
Isolation of redundant and mixed-critical automotive
applications: effects on the system architecture

1st Alessandro Frigerio
Eindhoven University of Technology

Eindhoven, The Netherlands
a.frigerio@tue.nl

2nd Bart Vermeulen
NXP Semiconductors

Eindhoven, The Netherlands

3rd Kees Goossens
Eindhoven University of Technology

Eindhoven, The Netherlands

Abstract—Future automotive systems, with Advanced Driving
Assistance Systems and Autonomous Driving functionalities, will
require fail-operational electronic systems. To achieve that, re-
dundancy is a necessary technique, like in many other fields such
as aviation. Moreover the applications have different safety re-
quirements, from safety-critical related applications, for example
for the driver replacement domain, to QoS-oriented applications,
for example for the infotainment domain. Redundancy in mixed-
criticality systems can be solved by physically separating system
resources or by using isolated virtualized environments with e.g.
hypervisors. There are costs associated to both solutions. In this
work we describe a novel model we use to characterize a mixed-
criticality automotive system and the analysis steps to obtain
quantified metrics. The quantified metrics include cost, failure
probability, total functional and communication loads, and total
cable length, to compare the different solutions from a system-
level perspective. We analyse the same set of mixed-criticality
applications that represent a simplified automotive system in
four scenarios. The architecture topology is either domain-
based or zone-based, and we use either physical separation or
virtualization to provide isolation. The obtained results show how
the model and the analysis allows us to understand the trade-offs
between the different solutions in specific applications scenarios,
and how to vary the metrics used in the analysis to adapt to a
different applications scenario.

Index Terms—ADAS, ASIL decomposition, AV, functional
safety, redundancy, safety-critical systems, virtualization

I. INTRODUCTION

Functional safety is a key aspect for Autonomous Vehicles
(AVs). The automotive electronic system must be reliable and
fault-tolerant to always provide safe guidance to the vehicle,
even in the presence of faults. The ISO26262 standard [1]
describes the procedures to develop and verify the safety of an
automotive system. Relevant for this work is the Automotive
System Integrity Level (ASIL) decomposition technique which
is described in the standard: a Functional Safety Requirement
(FSR) can be decomposed into redundant FSRs with lower
ASIL requirements if the redundant subsystems are indepen-
dent. The combination of the resulting FSRs must be analysed
at the system level, to make sure no Common Cause Faults
(CCFs) can invalidate the independency requirement.

The main techniques used to provide independency, and so
independence, are physical separation and resource virtualiza-
tion [2]–[4]. With physical separation the redundant parts of an
application are mapped to different hardware resources. These
resources can be located in separate parts of the vehicle to

avoid any type of common environmental failure condition
such as electromagnetic interference. In the case of resource
virtualization an additional software layer, called a hypervisor,
is used to safely share hardware resources and to isolate
application nodes. These two techniques are effective both for
isolating application nodes in case of redundancy and in case
of mixed-criticality applications.

In this work we analyse different architectural choices to
understand which advantages and disadvantages the virtual-
ization technique has. In particular our contributions are:
• The extension of an existing automotive system model and
analysis flow to allow the description of virtualization with
mixed-critical and redundant applications.
• The analysis of a simplified automotive system developed
with four different architectures. The effects of virtualization
are analysed in presence of mixed-critical and redundant
applications. The parameters we use for comparing different
solutions are the cost of the system, the failure probability
of safety-critical applications, the total communication and
computation loads, and the total cable length related to the
resources required for the automotive system.

The rest of the paper is organised as follows: Section II
describes the methodology we use to model and analyse an
automotive system. Section III contains the example appli-
cations and architectures that we analyse. The results of the
analysis are explained in Section IV. Finally, we analyse the
related work in Section V and conclude in Section VI.

