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ABSTRACT
In this work, we present a simplification and a corresponding
hardware architecture for hard-decision recursive projection-
aggregation (RPA) decoding of Reed-Muller (RM) codes.
In particular, we transform the recursive structure of RPA
decoding into a simpler and iterative structure with mini-
mal error-correction degradation. Our simulation results for
RM(7, 3) show that the proposed simplification has a small
error-correcting performance degradation (0.005 in terms of
channel crossover probability) while reducing the average num-
ber of computations by up to 40%. In addition, we describe
the first fully parallel hardware architecture for simplified RPA
decoding. We present FPGA implementation results for an
RM(6, 3) code on a Xilinx Virtex-7 FPGA showing that our
proposed architecture achieves a throughput of 171 Mbps at a
frequency of 80 MHz.

1. INTRODUCTION

Reed-Muller (RM) codes were first proposed in 1954 [1]. Re-
cently, there has been a renewed interest in RM codes because,
in some cases, they were shown to be capable of achieving the
Shannon capacity of the binary erasure channel (BEC) [2] and
the binary symmetric channel (BSC) [3]. The oldest decoding
algorithm for RM codes is based on majority voting [1], and
it guarantees correction of the error patterns with a weight
less than half of the minimum distance. A wide variety of
algorithms has been proposed afterward to improve decoding
capacity. For example, the Sidel’nikov-Pershakov algorithm
[4] corrects most of the corrupted codewords with a number
of errors less than (1− ε)n/2, where n indicates blocklength
of the RM codes and ε ≥ n−1/3. Some hardware architec-
tures are also available for the aforementioned methods. A
parallel decoding architecture for majority-logic decoding al-
gorithms was provided in [5], and a low-area decoder for the
Reed decoding method was introduced in [6].

Successive-cancellation (SC) decoding [7] and SC list
(SCL) decoding [8], make use of the decomposable struc-
ture of RM codes to provide recursive decoding methods with
reasonable complexity. The work of [9] improved the perfor-
mance of SC and SCL decoding methods by exploring several
carefully selected permutations of the factor graph of RM
codes. The work of [10] exploits the symmetric structure of
RM codes and applies an iterative decoding method to provide

near maximum likelihood (ML) performance. Other works
focused on special cases of RM codes. For example, [11] is
a modified version of the Sidel’nikov-Pershakov algorithm
that improves error-correcting performance for second-order
RM codes. Moreover, the work of [12] provided a new ML
decoder with a lower complexity for RM codes of order m−3,
where m = log2 n.

The main drawback of the aforementioned algorithms is
that they have poor error-correcting performance for short
blocklength RM codes. For this reason, the authors of [13] pro-
posed a new algorithm called recursive projection-aggregation
(RPA) decoding that improves the error-correcting perfor-
mance of RM codes in the regimes of interest of ultra-reliable
low-latency communications (URLLC) and of the Internet of
Things (IoT), i.e., low rate and short blocklength RM codes.
The RPA algorithm is highly parallelizable. However, it has a
high complexity and its recursive structure is not particularly
amenable to hardware implementations. The authors of [14]
proposed a collapsed projection-aggregation (CPA) decoding
algorithm, which merges multiple recursion levels into a single
step. However, this comes at the cost of an increased com-
plexity for the projection step, since more than two bits (or
LLRs) are combined at each step. The authors of [14] also
introduce recursive puncturing-aggregation (RXA), which is
more suitable for high-rate RM codes.

Contributions: In this paper, we present a simplified ver-
sion of the RPA algorithm to make a trade-off between the
error-correcting performance and computations. We simplify
the RPA algorithm by carefully removing computations in the
recursion levels to make the structure suitable for hardware
implementations. Moreover, we propose the first fully parallel
hardware architecture for RPA decoding.

2. REED-MULLER CODES

The focus of this paper is on the BSC, so all operations and
vectors are in F2. RM codes are denoted by RM(m, r), where
m indicates the code length n = 2m and r is the order. RM
codes are linear block codes with rate R = k

n , k =
∑r

i=0

(
n
i

)
,

and with the following recursively defined generator matrix:

G(m,r) =

[
G(m−1,r) G(m−1,r)

0 G(m−1,r−1)

]
, G(1,1)=

[
1 1
0 1

]
.

