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Abstract—The IEEE 802.15.4 Time-Slotted Channel Hopping
(TSCH) is a widely used standard technology for industrial Wire-
less Sensor Networks (WSNs). The applications of such networks
have diverse Quality-of-Service (QoS) demands that should be sat-
isfied. Optimal configuration of the network parameters based on
their QoS requirements and run-time adaptation to continuously
meet the QoS requirements given all network dynamics is a great
challenge for large-scale networks. The configuration space is very
large for large-scale networks resulting in space exploration to
be complex and extremely time-consuming. Moreover, such space
exploration needs to be performed multiple times at design-time
to give insight into the worst and best case performance of the
mechanisms and network topology. Yet, it is needed for the run-
time reconfiguration upon changes in the network. To address
the stated challenges, we propose a fast and accurate enough
algorithm based on Pareto algebra to extract a subset of Pareto
configurations for large TSCH networks in a very short time. A
proper configuration can be then picked from this set. Having
such a fast optimization algorithm, the network can react to the
changes in the link quality, routing topology, and reconfigure
itself optimally at an appropriate time. The performance of the
proposed technique is extensively evaluated, and compared with
other approaches such as basic incremental Pareto analysis, and
genetic algorithm, showing its superior execution time and quality
of configurations in terms of accuracy and diversity.

Index Terms—IEEE 802.15.4 TSCH, WSNs, Pareto analysis,
Multi-objective optimization

I. INTRODUCTION

Wireless Sensor Networks (WSNs), consisting of sensor

devices connected through wireless links, are widely employed

in many application domains. The IEEE 802.15.4 [1] protocol

standard specifies the Physical (PHY) and Medium Access

Control (MAC) layers of low-rate, and low-power WSNs.

Time-Slotted Channel Hopping (TSCH) as a MAC operational

mode of this standard is proposed to overcome persistent

interference and multi-path fading using channel hopping

technique. Moreover, TSCH provides predictable and reliable

communications and increased network capacity due to time-

slotted and multi-channel communications. The TSCH protocol

supports two medium access methods using dedicated timeslots

assigned to a link for transmission in a collision-free manner,

and shared timeslots for communications of multiple links.

The CSMA/CA mechanism is used to handle contentions and

repeated collisions in the shared timeslots.
Recent studies such as [7] and [3] show that the selection

of CSMA/CA MAC parameters of a TSCH network signif-

icantly influence the network performance. Therefore, it is

very important to properly configure these parameters to get

the best performance of the network operation both at design-

time as well as at run-time. However, in the most real-world

applications today, the parameter settings are mostly selected

based on experience and rules of thumb, which results in non-

optimal performance far off the QoS demands. Even if the

network is configured optimally at design-time, it does not

guarantee to be optimal under various channel conditions or

changes in the routing topology, and scheduling mechanisms,

specifically in harsh environments with dynamics. To tackle

this problem, several works (e.g., [15] and [11]) focus on

run-time adaptation and self-configuration of the parameters

in these networks to deal with dynamics or changes in the net-

work. They have introduced platforms including optimization

engine (or optimization solver) as a main core of the platform

to find optimal configurations using the state-of-art algorithms.

The main problem that is not addressed in these works is

the speed of the optimization engine and its performance in

terms of accuracy and diversity of the derived configurations.

For example in [11], genetic algorithm is employed as multi

objective optimization method which is not fast enough for

run-time execution especially when the network scales up.

This problem may cause the system to fail in setting suitable

configurations in real-time, and consequently fail to satisfy the

application requirements. Moreover, at design-time, the design

space of the whole network for various available mechanisms,

routing topologies, as well channel conditions needs to be

explored in order to get sufficient insight into the network

performance at run-time. This requires a massive amount of

computation, and is not feasible when the network gets a bit

large. Therefore, a fast and still high-quality optimization tech-

nique is of paramount importance for design-time decisions

as well as run-time adaptation and self-configuration of the

parameters in a TSCH network.

