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Abstract – Cell-aware test (CAT) explicitly targets faults

caused by cell-internal short and open defects and has been

shown to significantly reduce test escape rates. CAT library

cell characterization is typically done for only two defect re-

sistance values: one representing hard opens and another

one representing hard shorts. In this paper, similar to fisher-

men tightening the mesh size of their nets to catch small fish,

we perform library characterization as efficiently as possi-

ble for a set of resistances representing increasingly weaker

defects, and then adjust our ATPG flow to explicitly target

faults caused by the weakest still-detectable variant of each

potential defect. We implemented this novel approach in an

experimental ATPG tool flow script, using functions of Ca-

dence’s Modus as building blocks. To assess the effectiveness

of our approach, we formulate a new dedicated test metric:

the weakest fault coverage wfc. Compared to conventional

CAT targeting hard defects only, experimental results show

that our new approach enhances detection of weakest faults

and significantly reduces wfc escapes =1-wfc, while maintain-

ing its original (hard-defect) fault coverage fc, of course at

the expense of (acceptable) increases in the required number

of test patterns and associated test generation time.

1 Introduction
Defects in integrated circuits (ICs) occur due to the large num-

ber of high-precision, defect-prone steps in their manufacturing

process. To achieve sufficient quality for outgoing products, all

ICs require testing for manufacturing defects to weed out defec-

tive parts prior to their shipment to customers. Unfortunately,

these IC tests are not perfect either and occasionally let faulty

ICs slip through the test: ‘test escapes’. Ballpark test escape

rates are between 100 and 1 dppm (defective parts per million).

We observe an industry-wide push to improve the quality of IC

tests, with three main drivers: (1) IC designs integrate an ever-

growing number of components, and hence the number of poten-

tial defect locations increases; (2) IC manufacturing processes

are capable of printing ever-smaller features, and these smaller

structures are more sensitive to even very subtle defects; and (3)

ICs are increasingly used in safety-critical applications (such as

automotive, medical, avionics), and these markets demand the

highest product quality with zero tolerance for test escapes.

Today’s digital IC designs are typically built up from intercon-

nected standard cells taken from a pre-designed cell library.

Conventional automatic test pattern generation (ATPG) ap-

proaches consider only faults on the interconnects between those

cells [1]. Surely, their resulting test patterns also cover many

cell-internal faults on a serendipitous basis, but as these intra-cell

faults are not explicitly targeted by conventional ATPG, some

remain undetected and cause test escapes. Eichenberger et al.

[2] showed that a significant fraction of test escapes is caused

by not-covered cell-internal defects. Preventing escapes is the

main objective of manufacturing testing, as test escapes cause

customers to become dissatisfied with the product quality.

It is widely accepted in the IC test community that manufactur-

ing defects are accurately modeled as resistive shorts and opens

[1]. In case of a low-ohmic short or a high-ohmic open, we clas-

sify the defect as hard. Variants of the same defect with higher

(for shorts) or lower (for opens) resistance exhibit a less impact-

ful fault behavior than hard defects and hence are called weak

defects. In general, the weaker the defect, the more difficult it

becomes to detect. In a digital cell-aware test, this typically im-

plies that the number of cell-level patterns that detect an increas-

ingly weaker defect variant diminishes until the defect is so weak

that no patterns are left and the defect becomes undetectable. For

a given defect, we refer to the weakest defect variant that is still

detectable (at cell level) by means of a digital test as the weakest

fault. In this paper, we propose a cell-aware test generation ap-

proach that explicitly targets the weakest fault at each potential

cell-internal defect location.

We implemented this weakest-fault CAT (WF-CAT) approach

in an experimental scripted tool flow, using various functions

of Cadence’s commercially-available Modus ATPG tool (release

19.1) as building blocks (see Figure 1). The dark-blue items in

this figure are the new elements in this tool flow. In Step 1, per

library cell, we identify the weakest still-detectable resistances

for all defect-pattern combinations; we store them in a critical

resistance matrix (CRM). In Step 2, these CRMs are used by

the cell-aware ATPG engine to explicitly target the weakest still-

detectable faults and generate test patterns for them.

