
Modeling, implementation, and analysis of XRCE-DDS applications in
distributed multi-processor real-time embedded systems

Saeid Dehnavi, Dip Goswami, Martijn Koedam, Andrew Nelson, Kees Goossens
Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

{S.Dehnavi, D.Goswami, M.L.P.J.Koedam, A.T.Nelson, K.G.W.Goossens}@tue.nl

Abstract—The Publish-Subscribe paradigm is a design pattern
for transparent communication in many recent distributed appli-
cations. Data Distribution Service (DDS) is a machine-to-machine
communication standard that aims to provide reliable, high-
performance, inter-operable, and real-time data exchange based
on publish–subscribe paradigm. However, the high resource
requirement of DDS limits its usage in low-cost embedded
systems. XRCE-DDS is a Client-Agent based standard to enable
resource-constrained small embedded systems to connect to the
DDS global data space. Current XRCE-DDS implementations
suffer from dependencies with host operating systems, target only
single processing units, and lack performance analysis methods.
In this paper, we present a bare-metal implementation of XRCE-
DDS standard on the CompSOC platform as an instance of Multi-
Processor System on Chip (MPSoC). The proposed framework
includes a hard real-time side hosting the XRCE-DDS Client, and
a soft real-time side hosting the XRCE-DDS Agent. A Scenario
Aware Data Flow (SADF) model is proposed to capture the
dynamism of the system behavior in terms of different execution
scenarios. We analyze the long-term expected value for through-
put by capturing the probabilistic scenario switching using a
proposed Markov model which is experimentally validated.

Keywords-Real-time Systems, Multi-processor, Data Distribu-
tion Service (DDS), XRCE-DDS, Distributed Embedded Systems

I. INTRODUCTION

Data Distribution Service (DDS) [1] is a machine-to-
machine communication standard that aims to provide reliable,
high-performance and inter-operable data exchange based on
the publish–subscribe paradigm. DDS is used as the core
communication layer for Robot Operating System 2 (ROS2)
[2]. Despite some lightweight implementations for DDS, the
memory footprint is still too large to fit in resource-constrained
embedded systems. This issue has been addressed by the
Agent-Client based standard XRCE-DDS (DDS for eXtremely
Resource-Constrained Environments) [3]. In this standard, the
more powerful Agent nodes act as a bridge to connect resource
constrained Client nodes to the DDS data space. Current
lightweight DDS implementations such embeddedRTPS [4],
and XRCE-DDS implementations such as eProsima version
[5], suffer from dependencies with host operating systems,
target only single-processor embedded systems, and ignore
timing considerations. The proposed DDS performance analy-
sis approaches such as [6] and [7] suffer from considering real-
time properties, and lack a formal analysis approach respec-
tively. Moreover, to the best of our knowledge, no modeling
and performance analysis framework exists for XRCE-DDS
applications in distributed real-time embedded systems.

Fig. 1. XRCE-DDS implementation on PYNQ-Z2 Xlinix ZYNQ board

Contributions: Our contributions in this paper are:
1) A bare-metal implementation of the XRCE-DDS standard

on the CompSOC [8] platform on a ZYNQ board. The
Client is implemented on a hard real-time RISC-V pro-
cessor, while the Agent runs on a soft real-time ARM
processor. Multiple RISC-V processors run in parallel and
each processor runs multiple Clients. (Section II)

2) Probabilistic performance modeling of XRCE-DDS appli-
cations with Scenario Aware Data Flow (SADF) [9]. A
Markov model is proposed to analyze expected throughput
in the long-term. (Section III)

3) Experimental Performance analysis of XRCE-DDS appli-
cations on a network of CompSOC platforms (Section V)

