoC. In Design Automation Conference
(DAC) ().

[] John, R. Partitioning in avionics architectures: Requirements, mechanisms, and
assurance. Tech. rep., .

[] Joseph, M., and Pandya, P. K. Finding response times in a real-time system. e
Computer Journal ,  ().

[] Kahn, G. e semantics of a simple language for parallel programming. In e
International Federation for Information Processing (IFIP) Congress. .

[] Kerstan, T., Baldin, D., and Groesbrink, S. Full virtualization of real-time sys-
tems by temporal partitioning. In Operating Systems Platforms for Embedded Real-
Time applications (OSPERT) ().

[] Kienhuis, B., Rijpkema, E., and Depreere, E. Compaan: deriving process net-
works from matlab for embedded signal processing architectures. In IEEE/ACM
International Conference on Hardware/Soware Codesign and System Synthesis
(CODES+ISSS) (), pp. –.



BIBLIOGRAPHY

[] Kinebuchi, Y., Koshimae, H., Oikawa, S., and Nakajima, T. Virtualization tech-
niques for embedded systems. In International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA) – Work-in-Progress ().

[] Kinebuchi, Y., Sugaya, M., Oikawa, S., and Nakajima, T. Task grain schedul-
ing for hypervisor-based embedded system. In International Conference on High
Performance and Communications (HPCC) ().

[] Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Real-Time Systems Series. Springer, .

[] Kopetz, H., et al. Compositional design of RT systems: a conceptual basis for
specification of linking interfaces. Proc. of ISORC ().

[] Kumar, A., Mesman, B., eelen, B., Corporaal, H., and Ha, Y. Analyzing com-
posability of applications on MPSoC platforms. Journal of Systems Architecture
(March ).

[] Lee, E. A., and Parks, T. M. Dataflow process networks. Readings in hardware/-
soware co-design ().

[] Lee, E. A., and Sangiovanni-vincentelli, A. A framework for comparing models
of computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems  (), –.

[] Lickly, B., Liu, I., Kim, S., Patel, H. D., Edwards, S. A., and Lee, E. A. Predictable
programming on a precision timed architecture. Tech. rep., EECS Department,
University of California, Berkeley, Apr .

[] Lipari, G., and Bini, E. Resource partitioning among real-time applications. In
Euromicro Conference on Real-Time Systems (ECRTS) ().

[] Liu, I., Reineke, J., Broman, D., Zimmer, M., and Lee, E. A. A PRET microarchi-
tecture implementation with repeatable timing and competitive performance. In
International Conference on Computer Design (ICCD) (October ).

[] Liu, J., and Lee, E. A. Timed multitasking for real-time embedded soware. IEEE
Control Systems Magazine  (), –.

[] Martin, G. Overview of the MPSoC design challenge. In Design Automation Con-
ference (DAC). .

[] Masrur, A., Drossler, S., Pfeuffer, T., and Chakraborty, S. VM-based real-time
services for automotive control applications. In International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA) ().

[] Meenderinck, C., Molnos, A., and Goossens, K. Composable virtual memory for
an embedded soc. In Proceedings of the  th Euromicro Conference on Digital
System Design (), Euromicro Conference on Digital System Design, Architec-
tures, Methods and Tools (DSD), pp. –.

[] Mok, A. K., Feng, X. A., and Chen, D. Resource partition for real-time systems. In
Real-Time and Embedded Technology and Applications Symposium (RTAS) ().



BIBLIOGRAPHY

[] Molnos, A., Nejad, A. B., Nguyen, B. T., Cotofana, S., and Goossens, K. De-
coupled inter- and intra-application scheduling for composable and robust em-
bedded MPSoC platforms. In th Workshop on Mapping of Applications to MPSoCs
& th International Workshop on Soware and Compilers for Embedded Systems
(MapMPSoC/SCOPES ) (May ), pp. –.

[] Moreira, O., and Bekooij, M. Self-timed scheduling analysis for real-time appli-
cations. EURASIP Journal on Advances in Signal Processing  ().

