
Chapter 8: Scenarios in Dataflow Modelling and

Analysis

Marc Geilen, Mladen Skelin, Reinier van Kampenhout, Hadi Alizadeh Ara,
Twan Basten, Sander Stuijk, Kees Goossens

Abstract Dataflow models can be used to model and program concurrent systems
and applications. Static timed dataflow models commonly abstract the temporal be-
havior of systems in terms of their worst-case behaviors. This may lead to models
that are very pessimistic. The scenario methodology can be applied to the dataflow
modelling approach to group similar dynamic behaviors into static dataflow behav-
iors that abstract the system scenarios in a tight fashion. Constraints on the possi-
ble scenario transitions in the system can be modelled, among other options, by
a finite state automaton. This approach leads to a model called Scenario-Aware
Dataflow (SADF) that is presented in this chapter. We introduce the model and its se-
mantics and discuss its fundamental analyis techniques. We discuss a parametrized
extension and its analysis. We discuss a dataflow programming model and its im-
plementation challenges. We give an overview of refined analysis techniques and
run-time exploitation possibilities of SADF.

M.C.W. Geilen
Eindhoven University of Technology, e-mail: m.c.w.geilen@tue.nl
M. Skelin
Eindhoven University of Technology, e-mail: m.skelin@tue.nl
J.R. van Kampenhout
Eindhoven University of Technology, e-mail: j.r.v.kampenhout@tue.nl
H. Alizadeh Ara
Eindhoven University of Technology, e-mail: s.h.seyyed.alizadeh@tue.nl
T. Basten
Eindhoven University of Technology & ESI, TNO, e-mail: a.a.basten@tue.nl
S. Stuijk
Eindhoven University of Technology, e-mail: s.stuijk@tue.nl
K.G.W. Goossens
Eindhoven University of Technology, e-mail: k.g.w.goossens@tue.nl

1

2 Geilen et al.

1 Introduction

In this chapter we illustrate the application of the scenario methodology to the timed
dataflow model of computation. Dataflow is an abstract mathematical model that
can be used to model streaming applications and the resources on which they are
realized. They are used, for instance, in the form od CSDF graphs in Chapter 4 to
model applications on DVFS enabled processor platforms. Moreover, they can be
effectively used to model flexible manufacturing systems, as discussed in detail in
Chapter 9.

Figure 1 shows a dataflow model of an H.263 decoder. The circles are actors.
They represent activities in the decoder. For example, the actor labelled vld rep-
resents the activity of the variable-length decoder. Actors execute their activities
repeatedly. Actors have dependencies that determine their earliest activation times.
An activation of an actor is called a firing. The dependencies are shown as incoming
arrows, called edges, with tokens on them. There can be dependencies on firings
of other actors, but also on earlier firings of the same actor or on external events.
When an actor fires, it takes (consumes) tokens from its incoming dependencies.
The firing takes a certain amount of time, after which the firing completes and pro-
duces tokens on the outgoing dependencies, thus satisfying the firing dependencies
of other actors. It can also output tokens to the environment. Tokens in the model
represent dependencies between firings. In the concrete systems such dependencies
could be due to data dependencies between computations, but also due to resource
dependencies, for example, the order of scheduling on a processor.

Different complementary views exist on dataflow models. Sometimes the func-
tionality of actors is emphasized, where the model describes how actors compute
output tokens with values from its input tokens with values, for example in Kahn
Process Networks [24]. Usually, actors represent functional, deterministic and state-
less behavior in terms of their computations. Another view on dataflow models em-
phasizes their timing and performance. This is the view we focus on in this chapter.
In this view tokens do not carry values, but are pure dependencies. Actors have exe-
cution times that make that tokens are produced, or actors start, at certain moments
in time. The timing has implications for performance properties such as throughput
and latency. The models and their semantics are discussed in more detail in Sec-
tion 3.

Dataflow models have a number of important strengths. They make concurrency
very explicit. Actor firings that have no dependencies on one another are concurrent.
The explicit concurrency can be exploited to optimize performance and for schedul-
ing purposes. Many dataflow models (though not all) are determinate. In a determi-
nate model, even though certain computations can be performed in arbitrary orders
because of concurrency, the final result is independent of that order, which separates
the concerns of correct functionality and scheduling. An important strength for the
timed view on dataflow models is that they are monotone: if some input dependency
is delayed (pushed into the future), then any event in the model (actor firing, token
production) cannot happen earlier than its original time. Consequently, also, when
an actor firing duration is shortened, no event in the model can occur later than in the

Scenarios in Dataflow Modelling and Analysis 3

original model. This property allows one to make simple, deterministic worst-case
abstractions of systems, which can be analyzed very efficiently. This is discussed in
more detail in Section 2.

Dataflow models also have some weaknesses that need consideration. The more
expressive dataflow models are generally also more difficult to analyse. Kahn Pro-
cess Networks (KPNs) [24], for example, allow general determinate data-dependent
behavior to be expressed, such as an actor that produces a different number of output
tokens depending on the value of an input token. Analysis of KPN models, however,
is very hard. The problem of finding minimal buffer sizes that allow deadlock-free
execution, for example, is undecidable [34, 14]. At the other end of the spectrum
we find dataflow models with limited expressiveness, such as Synchronous Data
Flow (SDF) [27] in which the actors are deterministic and produce and consume
fixed numbers of tokens. They are much more amenable to analysis and synthesis
techniques, such as optimal scheduling [42] or buffer sizing [44, 31], although these
problems are still in higher complexity classes [31]. These more static dataflow
models do not suffice to model modern dynamic applications without being overly
pessimistic about their performance and resource usage. Because of this trade-off
between expressiveness and analyzability, many slightly different dataflow models
have appeared in literature [46]. In this chapter we show how the scenario methodol-
ogy can be applied to dataflow models to arrive at a model that strikes a particularly
useful balance between the expressiveness needed to address the dynamic variation
in modern applications and architectures, to limit the overestimation of resources
and to preserve significant analysis and synthesis possibilities.

Dataflow models are suitable for applications that consist of fragments of se-
quential behavior that are internally deterministic and static and that are composed
into parallel applications that may exhibit non-deterministic variation in execution
of those behaviors. The dataflow models is also mostly suitable for applications that
repetitively perform the same, or similar, behavior, possibly operating on or trans-
forming streams of data.

The H.263 application is an example of an application that exhibits significant
amounts of variation. In particular, the amount of data spent to encode the differ-
ence between successive video frames strongly depends on the degree of difference
between the frames. This is expressed by the number of macro-blocks used to en-
code the difference. In the model, this is the number of tokens exchanged between
the vld and the idct actors, indicated in Figure 1 with the consumption rate of n, to-
kens per firing, which may take different values for different frames. One can prove
that a static model with a fixed number of blocks (the maximum value that n may
take) is a conservative abstraction, but it is in many circumstances too pessimistic.
Alternatively, a model can be made that exactly defines the number of macro blocks
and how it depends on the data input, but such a model would be too complex for
efficient analysis. The scenario methodology proposes to group the run-time situa-
tions that occur in a limited number of scenarios in which the worst-case resource
usage overestimates the actual usage only by a moderate amount. We do this by
grouping the number n of macro-blocks into ranges within which we use the maxi-
mum as a worst-case representative. For example, the run-time situations in which

4 Geilen et al.

Fig. 1 A dataflow model of an H.263 decoder

Fig. 2 Specification of the possible scenario sequences

Fig. 3 Dataflow graph of the sync scenario

there are 30–40 macro-blocks may be represented by a single scenario in which the
work load is assumed to corresponds to 40 macro-blocks, the worst-case of all run-
situations covered by the scenario. Similarly, the actor execution times in the model
are selected to correspond to worst-case execution times of the software. Besides
the scenarios due to varying number of macro-blocks, in H.263 variation occurs due
to the fact that some frames are encoded independently from previous frames. We
capture the behavior of that run-time behavior by a separate scenario as well.

There are many examples where the same approach applies, for example in the
channel equalizer model in [29]. In this system periodically one of every eight
symbols triggers a channel estimation computation with extra computational re-
quirements. In this case the dynamic variations exhibit deterministic periodic pat-
terns. Cyclo-Static Dataflow (CSDF) models can be used to represent this behavior.

Scenarios in Dataflow Modelling and Analysis 5

Fig. 4 Dataflow graph of the payload scenario

0 5000 10000 15000 20000 25000
src

shi�
sync
dem
dec
crc
ack

Fig. 5 Gantt chart of an execution of the WLAN model

The Scenario-Aware Dataflow (SADF) model, discussed in this chapter, generalizes
CSDF.

A last example to mention is a WLAN receiver [30]. Figure 2 shows the finite
state automaton that specifies the possible sequences of scenarios of this model. The
reception of a frame consists of a sequence of different activities: synchronization,
header processing, payload processing, ans positive or negative acknowledgement
after error-detection. We use scenarios to capture the variations in the run-time sit-
uations associated with these activities. Switches between activities (scenarios) are
non-deterministic. Synchronization with the sender may be lost at any time and
a frame may contain an different numbers of payload symbols. They can therefore
not be expressed by CSDF. However, their occurrences are constrained to particular
patterns. We want to be able to exploit this knowledge. The finite state automaton
of Figure 2 encodes the possible sequences of scenarios. Loss of synchronization
causes a transition back to the synchronization state to be taken. The self-transition
on the payload state is used when another payload symbol follows in the frame.
When the frame ends, the scenario changes to the acknowledgement scenario. Note
that it is conservative in the sense that it still allows some sequences of scenarios
that cannot occur in reality. For instance, it allows for arbitrarily long sequences of
payload symbols, even though under the real protocol constraints there can be no
more than 256. This could be encoded in a finite state automaton, but it would have
a large number of states. Possibly more compact representations could be applied

6 Geilen et al.

such as the regular expressions used by Ara et al. [1] to obtain a compact and exact
representation.

The behavior in the individual scenarios is defined by dataflow graphs. Figure 3
shows the behavior of the sync scenario and Figure 4 shows the behavior of the
payload scenario. Other examples of applications modelled with SADF can be
found in literature [1, 29, 32, 47].

2 Scenarios in Dataflow Modelling

2.1 Relation to the Scenario Methodology

The essential property of the SADF model is that it maintains as much as possible
of the determinacy of dataflow behavior, while introducing the possibility for non-
deterministic variation in the form of scenarios as elaborated on the H.263 decoder
of Figure 1. Every scenario is represented by an SDF graph that represents the
worst-case from a multidimensional cost-perspective within the cluster of run-time
situations it represents.