II. XRCE-DDS IMPLEMENTATION ON COMPSOC
There are various implementations of CompSOC on ASIC

and on FPGA. In this paper we use the Verintec [10] im-
plementation that follows the CompSOC concepts. We use
a Xilinx PYNQ-Z2 board with a ZYNQ XC7Z020 that
contains a processing system (PS) with an ARM Cortex-A9
(650MHz) running Ubuntu Linux, and programmable logic
(PL). In this instance, the PL contains 3 predictable RISC-
V cores (40MHz, 128KB memory) and a 16KB dual-port
shared memory between each pair of (RISC-V, ARM ) cores,
as shown in Fig. 1. The VKERNEL [11] creates predictable
and composable virtual execution platforms (VEP) [8] on the
RISC-V cores through spatial and cycle-accurate temporal
partitioning. Applications see a bare-metal interface and can
use the C-HEAP FIFO library [12] to communicate on or
between any pair of processors using the shared memories.
The performance of C-HEAP is modelled using dataflow [13].



Fig. 2. SADF model of the publisher side Fig. 3. SADF model of the subscriber side

A serialization layer (MicroCDR) is used to serial-
ize/deserialize the messages between Clients and Agent. The
main functionality of the XRCE-DDS standard is implemented
in the XRCE Protocol layer that is responsible for message
interpretation, error handling, synchronization, and sequence
handling. While the XRCE-DDS Client Interface is only
dependent to XRCE Protocol, XRCE-DDS Agent Interface
is dependent on both XRCE Protocol and FastRTPS. This is
because the Agent is responsible to forward messages between
the Clients and other entities in the DDS world, which is done
by FastRTPS as a light weight implementation of standard
DDS. At the top layer, RT applications are developed through
XRCE-DDS Client APIs on the MPSoC side, and the Agent
has to implement XRCE-DDS Agent APIs. Each Client runs in
its own VEP on a single RISC-V tile, without any interference
by other (client) applications on the same or other tiles.

III. SADF MODELING FOR XRCE-DDS APPLICATIONS

The reason behind using SADF as the formal Model of
Computation (MoC) in this paper is twofold: i) dynamic
behaviour of the system can be modeled by different system
scenarios which enable us to model variation in response time,
message loss, and failure situations. ii) Efficient timing analy-
sis by keeping as much as possible of the determinism in each
scenario. By modeling and analysing the system behaviour,
we want to show that: 1) The Clients (Publisher/Subscriber)
on the RISC-V processor experience guaranteed Worst-Case
Response Time (WCRT), 2) The Agents on SRT part experi-
ence a probabilistic behaviour in terms of response time and
token loss while communicating through Non-RT network. A
SADF Graph (SADFG) is defined by a tuple (Σ,M) where:
• ∑= {si|si = (A,C,e,r, i)} is the set of system scenarios, each

of which is modeled by a Synchronous Data Flow Graph
si = (A,C,e,r, i), where A is the set of actors, C ⊆ A×A is
the set of channels between actors, e : A→R>0 is a function
that assigns the WCRT of each actor in a specified scenario,
r : A×C→N≥0 defines the production/consumption rate of
the channels assigned to each actor and i : C→N≥0 assigns
the initial tokens on each channel. An actor immediately
fires if its required tokens are available on the input channels.
A number of tokens (specified by the production rate) is
released to the output channel in each firing.

• A Sequence of scenario executions is modeled by a Markov
chain M = (S, p,φ) in which S is the set of system scenarios,
p : S×S→ [0,1] returns the likelihood of switching between
scenarios, and φ : S→R≥0 is a reward function on the sce-
narios that is used for the long-term performance analysis.