[] Moreira, O., Mol, J.-D., Bekooij, M., and van Meerbergen, J. Multiprocessor
resource allocation for hard-real-time streaming with a dynamic job-mix. In Real-
Time and Embedded Technology and Applications Symposium (RTAS) ().

[] Moreira, O., Valente, F., and Bekooij, M. Scheduling multiple independent hard-
real-time jobs on a heterogeneous multiprocessor. In International Conference on
Embedded Soware (EMSOFT) ().

[] Nadesakumar, A., Crowder, R., and Harris, C. Advanced system concepts for
civil aircra: An overview of avionic architectures. Institution of Mechanical En-
gineers, Part G: Journal of Aerospace Engineering  (), —.

[] Nejad, A. B., Molnos, A., and Goossens, K. Enabling time-triggered scheduling
on a composable embedded system. InAnnual Workshop on PROGram for Research
on Embedded Systems & Soware (PROGRESS) (November ).

[] Nejad, A. B., Molnos, A., and Goossens, K. A soware-based technique enabling
composable hierarchical preemptive scheduling for time-triggered applications. In
IEEE th International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA) (August ), pp. –.

[] Nejad, A. B., Molnos, A., and Goossens, K. A unified executionmodel for multiple
computation models of streaming applications on a composable MPSoC. Journal
of Systems Architecture - Embedded Systems Design , -C (), –.

[] Nejad, A. B., Molnos, A., and Goossens, K. G. W. A unified execution model
for data-driven applications on a composable MPSoC. In Euromicro Conference on
Digital System Design, Architectures, Methods and Tools (DSD) (September ),
pp. –.

[] Nelson, A. Composable and Predictable Power Management. PhD thesis, Del
University of Technology, e Netherlands, .

[] Nelson, A., Molnos, A., and Goossens, K. Composable power management with
energy and power budgets per application. In International Conference on Em-
bedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS) (July
), pp. –.

[] Nelson, A., Nejad, A. B., Molnos, A., Koedam, M., and Goossens, K. CoMik:
A predictable and cycle-accurately composable real-time microkernel. In Design,
Automation & Test in Europe Conference & Exhibition (DATE) (March ).



BIBLIOGRAPHY

[] Nieuwland, A., Kang, J., Gangwal, O. P., Sethuraman, R., Busa, N., Goossens,
K., Llopis, R. P., and Lippens, P. C-HEAP: A heterogeneous multi-processor ar-
chitecture template and scalable and flexible protocol for the design of embedded
signal processing systems. Design Automation for Embedded Systems ,  (),
–.

[] Parks, T. M., Pino, J. L., and Lee, E. A. A comparison of synchronous and cycle-
static dataflow. In e Twenty-Ninth Asilomar Conference on Signals, Systems &
Computers (), p. .

[] Philips Semiconductors. Device Transaction Level (DTL) Protocol Specification.
Version ., July .

[] Prisaznuk, P. Arinc  role in integrated modular avionics (ima). In Digital
Avionics Systems Conference (DASC) (Oct ).

[] Reyes, V., Bautista, T., Marrero, G., Carballo, P., and Kruijtzer, W. CASSE:
a system-level modeling and design-space exploration tool for multiprocessor
systems-on-chip. In Euromicro Conference on Digital System Design, Architectures,
Methods and Tools (DSD) (aug.- sept. ), pp.  – .

[] Samolej, S. Arinc specification  based real-time soware engineering. e-
Informatica ,  (), –.

[] Sander, I., and Jantsch, A. System modeling and transformational design re-
finement in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems ,  (jan. ),  – .

[] Sangiovanni-Vincentelli, A., and Natale, M. D. Embedded system design for
automotive applications. e Computer journal ,  (), –.

[] Schoeberl, M., Patel, H. D., and Lee, E. A. Fun with a deadline instruction. Tech.
rep., EECS Department, University of California, Berkeley, Oct .

[] Shigero, S., Matsumoto, T., and Kei, H. On the schedulability conditions on par-
tial time slots. In International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA) ().

[] Shin, I., and Lee, I. Periodic resource model for compositional real-time guaran-
tees. In Real-Time System Symposium (RTSS) ().