II. METHODOLOGY

A. Automotive Electronic System Model
In this work we compare different architecture solutions

with quantifiable metrics. We adopt and extend the model
from [5], that divides the automotive system into three layers:
application, resource, and physical. Each layer describes the
characteristics of a different part of the system: the applica-
tion layer contains the application nodes, their requirements
(ASIL, functional or communication loads), and the logical
connections between them; the resource layer is formed by
the hardware resources, their specifications (ASIL, maximum
functional and communication loads), and their physical con-
nections; the physical layer contains the locations in which the
hardware resources can be positioned and their spatial coor-
dinates. Each layer is described by a graph, Ga = (Va, Ea),

Gr = (Vr, Er), Gp = (Vp, Ep). In addition two sets of edges
define the mapping of the application nodes to the hardware
resources and the mapping of the hardware resources to the
physical locations, Ear : Va → Vr and Erp : Vr → Vp.

As an extension to the existing model, when a hypervisor
is used each Virtual Execution Platform (VEP) will be present
in the resource graph as a separate resource, with a link to the
original resource used, and application nodes can be mapped
to them. The ASIL specification of each VEP depends on the
original resource’s and the hypervisor’s specifications.

We analyse trade-offs between different implementations
based on five metrics: the cost of the system, the failure
probability of the safety-critical applications, the total com-
munication and functional loads, the total cable length. In
Section II-B we describe how to characterize redundancy in the
model and in Section II-C we show how we can calculate these
parameters on the modelled system. When analysing physical
separation against virtualization either solution can be best,
depending on the differences between the two implementations
and to the costs associated to the two solutions.

B. Characterizing Redundancy

Redundancy is used in automotive and in safety-critical
systems to provide fault-tolerant and fail-operational systems.
As mentioned in Section I, redundant functionalities must be
independent, and either physical separation or virtualization
is applied. As in [5], we identify redundancy in the mod-
elled systems with a pattern. When part of an application is
redundant, the input data that comes from a non-redundant
part must be forwarded to the redundant branches. The node
that performs this operation is called splitter. At the end
of the redundant branch, a node called merger must decide
which of the different redundant outputs to forward to the
following part. For example a splitter can be implemented by
broadcasting the message to multiple nodes, and the merger
can be a N-out-of-M voter. These functionalities exist both
in the application layer and in the resource layer. Note that
these operations are single points of failure, thus have high
safety-critical requirements.

Figure 1a shows an example of physical separation for
the redundant system that performs the processing operations
proc1 and proc2. The redundant parts of the application are
mapped to different hardware resources, which are then con-
nected to a splitter and a merger via separate communication
resources. The CCFs are related only to the resource(s) on
which the splitter and merger operations are performed.

In case of virtualization, as shown in Figure 1b, we map
the redundant nodes to separate VEPs created on the same
hardware resource ECU. The CCFs are related not only to the
splitter and merger, but also to the original resource that is
used, its location, and the hypervisor used. In this example
a single input communication resource and a single output
communication resource are shared. They are now also a
CCF source and must be reliable enough for the redundant
communication. Compared to the physical separation scenario,
fewer communication resources are used, reducing the total

split

com
1a

proc
1

com
1b

merge

com
2b

com
2a

proc
2

VEP 1

VEP 2

Split MergeEth 1 Eth 3

split

com
1a

proc
1

com
1b

merge

com
2b

com
2a

proc
2

ECU 1

ECU 2

Split MergeEth 1

Eth 2

Eth 3

Eth 4

ECU

(a)

split

com
1a

proc
1

com
1b

merge

com
2b

com
2a

proc
2

VEP 1

VEP 2

Split MergeEth 1 Eth 3

split

com
1a

proc
1

com
1b

merge

com
2b

com
2a

proc
2

ECU 1

ECU 2

Split MergeEth 1

Eth 2

Eth 3

Eth 4

ECU

(b)

Fig. 1. Phyiscal separation (a) and virtualization of resource ECU (b) for
independence of redundant application nodes. Black arrows represent same-
layer logical interconnections, orange arrows are inter-layer mapping edges,
blue arrows link the VEPs to the original resource in the resource layer.

wiring harness of the system. The bandwidth requirements for
the single communication resources are however higher, since
the communication is condensed on the two resources instead
of being divided to four resources.