We present a scalable multi-objective optimization method

to extract a set of MAC parameters that lead to (near-)optimal

performance of a TSCH network. Here, we consider a cluster-

tree TSCH network with a converge-cast application. Without

loss of generality, Orchestra scheduling [5] is used to build the

TSCH schedule for the network. Our proposed approximated

method provides optimal configurations for MAC with less

than 1% error compared to the true Pareto configurations that

is generated using the algorithm in [10]. Moreover, for large

networks, our method completely dominates the results of the978-1-7281-4490-0/20/$31.00 © 2020 IEEE



genetic algorithm in terms of speed, accuracy, and diversity

of the configurations while the algorithm in [10] cannot even

complete the process of generating of the Pareto configurations

due to memory limits.

The rest of the paper is organized as follows. Related work

about optimization of TSCH networks is surveyed in the next

section. An overview of the TSCH CSMA/CA mechanism and

Pareto algebra is given in Section III. Section IV presents the

problem statement. The proposed approximated Pareto analysis

is presented in Section V. Performance evaluation setups and

results are discussed in Section VI. Section VII concludes.

II. RELATED WORK

Authors of [14] propose a method that finds the optimum

scheduling based on the shared timeslots in order to meet the

QoS constraints while minimizing the energy consumption. [2]

provides a reinforcement learning technique to optimize the

performance of channel hopping in TSCH networks. Multi-

Armed Bandit (MAB) algorithm as a learning algorithm is

used to select the high-quality channels through collected data

via a platform. The results show that the performance of the

TSCH network in terms of reliability and energy consumption

is improved compared to the default TSCH operation. In [8],

the authors investigate the impact of the slotframe length

on the energy consumption in a TSCH network. They also

present a statistical analysis to find the relation between the

energy consumption, the slotframe length, and topology of the

network. The optimal slotframe length for different topologies

to minimize energy consumption is then derived.

In [4], the problem of optimal routing in TSCH networks

is addressed. The authors state a multi-objective optimization

problem as a function of the schedule length, the packet routing

tree cost, and the hop count which affects the end-to-end

latency of the network. [13] provides scheduling methods for

throughput optimization of a TSCH network. Two approaches

are investigated to find scheduling methods that optimize

throughput in two cases. The first approach considers the

scenario that the statistical information of the channel state

is available a priori. The second approach assumes that no

channel state knowledge is available at design-time. For this

case, a machine learning algorithm is presented by modeling

the scheduling problem in terms of a combinatorial multi-

armed bandit (CMAB) process.

None of these works in the literature focus on optimizing

the CSMA/CA parameters to derive an optimal performance of

large-scale multi-hop TSCH networks. Moreover, the majority

of these works focus on single-objective optimization problems

to find the single globally optimal solution. Such single-

objective optimization problems may not support QoS for

real WSN applications, since it may extremely impair other

quality metrics of the WSN. Thus, for realistic WSNs, it is

reasonable to optimize the overall performance considering

multiple objectives such as reliability, latency, and network

life-time, which leads to a set of Pareto-optimal solutions in-

stead of a single optimal solution. Having multiple objectives,

the optimization problem gets computationally too expensive,

demanding very fast optimization techniques.

Several works employ heuristic algorithms such as genetic

algorithm [11] as multi-objective optimization algorithm to

produce Pareto optimal configurations. However, execution

time of genetic algorithms to derive good quality results is high

for large-scale networks. Furthermore, it does not guarantee to

generate full-set of Pareto optimal configurations due to its

random behaviour.

Authors in [10], propose an accurate multi-objective opti-

mization method for cluster-tree WSNs, which outputs full-set

of Pareto optimal configurations. They show that the Pareto

configurations of different clusters of a tree-based WSN can

be incrementally combined to obtain the Pareto configurations

of the whole network with optimal end-to-end performance.