[] Stefan, R. A., Molnos, A., and Goossens, K. dAElite: A TDM NoC supporting
QoS, multicast, and fast connection set-up. IEEE Transactions on Computers , 
(), –.

[] Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B., and Depreere, E. System
design using kahn process networks: e compaan/laura approach. In Design,
Automation & Test in Europe Conference & Exhibition (DATE) (Washington, DC,
USA, ), IEEE Computer Society, p. .

[] Stuijk, S. Predictable Mapping of Streaming Applications on Multiprocessors. PhD
thesis, Eindhoven University of Technology, e Netherlands, .



BIBLIOGRAPHY

[] Stuijk, S., and Basten, T. Analyzing concurrency in streaming applications. Jour-
nal of System Architecture , - (Jan. ), –.

[] Stuijk, S., Geilen, M., eelen, B. D., and Basten, T. Scenario-aware dataflow:
Modeling, analysis and implementation of dynamic applications. In International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS) (), pp. –.

[] Šůcha, P., Kutil, M., Sojka, M., and Hanzálek, Z. TORSCHE scheduling toolbox
for Matlab. In Computer Aided Control System Design (CACSD) ().

[] iele, L., and Wilhelm, R. Design for timing predictability. Real-Time Systems
, - (Nov. ), –.

[] Tokar, J. L. Space & time partitioning with ARINC  and pragma profile. In
International Real-Time Ada Workshop (IRTAW) ().

[] Turjan, R., and Kienhuis, B. Translating affine nested-loop programs to process
networks. In In Proceedings of the international conference on Compilers, architec-
ture, and synthesis for embedded systems (CASES) (), ACM Press, pp. –.

[] van denHeuvel, M.M. H. P., Holenderski, M., Cools, W., Bril, R. J., and Lukkien,
J. J. Virtual timers in hierarchical real-time systems. In Real-Time System Sympo-
sium (RTSS) – Work in Progress Session ().

[] Wiggers, M., Bekooij, M., Jansen, P. G., and Smit, G. J. M. Efficient compu-
tation of buffer capacities for multi-rate real-time systems with back-pressure.
In IEEE/ACM International Conference on Hardware/Soware Codesign and System
Synthesis (CODES+ISSS) ().

[] Xilinx, Inc. http://www.xilinx.com/.

[] Xilinx, Inc. MicroBlaze Processor Reference Guide, .

[] Yang, J., Kim, H., Park, S., Hong, C., and Shin, I. Implementation of compositional
scheduling framework on virtualization. SIGBED Rev. ,  (Mar. ).

[] Zimmer, M., Broman, D., Shaver, C., and Lee, E. A. Flexpret: A processor plat-
form for mixed-criticality systems. Tech. rep., EECS Department, University of
California, Berkeley, Oct .

[] Zissulescu, C., Stefanov, T., Kienhuis, B., and Depreere, E. F. Laura: Leiden
architecture research and exploration tool. In International Conference on Field
Programmable Logic and Applications (FPL) (), pp. –.

[] Zou, J., Matic, S., Lee, E., Feng, T., andDerler, P. Execution strategies for PTIDES,
a programming model for distributed embedded systems. In Real-Time and Em-
bedded Technology and Applications Symposium (RTAS) (april ), pp.  –.



http://www.xilinx.com/

List of Publications

International Journals

[] Kees Goossens, Arnaldo Azevedo, Karthik Chandrasekar, Manil Dev Gomony,
Sven Goossens, Martijn Koedam, Yonghui Li, Davit Mirzoyan, Anca Molnos,
Ashkan Beyranvand Nejad, Andrew Nelson, and Shubhendu Sinha. Virtual
execution platforms formixed-time-criticality systems: the CompSOC ar-
chitecture and design flow. SIGBED Review, ():–, .

[] Ashkan Beyranvand Nejad, Anca Molnos, and Kees Goossens. A unified exe-
cution model for multiple computation models of streaming applications
on a composable MPSoC. Journal of Systems Architecture - Embedded Systems
Design, (-C):–, .