A. Publisher SADF Model
The SADF model of the publisher is shown in Fig. 2. In

this model, Program is a RT program that uses the XRCE-DDS
Client interface (Pub Req and Pub Res actors) to publish its
messages to the DDS world at the end of each iteration. This is
done by sending a request from XRCE-DDS Client (Pub Req
actor) to a specific XRCE-DDS Agent (Agent actor). After
processing the XRCE-DDS request by the Agent, a response
is returned to the Client (Pub Res actor) to confirm if the
message is successfully published to the DDS world. Since the
Agent runs on the SRT Linux, it experiences variation in the
response time. For this reason, we model different execution
scenarios for the publisher by the following SADF scenarios:
• P1 Common Case: The DDS token is published quickly

and much before the timeout (i.e e4 < timeout).
• P2 Slow Case: The DDS token is published but in a longer

time (we assume at the timeout), i.e e4 = timeout.
• P3 Failure to publish If the successful response is not

received from the Agent before timeout, Pub Res lets the RT
program to continue its work. In this scenario, no message
is published to the DDS world. Therefore, the production
rate (a) for the Agent actor is zero.

The throughput of the RT program in the publisher side is
calculated by 1

e1+e2+e3+e4
in different publisher scenarios.

B. Subscriber SADF Model
As shown in Fig. 3, Program is a RT program that executes

its functionality on the messages that it receives from DDS
world. It requests and receives DDS messages from a spe-
cific Agent (Agent actor) through a XRCE-DDS subscriber
(Sub Req and Sub Res actors). We have 4 SADF scenarios:
• S1 Common Case: The DDS token is received quickly and

much before the timeout (e8 < timeout).
• S2 Slow Case: The DDS token is received but in a slow

time (we assume at the timeout), i.e e8 = timeout.
• S3 Tolerable Failure: The response is not received after the

timeout. Based on the failure management techniques for
stream processing and the XRCE-DDS history parameter,
we keep a buffer of the last n received messages to let the
program continue its work in this situation. Since there is
no message received from the DDS world, d = 0 and c = 1.

• S4 Failure and Reset: After n successive failures, the
connection should be reset by a failure management task
that takes e10 as the response time.

The throughput of the RT program in the subscriber side is
calculated by the equation 1

e6+e7+e8+e9+e10
that changes by

variation of e8 and e10 in different modeled scenarios.



Fig. 4. Application SADF model Fig. 5. Publisher Markov model Fig. 6. Subscriber Markov model

C. Combined SADF Model
For end-to-end application-level performance analysis we

now combine the RT publisher & subscriber client models with
a model of the SRT Agents and their communication. Agents
run on the SRT linux and use SRT [14] or Non-RT network
protocols such as TCP and UDP. The actor DDSWorld models
the FastRTPS overhead and the network delay for communi-
cation between the Agents. Based on our experiments on a
network of Pynq boards, the response time (e5) for DDSWorld
experiences a variation of 3 values [D1 : 1ms, D2 : 2ms, D3 :
(> 3ms)] with probability [D1 : 0.6, D2 : 0.3, D3 : 0.1]. Data
loss in the DDS world is modeled with SADF scenarios with
a production/consumption rate of zero (b, c). The variation
in data loss in DDS World is modeled by two scenarios
[L1(Lossless) : 0.98, L2(Lossy) : 0.02]. The complete SADF
of an application is the product of its publishers, subscribers,
and their corresponding agents. For a single publisher and
subscriber this results a model with 24 scenarios (Fig. 4).

IV. LONG-TERM THROUGHPUT ANALYSIS

As mentioned in section III, the switching between execu-
tion scenarios is modeled by a Markov chain M = (S, p,φ)
shown in Fig. 5 and Fig. 6 for the publisher and subscriber
respectively. Since the throughput of each scenario of the
SADF model for publisher and subscriber can be calculated
independently, we assign the calculated value as the reward
function of the specified Markov models. Since our Markov
models are Ergodic and Unichain we compute the long-term
expected throughput with limn→∞ E(rx)) = π∞rT [15] where
the long-term stationary distribution (π∞) is calculated by:

π
∞ = lim

n→∞

1
n

n−1

∑
k=0

π
0 pk = π

0 p∞ (1)