The concept of SADF lies perfectly within the general scenario methodology as
discussed in Chapter 2. In particular, the system-scenario methodology is a five step
approach in which each step has a design-time and a run-time phase. The first step of
the methodology is identification, performed at design-time, in which identified run-
time situations are clustered into scenarios based on a particular multidimensional
cost perspective. In terms of SADF, the identification step entails the identifica-
tion of SDF-like regions in dynamic systems under consideration. The so-identified
static regions are called scenarios. An aspect that is particular to the dataflow ap-
proach is that such regions can span activities in both time and space. For example,
in the Gantt chart of the WLAN example in Figure 5 we observe that the scenarios
(differently colored parts) follow a pipelined structure and overlap in time. More
about methodologies that enable the identifications of these regions can be found
in [37, 20].

The second step of the system scenario-methodology is known as prediction,
where a scenario has to be selected from a scenario set based on the parameters
of the run-time situation. In SADF the selection options can be constrained by a
model that defines the possible scenario occurrence patterns [47, 46]. In case a fi-
nite state automaton os used, the automaton is generally non-deterministic where
the non-determinism may have one of the two following roles: a descriptive and a
constraining role [23]. Within the descriptive role, non-determinism captures an as-
pect of the world that is not completely known and that behaves in an unpredictable
manner. Within the constraining purpose, the non-determinism designates different
possibilities for implementation. Within the system-scenario methodology the de-
scriptive non-determinism is more pronounced in the sense that it arises from the
deliberated decision to ignore the facts which influence the selection [22]. In soft-

Scenarios in Dataflow Modelling and Analysis 7

ware, these facts are often values of certain control variables. In a cyber-physical
system, they could be uncontrollable events. Section 4 discusses how the, in the for-
mer situation, run-time prediction activities can be made explicit if SADF is used as
a programming model. In addition to non-determinism, SADF supports the speci-
fication of probability mechanisms that govern the choice between scenarios [47].
Such quantitative information about the likelihood of scenario transitions can be
used for analysis purposes or to decide on scenario switching activities when cost
are involved with the switching itself.

The third step is called exploitation. At-design time, it involves optimization that
is applied based on the knowledge of the scenario structure and patterns and at run-
time it is the execution of the scenario. In the SADF context, the design-time phase
involves SDF-related transformations like multi-rate expansion, retiming, pipelin-
ing and unfolding with the purpose of optimizing graph throughput, minimizing
code size, mapping to processors and memory, etc. [3, 42]. The run-time phase en-
tails scheduling and execution of the scenario SDF graph.

The fourth step of interest is called switching, which is the act of run-time recon-
figuration to enable the execution of another scenario. In the context of SADF and
software-intensive systems, each scenario in the SADF graph could, for example,
use a different mapping to processors or memory. To implement this, a run-time re-
configuration mechanism is employed that can transfer data items (tokens) and code
(actors) between different memories whenever a scenario switch occurs [46]. Stu-
ijk et al. [45] present a design flow that maps a throughput-constrained application,
modeled with an SADF to an MPSoC.

The final, fifth step is called calibration that collects information about values
of run-time parameters and further adjusts the system to optimize against a certain
cost function. Calibration is only meaningful when performance constraints are soft
constraints or to optimize average-case behavior in the absence of constraints. In the
context of SADF, this step may have counterparts, such as calibration of worst-case
executions times, but such approaches have not been worked out as yet.

2.2 Abstraction and Refinement in Timed Dataflow

We represent run-time situations in a scenario by worst-case behavior of the sce-
nario, or a tight upper bound on its worst-case behavior. In general systems it may
be difficult to identify the worst-case behavior due to complex interactions between
components or the environment, or due to resource arbitration. The longest execu-
tion time of a single task may, for instance, not always lead to the longest execution
time of the overall application. Such an effect is often called a timing anomaly [28].

Dataflow models are monotone (more generally, max-plus linear, see Section 3.2)
and do not exhibit such timing anomalies. This has the advantage that the worst-case
situation can be easily identified and corresponds to the actors taking their largest
execution times. This holds within a single dataflow graph, but also composition-
ally, i.e., when they are placed in a context, for example, when dataflow graphs are

8 Geilen et al.

built hierarchically in a modular fashion. If a dataflow graph consumes inputs from
its environment and produces outputs to the environments, then it can be formally
shown that any run-time behavior represented by the scenario performs at least as
good as the scenario representative in the following sense. Each of the outputs are
produced at times, no later than they are produced in the representative behavior
if the inputs are provided no later than in the representative behavior. This estab-
lishes a very precisely defined, formal abstraction-refinement relation between the
run-time situations in the scenario and the representative behavior [17], in which
the representative behavior is the abstraction and the concrete run-time situations
are refinements of that behavior.

An important property of the abstraction-refinement relation is that non-determi-
nistic systems (executions may vary non-deterministically under data or resource
dependencies) can have deterministic abstractions (a dataflow model with fixed, de-
terministic, worst-case execution times). This has significant advantages for perfor-
mance analysis. Only a single, deterministic behavior (the abstraction) needs to be
verified and if it satisfies its performance requirements then all the non-deterministic
refinements are guaranteed to also satisfy those performance constraints. This avoids
many of the state-space explosion issues associated with the verification of non-
deterministic systems [36].

Within the scenario approach, the SADF model is used to define such an abstrac-
tion of the actual behavior and concrete run-time situations of the system. Moreover,
the explicit goal is to define the scenarios such that the abstraction is not overly pes-
simistic compared to the run-time situations that it represents.

3 Modelling and Analysis of Scenario-Aware Dataflow

3.1 The Scenario-Aware Dataflow Model

This section gives a detailed definition of the Scenario-Aware Dataflow model. We
present a formal definition in which we abstract from the streams of data values
that are exchanged in the models as well as from the functions that the components
compute. We make this abstraction, because we primarily deal with the timing, per-
formance and resource usage of the models to act as models of scenarios, for which
the data values are irrelevant. We do not deal with the functionality that the dataflow
graphs realize. An SADF graph consists of a finite set S of scenarios, a mapping
s : S ! G that maps each scenario to a static dataflow graph, i.e., an SDF graph,
for that scenario (G denotes the set of all static dataflow graphs), and a language
L ✓ Sw that defines all the possible, infinitely long, scenario sequences. We con-
sider infinitely long scenarios sequences, because many applications we consider
are stream processing applications or continuous production machines. The model
and theory can, however, be similarly applied to finite scenario sequences. In the

Scenarios in Dataflow Modelling and Analysis 9

WLAN example, S = {sync,header,payload,ack}. The definition of the language
of scenario sequences for the WLAN application is discussed later.

A static dataflow graph s(s) of a scenario s 2 S consists of a set A of actors and a
set D ✓ A⇥A of dependencies between these actors. (For simplicity we assume that
at most one dependency exists between any pair of actors, although such a restriction
is not necessary, for instance by defining D as a multiset.) Actors have an execution
time, given by the function t : A ! R�0. A dependency (a1,a2) 2 D expresses that
the firings of actor a2 depend on the firings of actor a1. The graph associates with a
function i : D ! N to every dependency d 2 D a number, i(d), that determines the
precise dependency of firings as follows. In a so-called single-rate graph, it enforces
a dependency of firing n+ i(a1,a2) of actor a2 on the completion of firing n of actor
a1 for all n 2 N. Operationally, we can think of actor a1 producing tokens (one for
each firing in a single-rate graph) that are subsequently consumed by firings of actor
a2 (also one for each firing in single-rate graph), with i(a1,a2) tokens being initially
present. Not all graphs are single-rate graphs, i.e., produce and consume exactly
one token with each firing and each dependency. Graphs that are not single-rate
are called multi-rate and some of their actors produce or consume larger, but fixed,
quantities of tokens with each firing. For example, the n tokens consumed by a firing
of actor mc from the actor vld in the H.263 model of Figure 1. We use p(a1,a2) to
denote the rate at which actor a1 produces tokens on the dependency (a1,a2) and
y(a1,a2) to denote the rate at which actor a2 consumes tokens. In general, firing k
of a2 depends on firing m of a1 if the ranges [k ·y(a1,a2),(k+ 1) ·y(a1,a2)� 1]
and [m ·p(a1,a2)+ i(a1,a2),(m+1) ·p(a1,a2)+ i(a1,a2)�1] overlap, i.e., if firing
m of a1 produces a tokens that is consumed by firing k of a2.

Note that firings of an actor have a logical ordering (when we talk about firing k
of some actor a). Most of the time, the logical ordering coincides with the temporal
ordering in which the firings occur, but this is not necessarily the case. Firings of the
same actor can be concurrent (this is called auto-concurrency) and occasionally even
out of logical order (some firing k starts before firing m although k > m). In models
in which firings necessarily occur in the same order, logically and temporally, the
token dependencies exchanged between actors can be seen as a FIFO queue and are
also often implemented in that way. If firings can be out of order then a more general
implementation is needed, such as a windowed cyclic buffer [4]. Many discussions
in literature assume that firings occur in temporal order and that dependencies are
FIFOs, but such a restriction is not necessary. When actors can complete their firings
out of order and the dependencies are realized in FIFO order then the functionality
of the graph may be compromised.

In a single scenario instance, the actors in the dataflow graph of that scenario
fire a fixed number of times. Often, this is a minimal, non-empty collection of ac-
tor firings after which the graph returns to its original state in terms of tokens and
dependencies. This collection of actor firings is called the repetition vector of the
graph [27, 42]. This kind of scenario is called a strongly consistent scenario [47]. In
general, however, an arbitrary collection of firings may be defined, denoted with a
function r : A ! N that assigns the number of firings to each actor. This may leave
the tokens on different edges in the graph than where they were at the start of the

10 Geilen et al.

scenario. An SADF graph that uses this is called a weakly consistent graph [15],
assuming that it is still consistent in the sense that in the long run, no matter which
scenario sequence it executes, the graph does not deadlock and the number of to-
kens that can accumulate on any channel is bounded a priori. In general, we will
associate a scenario with an SDF graph and a corresponding repetition vector.