[] Ashkan Beyranvand Nejad, Anca Molnos, Matias Escudero Martinez, and Kees
Goossens. A hardware/soware platform for QoS bridging over multi-chip
NoC-based systems. Parallel Computing, ():–, .

International Conferences

[] Kees Goossens, Bart Vermeulen, and Ashkan Beyranvand Nejad. A high-level
debug environment for communication-centric debug. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pages –, April .

[] Sven Goossens, Benny Akesson, Martijn Koedam, Ashkan Beyranvand Nejad,
Andrew Nelson, and Kees Goossens. e CompSOC design flow for virtual
execution platforms. In th FPGAworld Conference, September .

[] Andrew Nelson, Ashkan Beyranvand Nejad, Anca Molnos, Martijn Koedam,
and Kees Goossens. CoMik: A predictable and cycle-accurately composable
real-time microkernel. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), March .

[] Shubhendu Sinha, Martijn Koedam, Rob van Wijk, Andrew Nelson, Ashkan
Beyranvand Nejad, Marc Geilen, and Kees Goossens. Composable and pre-
dictable dynamic loading for time-critical partitioned systems. In Euromi-
cro Symposium on Digital System Design (DSD), August .

[] Ashkan Beyranvand Nejad, Matias Escudero Martinez, and Kees Goossens. An
FPGA bridge preserving traffic quality of service for on-chip network-
based systems. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages –, March .



BIBLIOGRAPHY

[] Ashkan Beyranvand Nejad, Anca Molnos, and Kees G. W. Goossens. AUnified
Execution Model for Data-Driven Applications on a Composable MPSoC.
In th Euromicro Conference on Digital System Design, Architectures, Methods and
Tools (DSD), pages –, September .

[] Ashkan Beyranvand Nejad, Anca Molnos, and Kees Goossens. A soware-
based technique enabling composable hierarchical preemptive scheduling
for time-triggered applications. In IEEE th International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), pages –,
August .

National & International Workshops

[] Benny Akesson, Er Stuijk, Anca Molnos, Martijn Koedam, Radu Stefan, Andrew
Nelson, Ashkan Beyranvand Nejad, and Kees Goossens. Virtual Platforms
for Mixed Time-Criticality Applications: e CoMPSoC Architecture and
SDF Design Flow. March .

[] Anca Molnos, Ashkan Beyranvand Nejad, Ba ang Nguyen, Sorin Cotofana,
and Kees Goossens. Decoupled Inter- and Intra-application Scheduling for
Composable and Robust Embedded MPSoC Platforms. In th Workshop on
Mapping of Applications to MPSoCs & th International Workshop on Soware and
Compilers for Embedded Systems (MapMPSoC/SCOPES ), pages –, May
.

[] Andrew Nelson, Ashkan Beyranvand Nejad, Davit Mirzoyan, Sorin Coto-
fana, and Kees Goossens. Embedded Computer Architecture Laboratory:
A Hands-on Experience Programming Embedded Systems with Resource
and Energy Constraints. In Workshop on Embedded and Cyber-Physical Systems
Education (WESE), October .

[] Radu Stefan, Ashkan Beyranvand Nejad, and Kees Goossens. Online Alloca-
tion for Contention-free-routing NoCs. In Interconnection Network Architec-
ture: On-Chip, Multi-Chip Workshop (INA-OCMC), pages –, January .

[] Ashkan Beyranvand Nejad, Kees Goossens, Johan Walters, and Bart Kienhuis.
Mapping KPN Models of Streaming Applications on A Network-on-Chip
Platform. In Annual Workshop on Circuits, Systems and Signal Processing (ProR-
ISC), November .

[] Ashkan BeyranvandNejad, Matias EscuderoMartinez, and Kees Goossens. On-
Chip Interconnect Protocol Stack Exploration for FPGA Board-to-Board
Bridging. In Annual Workshop on PROGram for Research on Embedded Systems &
Soware (PROGRESS), November .