The expected long-term throughput of the application is
calculated using a Markov model on different scenarios of the
application SADF graph. The Markov model for the SADF in
Fig. 4 contains 24 different nodes (scenarios) and the transition
probability (P(ci,c j)) between two scenarios is:

P(ci,c j) = P(cp
i ,c

p
j )×P(cs

i ,c
s
j)×P(cl

i ,c
l
j)×P(cd

i ,c
d
j ) (2)

where, ci(p,s, l) is a scenario of the SADF model in Fig. 4,
P(cp

i ,c
p
j ) and P(cs

i ,c
s
j) are valued from the Markov models of

the publisher and the subscriber in Fig. 5 and Fig. 6 (based
on an experiment over 20 million iterations). P(cl

i ,c
l
j) and

P(cd
i ,c

d
j ) are based on the message loss probability and DDS-

World response time variation presented in Section III-C. We
calculate the throughput of each application scenario using
SDF3 [16] tool and assign it as the reward function of the
application Markov model. The expected long-term throughput
for the application is then calculated by Eq. 1 similar to
the publisher/subscriber expected throughput. For our analysis
approach, we need the WCRT of each actor in the SADF
models. We will measure the WCRT values in Section V.

V. PERFORMANCE EVALUATION

In this section we first measure the required parameters such
as WCRT of each component. Then, we use the measured
values for the long-term throughput analysis. We measure the
WCRT of each component by the CompSOC global timer that
is synchronized for all RISC-V tiles.

Publisher measurements: The measured WCRT of the
components involved in the actor Pub Req in the publisher
SADF model (Fig. 2) for 20K publications with different
message size is reported in Fig. 7. The WCRT time for the first
two components are constant per message size, while there is
some jitters on the f lashout time that comes from different
conditional statements in the source code. We also measured
the WCRT for the Pub Res actor that is constant per message
size. We measure the Agent response time (Agent actor in
Fig. 2) by the time different between sending the request and
receiving the response in the PL side. Since the Agent runs
in the PS side, the Agent response time experiences variation.
This will be addressed by the timeout effect in the following.
We use a histogram on the Agent response time to define the
WCRT of the Agent actor in different SADF scenarios.

Subscriber measurements: The actor Sub Req in the
subscriber SADF model (Fig. 3) includes 2 components
Request Preparation and Request Flashout. Moreover, the
actor Sub Res includes the component deserialization on the
received message from the Agent. Unlike the publisher, in
which buffer preparation is done per each iteration, in the
subscriber side it is executed only once. Therefore, it can be
ignored in the long-term experiments.

Timeout effect on WCRT: As it was mentioned in Section
III, RT Program in both publisher and subscriber sides should
continue its work if the Agent response is not received after a
specified timeout. This helps to guarantee the WCRT of the RT
program. To evaluate the validity of this parameter, we added



Fig. 7. Publisher measurements per message size Fig. 8. Subscriber Measurements per Message size
random bad requests in the publisher side to make the Agent
take long time. As shown in Fig. 9, by hitting the timeout, the
Client ignores the Agent response and the response time never
goes higher than the defined timeout (2 milliseconds). The
same experiment validates the timeout effect in the subscriber
side. We believe that the measured WCRT for different actors
are valid considering predictability and composability concepts
guaranteed in the clock cycle level by the CompSOC platform.

A. Long-term analysis:

We compute the expected throughput in the long-term
through the proposed Markov models in section IV. We need
to find the transition probability of switching between different
scenarios in the SADF models of the publisher and subscriber.
For this purpose, we conducted an independent experiment
of 2 million iterations on the publisher and the subscriber.
Then, by writing a Matlab script that considers the probability
distribution of the experimented values, we calculated the
required transition probabilities that are reported in Fig. 2 and
Fig. 3 for the publisher and the subscriber respectively. To
check if the implementation conforms to the model, we created
a dummy RT program with the WCRT of 25K clock cycles.
We measured the throughput for the created RT program on
publishing 2 million messages ranging from 10 Bytes to 100
Bytes. Moreover, we computed the throughput in each scenario
of the publisher and assigned it as the reward function for
the specified scenario in the publisher Markov model. Then
we computed the expected throughput in the long-term using
Eq. 1 on the publisher Markov model (Fig. 5). The same
approach was applied to the subscriber side. We calculated the
application expected long-term throughput using the approach
discussed in Section IV. We also conducted some experiments
to measure the experimental application throughout. As shown
in Table I, the implementation throughput conforms to the
expected throughput computed from the Markov models of
the publisher, subscriber, and the application.