For performance analysis purposes, a reward specification r : S ! R may be
additionally defined that associates with every scenario a real-valued quantity that
captures the amount of progress that is made by that scenario. For example, the
throughput requirement for the WLAN application is to process one OFDM symbol
every 4µs, but only the scenarios sync, header and payload process one OFDM
symbol. The ack scenario does not. This is captured by assigning a reward of 1 to
the former scenarios and a reward of 0 to the latter.

Finally, an SADF model needs to define dependency relations across scenarios,
for instance, in the WLAN model the processing of a symbol updates the channel
estimation and synchronization parameters. Those results are inputs to the process-
ing of the following scenario. Tokens are used in the SADF model to represent such
dependencies. This is done by defining for every scenario a set of initial tokens, to-
kens that are present in the graph in its initial state, that carry dependencies from
earlier scenarios, and final tokens, tokens left in the graph at the completion of the
scenario, that can carry over dependencies to the following scenarios.

3.2 The Semantics of Scenario-Aware Dataflow

The behavior of an SADF graph is non-deterministic in terms of the sequence
of scenarios from the language L that it executes. This is in fact the only non-
deterministic element in the model, the scenario behaviors themselves are deter-
ministic. This non-deterministic behavior of the model can be due to, for instance,
data-dependent behavior in the actual system that the model abstracts from. For in-
stance the number of macro-blocks in a video frame in the H.263 decoder is encoded
in the video bit stream, but the model abstracts from the values in that stream. This
abstraction is discussed in more detail in Section 4.

Figure 5 shows the behavior of the WLAN receiver that corresponds to a scenario
sequence starting with sync · sync · header · payload · payload · payload · ack in the
form of a Gantt chart. Different colors have been used in the figure to represent
different scenarios. The rows in the chart correspond to actors and show the firings
of those actors. Actors start their firings as soon as all dependencies are satisfied and
the firings take an amount of time that is fixed per scenario, but may differ between
scenarios. Some actors may fire only in some scenarios. In the example, actors crc
and ack fire only in the ack scenario (colored blue).

An important observation to make is that the executions of the scenarios overlap
in time. This happens because the different dependencies that carry over from one
scenario to the next are satisfied at different points in time and the actor firings in the
upcoming scenario start as soon as possible. This is an important advantage of the

Scenarios in Dataflow Modelling and Analysis 11

SADF model, because despite this pipelined execution, it can deal with scenarios
in isolation in a compositional manner for all analysis and synthesis purposes.

The view of the behavior of an SADF presented above is called its operational
semantics and it is the most intuitive view to understand how the model operates.
However, it is not the most convenient for mathematical analysis. To understand the
mathematical properties of the model, from a temporal point of view, we observe
that actor firings wait until all of their dependencies are satisfied, after which they
fire for a constant duration. The completion of the firing, in turn, satisfies new de-
pendencies. The time of enabling of the firing can be computed as the maximum
of the times at which the individual dependencies are satisfied and the completion
time of the firing is computed by adding the execution time to that. We see that the
equations that determine how fast the graph executes are constructed from the math-
ematical operators max and +. A lot is known about the algebra that emerges from
these two operators [2, 21], which is called max-plus algebra. In particular, and very
importantly, it is known to be a linear algebra and it enjoys many of the properties of
common linear algebra and has been extensively studied in literature [2, 21, 7, 11].

One of the properties of linear algebra that we use, is the fact that a linear system
has a canonical representation as a matrix that computes the output and/or next
state from the inputs and/or starting state. In the case of a static dataflow graph we
consider the initial state of the graph as the time stamps (sometimes called daters)
of the initial tokens in the graph, the times at which the initial dependencies are
satisfied. Some graphs have open inputs consuming tokens from the environment.
In that case the time stamps of those tokens (not their values!) are considered the
inputs of the linear system. After completion of the collection of firings we model
by the matrix, the time stamps of the final tokens in the graph represent the next
state and any tokens produced on open outputs are the outputs of the system. This
leads to an equation of the following form [17, 39]:


x[k+1]

y[k]

�
=


A B

C D

�
x[k]
u[k]

�
(1)

In this equation, the vector u represents the inputs, vector x[k] the current state, vec-
tor y the outputs and vector x[k+1] the next state. A, B, C and D are appropriately
chosen matrices that precisely characterize the temporal behavior of the scenario.
Note that the matrix-vector multiplication in this equation is in max-plus algebra,
not classical linear algebra.

In case the model is closed, i.e., if it does not have inputs or outputs, then the
following simple equation remains:

x[k+1] = Ax[k]

In an SADF graph, every scenario s can be individually characterized by a set
of matrices As, Bs, Cs and Ds. As an execution follows a particular scenario se-
quence from the language L , the behavior is determined by a sequence of multipli-
cations with matrices corresponding to the scenarios. In linear systems terminology,
an SADF graph is a switched linear system in the max-plus linear algebra [48].

12 Geilen et al.

a b
B
a:2
b:3

A
a:1
b:1

C
a:2
b:1

Fig. 6 Example SADF graph.

We exemplify the max-plus representation using the example SADF of Figure 6.
The scenarios are shown in the rightmost part of the figure. We initially assume that
the dashed arrows, representing open input and output channels, are not present. The
graph has two scenarios: a and b. Each scenario graph consists of three actors: A, B
and C. Operationally, a scenario consists of a single firing of each of the actors. The
difference between the scenarios is only in the firing delays of actors B and C. In
particular, in scenario a the firing of actors B and C will take 2 time units each, while
in scenario b the firings will take 3 and 1 time units, respectively. Consequently, the
scenario matrices differ. The matrices can be computed as explained in [16]. Here,
we present the outcomes:

Aa =

2

4
1 �• 3
1 �• 3
�• 2 �•

3

5 and Ab =

2

4
1 �• 2
1 �• 2
�• 3 �•

3

5.

In the matrices, entry [A]i, j specifies the time distance between the time stamp of
initial token j and the time stamp of the final token i. In our example, the initial
tokens coincide with the final tokens with token indices increasing from left to right
w.r.t. the rightmost graph in Figure 6. An entry �• indicates that the corresponding
tokens are independent.

We now turn our attention to the dashed input and output channels of the scenario
graphs of Figure 6. Their behavior is included by also specifying the matrices B, C

and D of Equation 1. Matrix B captures the dependency of the final internal state on
the input token. In this case it is a column vector as there is only one input token
consumed. It is identical for both scenarios and has the value:

Ba = Bb =

2

4
1
1
�•

3

5

Only the left two tokens, x1 and x2, depend on the input and the timing distance
is the execution time of actor A. Matrix C represents the dependency of the output
token on the tokens of the initial internal state. In this case it is a row vector with
the following values for the scenarios:

Ca =
⇥
�• �• 2

⇤
and Cb =

⇥
�• �• 1

⇤

Scenarios in Dataflow Modelling and Analysis 13

In both cases the output only depends on the rightmost token, x3, and the timing
distance is the execution time of actor C. The final part is the matrix D, which in
this case reduces to a scalar, because there is only one input and one output, with
the trivial value of �•, because there is no direct dependency from the input to the
output.

Da = Db =�•

The characteristic matrices completely define the timing of the scenarios. The be-
havior of the SADF consists of sequences of scenarios in the language L . The lan-
guage of scenario sequences can be specified with formalisms to define languages
over a finite alphabet (in this case the set of scenarios). Well-known examples are
Finite-State Automata (FSAs) and regular expressions (both are in fact equally ex-
pressive). In the example SADF of Figure 6, the scenario sequences are specified
by the FSA on the left. It defines the language of all sequences of scenarios a and
b that start with the scenario a. In [1], the language of scenario sequences is ex-
pressed with regular expressions including an explicit repetition construct, leading
to a compact representation with an efficient analysis.

One can optionally include information about the likelihood of the occurrence
of sequences of scenarios. For instance, by adding probabilities to the finite state
machine, resulting in a Markov Chain representation that defines a s -algebra on the
language L . This gives the model well-defined notions of stochastic behavior, such
as expected throughput or variance in latency [47].

The semantics we have introduced can be used to define the explicit state space
of an SADF graph in which the scenario sequences are defined by an FSA. The
state of an SADF can be captured by a combination of the current state of the FSA
and the current time-stamp vector of the tokens. For example, the initial state of
the SADF graph in Figure 6 is the pair

⇣
sa,
⇥
0 0 0

⇤T⌘. After executing the scenario
a and the FSA non-deterministically moving to state sb, the state would become⇣

sb,
⇥
3 3 2

⇤T⌘. Note that in many discrete as well as continuous and hybrid models,
the state of a state space refers to a snapshot of the integral system at some point
in the (physical or modelling) time domain. For SADF, and max-plus models in
general, this is not the case. It refers, instead, to the state before or after the execution
of certain scenarios, where the elements of the time-stamp vector of such a state refer
to possibly different time stamps in the time domain.

Every scenario execution leads to a discrete transition in the state space as the
FSA moves to a new state and the time-stamp vector changes accordingly. Naturally
such a state space would be infinite, as the time stamps increase and diverge towards
infinity. Such an infinite state space could not be constructed in practice and could
not be used for any analysis. We therefore apply a normalization strategy to keep the
state space finite. This strategy is based on the observation that the scale of a time-
stamp vector has no impact on the possible future behaviors of the SADF in a given
state. If an SADF, from a given state (s,x), can perform a sequence of scenarios
leading to a state (s0,x0), then the state (s,x+ c), can perform the same sequence of
scenarios leading to the state (s0,x0+c) for any c 2R. Therefore, we only explicitly
record a state using its normalized time-stamp vector, i.e., as x� c for c 2 R such

14 Geilen et al.

Fig. 7 State space of the SADF of Figure 6.

that |x�c|= 0. Hence, the state
⇣

sb,
⇥
3 3 2

⇤T⌘ is recorded as
⇣

sb,
⇥
0 0 �1

⇤T⌘. This
way the relative differences of the time stamps are recorded, but not their absolute
values. To be able to account for the amount of time passing in the transition from
the initial state to this state, the normalization constant c (in the example c is equal to
3) is associated with the state transition. If we follow this approach for the example
of Figure 6, we arrive at the finite state space that is shown in Figure 7 (the bold and
dashed arrows and circles are explained in the following section). The transitions in
the state space are additionally decorated with the scenario that is executed.