Inspired by this work, we first use incremental Pareto combi-

nation algorithm to optimally configure CSMA/CA parameters

in a multi-hop TSCH network, which is not covered in the

literature. However, this can still lead to high computation

overhead. To overcome this, we then propose an approximated

Pareto analysis that derives a subset of Pareto configurations

of the whole network with satisfactory accuracy and diversity

in a very short time.

III. BACKGORUND

A. TSCH CSMA/CA Mechanism

The TSCH protocol uses CSMA/CA back-off mechanism

in shared timeslots to avoid repeated collisions. A node with a

packet in the MAC transmission queue transmits it in the first

available shared timeslot. If no acknowledge packet (ACK) is

received, a back-off procedure is activated and the back-off

parameters are initialized. This includes setting the Back-off

Exponent (BE) to its minimum value of BEmin, and the number

of retransmissions (RT) to zero. Then, the node waits for a

random number of shared timeslots in the range of [0, 2BE −1]
and transmits its data packet. If ACK is not received, RT is

increased by one to count the number of retransmissions, and

BE is increased by one up to its maximum value of BEmax.

The back-off mechanism continues until ACK is received or a

maximum number of retransmissions (maxR) is reached.

BEmin, BEmax, and maxR are the MAC parameters that

should be configured in the network. Each configuration has a

different effect on the performance of the network in terms of

communication reliability, latency, and energy consumption. In

this paper, we aim to propose a scalable algorithm to derive

all the possible configurations for a TSCH network that lead

to optimal performance of the network.

B. Pareto analysis overview

Pareto analysis is an approach for multi-objective optimiza-

tion based on the performance trade-offs [6]. This method can

be used for design space exploration to derive the optimal

configuration sets, called Pareto points.

Assume a system with p configuration parameters, indi-

cated by P1, P2, ..., Pp and q quality metrics indicated by



Q1, Q2, ..., Qq . Quality metrics present the performance of the

system that are affected by the configuration parameters.

Configuration Space: It is the set of all possible con-

figurations of the system and is the cartesian product of

finite configuration parameters, indicated by C = P1 ×
P2 × ... × Pp. c̄ = (c1, c2, ..., cp) is an element of such a

configuration space which leads to the performance Q̄(c̄) =
[Q1(c̄), Q2(c̄), ..., Qq(c̄)].

Dominance: For any two different configurations c̄1 and c̄2,

c̄1 dominates c̄2 iff :

c̄1 � c̄2 ⇔ ∀ 1 ≤ k ≤ q, Qk(c̄1) � Qk(c̄2) (1)

This means that the performance of c̄1 is better or equal to

performance of c̄2 for all quality metrics. Thus, we can remove

c̄2 from the configuration space for optimization purposes in

order to make the search space smaller [10].

Pareto optimal: The set Copt ⊆ C of configurations is

Pareto optimal (Pareto minimal) if none of the elements in

Copt is dominated by other members. In other words, for any

two different configurations c̄1 ∈ Copt and c̄2 ∈ Copt, c̄1 � c̄2.

Moreover, for all elements in C, there is an element in Copt that

dominates it. Copt includes all Pareto optimal configurations,

called Pareto points. For optimization purposes, we can use the

Pareto optimal set instead of the whole configuration space.

Monotonicity: A function f : C → Q is monotone if for

any two different configurations: c̄1 � c̄2, f(c̄1) � f(c̄2).
Pareto Combination: Assume a system denoted by S that

includes two subsystems S1 and S2, and configuration spaces

C1 and C2, respectively. These configuration spaces can be

combined into one joint configuration space C of S using

cartesian product operation (C = C1 × C2). In the process

of combining two sub-systems, if the function that maps

the configuration space C to the quality metrics Q of S is

monotone, then:

Copt
S ⊆ Copt

1 × Copt
2 ⊆ C1 × C2 = C (2)

It means that the Pareto optimal set of C is the Pareto optimal

set of the Cartesian product of Pareto optimal set of C1 and

C2 [10].