We identify three scenarios for redundancy in virtualized
systems related to the position of the splitter and merger nodes:
1) Splitter and merger operations in separate VEPs. This
scenario would allow inter-VEP communication, creating a
possible break of the isolation that the hypervisor provides;
2) Splitter and merger operations as hypervisor functionality.
This requires the hypervisor software to provide the tools to
perform the splitter/merger operations or to be user-accessible;
3) Splitter and merger operations performed in separate hard-
ware resources. This scenario, shown in Figure 1b, does not
require any modification of the hypervisor functionality.

For this work, we will use only the third scenario, since it
reuses commercial off-the-shelf hypervisors as is.

C. Calculating the comparison parameters

Once a system is described in the model, we calculate five
parameters that we use to compare different solutions:
1) The first parameter is the cost of each application. We
base this cost purely on the ASIL specification of the utilized

resources according to Table I. In case a hypervisor is used, an
additional cost is added to the resource that is being virtualized
based on the ASIL specification of the hypervisor itself and
of the provided VEPs according to Table II. This cost reflects
the additional complexity introduced by the use of an extra
software layer and the hypervisor.

TABLE I
RESOURCES COST METRIC (ARB. UNIT) [6].

Resource Type QM A B C D
Functional 5 50 500 5000 50000
Communication 4 40 400 4000 40000
Sensor / Actuator 8 80 800 8000 80000
Splitter / Merger 1 10 100 1000 10000

2) The second parameter is the failure probability of each
application, in particular the safety-critical ones. A fault tree is
generated from the modelled system to calculate this. This step
is based on [7], where the application graph is traversed from
actuators to sensors and at each visited node a pattern is added
in the fault tree. Figure 2 shows the events and base events that
are added to the fault tree for the application node n. In case of
a merger node the Input Failure event would be connected to
an AND gate instead of an OR gate. In case of a non-virtualized
resource, the possible failures are related to the software nodes
mapped on the same resource, to the resource itself, or to the
physical location on which the resource is positioned. Note
that we assume that nodes mapped on a functional resource
are not fail-silent with respect to the other nodes that share the
functional resource, unless they are isolated in a VEP. Nodes in
the same VEP are also not fail-silent with respect to each other.
In case of virtualization, the hypervisor is an additional cause
of failure, shared by all the nodes mapped on that particular
resource. In case of communication resources, we assume
that the communication physical layer and protocol provide
isolation between data from different sources, and previously
transmitted data cannot affect the current transmission.

A failure rate λ is assigned to each base event of the fault
tree. Table III shows the failure rates that we use in this

TABLE II
HYPERVISOR COST METRIC (ARB. UNIT).

VEPs
QM A B C D

QM 1 - - - -
A 10 100 - - -
B 10 100 100 - -
C 100 100 100 1000 -

H
yp

er
vi

so
r

D 100 100 100 1000 10000

Node n
Failure

Location
Failure

Input Failure
Resource

Failure
Software
Failure

Hyperv.
Failure

Node n
Failure

Location
Fail

Input Fail

...
Previous

Node 1 Fail
Previous

Node N Fail

Internal Fail

Res Fail SW Fail

split

com
1a

proc
1

com
1b

merge

com
2b

com
2a

proc
2

ecu1

f2

VM 1 VM2? ?

split

com
1a

proc
1

com
1b

merge

com
2b

com
2a

proc
2

ecu1

f2

VM 1 VM2

VM 3 VM4

split

com
1a

proc
1

com
1b

merge

com
2b

com
2a

proc
2

ecu1

f2

VM 1 VM2

Hypervisor

split

com
1a

proc
1

com
1b

merge

com
2b

com
2a

proc
2

ecu1

f2

VM 1

VM2
split

merg

...
Previous

Node 1 Fail
Previous

Node N Fail

Fig. 2. Fault tree pattern generated from node n.

work for the base events, based on [7], with the addition of
hypervisor and software failure. The location failure rate does
not depend on the ASIL value, and we consider a value of
10−11 failures per hour. We separate the failure events related
to the failure of the splitter or merger resources and of the
hypervisor. We assume a lower failure probability for these
events because of their safety-oriented nature.

TABLE III
BASE EVENTS FAILURE RATES (FAILURES/HOUR).