The precise definition of the state space of an SADF is as follows. The set S of
states of the state space are pairs:

S = {(q,x) 2 Q⇥ (R[{�•})n | |x|= 0},

where Q is the set of states of the FSA and n is the size of the state vector. The
transitions ((q1,x1),d,(q2,x2)) of the state space are triples from S ⇥R⇥S , such
that (i) there is a transition from state q1 labelled with scenario s, to state q2 in
the FSA (ii) x2 + d = Asx1. We usually refer to the state space as only the set
of all states that are reachable from the initial state (q0,0), where q0 is the initial
state of the FSA, and the corresponding transitions. Moreover, for convenience, we
may additionally label the transitions in the state space with the scenarios that they

Scenarios in Dataflow Modelling and Analysis 15

b,1

b,3

b,2

1

3

a,1

a,3

a,2

1

2

1
1

Fig. 8 Max-plus automaton graph of the SADF of Figure 6.

correspond to and/or with the rewards corresponding to these scenarios, as we have
done in the state space in Figure 7.

The state space allows us to determine the state vector obtained after any finite
scenario sequence that is a prefix of a word in the scenario language as follows. We
follow a path labelled with the scenarios in the scenario sequence through the state
space, starting from the initial state. If the sum of the edge weights on the path is d
and the normalized time stamp vector of the final state is x, then the final state-vector
after the scenario sequence is equal to x+d.

3.3 Performance Analysis of Scenario-Aware Dataflow

If the language of scenario sequences is a regular language, like in the example
of Figure 6, and defined by an automaton without acceptance conditions, then the
structure is called a max-plus automaton [12]. There are known techniques to com-
pute from such a max-plus automaton the worst-case number of scenarios per time
unit [12], or, if the scenarios are annotated with rewards, the worst case total re-
ward per time unit [16, 15]. Those methods can also report the critical scenario
sequence and the critical path of actor firings within the scenarios. It the automaton
does have acceptance conditions, then the same analysis can be applied, also with
exact results, by identifying and subsequently removing any states that can only oc-
cur a finite number of times in any accepted word, using standard automata analysis
techniques.

The worst-case throughput analysis centers around the structure called Max-Plus
Automaton Graph (MPAG). In particular, given an SADF graph, the structure is
constructed as follows: a vertex is created for each initial token of a scenario of an
FSA state. If [As]i, j 6=�• and there is a transition in the FSA from state m labeled
with scenario r to a state n labeled with scenario s, an edge is created from node
j in state m to node j in state n with weight [As]i, j. The MPAG of the SADF of
Figure 6, is shown in Figure 8. Maximum Cycle Mean (MCM) [10] analysis of the
MPAG structure will identify the critical scenario sequence, i.e., the sequence with

16 Geilen et al.

Fig. 9 Definition of latency

the worst-case average amount of time taken per scenario. The inverse of the MCM
equals the worst-case throughput of the graph, the worst-case number of scenarios
executed per time unit. For the running example of Figure 6, the critical scenario
sequence is captured with bold arrows in Figure 8. This is the sequence (ab)w . The
corresponding MCM is equal to 3 defining the greatest lower bound on throughput
of any scenario sequence, which is equal to 1/3 scenarios per time unit. Note that in
practice, a scenario often represents a coherent set of computations, like decoding
one audio/video frame. As explained earlier, in some SADF models, the amount of
progress differs per scenario, as in the WLAN example. In such cases rewards are
used to specify the progress. The MPAG is then extended by annotating the edges
additionally with the reward of the corresponding scenario and a Maximum Cycle
Ratio (MCR) analysis is performed in place of the MCM analysis [15]. The MCR
gives us the worst-case (minimum) amount of reward per time unit.

The linear model also facilitates the computation of latency. Latency is often
defined with respect to a periodic input that delivers inputs to the system starting
at time 0 and with some period µ > 0. This is illustrated in Figure 9. We assume
a single input u[k] and a single output y[k], but the definition and the analysis are
easily generalized to multiple inputs and outputs. Latency is defined as the smallest
value l 2 R such that y[k]  l + k · µ for all k 2 N. For the example of Figure 9,
for any smaller value of l than indicated, y[1] > l + 1 · µ . If such a value of l is
found, then the system is a refinement, in the sense of Section 2.2, of a system that
produces outputs periodically with period µ after an initial delay of l .

Note that there may be a trade-off between throughput and latency. For a higher
throughput (smaller value of the period µ , the latency may be larger. Their relation
is always monotone. Moreover, if 1

µ is higher than the maximal throughput of the
graph, then such a value l does not exist and the graph does not have a latency.

For multiple outputs, the definition is generalized as follows. The latency is the
smallest vector lll such that

y[k] lll + kµ for all k 2 N .

This vector can be computed as:

lll = max
k2N

y[k]� kµ .

Scenarios in Dataflow Modelling and Analysis 17

In max-plus algebra it is common to use � as short-hand notation for the binary
max operator and

L
for the max quantifier. In this notation we get the following

equation:
lll =

M

k2N
y[k]� kµ ,

Following straightforward max-plus linear algebra computations we can derive
that the latency for a static dataflow graph with one scenario with matrices A, B, C,
and D, is computed as follows [1]:

lll = C(A�µ)⇤ (x[0]� (B0�µ))�D0 , (2)

where the ⇤-closure of a square matrix M is defined as

M
⇤ =

•M

k=0
M

k .

Note that this closure exists in the latency computation of Equation 2 if and only if
the graph has a latency. It can be efficiently computed exactly. We observe further
that the latency also depends on the initial state, x[0] of the system.

We next show that the derivation of the latency of a max-plus linear system is a
straightforward exercise. The following equation can be shown to hold for the state
vector x[k] by induction on k and the fact that x[k+1] = Ax[k]�Bu[k].

x[k] = A
k
x[0]�

k�1M

m=0
A

m
Bu[k�m�1]

!

Then the output vector can be computed as

y[k] = Cx[k]�Du[k]

= C

A

k
x[0]�

k�1M

m=0
A

m
Bu[k�m�1]

!
�Du[k] .

From this the latency can be computed using the periodic inputs u[k] = k ·µ ·0

18 Geilen et al.

lll =
M

k2N
y[k]� k ·µ

=
M

k2N
C

A

k
x[0]�

k�1M

m=0
A

m
Bu[k�m�1]

!
�Du[k]� k ·µ

= C

M

k2N
(A�µI)k

x[0]�
M

k2N

C

k�1M

m=0
(Am

B · (k�m�1) ·µ ·0)�D · k ·µ ·0
!

� k ·µ

= C(A�µ)⇤ x[0]�
M

k2N

C

k�1M

m=0
A

m
B · (k�m�1) ·µ ·0� kµ

!
�
M

k2N
D · k ·µ ·0

� k ·µ

= C(A�µ)⇤ x[0]�C

M

k2N

k�1M

m=0
(A�µ)m

!
B · (�1) ·µ ·0�D0

= C(A�µ)⇤ x[0]�C

M

k2N

k�1M

m=0
(A�µ)m

!
(B0�µ)�D0

= C(A�µ)⇤ x[0]�C(A�µ⇤)(B0�µ)�D0

= C(A�µ)⇤ (x[0]� (B0�µ))�D0

Note that although the definition is given for a periodic input, the definition is
not restricted to periodic sources and linearity allows it to be used to predict the
latency of other types of sources as well. A more elaborate discussion is given by
Moreira [30].

The latency computation can also be generalized to switching scenarios in
SADF, where given an SADF and an automaton defining the possible scenario se-
quences, we can compute the exact worst-case latency. Details are beyond the scope
of this chapter and can be found in [1]. Acceptance conditions on the automaton can
be additionally taken into account by identifying and excluding from the analysis
any states of the automaton that cannot be reached in any accepting word.

Throughput analysis is also possible on the state space of an SADF. The worst
case throughput can be determined from the worst case, the Maximum Cycle Mean,
of the delay values on the edges, or the Maximum Cycle Ratio when rewards are
considered. In the state space of Figure 7, this is the cycle indicated in bold, corre-
sponding to the alternating execution of scenarios a and b. Note that it has the same
cycle mean (3) as the MPAG in Figure 8. Typically, one prefers the analysis on the
MPAG though, because the MPAG is usually, as in this example, smaller than the
state space. The state space does have the advantage that one can also determine
the best case throughput, in the sense of the highest throughput one could guarantee
under the assumption that one has full control over the sequence of scenarios that
occur. This may be the case, for instance, when the scenarios represent decisions
made by a scheduler as in the work of Yang et al. [49], or a supervisory controller
as the work of Van der Sanden et al. [36, 35]; see also Section 4.3 in Chapter 9.

Scenarios in Dataflow Modelling and Analysis 19

Fig. 10 Example of a conveyor belt and its dataflow linear model

This is achieved by finding a cycle in the state space with a Minimum Cycle Mean
(or Ratio). One of the possible optimal scenario sequences is indicated in Figure 7
with dashed arrows and circles. Note that such an optimal-throughput scenario se-
quence cannot be determined from the MPAG. In particular, the Minimum Cycle
Mean in the MPAG equals 1, which does not correspond to the optimal throughput
cycle in the state space, which has a cycle mean of 5/2. This can be explained as
follows. The MPAG represents all dependencies between individual tokens across
different scenarios. The worst-case cycle in this graph simultaneously identifies the
worst case scenario sequence and the worst case among all token dependencies. The
best-case scenario sequence in the state space still needs to consider the worst-case
token dependencies for its throughput. This combination of best-case scenarios and
worst-case token dependencies cannot be identified in any cycles in the MPAG.

The optimal throughput solution can also be generalized to the situation that the
transitions on the FSA can be partitioned into transitions that are controllable and
transitions that are uncontrollable. In that case, optimal attainable throughput can be
analyzed by finding optimal strategies in a two-player cycle mean game (or a cycle
ratio game in case of rewards) [35].

3.4 Modeling Switched Max-Plus Linear Systems

The Scenario-Aware Dataflow model is an instance of a switched linear system in
the max-plus linear algebra, i.e., a system that switches between different linear be-
haviors. Many other models fall in the same category and similar techniques can be
applied for their performance analysis. An example is the activity model introduced
in Chapter 9. To fit with the switched linear model, the systems needs to adhere to
linear modes of operation.