IV. PROBLEM STATEMENT

A. System model

Assume a WSN with N wireless sensor nodes, in which each

node intends to send its data packets to a sink node. Each node

runs the TSCH standard as the MAC layer, and a cluster-tree

mechanism such as RPL [12] as its multi-hop routing protocol.

Without loss of generality, the Orchestra scheduler [5] in the

receiver-based mode is used to schedule TSCH timeslots. One

timeslot in each slotframe is shared between all the nodes in

each cluster to transmit their data packets to their parent, called

Cluster Head (CH). Accordingly, the length of the slotframe

is at least equal to the number of clusters in the network. This

is illustrated in Fig. 1 for a small multi-hop network, in which

three shared timeslots are assigned to three clusters.

(5,6,7)          2 (3,4)           1 (1,2)        Sink

A TSCH slotframe

Fig. 1. An illustrative example of the assumed system model

To derive the performance of each cluster in terms of relia-

bility, latency, and energy consumption per link, the proposed

model in [7] is used. From the user’s point of view, it is the

end-to-end performance metrics that should be satisfied. Thus,

we derive end-to-end performance metrics by combining the

cluster level performance metrics.

In our system model, we assume a converge-cast WSN

in which each node sends its data packet to its CH. Each

CH aggregates all the received packets from its children

periodically and sends it to its parent. This process continues

until all data items reach the sink node. Thus, it is important

to consider the end-to-end performance metrics as QoS con-

straints. Here, without loss of generality, we consider the worst-

case end-to-end performance (we can also consider average-

case end-to-end performance, or end-to-end performance per

each node due to monotonicity being satisfied) in the network

for optimization.

• PEP is the worst-case end-to-end packet error probability

in the network. As multi-hop communications are used,

PEP of any multi-hop route in the network can be

calculated by considering the PEP of all the hops, as:

PEP = max
route∈L

(
1−

∏

hop∈route

(1− PEPhop)
)
, (3)

where L is the set of routes from all source nodes in the

network to the sink node.

• PL denotes the worst-case end-to-end packet latency in

the network. As we use aggregation at intermediate nodes

on a multi-hop route, latencies of all the hops on a route

can be added to extract the PL for that route. Hence, PL
can be calculated as:

PL = max
route∈L

∑

hop∈route

PLhop. (4)

• E indicates the worst-case energy consumption by the

nodes in the network. This is the maximum energy that

is consumed for a packet transmission by any node, on

any route in the network.

E = max
route∈L

(
max

hop∈route
Ehop

)
(5)

For each cluster in the network with a given configuration,

we extract PEPhop, PLhop, and Ehop using the TSCH perfor-

mance model in [7]. Here, PEP, PL, and E represent the

worst cases of reliability, latency, and energy consumption for a

specific configuration of the network, respectively. We consider

these performance metrics as three objectives for the network

optimization.



TABLE I
RESULTS OF IPCA FOR DIFFERENT NETWORKS

N |IPCA| tIPCA(s)

9 1369 9.25

15 4802 86

27 4766 404

48 13893 14097

60 13795 15416

72 - -

|X|: number of Pareto points using algorithm X.
tX: the execution time of algorithm X.
NCH = N/3, NCH is the number of clusters.

B. Applicability of Incremental Pareto Combination Algorithm

In this paper, we aim to optimize the performance of a TSCH

network by configuring CSMA/CA parameters. We first try

Incremental Pareto Combination Algorithm (IPCA) [10], since

objective functions described in the system model are mono-

tone. This algorithm starts by initializing all nodes as one-node

clusters. Subsequently, clusters are combined incrementally

step by step into larger clusters. In this algorithm, Pareto

points (including quality metrics and configuration parameters)

are produced at each step and forwarded to the next step.