Base Event Type QM A B C D
Location 10e-11
Splitter/Merger/Hypervisor 10e-6 10e-7 10e-8 10e-9 10e-10
Other base event 10e-5 10e-6 10e-7 10e-8 10e-9

The software failure rate is related to the ASIL value
of the least safety-critical application node mapped on a
specific functional resource or VEP. This corresponds to our
assumption of non fail-silent nodes when mapped on the same
resource or VEP.
3–4) The next parameters are the functional and the commu-
nication loads of an application. Each application node has a
functional or communication load property. In our examples,
we assign to the load values of each node a representative num-
ber, proportional to realistic computational or communication
effort required to process each part of the application. The
total loads of an application are calculated in each different
implementation.
5) The last parameter is the total cable length. The Manhattan
distance between the hardware resources is calculated based
on the physical space coordinates assigned to the third layer.
For each communication resource, the distance between the
two resources that it connects (or the maximum distance in
case of buses) is considered as part of the total cable length.
In this work we consider normalized 2D coordinates ranging
from −1.0 to 1.0 in both directions.

III. EXAMPLE APPLICATION

A. Software Applications

The applications in an automotive system are generally
mixed-critical. For the analysis purpose we use a simplified
automotive system, where three applications are present. Fig-
ure 3 shows the graphs that represent these three applications,
with the communication or functional load annotated to each
node. For clarity purpose, we identify three domains in the
example automotive system: the driver replacement domain,
which is safety-critical and has Advanced Driving Assistance
Systems (ADAS) and AVs characteristics, and the body and
comfort and infotainment domains with QoS characteristics.
More complete descriptions of the automotive domains can
be found in [8] and [9]. The first application we analyse is
safety-critical (ASIL D), it collects environmental information
with multiple sensors, analysing the scenario and providing
trajectory and speed control data for the actuators. The second
and third applications are part of the body and comfort and
the infotainment domains respectively. The body and comfort
application manages the in-vehicle temperature, while the

infotainment one is a surround view application that provides
the driver a 360 degrees view of the vehicle’s surroundings.
Both of them are QoS applications (QM).

camera
front

camera
preproc
essing

50

rear
brakes

actuator

throttle
actuator

camera
front

stream
60

steering
control
signal

5

throttle
signal

2

rear
brakes
signal

2

data
fusion
200

camera
back

camera
back

stream
60

radar
radar

stream
50

radar
preproc
essing

40

camera
objects

10

radar
objects

10

high
level

traject
10

desired
vehicle
state

5

low level
speed
control

5

low level
lateral
control

5

lidar

lidar
preproc
essing

80

front
screen

front
heaters

rear
heaters

lidar
stream

60

rear
heaters
signal

1

front
heaters
signal

1

temp
sensor

temp
sensor
data

1

surView
F

camera

surView
F

stream
20 surView

30

lidar
objects

20

surView
stream

35

HVAC
control

2

surView
R

camera

surView
R

stream
20

steering
actuator

 Driver Replacement App Body & Comfort App Infotainment App

front
brakes
signal

2

front
brakes

actuator

Fig. 3. The three example applications analysed in this work. Each node
is annotated with its functional or communication load. The low level speed
control node marked in red is made redundant in the experiments.

Each application has different requirements on the system:
the safety-critical one requires high bandwidth on the sensing
part, low bandwidth in the actuation part, and high computa-
tional loads to process the data. The body and comfort appli-
cation has very low load requirements, while the infotainment
has moderate load requirements.

For readability, redundancy is not shown in Figure 3. We
introduce redundancy in the low level speed control node of
the driver replacement domain application, marked in red, and
it will have a pattern similar to the one shown in Figure 1 for
the node proc. The resource on which it is mapped is redundant
as well. Depending on the architecture topology used, which
will be discussed in the next section, this resource can either
be the domain-controller (for domain-based architectures) or
the central unit (for zone-based architectures). The application
nodes that share the resource will be redundant as well.

B. Hardware Resources

The hardware resources depend on the architecture topology
choice. In this work we consider two options:
1) Domain-based architecture, in which each sensor and actu-
ator is connected to the respective domain controller, which is
then connected via the backbone network to the central unit;
2) Zone-based architecture, in which each sensor and actuator
is connected to the closest zone controller based only on
its proximity. Each zone controller is then connected via the
backbone network to the central unit.