Example 1. Consider a conveyor belt of length l that moves at a constant speed v
as shown in Figure 10(a). It can transport objects. For simplicity we ignore the
physical dimensions of the objects, so they can be arbitrarily close on the belt and

20 Geilen et al.

can be placed on the belt at any time. We model the belt as a system B that takes
a (possibly infinite) sequence of input events u[k], which are the points in time at
which object k is placed on the start of the belt. The outputs of the system B, y[k],
are the time points at which object number k reaches the end of the belt. It satisfies
the following equation.

y[k] = u[k]+
l
v

For a system to be linear, it needs to have two properties. It should be additive and
it should be homogeneous. Both are to be interpreted in terms of max-plus algebra.

We assume a system S with a scalar input and a scalar output. The notation and
definitions generalize straightforwardly to systems with multiple inputs and outputs
and to sequences of inputs or outputs. We use S(x) to denote the time stamp of the
output event of system S in response to an input event with time stamp x. Max-plus
additivity means that a system satisfies the following rule for all x1 and x2:

S(max(x1,x2)) = max(S(x1),S(x2)) .

A more intuitive term for max-plus additivity is monotonicity as this is equivalent to
the following condition:

x1  x2) S(x1) S(x2) .

An important consequence of additivity / monotonicity is that it allows the superpo-
sition principle to be applied [13]. This principle states that the response due to the
sum of a number of inputs (in our setting the maximum of inputs) can be determined
as the sum of the outputs that are due to each of the inputs individually. An example
of the principle is given later in this section.

It is easy to see that the belt of Example 1 is additive.

B(max(x1,x2)) = max(x1,x2)+
l
v
= max(x1 +

l
v
,x2 +

l
v
) = max(B(x1),B(x2))

The second property required for a system to be max-plus linear, is homogeneity.
For a max-plus linear system this means that the following must hold for all x and c.

S(c+ x) = c+S(x)

A more intuitive term for max-plus homogeneity is shift-invariance, if the time
stamp of the input event is shifted by an amount c then the time stamp of the output
event is shifted by the same amount.

The belt is also easily seen to be shift-invariant.

B(c+ x) = (c+ x)+
l
v
= c+(x+

l
v
) = c+B(x)

Hence, the belt is max-plus linear. It has no internal state, so its canonical repre-
sentation consists of only the D matrix, which, because there is only one input and

Scenarios in Dataflow Modelling and Analysis 21

only one output, is just a scalar number with the value D = l/v. The belt also has
a, very simple, dataflow representation as a single actor, as shown in Figure 10(b).
Figure 10(c) additionally shows a dataflow model of a belt where we do take the
physical size of objects into account. We assume it is s. Now the system has internal
state x to remember how much space/time the previous object takes. The canonical
representation is as follows. Its derivation is left as an exercise for the reader.


A B

C D

�
=


s/v s/v
l/v l/v

�

For this system with internal state it is interesting to consider using the super-
position principle to determine the output sequence that is the response to the input
sequence with u[0] = 4 and u[1] = 5. We assume that l/v = 10 and s/v = 2. The input
sequence u can be seen as u = u0 �u1, where u0 considers only the first input, i.e.,
u0[0] = 4 and u0[1] =�•, and u1 considers only the second input, i.e., u1[0] =�•
and u1[1] = 5. The superposition principle predicts that if y is the output correspond-
ing to u and y0 and y1 are the outputs corresponding to u0 and u1, respectively, then
y = y0 � y1. Assuming x[0] = 0, we have according to Equation 1:


x[1]
y0[0]

�
=


2 2
10 10

�
x[0]
u0[0]

�
=


2 2
10 10

�
0
4

�
=


6

14

�


x[2]
y0[1]

�
=


2 2

10 10

�
x[1]
u0[1]

�
=


2 2

10 10

�
6
�•

�
=


8

16

�

Hence, y0[0] = 14 and y0[1] = 16. In the same way we can compute y1:


x[1]
y1[0]

�
=


2 2

10 10

�
x[0]
u1[0]

�
=


2 2

10 10

�
0
�•

�
=


2
10

�


x[2]
y1[1]

�
=


2 2
10 10

�
x[1]
u1[1]

�
=


2 2
10 10

�
2
5

�
=


7

15

�

Therefore, y1[0] = 10 and y1[1] = 15. We combine both results to conclude that
y[0] = y0[0]�y1[0] = 14 and y[1] = y0[1]�y1[1] = 16. This can easily be verified to
be the correct result in which the first input takes exactly 10 time units (the length of
the belt, l/v) from input to output, but the second input on the belt is delayed by the
first, because they need to be two time units (s/v) apart. Despite the fact that the two
inputs ‘interact’, their responses can be computed individually and then combined.

Note that the system implementation does not necessarily need to be linear, it
only needs to have a linear abstraction in terms of the abstraction relation discussed
in Section 2.2. An example is the response time of a job scheduled on a processor.
If the arrival time of the job is the input event and its completion time is the output
event, then the scheduler is often not shift-invariant. It may still have a linear ab-
straction. For instance, when the scheduler has a worst-case response time for the
job. In that case, the model that adds the worst-case response time to the job arrival
time is a linear abstraction of the job scheduled on the processor.

22 Geilen et al.

Fig. 11 Example of a parameterized SADF.

3.5 Parametric Analysis

For the worst-case throughput analysis technique explained above to be applica-
ble, the actor firing delays and rates characterizing SDF scenarios must be fixed
and known at design-time. If we deem actor firing delays and rates as parameters,
then assigning values to those parameters yields an SADF that is amenable to the
analysis described.

If we have a system with a number of possible values for each of the parameters,
to perform the analysis as described previously in this chapter, we will consequently
need to generate a scenario for every possible combination of assignments. Hence,
the number of scenarios may get to a point where it will experience compactness [5]
or succinctness-related [46] problems. On the analysis side, the product set cardi-
nality hampers the use of SADF in the analysis of systems exposing high levels
of data-dependent dynamics in a way that it will render the analysis run-time pro-
hibitive because of the shear number of scenarios that need to be considered. The
problem becomes even more intricate if parameters are dependent and not all com-
binations of values can occur. The dependencies may be specified explicitly in the
construction of the model, e.g., one parameter is given as an expression of another
or implicitly, e.g., a dataflow scheduler synthesizes some parameter values [33].

We can address these problems by combining the finite control of SADF with
parameterized dataflow into a construct we refer to as parameterized SADF. In
particular, we model each scenario using a parameterized dataflow graph.

Parameterization, as a syntactic construct, allows us to represent vast sets of sce-
narios in a compact way (parameters help keep the size of the model manageable)
and to explicitly represent the dependencies between parameters as constraints. The
underlying parametric analysis enables us to avoid the enumeration of the parame-
ter product set. An example of a parameterized SADF graph is shown in Figure 11.
The dataflow graph on the right hand side of the figure reveals three parameters: p,
q and r. Parameters p and q attain values from the set of non-negative integers and
are used to parameterize rates of actors A, B and C, while parameter r attains val-

Scenarios in Dataflow Modelling and Analysis 23

ues from the set of non-negative real numbers and is used to parameterize the firing
delay of actor B. The FSA in the left part of the figure indicates that the structure
involves two scenarios a and b. Parameter dependencies and parameter bounds are
specified per scenario in terms of scenario domains described (in the most general
case) via:

• a system of non-linear inequalities

fai(p,q,r) 0

where i 2 {1, . . . , I}, p 2 Pa ⇢ N0, q 2 Qa ⇢ N0, r 2 Ra ⇢ R�0, and

fbk(p,q,r) 0

where k 2 {1, . . . ,K}, p 2 Pb ⇢ N0, q 2 Qb ⇢ N0, r 2 Rb ⇢ R�0
• and a system of non-linear equalities

fa j(p,q,r) = 0

where j 2 {1, . . . ,J}, p 2 Pa, q 2 Qa, r 2 Ra, and

fbl(p,q,r) = 0

where l 2 {1, . . . ,L}, p 2 Pb, q 2 Qb, r 2 Rb.

Each transition of the scenario FSA incurs the invocation of an arbitrary instance
of the parameterized scenario that the transition destination state corresponds to. An
instance of a parameterized scenario is a concrete scenario obtained by assigning
all parameters with values inside the parameterized scenario domain, i.e., values
that satisfy the constraints. The operational semantics of the model is illustrated in
Figure 12. For illustrative purposes, scenario domains are depicted as 2-D planes
(recall that a domain can be non-linear too) in the p� q� r space. For example,
whenever a transition a ! b is taken, a concrete scenario obtained by assigning
values from the b scenario domain to parameters p, q and r, is executed. Example
of such assignments are depicted by the points (pa,qa,ra) and (pb,qb,rb).

Throughput analysis for parameterized SADF is based on the max-plus switched
linear system semantics of SADF. In particular, starting from a set of parameterized
scenarios, for each of them, a single representative max-plus matrix is generated that
captures the worst-case system behavior per parameterized scenario. The matrix is
derived by solving a series of non-linear optimization problems. Thereafter, the ma-
trices are used, in the same way, to construct the corresponding MPAG the MCM
of which defines the inverse of the worst-case throughput. Experimental results in-
dicate that the approach is advantageous for both modeling and analysis perspective
for graphs with broad-ranging interdependent parameters. More detailed explana-
tions can be found in [40, 41].

The concept of parameterized SADF presented above treats the case where pa-
rameters are not fixed during the execution of the systems. In particular, parameters
are allowed to change from one invocation of a scenario to the next invocation of the

24 Geilen et al.

Fig. 12 Operational semantics of the parameterized SADF of Figure 11.

same scenario. The analysis results in a greatest lower bound of the performance of
any possible scenario sequence and parameter valuations. However, we may often
encounter systems where parameters do not change during the system execution,
or change only infrequently. For such a parameterized SADF, instead of a single
worst-case performance result, we can find throughput expressions that present the
throughput as a function of the scenario parameter values (actor firing delays and
actor port rates). Calculation of throughput for a particular parameter valuation is
then merely an evaluation of this function for the specific parameter values, which
is much faster than the standard throughput analysis. This result may be particularly
important for run-time-management, which we discuss at the end of the chapter.

We first consider the case where actor firing delays can be parameters. This set-
ting was first discussed in [18] for SDF and in [9] for SADF. Consider the example
SDF shown in Figure 13. The scenario FSA is shown in the left part of the figure,

parametric execution time
scenario A0 A1 A2

a 6p1 2.5p2 2p2
b 1p1 4.5p2 1p2

parameter range

1  p1  5
1  p2  5

Fig. 13 An SADF with parametric actor firing delays

Scenarios in Dataflow Modelling and Analysis 25

Fig. 14 Throughput regions of the parameterized SADF of Figure 13.

while the scenario graph is in the right part of the figure. By now a reader will be
able to deduce that the model involves two scenarios: a and b. In each scenario,
actors A0, A1 and A2 perform one firing each. The firing delays are functions of two
parameters, p1 and p2, as specified in the table in the lower part of Figure 13.