In the next step, Pareto optimal set of cartesian product of

Pareto configurations from the previous step are considered

as Pareto optimal set of the new cluster’s configuration. This

minimization process at each step reduces the number of

new cluster’s configurations, which results in much faster

Pareto analysis. Following the same approach in our system

model as a cluster-tree network, we tried to derive Pareto

optimal configurations of TSCH networks. According to the

standard, CSMA/CA parameters obtain values in the range of

0 ≤ maxR ≤ 7, 3 ≤ BEmax ≤ 8, and 0 ≤ BEmin ≤ BEmax.

This results in 312 configuration settings per cluster (assuming

identical configurations for all the nodes in a cluster). We

implemented IPCA in Matlab to produce Pareto points of the

several tree networks including 9, 15, 27, 48, 60, and 72 nodes

with degree of 3. Table I shows the number of Pareto points

and execution time of IPCA for these networks. According to

the results in Table I, the execution time of IPCA increases

by expanding the network to more clusters. For network sizes

bigger than 72, the IPCA methods failed to result in the final

Pareto set for the whole network due to memory overflow and

timeouts. This shows that the basic IPCA is still not scalable

enough for large TSCH networks although it is a promising

technique that is proven to be able to produce true Pareto

configurations. This problem may give rise to a more serious

issue when we intend to perform run-time optimization of

the CSMA/CA parameters to cope with quick changes in the

network and consistently satisfy the QoS requirements.

V. APPROXIMATED PARETO ALGORITHM (APA)

In this section, the approximated Pareto algorithm, as the

main focus of this paper, is described as a solution to find

Pareto-optimal configurations of large-scale TSCH networks in

a short time to support run-time optimization platforms. The

approximated method must consider two factors that are the

Child Child
kChild

CLCH

Fig. 2. Bottom-up and left-right combination of Pareto points

key components of all multi-objective optimizations. Firstly,

the approximated Pareto set must produce Pareto quality met-

rics as close as possible to those of the true Pareto optimal

set. Secondly, it must provide Pareto quality metrics that are

as diverse as possible.

In IPCA, the number of extracted Pareto points at each step

can extremely affect the complexity and computation time of

IPCA. Therefore, it is desirable to smartly select a limited

number of Pareto points at each step and forward them to the

next steps to be combined. However, this selection should not

cause loss of diversity in Pareto points in all dimensions as

well as their qualities. To do so, we pick one Pareto point from

those that possess very similar quality metrics. For example,

suppose that [0.2, 70, 0.9], [0.199, 75, 0.901], and [0.3, 55, 0.7]
are Pareto points of the performance in a cluster ([PEP, PL,

E]), in which PL and E are in timeslot and mJ, respectively.

We can remove one of first two points and only forward the

two remaining points to the next step to be combined with

the upper cluster’s Pareto points. More precisely, a 3-D vector

including three parameters, r = [r1, r2, r3], is defined as a

closeness factor in which r1, r2, and r3 indicate closeness

in PEP, PL, and E dimensions, respectively. For each Pareto

point, we consider a 3-D closed volume around the Pareto point

that bounded by r1, r2, and r3, and keep only one Pareto point

inside the volume. This selected Pareto point is the one that

has the first order in the sequenced of configuration settings.

Selection of r1, r2, and r3 as closeness parameters makes a

speed-quality trade-off. It is in the scope of the designer who

decides how much the quality (accuracy and diversity) of the

configurations is traded off for speed of the algorithm.