[] AshkanBeyranvandNejad, AncaMolnos, and Kees Goossens. Enabling Time-
Triggered Scheduling on a Composable Embedded System. In Annual Work-
shop on PROGram for Research on Embedded Systems & Soware (PROGRESS), No-
vember .



Samenvaing

r
ecente ontwikkelingen laten een sterke trend zien ommeerdere applicaties
te integreren in één embedded systeem. Hierbij worden Multi-Processor
System-on-Chip architecturen geopperd als de oplossing voor het integre-
ren van complexe ontwerpen op een embedded systeem. Dit doel wordt ge-

haald door zo veel mogelijk reken resources te integreren in een enkele chip en daarmee
de parallelle executie van meerdere applicaties te ondersteunen. Vanwege kostenover-
wegingen moeten applicaties resources delen om parallelle executie mogelijk te maken
op deze systemen.

Om de volledige rekenkracht van een MPSoC te benuen worden applicaties gesplitst in
meerdere parallelle taken. Aankelijk van het intrinsieke gedrag van de applicatie zijn
deze taken echter data- of tijdsaankelijk van elkaar. Voor het implementeren van deze
applicaties worden er twee verschillende executionmodels gebruikt, namelijk data of tijd
gedreven. Hiernaast hebben deze applicaties vaak timing eisen, deze zijn in drie groepen
te classificeren: firm, so en non real-time. In een mixed time-criticality systeem stellen
de verschillende applicaties zeer uiteenlopende eisen aan de timing en als ze resources
delen zal dit interferentie tussen de applicaties veroorzaken.

Om het uitvoeren van verschillende real-time applicaties op een embedded systeem mo-
gelijk te maken moet het gedrag van het systeem voorspelbaar zijn. Op deze manier kan
er gegarandeerd worden dat de timing eisen van iedere applicatie worden gehaald. Om
bovendien onaankelijke ontwikkeling, verificatie en integratie mogelijk te maken van
mixed-criticality applicaties moet het systeem sterk composable zijn. In andere woorden,
de applicaties zijn volledig geïsoleerd in tijd. Het tijd gedrag van iedere applicatie is onaf-
hankelijk op klok-slag niveau. Op deze manier is tijdsinterferentie tussen de applicaties
volledig voorkomen.

In deze dissertatie behandelen wij twee belangrijke uitdagingen bij het ontwerpen en
prototyping van mixed time-criticality systemen: (i) Implementeren van sterk composa-
ble Virtual Platforms voor mixed-criticality embedded systemen, en (ii) stellen wij een
uniforme abstracte executielaag voor, voor het uitvoeren van applicaties met verschil-
lende models of execution. Hierbij richten wij ons op tijd-gedreven modellen en Kahn
Process Network en dataflow (met name Cyclo-Static DataFlow), als de twee varianten
van data gedreven models of computation. Op basis van deze uitdagingen beantwoorden
wij de hoofd onderzoeksvraag: hoe ontwerp en voer je meerdere applicaties tegelijkertijd
uit op een embedded systeem, gegeven dat de applicaties gebruik maken van verschillende



SAMENVATTING

models of computation en niveaus van time-criticality?

Deze dissertatie stelt als oplossing voor om voor iedere applicatie een Virtual Platform
te creëren dat iedere hardware resource, die bij de uitvoering van de applicatie is be-
trokken, virtualiseert. Hierom is een temporale partitioneringstechniek toegepast op de
CompSOC hardware architectuur. Bovenop deze architectuur is de CoMik microkernel
ontworpen als een minimale sowarelaag die resource partitionering mogelijk maakt.
CoMik maakt, controleert en schedules processor partities, en voert applicaties uit bin-
nen hun applicatiepartities door de virtualizatie van de processor zijn soware hooks en
biedt aan iedere applicatie een Application Programming Interface aan voor het gebruik
van de gevirtualizeerde resources. Hierdoor kunnen applicaties direct op het virtuele
platform uitgevoerd worden, identiek aan hoe ze op het dedicated hardware platform
uitgevoerd zouden worden. Er is echter een executie abstractiegat tussen de semantiek
van de models of computation en de door het platform aangeboden primitieve operaties.
Om dit gat te overbruggen is een model of execution geïntroduceerd om een algemene
set executie operaties te definiëren en hoe met deze operaties een specifiek model of
computation is te implementeren.