In both cases we consider a controller-based approach,
which means that the controllers have some computational
power and the application nodes are processed by them when
possible. In the zone-based topology we assume that an
application node can only be processed by the central unit
when it requires inputs or sends its outputs from/to multiple
zones. This scenario cannot happen in the domain-based
topology since each sensor and actuator related to a domain

are connected to the same controller. The driver replacement
application node data fusion must be processed centrally due
to its high computational load requirements.

Figure 4 shows our zone-based hardware resources imple-
mentation, in which we divide the system into two zones (front
and back) plus a star backbone network and a central unit.
Mixed criticality on the zone controllers exists, compared to
the domain-based topology in which the domain controllers
only have application nodes belonging to the same domain
and so with the same ASIL requirements.

Temper
ature
sensor

Central
ecu

Zone
Controll
er Front

Ethernet
switch 3

Direct
Ethernet

1

Ethernet
10

Ethernet
8

SurView
front

SurView
rear

Ethernet
1

Ethernet
2

Ethernet
switch 1

Ethernet
3

Fwd
camera

Back
camera

Radar

Zone
Controll
er Back

Ethernet
4

Ethernet
5

Ethernet
6

Ethernet
switch 2

Lidar

Direct
Ethernet

3

Can bus
1

Ethernet
9

Throttle
actuator

Brakes
actuator

Steering
actuator

Can bus
2

Rear
heaters
actuator

Front
heaters
actuator

Screen
Direct

Ethernet
2

Front Zone Back Zone

Backbone and Central

Rear
brakes
actuator

Fig. 4. Zone-based implementation of the hardware resources.

As mentioned in Section I, we use the physical isolation or
the virtualization techniques to either isolate redundant nodes
or mixed-critical nodes. No mixed criticality is present in case
of a domain-based topology, so the isolation is only required
by the redundant nodes of the application (the redundant low
level speed control nodes):
• Physical separation (Dom Phys): the nodes that require iso-
lation are mapped on the physically separate redundant driver-
replacement domain controllers, which have lower ASIL spec-
ification due to the ASIL decomposition technique. All the
other nodes that are processed on the domain controllers must
be redundant as well, so that ASIL decomposition can be
applied. An alternative would have been to add a third domain
controller with safety-critical characteristics to process the
other nodes, which would increase the total cost of the system
resources.
• Virtualization (Dom Virt): the redundant low level speed
control nodes are mapped on separate VEPs with lower ASIL
specification on a single driver-replacement domain controller
running a hypervisor. We add a third safety-critical VEP so
that we map the other non-redundant nodes to that. We will
obtain lower communication and functional loads by limiting
the amount of redundancy in the application, and compared to
the physical separation solution no extra cost is added to the
system for this.

In case of the zone-based topology nodes with different
ASIL requirements should be mapped to the zone controllers
or to the central unit based on the belonging of their sources
and outputs to one or multiple zones.

• Physical separation (Zone Phys): multiple zone controllers
for both the zones are required because of mixed-criticality.
The same applies for the central unit. Moreover the redundant
low level speed control node must be mapped on physically
separate redundant central units, for a total of three different
central units.
• Virtualization (Zone Virt): VEPs are used for both mixed-
criticality and redundancy. Three different VEPs are used in
the single central unit, and two VEPs are used in each zone
controller, since the applications have two criticality levels
(ASIL D and QM).

IV. EXPERIMENTS

In this section we calculate the comparison parameters on
the example system described in Section III. We analyse the
system in four different scenarios: domain-based with physical
separation, domain-based with virtualization, zone-based with
physical separation, and zone-based with virtualization.

The physical separation and the virtualization techniques
are used for two reasons: we require isolation to avoid inter-
ferences in case of mixed-criticality application on the same
functional resource, and we also require isolation in case an
application has redundant parts.

In domain-based scenarios, no mixed criticality is present in
the system, as every domain is confined in its own subsystem.
The application functional nodes, with the exception of the
data fusion node which requires high computational capabili-
ties, are mapped to the local domain controllers, which for the
driver replacement domain are made redundant to allow the
mapping of the redundant low-level speed control node. All
the other application functional nodes mapped on the driver
replacement domain controller will be redundant as well.