When the actor firing delays are given as linear expressions of parameters, it can
be shown that parts of the parameter space that share the same MCM expression
(recall that the inverse of the MCM defines the throughput) form convex polyhedra.
We call these convex polyhedra throughput regions.

For the example SDF of Figure 13, the throughput regions are shown in Fig-
ure 14. Values of the parameter p1 span the x-axis, while the values of p2 span
the y-axis. The model has three throughput regions denoted r1, r2 and r3 with the
following expressions for the MCM µ:

• µ = 5.5p2 if 3p1  p2 for (p1, p2) 2 r1;
• µ = 3p1 +4.5p2 if p2  3p1  2p2 for (p1, p2) 2 r2 and
• µ = 6p1 +2.5p2 if 3p1 � 2p2 for (p1, p2) 2 r3.

The inverses of MCM expressions define the throughput expressions. For more de-
tails we refer the reader to [9].

The approach we just presented is only applicable to graphs with parameterized
actor firing delays. Furthermore, these delays are constrained to be linear combina-
tions of parameters. Indeed, the key assumption in [9] is linearity. Introduction of pa-
rameterized rates implies non-linearity as products of rates may appear in MCM ex-
pressions. Therefore, the results of [9] were generalized in [38], which can deal with
graphs of certain structure involving both parameterized rates and actor firing de-
lays. The technique linearizes the problem by expanding it into a high-dimensional
space. Unfortunately, although theoretically relevant, the technique is of limited us-
ability (limited to a set of only a few critical parameters) because manipulation of
high-dimensional polytopes incurs a high penalty in performance.

26 Geilen et al.

Listing 1 Pseudo-code of an abstract video decoder.
1: frame = buffer frame()

2: if detect frame type(frame) == full then
3: x = decode full(frame)

4: sub = subtitle overlay(x)

5: else
6: x = decode delta(frame)

7: end if
8: output = construct frame(x)

9: display(output, sub)

4 A programming model for SADF

SADF is a dataflow model that can represent scenarios of pipelined applications.
It can also be used as a programming paradigm for dynamic pipelined applica-
tions in which the dynamic behavior can be expressed as different modes of opera-
tion. An additional advantage of such an approach is that the application structure
can directly guide the process of design-time scenario identification. This section
describes such a programming model based on SADF and its realization on the
CompSOC platform [25, 26]. It explicitly addresses the challenge of run-time sce-
nario identification and the required switching and reconfiguration to execute the
corresponding behavior.

4.1 A Scenario-aware Dataflow Application

We consider streaming real-time applications that process data when it is received.
The control flow of such applications often depends on the received data. Upon
receiving a video frame, for example, a decoder detects if it is a full frame or a delta
frame and invokes the appropriate decoding function. In a sequential language, a
programmer may solve such a dependency with a simple if-else construct as shown
in Listing 1. This likely leads to the identification of both cases as separate scenarios.

SADF is a natural way to describe the behavior of this application and captures
different input-dependent control flows in its scenarios. Every possible control flow
is captured in a scenario graph by the programmer, possibly based on existing se-
quential code. The scenario graph for decoding a full video frame (Sfull) is depicted
in Figure 15. When a delta frame is detected, the application behavior and thus also
the scenario graph are different, namely Sdelta in Figure 16. Actor names are abbre-
viations of the functions in Listing 1. The possible scenario sequences are specified
by the FSM in Figure 17.

The SADF model allows tight analysis of applications with input-data depen-
dent control flow, it does not define an implementation model. Consider the video
decoder, where bf and dft are always executed first in either scenario. Only after
executing detect_frame_type (dft) the next scenario has been detected and

Scenarios in Dataflow Modelling and Analysis 27

Fig. 15 Scenario graph, Sfull, for decoding a full video frame.

Fig. 16 Scenario graph, Sdelta, for decoding a delta video frame.

Fig. 17 The FSM of the video decoder with scenarios full and delta.

the control diverges between the scenarios. At run-time it is impossible to decide
which of the scenarios is being executed until after it has started. Thus, a causality
dilemma is encountered if we want to use the scenario model as an implementation
model or a programming paradigm.

Because scenario graphs capture different behaviors of the same application, we
argue that a given number of actors and tokens at the start of each scenario are
common to all scenarios. In the example, these are actors bf and dft and tokens t1
and t4. After executing this maximal prefix graph the current scenario is assumed
to be known. This prefix graph must be marked as such by the programmer after
which it is automatically split off in a detector scenario det, see Figure 18 (the
additional actors, Seldet and Swdet, and additional tokens will be explained later).
After execution of Sdet the next scenario is known and can be executed, e.g. Sfull
depicted in Figure 19. This solves the causality dilemma and is explained in detail
in Section 4.2.

Fig. 18 Analysis graph, Sdet, of the detector scenario det.

28 Geilen et al.

Fig. 19 Analysis graph, Sfull, of the full frame scenario.

4.2 Sequence Analysis

In Section 4.1 we introduced a solution to the scenario detection causality dilemma
by splitting off the detector scenario det from the original scenarios, see Figure 18.
We assume the identification of the detector subgraph is done by the programmer.
All the following steps are automated. First the FSM is transformed to execute sce-
nario det before each transformed original scenario, see Figure 20.

Fig. 20 The extended FSM with detector scenario det.

To model the transport of tokens from and to the detector scenario, we use switch
and select actors borrowed from boolean dataflow [5]. These are instantiated on the
outgoing channels (switch) and incoming channels (select) at which the scenario
graphs are split, and assigned a worst-case execution time (WCET) of zero. See
Figures 19 and 21. The switch and select actors receive boolean control tokens from
the dft frame detector. Each Sw and Sel receives a self-edge with a synchronization
token that has the same label in every scenario. Token t4 is a special case. It is
available for the next scenario only after the dis actor has finished its firing and it
is consumed by the bf actor of the following det scenario. Therefore t4 is moved
onto the self-edge of Sel actors of the scenario graphs, removing the need for an
additional synchronization token. Additionally, we need one initial control token
tctrl on the edge to the initial select actor of the detection scenario to make the
graph deadlock free. The analysis graphs thus generated are shown in Figures 18, 19
and 21. The Sw and Sel actors as well as newly inserted channels and tokens actors
are indicated in grey.

Temporal analysis of this video decoder with SDF3 [43] visits the scenarios as
indicated by the FSM, starting with scenario det. It can be shown that the throughput
of the modified graph is identical to the throughput of the original graph [26]. In
each new scenario graph it is known from the start of the execution what the current
scenario is, which allows the scenario graph to be directly implemented.

Scenarios in Dataflow Modelling and Analysis 29

Fig. 21 Analysis graph, Sdelta, of the delta frame scenario.

4.3 Scenario Execution

In this section we present an implementation for executing a sequence of scenarios
that solves the following practical aspects: (i) switch and select implementation;
(ii) extending static-order actor schedules on-the-fly.

4.3.1 Switch and Select Implementation

During analysis the switch and select actors ensure synchronization but function as
regular SDF actors. While scenarios are analysed separately, our implementation
glues Sdet to the graphs of the other scenarios. In practice the switch acts as multi-
plexer and the select as de-multiplexer. For execution there is one detector subgraph
serving both Sfull and Sdelta with tokens, see Figure 22. Actors Sw and Sel are indi-
cated in grey. Synchronization token tSw is not relevant for execution.

Fig. 22 The merged execution graph, the switch and select actors are indicated in grey.

We propose a solution that exploits the libFIFO [19] library, that implements
FIFO buffers that can be disconnected and reconnected without invalidating data.
A switch actor will have only a single output port, to which the proper channel is
connected depending on the detected scenario (see Figure 23). This swapping of
FIFO channels is indicated with the symbol for an electrical switch, which connects
the single output port either to the channel to actor df or the channel to dd. The other
channel is left unconnected on one end, effectively giving it rate zero. The FIFO

30 Geilen et al.

swap must take place before Sw fires. Select actors are similar but demultiplex two
channels to one.

Fig. 23 The merged execution graph with implementation details, the switch/select and load sched-
ule (ls) actors for a one-processor mapping are indicated in grey. The swapping of FIFO channels is
indicated with the electrical symbol for a switch, also in grey. Note that this is not a valid dataflow
graph.

4.3.2 Extending Static-Order Schedules

We schedule actors on a processor with the libDataflow library [19] that exe-
cutes dataflow graphs by iterating over a given static-order (SO) schedule. Such a
schedule can be produced with SDF3 [43]. The schedule blocks if an actor is not
ready to fire. However, the SO schedule of our proposed solution changes depend-
ing on the detected scenario. Therefore we use a new scheduling concept that we
dub the rolling static-order (RSO) scheduler [26].

Execution starts with Sdet, so if we were to map the decoder to a single processor
the SO schedule starts with [bf,dft,Sw]. After firing dft the next scenario is known
and the SO schedule can be extended. If scenario full is detected, then the sequence
[df,cff ,cff ,so,disf ,Sel,bf,dft,Sw] is concatenated to the “rolling” schedule. Note
that Sel is the last actor in the schedule of Sfull, and we immediately concatenate
the next detector scenario. This ensures that the scheduler will never run out of
actors to schedule. A multi-processor mapping works similarly, the only constraint
we impose is that a switch must be mapped onto the same processor as the actor
preceding it.

The RSO scheduler has been implemented in libDataflow for the CompSOC
platform. We initialize it with a unique SO schedule for each scenario; the start is
set to Sdet. An additional load schedule (ls) actor is inserted right after dft on every
processor. See Figure 23 for the single-processor example. These ls actors receive a
scenario token from dft and extend the schedule accordingly. The example schedule
of Sdet changes to [bf,dft, ls,Sw]. We furthermore exploit the ls actor to connect all
FIFOs correctly before the actors Sw or Sel fire. This dependency is visualized with

Scenarios in Dataflow Modelling and Analysis 31

Fig. 24 Automaton defining the reconfiguration scenario sequences

time

DVFS delay on

DVFS delay on

Fig. 25 Gantt chart of the reconfiguration

a grey channel in Figure 23. Details on the implementation and an experimental
evaluation can be found in [26].