Hetmodel of execution is geïmplementeerd in de vorm van een lichtgewicht besturingss-
ysteem-bibliotheek, genaamd CompOSe, die uitgevoerd word in iedere partitie van het
VP. CompOSe is ontworpen als een set sowarecomponenten en de implementatie in-
troduceert geen onvoorspelbaar gedrag bij de uitvoering van een applicatie en behoudt
de composability eigenschappen van het systeem.

We demonstreren dat onze voorgestelde technieken het mogelijk maken meerdere ap-
plicaties, geïmplementeerd met verschillende models of execution composable en voor-
spelbaar tegelijkertijd uit te voeren doormiddel van twee experimentele opstellingen: (i)
Een matlab simulatie omgeving voor het onderzoeken van het temporale gedrag van de
CoMik microkernel. (ii) Een Field Programmable Gate Array (FPGA) prototype van het
CompSOC platform wordt gebruikt voor het bestuderen van de composability eigen-
schappen en het ondersteunen van meerdere models of computation door het CompOSe
real-time besturingssysteem.



STELLINGEN

behorende bij het proefschri

Composable Virtual Platforms for
Mixed-Criticality Embedded Systems

van

Ashkan Beyranvand Nejad

. In een mixed time-criticality systeem, is de compexiteit van ontwerp, verificatie
en integratie van applicaties grotendeels een gevolg van niet-kritische applicaties.
[dit proefschri]

. Een executiemodel is nodig om de ruimte in executie abstractie te overbruggen
tussen het model van de berekeningsemantiek en de primitieve executie werkza-
amheden van het onderliggende executie platform. [dit proefschri]

. Voorspelbaarheid is een boom-up eigenschap van een system, wat inhoudt dat
het niet mogelijk is om een voorspelbaar systeem te hebben, dat is ontwikkeld met
onvoorspelbare componenten. [dit proefschri]

. De meeste verschijnselen die bekend staan als willekeurig, zijn intrinsiek zeer
voorspelbaar, en het is het negeren, abstraheren van of het gebrek aan begrip voor
de oorzaken dat ze willekeurig of onvoorspelbaar lijken.

. Een ideale dictatuur presteert beter dan een ideale democratie , maar de ergste
democratie presteert beter dan de ergste dictatuur .

. Een academische graad, zoals een promotie, weerspiegelt een set (academische)
vaardigheden die zijn verworven door de eigenaar aan een universiteit, in plaats
van dat het wijst op een kennisniveau van de eigenaar (kandidaat) tijdens de
verdediging.

. Blinde beoordeling, enkel- of dubbelvoudig, is geen eerlijk mechanisme om een
wetenschappelijk werk te beoordelen.

. Niet alle meningen or overtuigingen verdienen respect, maar het recht on ze te
hebben moet worden gerespecteerd.

. Een van de grootste paradoxen in de technologie is om domme computer systemen
’smart devices’ te noemen.

. De wereld is een gevaarlijke plaats om te wonen, niet vanwege de mensen die
kwaad willen, maar vanwege de mensen die er niets tegen doen. [Albert Einstein]

Deze stellingenworden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgekeurd
door de promotor Prof.dr. K.G.W. Goossens.



PROPOSITIONS

belonging to the thesis

Composable Virtual Platforms for
Mixed-Criticality Embedded Systems

by

Ashkan Beyranvand Nejad

. In a mixed time-criticality system, the complexity of designing, verifying, and in-
tegrating applications is largely due to the non-critical applications. [is thesis]

. A model of execution is necessary to fill the gap of execution abstraction between
the model of computation’s semantics and the primitive execution operations of
the underlying execution platform. [is thesis]

. Predictability is a boom-up property of a system, which means that it is not pos-
sible to have a predictable system developed by using unpredictable components.
[is thesis]

. Most of phenomena known as to be random (unpredictable) are very predictable
intrinsically, and it is just ignoring, abstracting from, or lacking the understanding
of the causes that makes them to seem random or unpredictable.