Fig. 2 shows a typical cluster in a tree with cluster head

CHCL and children of 1 to k. Let, CCL and Copt
CL , ( 1 ≤

CL ≤ NCH), be the configuration space and Pareto optimal

configurations of cluster CL, respectively. Generally, for each

child k in the cluster CL, Copt
k achieved from the previous

step is combined with Copt
CL . For each combined configura-

tion, reliabilities are multiplied, latencies are added and the

maximum energy consumptions are considered (we call it

bottom-up combination). Looking into the outcome of the

bottom-up combination, only those are selected in which the

children of cluster CL have the same configurations. This is

a direct result of the assumption that all nodes in a cluster



have identical configurations. These selected configurations

are then combined through Cartesian product. For this min-

imized configuration space of cluster CL, defined as CCL, the

maximum values of performance metrics are reported as the

worst-case performance (called left-right combination). Pareto

optimal set of CCL is extracted through Pareto analysis, one of

the close Pareto points is selected according to given r values

and assigned to Copt
CL. We continue this process of combining

the clusters until reaching the sink node and obtain Copt
CL (sink),

which includes the Pareto optimal configurations of the whole

network. Incremental combination of Pareto points has also the

ability to apply QoS constraints at each step prior to combining

the Pareto points, which results in faster analysis. This is in line

with the fact that if reliability, latency, and energy consumption

are not satisfied within a cluster of the network, the end-to-end

metrics cannot be satisfied in the whole network.

Algorithm 1 describes the steps of APA inside the Main

function, which starts from line 9. The first loop traverses over

clusters from 1 to NCH, and the inner loop iterates over all

possible configurations. The performance of the clusters for

each configuration are derived using the performance model

in [7] (line 13). If the performance provided by the cluster

configuration does not meet the user’s constraints, it is removed

from the eligible configurations. Then, the algorithm calls the

Get Pareto function (line 17) that returns the Pareto points

for each cluster. In the Get Pareto function, first the non-

dominated points are removed. Then, among all Pareto points

that their performance metrics are within a 3-D volume with

dimensions r1×r2×r3 (called r-close points), the first one in

the sequenced order of configuration settings is selected and

the others are removed.

Starting from line 18, incremental combining of the Pareto

points begins by combining the clusters from the bottom

to the top levels of the tree structure until it reaches the

sink. In each level and for each cluster, Pareto points are

combined with its upper cluster’s Pareto points (lines 20 to

22). Then, Pareto points of the children in the clusters are

combined by the left-right combination in IPCA. These two

combinations result in considerable reduction of the size of the

configuration space of the clusters in each level, CCL. Again,

the configurations that do not satisfy the QoS constraints are

removed from the configuration space in line 23. Afterwards,

Pareto configurations are derived, and r-close Pareto points are

removed by running the Get Pareto, and assigned to Pareto

optimal configurations of the cluster. This procedure continues

until it reaches the sink node, which provides the Pareto

configurations of the whole network.

This algorithm may lose some Pareto points at each step.

However, due to the diverse selection of the Pareto subsets at

each step, the approximated Pareto set represents the original

Pareto set with a good accuracy. In the algorithm, parameter

selection for the elements of vector r in line 6 determines

the quality of the selected Pareto points at each step. Larger

values for the elements of r lead to fewer Pareto points, faster

execution time, and lower accuracy.

Algorithm 1: The Approximated Pareto

1 Get Pareto(C{}, Q̄{})
/* Extracting Pareto points */

2 for each c̄k ∈ C do
3 if ∃ c̄j ∈ C | Q̄(c̄j) � Q̄(c̄k) then
4 C(c̄k) ← {};

/* Removing close Pareto points */
5 for each c̄k ∈ C do
6 ∀ c̄j ∈ C | j �= k & ‖ Q̄(c̄j)− Q̄(c̄k) ‖≤‖ r ‖ do
7 C(c̄j) ← {};

8 return C;

9 Main()
10 for CL=1 to NCH do
11 Q̄CL = [ ] , C = [ ]
12 for each c̄k ∈ CCL (1 ≤ k ≤ 312) do

/* using the model in [7]: */

13 Q̄(c̄k) ← [PEPCL,PLCL,ECL];
14 if Q̄(c̄k) 
 QoS req then
15 Q̄CL ← Q̄CL ∪ {Q̄(c̄k)};
16 C ← C ∪ {c̄k};

17 Copt
CL ← Get Pareto(C, Q̄CL);

/* Pareto combination */
18 for each level from down up to Sink do
19 for each cluster CL ∈ level do