(1)



Algorithm 1 The RPA decoding of RM codes RM(m, r)
Input: The noisy codeword y, m, r, Nmax

Output: The decoded codeword c
1: if r = 1 do
2: c←order-1-decoding (y,m)
3: else
4: for j = 1 : Nmax do
5: for i = 1 : 2m − 1 do
6: yi ← Proj(y, i,m)
7: ŷi ← RPA(yi,m− 1, r − 1, Nmax)
8: end for
9: ŷ← Agg(y,y1,y2, . . . ,yn−1, ŷ2, ŷ2, . . . , ŷn−1)
10: if y = ŷ do
11: break --RPA converges to a fixed point
12: end if
13: y← ŷ
14: end for
15: end if

Algorithm 2 The projection function Proj
Input: yin(0 to n−1), i,m
Output: yout(0 to n/2− 1)
1: n← 2m

2: if i < n/2 do
3: yout(0 to n/4−1)←Proj(yin(0 to n/2−1),m−1, i)
4: yout(n/4 to n/2−1)←Proj(yin(n/2 to n−1),m−1, i)
5: else
6: for j=1 : n/2−1 do
7: ytmp(2j)← yin(j)
8: ytmp(2j+1)← yin(j ⊕ i)
9: end for
10: ytmp(0)← yin(0)
11: ytmp(1)← yin(i)
12: for t=0 : n/2−1 do
13: yout(t)← ytmp(2t)⊕ ytmp(2t+ 1)
14: end for
15: end if

2.1. Recursive Projection Aggregation Decoding

As Algorithm 1 shows, the RPA algorithm has three main
steps: projection (line 6), recursive decoding (line 7), and
aggregation (line 9). Let us consider a noisy received vector y
of the transmitted codeword c of length n.

In the projection step, y is transformed into n− 1 distinct
vectors of length n/2. For hard-decision decoding, each trans-
formed vector yi, i ∈ {1, 2, . . ., n−1}, is obtained by taking
the modulo-2 sum over specific coordinates of the input vector
corresponding to the i-th projection, as shown on lines 2-11 of
Algorithm 2. Next, on line 13, a binary XOR operation sums
every two adjacent bits to convert each n-bit input vector y to
an n/2-bit vector yi.

In the recursive decoding step, each vector yi, produced
in the projection step, is recursively decoded by RPA for
RM(m−1, r−1) until first-order RM codes are reached, which
can be decoded efficiently using the fast Hadamard transform
(FHT) [15]. Each ŷi is a decoded vector of yi.

In the aggregation step, for each coordinate ŷ(z), Algo-
rithm 4 finds the corresponding coordinates in yi that were
originally created with y(z). These coordinates together with
their decoded value in ŷi represent n− 1 estimations for each

Algorithm 3 The aggregation function Agg
Input: m,yin,y1,y2. . .,yn−1, ŷ1, ŷ2, . . ., ŷn−1

Output: yout
1: for z = 0 : 2m − 1 do
2: vote(z)← 0
3: for i = 1 : 2m − 1 do
4: Ind← FindIndex(z, i,m)
5: vote(z)← yi(Ind)⊕ ŷi(Ind) + vote(z)
6: end for
7: yout(z)← yin(z)⊕ 1

[
vote(z) > 2m−1

2

]
8: end for

Algorithm 4 The function FindIndex
Input: Index z, branch number i, m
Output: Ind
1: if i ≥ 2m−1 do
2: if z < 2m−1 do
3: Ind← z
4: else
5: Ind← bi2de(de2bi (z)⊕ de2bi(i))
6: end if
7: else
8: if z < 2m−1 do
9: Ind← FindIndex(z, i,m− 1)
10: else
11: Ind← FindIndex(z − (2m−1), i,m− 1) + 2m−2

12: end if
13: end if

coordinate of vector ŷ (see line 3-6 in Algorithm 3). Next, in
line 7 of Algorithm 3, per-coordinate majority voting is per-
formed to produce an estimate ŷ of the transmitted codeword.

This procedure is repeated for multiple iterations. In [13],
the maximum number of iterations is set to Nmax = dm/2e.