The remainder of this paper is organized as follows. Section 2

summarizes related prior work. Section 3 introduces the library

characterization flow of our proposed approach, in which now

we simulate two ranges instead of two single resistance values.

Characterization results for a 45nm CMOS standard-cell library

are presented in Section 4. Section 5 describes our WF-CAT

ATPG flow of which the explicit objective is to improve the wea-
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Figure 1: Weakest-fault cell-aware test (WF-CAT) tool flow (legend: = CAT functions; = CAT files; = WS-CAT files; = WS-CAT results).

kest fault coverage, while maintaining the original (hard) fault

coverage of the conventional CAT approach. Section 6 presents

weakest-fault ATPG results for eleven benchmark circuits and

Section 7 concludes this paper.

2 Related Prior Work
CAT explicitly targets cell-internal open and short defects and

thereby significantly reduces test-escape levels [3–5]. Cadence’s

CAT approach is implemented as a two-step tool flow, coordi-

nated by ATPG tool Modus, which invokes several other EDA

tools along the way. In Step 1, the standard-cell library is char-

acterized to determine per library cell which cell-level test pat-

terns detect which cell-internal defects. First, we identify the

possible defect locations in a library cell, assisted by parasitic

extraction results from Quantus [6]. Subsequently, we assign a

user-specified resistance value to the identified defects, and use

analog simulator tool Spectre to determine for each library cell

which defect is detected by which cell-level test pattern. The

results are stored in a DDM per library cell [7]; this is a binary

matrix where for library cell c, DDM c(d, p) = 1 if and only

if defect d is detected by cell pattern p. The pattern set psc(d)
of defect d is defined by psc(d) = {p ∈ Pc|DDM c(d, p) =
1}. Defects which are not detectable by any cell pattern (i.e.,

psc(d) = ∅) have apparently no effect on the function of the li-

brary cell, are classified as non-detectable and dropped from the

DDMs; the remaining, detectable defects continue as faults. In

Step 2, cell-aware ATPG tries to cover, for all cell instances in a

design, all cell-internal faults by expanding the appropriate cell-

level test patterns into chip-level test patterns (or into core-level

test patterns, in case of modular SOC-based test development)

[8].

Virtually all prior work on testing for resistive open and/or short

defects does not relate to CAT [9–14], while prior work on CAT

targets almost exclusively hard defects [3–5, 15, 16]. To the best

of our knowledge, the only exception is a paper by Hapke et

al. [17], in which CAT is used to try to detect both hard and

weak short defects. The authors treat variants of the same de-

fect with different resistive values as independent defects if their

corresponding cell-level test patterns sets are non-identical. For

a short defect s, consider two variants s1 and s2 with s2 weaker

than s1. In case psc(s1) = psc(s2), [17] treats these two de-

fect variants as one defect, but if psc(s2) ⊂ psc(s1), this single

defect is modeled in [17] as two independent defects. If short de-

fects are characterized for n different resistance values, a single

defect can end up in the fault model of [17] as anywhere from

one up to n independent faults. We consider these unpredictable

effects on fault counts, and consequently on fault coverages, as

undesirable.

Preliminary experiments on 350 cells from Cadence’s GPDK045

45nm CMOS library [18] show that if we vary the resistance

value of the short defects in these library cells from 0 to 50kΩ,

for about 60% of the short defects the cell pattern set capa-

ble of detecting the defect is independent of the short’s resis-

tance value. However, for the remaining 40% of the shorts,

the cell pattern set size varies as a function of the resistance

value. If we consider per defect, the hardest and the weakest

still-detectable resistance values, the defect model proposed in

[17] would inflate the total number of short defects (11, 394) for

no good reason by a factor 0.6 + 2 × 0.4 = 1.4 to 15, 907 ‘de-

fects’; considering 13 resistance values in the range [0, 30k)Ω
(see Section 4), this unjustified inflation would even grow to

1.7× 11, 394 = 19, 363 ‘defects’.