In zone-based scenarios, the zone-controllers and the central
unit will process application nodes belonging to multiple
domains, and so with different safety requirements. In these
scenarios the larger part of the safety-critical application will
be executed in the redundant central units, since the nodes
require information from sensors belonging to different zones.

1.05 1.1 1.15 1.2 1.25 1.3
Cost (arb. unit) 106

2.5

3

3.5

4

4.5

5

F
ai

lu
re

 P
ro

ba
bi

lit
y

(f
ai

lu
re

s/
ho

ur
)

10-8

Dom Phys
Dom Virt
Zone Phys
Zone Virt

Fig. 5. Cost vs Failure Probability.

Figure 5 shows the values of the first two parameters, total
cost of the system and failure probability of the safety-critical
application, calculated on the modelled system by using the
metrics described in Section II-C and the generated fault tree.
The zone-based topology with physical separation is the most

expensive, since all the controllers and the central unit must be
duplicated for both redundancy and mixed-criticality, which in
the virtualized solution become VEPs on the same resources.

When using safety-oriented resources to perform the splitter
and the merger operations, their failure probability will be
lower than a single-point of failure solution. This explains the
reason why the failure rate of the domain-based topology is
higher than the zone-based: in domain-based topologies the
driver-replacement application node data fusion is processed
by the non-redundant central unit, while in the zone-based
topology the central unit is redundant, and the dominant failure
rates are the ones of the safety-critical splitter and merger.

We observe opposite trends when using virtualization: in
the domain-based topology the failure probability decreases,
while in the zone-based it increases. This result depends on the
application mapping and hardware configuration. For example
in the domain-based scenario it was possible to share more
communication resources as seen in Figure 1b, reducing the
system complexity and the number of possible faults due to
resources failures.

Figure 6 shows the communication and functional loads
of the system based on the values given to each application
node. The zone-based topologies, despite their lower failure
probabilities, suffer in terms of total communication and
functional loads: more raw data (with high bandwidth) from
the sensors is transmitted towards the redundant central units,
which are also performing the most computational heavy
task redundantly. Virtualization does not help the zone-based

Dom Phys Dom Virt Zone Phys Zone Virt
0

500

1000

1500

2000

2500

C
om

m
un

ic
at

io
n

an
d

fu
nc

tio
na

l l
oa

ds
 (

ar
b.

 u
ni

t)

Functional load
Communication load

Fig. 6. Communication and Functional loads.

topology in reducing these two parameters.
In the domain-based scenario the sensor raw data stops

at the domain controllers to be processed, resulting in a
lower utilization of the backbone network. Moreover, thanks
to virtualization the preprocessing part of the application is
not redundant, cutting in half the associated communication
and functional loads.

Figure 7 shows the total cable length based on the normal-
ized 2D coordinates associated to the physical layer. Another
advantage of zone-based topologies is a lower total cable
length. Moreover, virtualization removes the need to duplicate
communication links, thereby requiring fewer links, and hence
a lower total cable length.

Dom Phys Dom Virt Zone Phys Zone Virt
0

5

10

15

20

T
ot

al
 C

ab
le

 L
en

gt
h

(n
or

m
al

iz
ed

 u
ni

t)

Fig. 7. Total cable length.

We understand from these experiments that virtualization
does not always reduce the analysed parameters in an auto-
motive system. Note that these results are obtained with the
cost and failure rates metrics described in Section II-C and are
calculated in specific architecture scenarios. For example, the
failure probability of the system in domain-based topologies
when virtualization is applied is reduced, despite introducing
an additional CCF cause due to the possible failure of the
hypervisor. If the failure rate λhyp would be more critical,
the result could be different, and for example exceed the
maximum failure probability that an ASIL D system can have,
since the hypervisor’s failure rate directly impacts the system
failure probability. However our method is general and with
the analysis that we propose these metrics can be adapted to
a particular solution and the new parameter can be calculated
to be compared with a different implementation.