/* Bottom-up combination: */
20 for each child node k ∈ CL do
21 Ck ← Copt

CL × Copt
k ;

/* Right-left combination: */
22

CCL ←
∏

k∈CL

Ck

23 ∀c̄k ∈ CCL | Q̄CL(c̄k) ≺ QoS req do
24 CCL(c̄k) ← {};

25 Copt
CL ← Get Pareto(CCL, Q̄CL);

VI. RESULTS

We implemented our proposed algorithm, APA, in Matlab

to produce Pareto points of several tree networks running

TSCH protocol. To evaluate the performance of APA as an

optimization method, two factors are considered: closeness to

the reference Pareto front, and spread along the Pareto front.

Here, we use distance-based Performance Indices (PI) [9] to

compare the accuracy and spread of the derived Pareto set.

Given that P is the Pareto set produced by APA, and S is the

reference Pareto set, Pareto Front Error (PFE) of any point

p ∈ P is defined as the distance of p from the closest point in

S. It is used to present the accuracy and diversity of a Pareto

set and is defined as

PFE(p) = min
s∈S

(d(p, s)) (6)

where d(p, s) is Euclidean distance between p and s. Distri-

bution of PFE shows the spread of a given Pareto set along

the reference Pareto set [9]. MPFE is the worst-case PFE
calculated by

MPFE = max
p∈P

PFE(p). (7)

This metric is introduced as an accuracy PI to compare the

quality of the produced Pareto sets with the reference Parto set.
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Fig. 3. Distribution of PFE for APA and GA

Here, for simplicity, PEP, PL, and E are normalized to their

maximum values to be in the range of [0, 1], and the closeness

vector’s elements are assumed to be the same. Hence, in the

following r represents r1, r2, and r3 (r = r1 = r2 = r3).

Moreover, the performance of APA in finding the Pareto opti-

mal set for different scenarios is investigated. TSCH networks

with tree structure are considered to minimise [PEP, PL, E],
in which PL, and E are in timeslot and mJ, respectively. The

performance constraints are set as 0.3, 10 × height × NCH

timeslots, and 0.5 mJ, respectively (height is the height of tree

for each network).

For several tree networks including 12, 15, 18, 21, 24, 27,

30, 33, 48, and 60 nodes with degree of 3, Pareto optimal

set is derived through APA, while r is set as 10−6. IPCA also

runs in Matlab to produce reference Pareto set for comparison.

Moreover, genetic algorithm (GA) is implemented to compare

with APA in terms of accuracy and spread along the reference

Pareto front, since genetic algorithm is mostly used as multi

objective optimization algorithm for run-time optimization

platforms such as [11]. Figure. 3 shows the distribution of

PFE in percentage to illustrate the accuracy and spread of the

derived Pareto sets. (Since performance metrics are normalised

to their maximum values, PFE is in the range [0,
√
3]). GA is

run for 10 and 20 times (GA10 and GA20) the APA’s execution

time to generate Pareto optimal set. Table II also reports the

execution time of APA and MPFE of three cases only for 15,

TABLE II
PERFORMANCE COMPARISON OF APA WITH r = 10−6 AND GA

COMPARED WITH IPCA

N tAPA(s) MPFEAPA% MPFEGA10% MPFEGA20%

15 15 0.58 13.19 5.92

21 22 0.58 12 6.72

27 27 0.58 62 14.16

33 36 0.58 61.1 16.42

48 67 1 61.6 61.7

60 87 1.04 61.6 61.62

21, 27, 33, 48, and 60 nodes. Note that, MPFE of APA and

GA are also visible in the Fig. 3.

Fig. 3 shows that APA provides a Pareto set with maximum

error (MPFE) of around 1% for these networks. Comparing

the results of APA and GA, the proposed APA produces

much more accurate results than GA in greatly shorter time.