. An ideal dictatorship outperforms an ideal democracy, but the worst democracy
outperforms the worst dictatorship.

. An academic degree, such as a PhD, reflects that a set of (academic) skills have been
acquired by its owner at a university rather than indicating a level of knowledge
of the owner at the time of the graduation.

. Blind reviewing, either single or double, is not a fair mechanism to judge a scien-
tific work.

. Not all opinions or beliefs deserve respect, but the right of having them must be
respected.

. One of the biggest paradoxes in the technology is to call the stupid computer sys-
tems smart devices.

. e world is a dangerous place to live, not because of the people who are evil, but
because of the people who do not do anything about it. [Albert Einstein]

ese propositions are regarded as opposable and defendable, and have been approved
as such by the promotor Prof.dr. K.G.W. Goossens.



About the Author

Ashkan Beyranvand Nejad was born in Tehran, Iran, in
. He received his B.Sc. degree in Electrical and Electron-
ics Engineering from Iran University of Science and Tech-
nology (IUST), in , and his M.Sc. degree in Systems-on-
Chip (SoC) Design fromRoyal Institute of Technology (KTH),
Stockholm, Sweden, in . In the last year of his M.Sc.
study, he moved to the Netherlands to carry out his thesis
on communication-centric transaction-based debug of SoCs
in NXP Semiconductors research group (formerly Philips Re-
search), in Eindhoven. Since , he started with the faculty
of Electrical Engineering, Mathematics and Computer Sci-
ence, at Del University of Technology, to pursue his Ph.D.

at Computer Engineering (CE) laboratory on the major topic of design challenges in
mixed-criticality embedded systems. e outcomes of his Ph.D. work have contributed
to two main projects: (i) Tera-Scale Multi-core Processor ARchitecture (TSAR), a Euro-
pean funded project on design and application of multi-core processor architectures tar-
geting tera-flops performance, and (ii) CompSOC research platform developed by Eind-
hoven University of Technology in collaboration with Del University of Technology.
His current research interests include composable and predictable embedded Systems-
on-Chip, mixed-criticality systems, real-time resource management, execution models,
and on-chip interconnect architectures.



	Abstract
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	List of listings
	List of Acronyms
	Terminology
	Introduction
	Challenges
	Overview of the Solution
	Contributions
	Organization

	Background
	Predictability
	Composability
	Hardware Platform Architecture
	CompSOC: A Composable & Predictable System-on-Chip Platform

	Application Execution
	Scheduling
	Task Temporal Model

	Model of Computation
	Data-driven Model of Computation
	Time-Driven Model of Computation
	Summary

	Composable Virtualization
	Partitioning for Virtualization
	Composable Virtual Platforms
	CoMik: a Composable Partitioning Microkernel
	Composable Temporal Partitioning
	Scheduling & Swapping Partitions
	Memory Partitioning Layout

	A Hardware Support for Virtualization
	Counters
	Timers
	Interrupt Controller
	Frequency Controller
	Control Unit

	Interrupt Virtualization
	Interrupt Management in CoMik
	CoMik Interrupt Handler
	Partition Interrupt Handler
	Exception Management in CoMik

	Critical Sections
	Kernel-Mode Critical Sections
	Partition-Mode critical sections

	CoMik Boot Loading
	Related Work
	Summary

	Realization of the Model of Execution
	Model of Execution
	Execution Operations: Computation & Communication
	Execution Operations: Scheduling
	Realization of Models of Computation
	Discussion on Realizing Models of Computation with the Model of Execution

	CompOSe: an Operating System Library
	CompOSe Data Structure
	Partition Software Hooks
	Implementing the Model of Execution
	Software Containers

	Related Work
	Summary

	Case Studies
	Predictability of Time-Driven Applications
	Matlab Simulation

	Composability & Mixed Models of Computation
	Summary

	Conclusions
	Contributions
	Future Research Opportunities

	Software-Based Interrupt Virtualization
	Bibliography
	List of Publications
	Samenvatting
	Stellingen
	Propositions
	About the Author