Publisher TP Subscriber TP Application TP
Message Exp. Exptl. Exp. Exptl. Exp. Exptl.

10B 0.8242 0.8464 0.6066 0.6284 0.4629 0.5288
25B 0.7446 0.7779 0.5253 0.5691 0.4291 0.4417
50B 0.6591 0.7079 0.4686 0.5148 0.3989 0.4362
100B 0.5321 0.5641 0.4268 0.4526 0.3626 0.4167

TABLE I
EXPECTED (EXP.) AND EXPERIMENTAL (EXPTL.) THROUGHPUT (TP) IN

NUMBER OF MESSAGES PER MILLISECONDS

VI. CONCLUSION
In this paper, we proposed a bare-metal implementation

of the XRCE-DDS standard on the CompSOC platform. The
dynamic behaviour of the system was modeled by SADF. We
analyzed the expected long-term throughput by a proposed
Markov model, and the experimental results on a network of
Pynq-Z2 boards shows that our implementation conforms to
the proposed analysis approach. ECSEL JU grant agreement
No 826610 (COMP4DRONES) supported this work.

Fig. 9. Timeout effect in the publisher per number of clock cycles
REFERENCES

[1] G. Pardo-Castellote, “OMG Data Distribution Service: Archi-
tectural overview,” in ICDC, 2003.

[2] M. Quigley et al., “ROS: an open-source Robot Operating
System,” in ICRA, 2009.

[3] Object Management Group, “DDS for eXtreamly Resource-
Constrained Environments (XRCE-DDS),” 2019.

[4] A. Kampmann et al., “A portable implementation of the
real-time publish-subscribe protocol for microcontrollers in
distributed robotic applications,” in ITSC, 2019.

[5] J.Bermúdez and B.Outerelo and others, “Micro-XRCE-DDS,”
in https://github.com/eProsima/Micro-XRCE-DDS, 2019.

[6] Y. Liu et al., “Formal analysis and verification of dds in ros2,”
in MEMOCODE, 2018.

[7] K. Krinkin et al., “Data distribution services performance
evaluation framework,” in FRUCT, 2018.

[8] K. Goossens et al., “NoC-Based Multiprocessor Architecture
for Mixed-Time-Criticality Applications,” in Springer, 2017.

[9] T. Basten et al., “Scenarios in the design of flexible manufac-
turing systems,” in System-Scenario-based Design Principles
and Applications, Springer, 2020.

[10] In, https://verintec.com.
[11] A. Nelson et al., “Comik: A predictable and cycle-accurately

composable real-time microkernel,” in DATE, 2014.
[12] A. Nieuwland et al., “C-HEAP: A heterogeneous multi-

processor architecture template and scalable and flexible pro-
tocol for the design of embedded signal processing systems,”
DAES, 2002.

[13] A. Nelson et al., “Dataflow formalisation of real-time stream-
ing applications on a composable and predictable multi-
processor SOC,” Journal of Systems Architecture, 2015.

[14] H.-Y. Choi et al., “Making DDS really real-time with Open-
Flow,” in EMSOFT, 2016.

[15] N. Privault, “Understanding markov chains,” Examples and
Applications, Springer, 2013.

[16] S. Stuijk et al., “SDFˆ 3: SDF for free,” in ACSD, 2006.