Moreover, the minimum, maximum, and median values shown

in the figure for APA are smaller than the corresponding

values of GA. It shows that APA’s Pareto points better spread

alongside the reference Pareto front compared to GA even

in a twentieth time of GA’s execution time. Increasing the

number of clusters in the network causes more gap between

the performance of APA and GA, which shows the strength of

APA compared to GA specifically for larger networks.

To explore the effect of r (closeness parameter) used in APA,

we also try r = 10−4 and report the results of APA for the

same networks in Table III, and the distribution of PFE in

Fig. 4. Comparing the results in Fig. 4, Table III and Fig. 3

shows that the number of Pareto points and the execution time

of the algorithm decreases when r increases, while the error

and the number of outliers increases as we expected.

As large scale networks, the tree-cluster networks with

50, 100, and 150 nodes are considered with the same QoS

constraints that are set in the previous setups. These nodes

are randomly distributed in a square area with a density of

0.02 node per square meter. Then RPL algorithm is run to

establish a cluster-tree network, in a way that each node can

accept at most 5 children. Pareto points of these networks are

derived using APA and GA with execution time of 20 times

the APA’s execution time (GA20). For this setup, we skip the

production of the reference Pareto points since IPCA fails due

to limitation in time and memory. So, the reference Pareto

set is not available for this setup. However, it is common

in Pareto algebra that Pareto optimal set is unknown, and an

artificial reference or desired set is specified. Here, we define

an artificial reference set as the Pareto optimal of the union of

Pareto optimal set of APA and GA. Accordingly, the derived

Pareto optimal sets for three large networks are compared with

the artificial reference Pareto front, and the results are reported

in Table IV. Results show that APA produces more accurate

and diverse Pareto sets than GA. Moreover, for the networks

with 100 and 150 nodes, Pareto points of APA remains in

reference Pareto sets that means APA’s Pareto set completely

dominates the GA’s Pareto set.



TABLE III
PERFORMANCE COMPARISON OF APA

WITH r = 10−4 AND r = 10−6

r = 10−4 r = 10−6

N |APA| tAPA |APA| tAPA

15 304 14 660 15

21 306 20 661 22

27 310 26 671 27

33 336 32 742 36

48 615 44 1554 67

60 618 55 1567 87

12 15 18 21 24 27 30 33 48 60
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Fig. 4. Distribution of PFE for APA

VII. CONCLUSION

In this paper, an approximated Pareto algorithm is presented

to produce a subset of Pareto points for large-scale TSCH

network in a short time. Feasibility of incremental Pareto

combination algorithm is studied for large networks. It is

shown that the incremental Pareto combination algorithm is

still not scalable enough for large networks. An approximated

Pareto algorithm is proposed to decrease the execution time

and complexity to overcome time and memory limitations,

which are critical factors in run-time optimization platforms.

Comparing the results of the proposed approximated Pareto al-

gorithm with true Pareto for the networks of less than 60 nodes

shows that our algorithm produces the Pareto optimal sets with

error less than 1% in the order of seconds. Furthermore, the

results of the proposed algorithm are compared to the results

of the genetic algorithm for different sizes of the network.

It is shown that the genetic algorithm during the 20 times

the approximated Pareto’s execution time produces the Pareto

optimal sets at least 10 times less accurate and less diverse than

our method for the networks of less than 60 nodes. The results

for large networks also show the strength of our proposed

algorithm, which provides many Pareto points compared to the

genetic algorithm in a twentieth times the genetic algorithm’s

running time, and those Pareto points completely dominate

Pareto points of the genetic algorithm.
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TABLE IV
PERFORMANCE COMPARISON OF APA (WITH r = 10−2) AND GA FOR

LARGE NETWORKS

N |S| |APA| |GA|20 MPFEAPA% MPFEGA20% tAPA(s)

50 82 80 16 0.008 0.14 50

100 205 205 77 0 0.104 332

150 230 230 42 0 0.175 582

S is the artificial reference Pareto set
NCH = N/5
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