5 Run-Time Methods

This section briefly discusses some methods that can be applied for resource man-
agement using the SADF model at run-time.

5.1 Run-time Management

An execution platform may support for execution parameters to be changed or se-
lected at run-time, depending on run-time state, like resource availability or varia-
tions in deadlines or slack. Such settings can be considered as run-time situations
that can be characterized and represented by scenarios and correspondingly mod-
elled with dataflow models.

The selection of different settings may lead to run-time opportunities to opti-
mize multiple aspects of the running system. Run-time situations can be seen as
partially determined by the environment, e.g., by load induced by different kinds of
application input, and partially by the system’s run-time management. [49] shows
how the interplay between environment and run-time management can be seen as
a two-player game, where one player is the run-time management and the oppo-
nent player is the environment. The moves in the game can be modelled as dataflow

32 Geilen et al.

Fig. 26 Dataflow graph of the application scenario

Fig. 27 Dataflow graph of the DVFS reconfiguration scenario

scenarios. In this case known results from the theory of two player games, in par-
ticular, mean-payoff games and ratio-games, can be exploited to determine optimal
positional strategies. This leads to an optimal run-time strategy under environmental
variations.

We consider a simple example taken from [8]. It considers an application shown
in Figure 26. The dataflow graph of the application consists of three actors, a0, a1
and a2 with data dependencies captured by the tokens t0 and t1. It is additionally
assumed that there are two processing elements, pe1 and pe2 and that pe1 executes
actor a0 and pe2 executes actors a1 and a2. The mapping of tasks to processing el-
ements is modeled with the tokens pe1 and pe2 that capture the availability time of
the processing resources pe1 and pe2 respectively. The processing elements support
DVFS [6] to exploit a trade-off between processing speed and power consumption.
We assume that there are two settings to consider, having a specific DVFS setting
for each of the processing elements. We represent these two settings by two scenar-
ios, s1 and s2. Both scenarios follow the application graph of Figure 26, but with
different actor execution times. Run-time switching between s1 and s2 is possible,
but changing the DVFS setting for a processing element takes time and energy. The
switching process is therefore modeled by a dataflow scenario itself. The graph is
shown in Figure 27. Note that the graph expresses that a DVFS change can only
start after the processing element is available (has finished the workload of previous
scenarios) and then takes some amount of time (the execution time of the actor),
after which the processing element is available for processing of new workload,
expressed by the production time of the token. Note that the scenario defines that
both processing elements need to reconfigure, but there are no dependencies be-
tween them. They do not need to happen at the same moment, but can follow the
pipelined execution of the application. We assume the reconfigurations may take dif-
ferent amounts of time and therefore there are two switching scenarios reconf1!2

Scenarios in Dataflow Modelling and Analysis 33

and reconf2!1. The possible sequences of scenarios are defined by the automaton in
Figure 24. It specifies that a change of DVFS mode needs to invoke the correspond-
ing reconfiguration scenario.

Figure 25 shows a Gantt chart of a fragment of the behavior including a DVFS
switch from scenario s1 to scenario s2 by the intermediate reconfiguration scenario
reconf1!2. The reconfiguration follows the pipelined execution of the application
and pe1 reconfigures before pe2.

The SADF model defines all the possible behaviors that a run-time manager
can choose to execute with this application. Those behaviors correspond to scenario
sequences of the SADF model. The model predicts the worst-case performance of
such a behavior. This can be used by an optimization strategy to find the optimal
behavior in terms of power consumption that satisfies the performance constraints,
for example using Model Predictive Control techniques.

Parametric analysis, as discussed in Section 3 can be particularly interesting for
run-time situations. Actor execution times may only be available at run-time, but
there may not be enough time or resources for a full dataflow analysis algorithm
to be executed at run-time. In such a case the parametric analysis results can be
applied to quickly obtain the analysis result in a particular run-time situation when
the parameter values have become known. Furthermore, the parametric analysis can
be utilized to achieve energy savings in a setting with varying throughput require-
ment. Imagine a situation where one can quantify the Quality of Service (QOS) via
throughput. In most cases, the higher the throughput, the higher QOS and vice-versa.
On the other hand, achieving a higher or lower throughput, in terms of dataflow,
means that the actors will have to attain shorter or longer firing delays, respectively.
The question is, given a run-time change in QOS expressed as a throughput con-
straint, how long is short enough to meet the throughput constraint. [8] discusses
a heuristic strategy to find such optimal Dynamic Voltage and Frequency Scaling
(DVFS) settings using the parametric throughput expression of the model of the ap-
plication. In Chapter 9 is it shown how this strategy can also be applied to optimal
controller synthesis problems for flexible manufacturing systems.

6 Conclusions

This chapter has discussed how the scenario methodology can be applied to and
combined with dataflow modelling and analysis. The resulting model SADF is
an expressive model that can express variation in functional behavior and conse-
quently diverse run-time situations. Dataflow models can also be used in the context
of real-time streaming applications as a formal abstraction of concrete realizations
that guarantees preservation of performance for its refinements.

We have detailed the model and its semantics and have described common per-
formance analysis methods for throughput and latency, including parametric anal-
ysis techniques. Timed dataflow is a performance oriented model in a wider class
of max-plus linear systems. The properties of max-plus linear systems have been

34 Geilen et al.

discussed to better understand the essential properties of systems to be amenable to
being modeled with max-plus linear abstractions.

We have also shown how the SADF model can be applied as a programming
model to ensure a good match between an implementation on a multiprocessor plat-
form and the abstract dataflow model. It wa shown how to integrate the scenario
detection methods and derive an accurate model of a causal implementation of the
behavior. An online static-order scheduling technique is presented to realize the im-
plementation.

We have additionally illustrated how the dataflow model and the parametric anal-
ysis can be combined to realize efficient run-time management strategies.

Acknowledgements This research is supported in part by the ARTEMIS joint undertaking through
the ALMARVI project (621439) and by the ITEA3 project 14014 ASSUME.

References

1. Alizadeh Ara, H., Behrouzian, A., Hendriks, M., Geilen, M., Goswami, D., Basten, T.: scalable
analysis of multi-scale dataflow models. ACM Trans. Embedded Computing Systems 16(4),
80:1–80:26 (2018)

2. Baccelli, F., Cohen, G., Olsder, G., J.P.Quadrat: Synchronization and Linearity. John Wiley &
Sons (1992)

3. Battacharyya, S.S., Lee, E.A., Murthy, P.K.: Software Synthesis from Dataflow Graphs.
Kluwer Academic Publishers, Norwell, MA, USA (1996)

4. Bijlsma, T., Bekooij, M., Smit, G.: Circular buffers with multiple overlapping windows for
cyclic task graphs. In: P. Stenström (ed.) Transactions on High-Performance Embedded Ar-
chitectures and Compilers III, Lecture Notes in Computer Science. Springer Verlag (2011).
DOI 10.1007/978-3-642-19447-4

5. Buck, J.T.: Scheduling dynamic dataflow graphs with bounded memory using the token flow
model. Ph.D. thesis, EECS Department, University of California, Berkeley (1993)

6. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power cmos digital design. IEEE Jour-
nal of Solid-State Circuits 27(4), 473–484 (1992). DOI 10.1109/4.126534

7. Cochet-Terrasson, J., Cohen, G., Gaubert, S., Gettrick, M., Quadrat, J.P.: Numerical compu-
tation of spectral elements in max-plus algebra. In: Proc. of the IFAC Conference on System
Structure and Control. Nantes (1998)

8. Damavandpeyma, M., Stuijk, S., Basten, T., Geilen, M., Corporaal, H.: Throughput-
constrained dvfs for scenario-aware dataflow graphs. In: 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 175–184 (2013). DOI
10.1109/RTAS.2013.6531090

9. Damavandpeyma, M., Stuijk, S., Geilen, M., Basten, T., Corporaal, H.: Parametric throughput
analysis of scenario-aware dataflow graphs. In: 2012 IEEE 30th International Conference on
Computer Design (ICCD), pp. 219–226 (2012). DOI 10.1109/ICCD.2012.6378644

10. Dasdan, A., Gupta, R.K.: Faster maximum and minimum mean cycle algorithms for system-
performance analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 17(10), 889–899 (1998). DOI 10.1109/43.728912

11. Dhingra, V., Gaubert, S.: How to solve large scale deterministic games with
mean payoff by policy iteration. In: Proceedings of the 1st international confer-
ence on Performance evaluation methodolgies and tools, valuetools ’06. ACM, New
York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1190095.1190110. URL
http://doi.acm.org/10.1145/1190095.1190110

Scenarios in Dataflow Modelling and Analysis 35

12. Gaubert, S.: Performance evaluation of (max, +) automata. IEEE Trans. Automatic Control
40(12), 2014–2025 (1995)

13. Geilen, M.: If we could go back in time... on the use of ‘unnatural’ time and ordering
in dataflow models. In: M. Lohstroh, P. Derler, M. Sirjani (eds.) Principles of Modeling:
Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, pp. 267–286.
Springer International Publishing, Cham (2018). DOI 10.1007/978-3-319-95246-8 16. URL
https://doi.org/10.1007/978-3-319-95246-8 16

14. Geilen, M., Basten, T.: Requirements on the execution of Kahn process networks. In:
P. Degano (ed.) Proc. Of the 12th European Symposium on Programming, ESOP 2003, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003,
Warsaw, Poland, April 7-11, 2003. LNCS Vol.2618. Springer Verlag, Berlin (2003)

15. Geilen, M., Falk, J., Haubelt, C., Basten, T., Theelen, B., Stuijk, S.: Performance
analysis of weakly-consistent scenario-aware dataflow graphs. Journal of Signal Pro-
cessing Systems 87(1), 157–175 (2017). DOI 10.1007/s11265-016-1193-7. URL
http://dx.doi.org/10.1007/s11265-016-1193-7

16. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow scenar-
ios. In: International Conference on Hardware-Software Codesign and System Synthesis,
CODES+ISSS 10, Proc., Scottsdale, Az, USA, 24-29 October, 2010, pp. 125–134 (2010)

17. Geilen, M., Tripakis, S., Wiggers, M.: The earlier the better: A theory of timed actor interfaces.
In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and
Control, HSCC ’11, pp. 23–32. ACM, New York, NY, USA (2011)