Unlike [17], in which with respect to weak defects only shorts

are discussed, in this paper we address both short and open de-

fects. We consider a weaker defect at the same location as just

another variant of the same defect, thereby keeping the total de-

fect count of a library cell a property of that cell only, not de-

pendent on the number of resistance values considered during

defect characterization. To avoid the anomalous fault coverage

definition from [17], we introduce a new weakest-fault coverage

wfc, next to the regular (‘hard’) fault coverage (fc).

3 Library Characterization
This section describes the WF-CAT library characterization,

shown as Step 1 in Figure 1. We assume that a defect d with

resistance r = R which is detectable by cell pattern p, remains

detectable by p for all harder variants of d (i.e., for shorts with

r < R and for opens with r > R). This assumption implies that

for each defect-pattern (d, p) combination for which there is a

resistance value for which d is detectable by p, there is a weak-

est still-detectable resistance, which we refer to as the critical

resistance of that particular defect-pattern combination.

Step 1 of our tool flow determines CRMs (or approximations

thereof) for a standard-cell library C, for further usage in Step 2.

On the basis of the cell layout and transistor-level netlist with

extracted parasitics, we first identify for each library cell c ∈ C
its set of potential defects Dc (type and location), as described

in [6]. Subsequently, we need for each defect-pattern combi-

nation (d, p) with d ∈ Dc and p ∈ Pc (where Pc denotes the

exhaustive cell-level pattern set for cell c) to determine its crit-

ical resistance CRM (d, p). This can be implemented through

an iterative loop of Modus’ defect characterization function DC

over appropriate ranges of resistance values. For a user-specified

pair of short/open defect resistances rshort/ropen, DC determines

for all defects d ∈ Dc and all cell patterns p ∈ Pc whether or

not p detects d, denoted by a binary variable DDM (d, p) [7].

We could simply repeat DC for all possible resistance values in

the defect resistance range considered. As Figure 2 shows, the

resulting binary DDMs can be condensed into a single CRM,

where for each entry (d, p), the critical resistance corresponds to

the weakest resistance value rshort or ropen for which any of the

DDMs denoted detection at (d, p).



Pattern Short=0Ω Open=1TΩ
AB/Y d1 d2 d3 d4

p0 = 00/L 1

p1 = 01/L 1 1 1

p2 = 10/L 1 1

p3 = 11/H 1 1 1

(a) Multiple DDMs.

Pattern Short Open

AB/Y d1 d2 d3 d4

p0 = 00/L 1k

p1 = 01/L 5k 5k 70M

p2 = 10/L 1k 10.1M

p3 = 11/H 10k 10.1M 1G

(b) Critical resistance matrix (Ω).

Figure 2: Multiple DDMs for various open/short defect resistance value

pairs can be condensed into a single CRM.

DC is a compute-intensive operation. Fortunately, note that DC

needs to be performed only once for each library release, while

its results can be reused for all chip designs based on that library.

This implies that we can afford to spend quite some compute

time on DC. However, even a single DC iteration is expensive

with respect to compute time, due to the fact that it repeats a de-

tailed analog simulation in three nested loops: for all cells, for

all defects, and for all cell patterns [4]. Adding a fourth loop ‘for

all resistance values’ forces us to consider only a limited num-

ber n of defect resistances to avoid the required compute time to

become excessively large.

First we determine the defect resistance ranges to be consid-

ered. The hardest defect resistance of each range should be super

hard, such that we maximize the pattern set for each defect. The

weakest resistances of each range should be such that for each

defect-pattern combination, its critical resistance is included in

the range. Hard shorts are low-ohmic and thus the natural can-

didate for the super-hard short is 0Ω. For super-hard opens and

both weakest shorts and opens, the resistance values can vary per

technology node and standard-cell design.