V. RELATED WORK

The literature related to Advanced Driving Assistance Sys-
tems and Autonomous Driving touches many different fields.
In this work we focus on system-level descriptions of the
system and on functional safety. The ISO26262 standard [1]
provides guidelines to develop a safe automotive system,
focusing on random and systematic faults events, and ensuring
the functionality of the system in case of a system failure. It
describes the ASIL decomposition technique which we use to
decompose FSRs into redundant ones, which can be assigned
to redundant parts of the system. In this paper we follow these
guidelines and we describe methods to provide the isolation
required by the ASIL decomposition technique to validate it.

To describe the automotive system, we extend the model
of [5], where the authors describe a three-layer model to
characterize an automotive system and define the splitter and
the merger functionalities to identify redundancy patterns. A
splitter is a node that replicates data on its input port to its
outputs, connected to redundant parts of the system. A merger
decides which of its inputs, connected to the redundant parts,
should be forwarded to the following nodes. We extend their
methodology to add the capability to describe and analyse
virtualization and mixed-criticality.

The use of virtualization for automotive systems has been
discussed in different works. For example the authors of [10]
describes some advantages in terms of isolation due to using
the VirtIO hypervisor, while the authors of [11] describe

the implementation of the VOSYSmonitor hypervisor. The
authors of [12] analyse low-level implications of virtualizing
automotive control units. In our work we to take a step back
to understand the implications that the use of virtualization
has on the automotive architecture, in terms of higher level
parameters such as the total cost, the failure probability of
the applications, the total communication and functional loads,
and the total cable length of the system.

VI. CONCLUSION

In this work we describe a methodology to analyse an
automotive electronic system from a system-level point of
view. An existing model is used to characterize the system,
from which a different fault tree graph for each application is
generated. We extend the model to allow the description of
virtualization, a technique that is used to provide the isolation
required for redundant and mixed-critical applications. We
calculate five parameters, the total cost, the failure probability
of the applications, the functional and communication loads,
and the total cable length, to quantify and compare different
solutions. As an example, we analyse a system composed
by three applications in four different scenarios, based on
the architecture topology and the use of virtualization. The
numerical results are based on the characterization of the
specific applications and hardware architectures we use, but
can be adapted to any other automotive electronic system.
We show how virtualization can provide improvements over
physical separation in some particular situations, and how to
quantify these advantages.

ACKNOWLEDGMENT

The work in this paper is supported by the TU/e Impuls
program, a strategic cooperation between NXP Semiconduc-
tors and Eindhoven University of Technology. This research
was supported through PENTA project HIPER 181004.

REFERENCES

[1] ISO 26262-2018: Road vehicles - functional safety. 2018.
[2] Reinhardt, D., et al.: An embedded hypervisor for safety-relevant auto-

motive E/E-systems. In: SIES, 2014
[3] Saidi, S., et al.: Future automotive systems design: research challenges

and opportunities. In: CODES, 2018
[4] Aeronautical Radio Inc.: Avionics application software standard inter-

face. ARINC Specifications 653, 2005
[5] Frigerio, A., et al.: A generic method for a bottom-up ASIL decompo-

sition. In: SAFECOMP, 2018
[6] Murashkin, A., et al.: Automated decomposition and allocation of

automotive safety integrity levels using exact solvers. In: SAE Int. J.
Passeng. Cars - Electron. Electr. Syst., 2015

[7] Frigerio, A., et al.: Component-level asil decomposition for automotive
architectures. In: SSIV, 2019

[8] Stolz, W., et al.: Domain control units - the solution for future E/E
architectures? In: SAE Technical Paper, 2010

[9] Reger, L.: The EE architecture for autonomous driving. A domain-based
approach. In: ATZ Elektron Worldw, 2017

[10] Lampka, K., et al.: Using hypervisor technology for safe and secure
deployment of high-performance multicore platforms in future vehicles.
In: ICECS, 2019

[11] Lucas, P., et al.: VOSYSmonitor, a TrustZone-based hypervisor for ISO
26262 mixed-critical system. In: FRUCT, 2018

[12] Rajan, A., et al.: Hypervisor for consolidating real-time automotive
control units: Its procedure, implications and hidden pitfalls. In: JSA,
2018