18. Ghamarian, A.H., Geilen, M.C.W., Basten, T., Stuijk, S.: Parametric throughput analysis of
synchronous data flow graphs. In: 2008 Design, Automation and Test in Europe, pp. 116–121
(2008). DOI 10.1109/DATE.2008.4484672

19. Goossens, K., Azevedo, A., Chandrasekar, K., Gomony, M.D., Goossens, S., Koedam,
M., Li, Y., Mirzoyan, D., Molnos, A., Nejad, A.B., Nelson, A., Sinha, S.: Virtual Exe-
cution Platforms for Mixed-time-criticality Systems: The CompSOC Architecture and De-
sign Flow. SIGBED Rev. 10(3), 23–34 (2013). DOI 10.1145/2544350.2544353. URL
http://doi.acm.org/10.1145/2544350.2544353

20. Gu, R., Janneck, J.W., Raulet, M., Bhattacharyya, S.S.: Exploiting statically schedulable
regions in dataflow programs. J. Signal Process. Syst. 63(1), 129–142 (2011). DOI
10.1007/s11265-009-0445-1. URL http://dx.doi.org/10.1007/s11265-009-0445-1

21. Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work. Princeton University Press
(2006)

22. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978).
DOI 10.1145/359576.359585. URL http://doi.acm.org/10.1145/359576.359585

23. Jantsch, A.: Modeling Embedded Systems and SoC’s: Concurrency and Time in Models of
Computation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2003)

24. Kahn, G.: The semantics of a simple language for parallel programming. In: J. Rosenfeld (ed.)
Information Processing 74: Proceedings of the IFIP Congress 74, Stockholm, Sweden, August
1974, pp. 471–475. North-Holland, Amsterdam, Netherlands (1974)

25. van Kampenhout, R., Stuijk, S., Goossens, K.: A scenario-aware dataflow programming
model. In: Digital System Design (DSD), 2015 Euromicro Conference on, pp. 25–32 (2015).
DOI 10.1109/DSD.2015.28

26. van Kampenhout, R., Stuijk, S., Goossens, K.: Programming and analysing scenario-aware
dataflow on a multi-processor platform. In: Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE) (2017)

27. Lee, E., Messerschmitt, D.: Static scheduling of synchronous data flow programs for dig-
ital signal processing. Computers, IEEE Transactions on C-36(1), 24–35 (1987). DOI
10.1109/TC.1987.5009446

28. Lundqvist, T., Stenström, P.: Timing anomalies in dynamically scheduled micropro-
cessors. In: Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS
’99, pp. 12–. IEEE Computer Society, Washington, DC, USA (1999). URL
http://dl.acm.org/citation.cfm?id=827271.829103

36 Geilen et al.

29. Moonen, A., Bekooij, M., van den Berg, R., van Meerbergen, J.L.: Practical and accurate
throughput analysis with the cyclo static dataflow model. In: 15th International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS 2007), October 24-26, 2007, Istanbul, Turkey, pp. 238–245 (2007). DOI
10.1109/MASCOTS.2007.52. URL http://dx.doi.org/10.1109/MASCOTS.2007.52

30. Moreira, O.: Temporal analysis and scheduling of hard real-time radios running on a multi-
processor. Ph.D. thesis, Eindhoven University of Technology (2012)

31. Moreira, O., Basten, T., Geilen, M., Stuijk, S.: Buffer sizing for rate-optimal single-rate data-
flow scheduling revisited. IEEE Transactions on Computers 59(2), 188–201 (2010). DOI
10.1109/TC.2009.155. Cited By 24

32. Moreira, O., Corporaal, H.: Scheduling Real-Time Streaming Applications onto an Embedded
Multiprocessor. Springer (2014)

33. Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of dataflow models. In: For-
mal Methods and Models for Co-Design, 2004. MEMOCODE ’04. Proceedings. Sec-
ond ACM and IEEE International Conference on, pp. 179–188 (2004). DOI
10.1109/MEMCOD.2004.1459852

34. Parks, T.: Bounded Scheduling of Process Networks. Ph.D. thesis, University of California,
EECS Dept., Berkeley, CA (1995)

35. van der Sanden, B.: performance analysis and optimization of supervisory controllers. Ph.D.
thesis, Eindhoven University of Technology (2018)

36. van der Sanden, B., Bastos, J., Voeten, J., Geilen, M., Reniers, M.A., Basten, T., Jacobs, J.,
Schiffelers, R.R.H.: Compositional specification of functionality and timing of manufactur-
ing systems. In: 2016 Forum on Specification and Design Languages, FDL 2016, Bremen,
Germany, September 14-16, 2016, pp. 1–8 (2016). DOI 10.1109/FDL.2016.7880372. URL
https://doi.org/10.1109/FDL.2016.7880372

37. Siyoum, F., Geilen, M., Eker, J., von Platen, C., Corporaal, H.: Automated extraction of sce-
nario sequences from disciplined dataflow networks. In: Formal Methods and Models for
Codesign (MEMOCODE), 2013 Eleventh IEEE/ACM International Conference on, pp. 47–
56 (2013)

38. Skelin, M.: Worst-case performance analysis of scenario-aware real-time streaming applica-
tions. Ph.D. thesis, Norwegian University of Science and Technology (NTNU) (2016)

39. Skelin, M., Geilen, M.: Compositionality in scenario-aware dataflow: A rendezvous perspec-
tive. In: Proc. of LCTES’18 (2018)

40. Skelin, M., Geilen, M., Catthoor, F., Hendseth, S.: Parameterized dataflow scenarios. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 36(4), 669–682
(2017). DOI 10.1109/TCAD.2016.2597223

41. Skelin, M., Geilen, M., Catthoor, F., Hendseth, S.: Worst-case performance anal-
ysis of sdf-based parameterized dataflow. Microprocessors and Microsystems
52, 439 – 460 (2017). DOI https://doi.org/10.1016/j.micpro.2016.12.004. URL
http://www.sciencedirect.com/science/article/pii/S0141933116304094

42. Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Synchronization,
2nd edn. CRC Press, Inc., Boca Raton, FL, USA (2009)

43. Stuijk, S., Geilen, M., Basten, T.: SDF3: SDF For Free. In: Application of Concurrency to
System Design, 6th International Conference, ACSD 2006, Proceedings, pp. 276–278. IEEE
Computer Society Press, Los Alamitos, CA, USA (2006). DOI 10.1109/ACSD.2006.23. URL
http://www.es.ele.tue.nl/sdf3

44. Stuijk, S., Geilen, M., Basten, T.: Throughput-buffering trade-off exploration for cyclo-static
and synchronous dataflow graphs. IEEE Trans. Comput. 57(10), 1331–1345 (2008). DOI
http://dx.doi.org/10.1109/TC.2008.58

45. Stuijk, S., Geilen, M., Basten, T.: A predictable multiprocessor design flow for streaming
applications with dynamic behaviour. In: 2010 13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools, pp. 548–555 (2010). DOI 10.1109/DSD.2010.31

46. Stuijk, S., Geilen, M., Theelen, B., Basten, T.: Scenario-aware dataflow: Modeling, analysis
and implementation of dynamic applications. In: Embedded Computer Systems (SAMOS),
2011 International Conference on, pp. 404–411 (2011). DOI 10.1109/SAMOS.2011.6045491

Scenarios in Dataflow Modelling and Analysis 37

47. Theelen, B., Geilen, M., Basten, T., Voeten, J., Gheorghita, S., Stuijk, S.: A scenario-aware
data flow model for combined long-run average and worst-case performance analysis. In:
MEMOCODE, pp. 185–194 (2006). DOI 10.1109/MEMCOD.2006.1695924

48. van den Boom, T., De Schutter, B.: Modelling and control of discrete event systems using
switching max-plus-linear systems. Control Engineering Practice 14(10), 1199–1211 (2006).
DOI 10.1016/j.conengprac.2006.02.006

49. Yang, Y., Geilen, M., Basten, T., Stuijk, S., Corporaal, H.: Playing games with scenario- and
resource-aware sdf graphs through policy iteration. In: 2012 Design, Automation Test in Eu-
rope Conference Exhibition (DATE), pp. 194–199 (2012). DOI 10.1109/DATE.2012.6176462

Chapter 9: Scenarios in the Design of Flexible

Manufacturing Systems

Twan Basten, João Bastos, Róbinson Medina, Bram van der Sanden, Marc Geilen,
Dip Goswami, Michel Reniers, Sander Stuijk, Jeroen Voeten

Abstract Modern high-tech Flexible Manufacturing Systems (FMS) such as litho-
graphy systems, professional printers, xray machines and electron microscopes are
characterized by an increasingly tight coupling between machine control software
and the controlled physical processes. Control software and the design and configu-
ration of FMS have an important impact on system productivity and product quality.
Model-based, scenario-based design provides means for guaranteeing and optimiz-
ing system productivity while ensuring its proper functioning. We show that abstract
system-level activity models, semantically grounded in (max,+) algebra with activ-
ities capturing execution scenarios of the FMS, can be used for fast and accurate
productivity analysis of FMS in early design phases. The same models can be used
for supervisory controller synthesis and optimization, providing safety and perfor-
mance guarantees in the supervisory control software. Finally, scenario-based, adap-
tive, pipelined control enables optimization of data-intensive control loops in FMS,
which in turn impacts system-level productivity.

T. Basten
Eindhoven University of Technology & ESI, TNO, e-mail: a.a.basten@tue.nl
J. Bastos
Eindhoven University of Technology, e-mail: j.p.nogueira.bastos@tue.nl
R. Medina
Eindhoven University of Technology, e-mail: r.a.medina.sanchez@tue.nl
B. van der Sanden
Eindhoven University of Technology, e-mail: b.v.d.sanden@tue.nl
M.C.W. Geilen
Eindhoven University of Technology, e-mail: m.c.w.geilen@tue.nl
D. Goswami
Eindhoven University of Technology, e-mail: d.goswami@tue.nl
M.A. Reniers
Eindhoven University of Technology, e-mail: m.a.reniers@tue.nl
S. Stuijk
Eindhoven University of Technology, e-mail: s.stuijk@tue.nl
J.P.M. Voeten
ESI, TNO & Eindhoven University of Technology, e-mail: j.p.m.voeten@tue.nl

1

	ch1_intro
	ch2_general_flow
	ch3_data_var
	ch4_DVFS
	ch5_DVAFS
	ch6_READEX
	ch7_depend_sys
	ch8_SADF
	ch9_FMS