3. ITERATIVE PROJECTION-AGGREGATION
DECODING

As can be seen on line 4 of Algorithm 1, RPA decoding per-
forms multiple iterations at each level of the recursion. After
each aggregation, if ŷ 6= y, y will be updated by ŷ, and the
whole procedure from projection to aggregation will iterate
again. Unfortunately, having iterations on each recursion level
makes RPA unsuitable for hardware implementations, as it
requires complicated control circuitry and memory structures.

In the case of a noisy received vector y with only one
error, for all projected vectors at each recursion level, it can
be verified from Algorithm 2 that there exists exactly one
error for every level of the recursion and for all projections,
which is corrected in level r = 1 because FHT decoding
guarantees the correction of one error. However, the condition
for skipping the remaining iterations is not satisfied (see line
10 in Algorithm 1), and as a result, RPA runs another iteration
at this level. This additional iteration is unnecessary because
it performs projection, first-order decoding, and aggregation
on the already corrected codewords. More generally, and
motivated by the above example, if the iteration loops for a
recursion level run more than once but stop before reaching



Algorithm 5 The IPA decoding of RM(m, r) codes
Input: The noisy codeword y, m, r, Nmax

Output: The decoded codeword c
1: y(1,0) ← y; ntmp ← 1
2: for j = 1 : Nmax do
3: for l = 1 : r − 1 do --Projection loop
4: ntmp ← ntmp × (2m − 1)
5: for i = 1 : ntmp do
6: ytmp ← y(di/(2m−1)e,l−1)

7: y(i,l) ←Proj(ytmp,mod(i, 2m − 1),m)
8: end for
9: m← m− 1
10: end for
11: for t : 1 : ntmp do --First-order decoding
12: ŷ(t,r−1) ← order-1-decoding (y(t,r−1),m)
13: end for
14: for l = r − 2 : 0 do --Aggregation loop
15: m← m+ 1; t← 2m − 1; ntmp ← ntmp/t
16: for i = 1 : ntmp do
17: d← (i− 1)× t
18: ŷ(i,l) ←Agg(y(i,l),y(d+1,l+1), . . .,y(d+t,l+1),

ŷ(d+1,l+1), . . ., ŷ(d+t,l+1))
19: end for
20: end for
21: if y(1,0) = ŷ(1,0) do
22: break --IPA converges to a fixed point
23: end if
24: y(1,0) ← ŷ(1,0)

25: end for
26: c← ŷ(0,1)

Nmax, the last iteration always runs only to check the stop
condition. We call these iterations ineffective.

Based on our simulations of various RM codes, at low
channel crossover probabilities, more than 50% of internal
iterations are ineffective. Motivated by this observation, we
present a simplification of RPA by removing iterations on
the internal levels of the RPA recursion. Effectively, our pro-
posed iterative projection-aggregation (IPA) algorithm sets
Nmax = 1 for all recursive decoding steps of the RPA al-
gorithm except for the first one. This can be concluded by
comparing Algorithm 5, in which the iterative structure of
IPA is shown, with Algorithm 1. The difference is that there
exists only one iteration loop around the entire function in Al-
gorithm 5. Moreover, the iterative structure of Algorithm 5 is
more convenient for a hardware implementation. As we show
in Section 5, this reduces complexity and hardware implemen-
tation significantly, with a small error-correcting penalty.

It can be shown that the complexity of RPA decoding with
internal iterations is O(nr(log2 n)

r+1). For the IPA algorithm,
the complexity is O(nr(log2 n)

2) as we remove the internal
iterations. We also show in the Section 5 that the overall calls
to the first-order decoder, which is a more practical complexity
measure, are decreased significantly.

4. PROPOSED HARDWARE ARCHITECTURE

Our proposed fully parallel IPA architecture, which is shown
in Fig. 1, consists of three main components and a control unit.

The first component is the projection, including r − 1 levels
of the projection for RM(m, r) codes (line 3 of Algorithm 5).
The second component, which we call the first-order decoder,
has parallel decoders for all RM(m−r+1, 1) codes generated
in the innermost level of the RPA (line 11 of Algorithm 5).
The third component is the aggregation unit performing r − 1
levels of aggregation (line 14 of Algorithm 5).