Next, the user needs to determine the number n of defect resis-

tance pairs to be considered, and what their values will be. In

our experience, a value of n for which the cumulative DC com-

pute time is still considered affordable is too small to accurately

perform DC for all possible critical resistance values; even at a

granularity of, say, 1kΩ. This implies that both defect resistance

ranges will be split into n bins that will approximate the critical

resistance values.

Modus’ DC function needs as inputs (1) the transistor-level

netlists of a set library cells C, (2) the set of short and open

defects Dc for all c ∈ C, and (3) the resistance values rshort and

(4) ropen for respectively short and open defects. Its output is a

binary DDMc for all c ∈ C.

In WF-CAT, defect characterization consists of n iterations of

Modus’ DC function. It approximates for each library cell c the

critical resistances for each defect-pattern combination (d, p) out

of the iteratively generated DDMc[i] (for i ∈ [1..n]) in a critical

resistance bin matrix CRBM. If we order the resistance value

pairs for the subsequent DC iterations from hard to weak (i.e.,

resistances increasing for shorts and decreasing for opens), then

CRBMc is defined as follows:

CRBM c(d, p) = MAXi∈[1..n]{i|DDM c[i](d, p) = 1}

Note that CRBM store DC iteration numbers, instead of ac-

tual resistances values; this allows us to treat short and open

defects in an identical way. Translation from iteration num-

bers to user-defined defect resistance values is done through a

two-dimensional look-up table R[t, i], where defect type t ∈
{short, open} and DC iteration i ∈ [1..n].

The n resistance values that determine the critical resistance bin

boundaries do not need to be equidistant. It is best if these n
values are chosen such that the division of the defects over the

critical resistance bins is balanced.

Algorithm 1 presents our MULTI-R defect characterization al-

gorithm, which iteratively calls Modus’ DC function to deter-

mine CRBMs for all cells in a library. Exploiting the fact that

for subsequent DC iterations, the defect resistance values are or-

dered from hard to weak, we can for a defect-pattern combina-

tion (d, p) which in iteration i is still detectable simply overwrite

the critical resistance bin so far by assigning CRBM(d, p) = i
(Line 09). We can save significant compute time by pruning the

number of defect simulations needed. Exploiting our assump-

tion that all defects harder than the critical resistance remain de-

tectable by the same cell pattern, as soon as for a particular iter-

ation i a defect d ∈ Dc is no longer detectable for any pattern

p ∈ Pc, we can drop that defect from subsequent DC iterations

(Line 10). Similarly, if in a DC iteration a cell c ∈ C no longer

has any detectable defects left, we can exclude that cell from

subsequent DC iterations (Line 13).

Algorithm 1 [MULTI-R DC]

Inputs : C, Dc for all c ∈ C, n, R[{short, open}, {1..n}];
Outputs : CRBMc for all c ∈ C;

01: i := 1;

02: while i ≤ n ∧ C 6= ∅ do {
03: DDMc[i] := DC(C,Dc, R[short , i ],R[open, i ]);
04: for all cells c ∈ library C do {
05: generate exhaustive cell-pattern set Pc with |Pc| = #outc ×2#inc ;

06: for all defects d ∈ defect set Dc do {
07: detectable := FALSE;

08: for all patterns p ∈ pattern set Pc do {
09: if DDMc(d, p) = 1 then {
10: detectable := TRUE; CRBMc(d, p) := i;

11: } };

12: if detectable = FALSE then Dc := Dc \ {d};

13: } if Dc = ∅ then C := C \ {c};

14: }
15: i := i+ 1;

16: }
where Modus’ function DC has the following role:

Inputs : C, Dc for all C ∈ C, rshort, ropen;

Outputs : DDMc for all c ∈ C;

21: for all cells c ∈ library C do {
22: generate exhaustive cell-pattern set Pc with |Pc| = #outc ×2#inc ;

23: for all defects d ∈ defect set Dc do {
24: for all patterns p ∈ pattern set Pc do {
25: if FaultSimulation(c+ d, p) 6= FaultSimulation(c, p)
26: then DDMc(d, p) = 1;

27: else DDMc(d, p) = 0;