The projection component performs r − 1 levels of pro-
jection, as described in Section 2.1. Each projection level has
parallel projection units, each consisting of a re-ordering unit
(ROU) and an XOR unit. The re-ordering unit ROU(m,i) finds
the coordinates for i-th projection of the input vector y with
length of 2m based on lines 2-11 of Algorithm 2. Then, an
XOR unit is assigned to each projection branch for performing
the sum operations as described in lines 12-13 of Algorithm 2.

The first-order decoder component provides first-order
decoders (FODs) for all RM(m−r+1, 1) codes, obtained in
the innermost level of projection, in parallel. Each FOD was
designed based on the decoding method proposed in [15],
and consists of three sub-units: FHT, Argmax, and Generator
matrix. The first unit gives the vector l, which is the result of
the FHT on a binary input vector y:

l=(1− 2y)H2m , (2)

where the Hadamard matrix H2m is

H2m =

[
H2m−1 H2m−1

H2m−1 −H2m−1

]
and H2 =

[
1 1
1 −1

]
. (3)

The architecture of FHT unit is derived from [16]. The Argmax
unit finds the index z of the maximum value of l. The output
of the FOD unit is:

ŷ = x̂G(m,1), (4)

where x̂ =
[
1−sign(l(z))

2 zbin

]
with zbin being the binary rep-

resentation of z, and where G(m,1) is the generator matrix of
RM(m, 1).

The aggregation component provides r−1 levels of ag-

gregation, each of which has
∏r−2

i=0 (2m−i−1)∏j
i=1(2

(m−r+1)+i−1)
AGG units

in parallel (line 16 of Algorithm 5), where j denotes the cur-
rent level of aggregation. As Fig. 1 shows, each AGG unit
consists of 2m−1 RRUMs (the hardware implementation of
Algorithm 4) and one majority voter to aggregate into a n-bit
codeword ŷ calculated in line 7 of Algorithm 3. Finally, XOR
gates are used to flip the desired bits of input vector y in ŷ as
described in line 7 of Algorithm 3.

The throughput of the decoder is calculated by:

Throughput =
Frequency

NiterNcycles/iter
× n, (5)

where Niter = Nmax for the minimum throughput and
Niter = Navg is the average number of iterations for the aver-
age throughput. The data path is pipelined to Ncycles/iter stages.
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Fig. 1. An example of the proposed hardware architecture for IPA decoding for RM(m, 3) codes.
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Fig. 2. Frame error rate Comparison between RPA and IPA
for RM(6, 3) and RM(7, 3) codes over BSC channels.

In particular, r− 1 and 2(r− 1) registers are inserted between
the projection and aggregation levels, respectively. Addition-
ally, three registers are inserted between the components of
the FODs, and one register is used to check the termination
condition. As such, we have Ncycles/iter = 3(r − 1) + 4.

5. RESULTS

Simulation results for IPA decoding and RPA decoding for the
RM(6, 3) and RM(7, 3) codes over the BSC channel are shown
in Fig. 2. We observe that IPA decoding has exactly the same
frame error rate (FER) as RPA decoding for RM(6, 3), while
there is a minimal error-correcting performance degradation
up to 0.005 in terms of channel cross-over probability for
RM(7, 3). We also increased Nmax to see if this compensates
the performance degradation of IPA, but we observed that it
unfortunately does not help.

Fig. 3 shows the average number of first-order decodings
for IPA and RPA decoding for RM(6, 3) and RM(7, 3) codes
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between RPA and IPA for RM(6, 3) and RM(7, 3) codes.

Table 1. Post-PAR results for an RM(6, 3) code on a Xilinx
Virtex-7 FPGA (xc7vx1140T).

LUTs 602, 111/712, 000(84.57%)
Flip-flops 65, 699/1, 424, 000(4.6%)
Clock frequency 80 MHz
Min. throughput (Nmax = 3) 171 Mbps
Avg. throughput @ FER=10−3 284 Mbps

over the BSC channel. We observe that the number of the
first-order decodings is decreased by up to 40% for RM(6, 3)
and up to 50% for RM(7, 3).

We provide post-PAR results of our IPA decoder architec-
ture for RM(6, 3) on a Xilinx Virtex-7 FPGA with a frequency
of 80 MHz in Table 1. The resource utilization is high due to
the fully parallel nature of the decoder, but the achieved decod-
ing throughput is also relatively high. As there are no other
implementations of RPA in the literature, we cannot perform a
direct comparison.
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