28: } } }

From the CRBMs that are generated by the WF-CAT library

characterization, we extract two DDMs that play a prominent

role in our WF-CAT ATPG approach (see Section 5). They are

the weakest-fault DDM (WF-DDM) and the hardest-fault DDM

(HF-DDM). This is illustrated by means of a small example in

Figure 3. Figure 3(a) shows a CRBM corresponding to the CRM

in Figure 2(b), and the tables in Figures 3(b) and 3(c) show re-

spectively the extracted WF-DDM and HF-DDM. The HF-DDM

denotes detection (‘1’) for all defect-pattern combinations for

which the CRBM has a critical resistance recorded. In fact, the

HF-DDM corresponds to the DDM as generated in DC itera-

tion 1 of our MULTI-R DC algorithm and is based on two sin-

gle defect resistance values for all detects: one for shorts and

one for opens. This is different for the WF-DDM. The WF-

DDM denotes detects only for those cell patterns that detect the

weakest still-detectable variant of a defect. As the weakest still-

detectable variant is defined per defect, the actual resistance val-

ues can vary for each defect. Note that all faults have at least one

cell pattern that detects the weakest fault, but there can also be



multiple cell patterns that achieve this, as is the case for defect

d3 in the example in Figure 3(b).

Pattern Short Open

AB/Y d1 d2 d3 d4

p0 = 00/L 4

p1 = 01/L 6 6 2

p2 = 10/L 4 4

p3 = 11/H 10 4 1

(a) Critical resistance bin matrix.

Pattern Short Open

AB/Y d1 d2 d3 d4

p0 = 00/L

p1 = 01/L 1 1

p2 = 10/L 1

p3 = 11/H 1 1

(b) Weakest-fault DDM.

Pattern Short Open

AB/Y d1 d2 d3 d4

p0 = 00/L 1

p1 = 01/L 1 1 1

p2 = 10/L 1 1

p3 = 11/H 1 1 1

(c) Hardest-fault DDM.

Figure 3: Example CRBM and corresponding WF-DDM and HF-DDM.

4 Library Characterization Results
We performed library characterization for 350 combinational

standard cells from Cadence’s GPDK045 45nm CMOS library

[18]. We used Modus v19.1, assisted by Quantus v18.1 for para-

sitic extraction during defect location identification and assisted

by Spectre v19.1 for analog simulations during defect charac-

terization. For the experiments reported in this paper, we lim-

ited ourselves to simulation of one-cycle cell-level test patterns

(although the proposed tool flow can also handle two-cycle pat-

terns).

For short defects, we set the defect resistance range to [0Ω,

50kΩ); 0Ω is a rather obvious choice for a super-hard short, and

through simulation we found that no short defect ≥50kΩ was de-

tectable in any of the library cells. For open defects, initially, we

considered to follow [17] and use 1GΩ as super-hard resistance.

However, we found some defects that required an open resis-

tance >1GΩ to become detectable; hence we used 1,000GΩ =

1TΩ as safe super-hard resistance for opens. Finally, we ended

up using 13 resistance bins; their resistance values are shown in

Figure 4.

We identified 53,134 defect locations for the 350 library cells,

i.e., on average 151.4 defects per cell. With the routine MULTI-

R DC described as Algorithm 1 in Section 3 of this paper we

performed defect characterization on these library cells with the

abovementioned 13 defect resistance pairs. Figure 4 shows the

number of defects considered per DC iteration. In the first it-

eration, all 53,134 defects were simulated for super-hard resis-

tance values rshort = 0Ω and ropen = 1TΩ. This required

18.1 days CPU time on high-end compute servers at Cadence

in Endicott, NY, USA. 57.7% of the defects were classified as

non-detectable by one-cycle cell patterns. The remaining 42.3%

of the defects that were detectable in Iteration 1 continued in

the second DC iteration with rshort = 1Ω and ropen = 75MΩ.

Figure 4 shows for all DC iterations th number of defects con-

sidered. With increasingly weaker defects in the subsequent DC

iterations more defects become undetectable and once that hap-

pens, they are dropped from further DC iterations (as described

in Algorithm 1). The overall compute time for MULTI-R DC

was 65.6 days; quite expensive, but thanks to the defect and cell

dropping mechanisms in Algorithm 1, the defect characteriza-

tions of 12 additional resistance values for all defects increased

the compute time only 2.6×; this is a 72.2% reduction from what

one would expect for 13 × 18.1 = 235.3 days. In our case, we

were fortunate that the MULTI-R defect characterization could

be performed on a multi-processor cluster, such that the elapsed

wall-clock time was only 21 days.

Figure 4: The number of defects per defect characterization iteration.

In Section 2 of this paper, we defined pattern set psc(d) as the set

of cell patterns that detect defect d in cell c. On the basis of that

definition, we can now formulate the definitions for two specific

pattern sets: hpsc(d) contains all cell patterns that are able to

detect the hardest variant of defect d, while wpsc(d) contains all

cell patterns that are able to detect the weakest still-detectable

variant of defect d.

hps
c
(d) = {p ∈ Pc|DDM c[1](d, p) = 1}

wps
c
(d) = {p ∈ Pc|CRBM c(d, p) = MAX p∈Pc

(CRBM c(d , p))}

Figure 5 shows both |wpsc(d)| and |hpsc(d)| for all 22,456

detectable defects in our library of 350 cells. By definition,

wpsc(d) ⊆ hpsc(d), and thus |wpsc(d)| ≤ |hpsc(d)|. 66.9% of

all detectable defects are resistance-independent faults, as their

detecting pattern set does not depend on the defect resistance.

For these defects |wpsc(d)| = |hpsc(d)| and hence wpsc(d) =
hpsc(d). For these defects, regular CAT and WF-CAT achieve

the same test quality. The other 33.1% of all detectable defects

are resistance-dependent faults, for which wpsc(d) ⊂ hpsc(d)
and hence |wpsc(d)| < |hpsc(d)|.

Figure 5: The numbers of cell patterns for the hard and weakest faults.

To detect the weakest variants of those defects, it is important

to select the right cell patterns. For all resistance-independent

faults in the 350 GPDK045 library cells, on average |hpsc(d)| =
8.9 patterns, while |wpsc(d)| = 3.5 patterns. An ATPG tool that

is unaware of these differences has a (8.9 − 3.5)/8.9 = 60.7%
probability to select a cell pattern for expansion that does not

detect the weakest fault(s). The maximum pattern set size dif-

ference |hpsc(d)| = |wpsc(d)| is 56 patterns for a defect in cell

AOI33X1.

For each cell, we determined the required minimal number of



cell patterns that can cover all super-hard faults respectively all

weakest faults. This problem is equivalent to the well-known

NP-hard set cover problem and addressed by heuristic algo-

rithm MINCOVER [7]. On average, hard faults can be detected

by more cell patterns than weakest faults. Consequently, as

shown in Figure 6, for each library cell more cell patterns are

required to cover all weakest faults than to cover all hard faults.

Over all characterized 350 cells, the accumulated required min-

imal number of cell patterns to cover all hard faults is 1,665,

while 384 additional patterns (= +23%) are needed to cover all

weakest faults. On average, we require about one more cell pat-

tern per library cell for covering all the weakest faults than we

do for covering all hard faults.

Figure 6: The minimal required number of cell patterns for covering all

hard or weakest faults, compared to the cell-exhaustive pattern set.

5 Weakest-Fault Cell-Aware ATPG
Cell-aware ATPG uses as inputs a cell-level netlist of the circuit-

under-test and DDMs of all library cells instantiated in the

netlist. For each cell instance, all detectable defects in the cor-

responding DDM are faults and serve as targets of the ATPG

process. The ATPG tool tries to expand cell patterns from cell to

chip level to cover as many as possible cell-internal faults. the

circuit design surrounding a target cell might prevent the ATPG

tool to successfully expand a cell pattern. Internal (unpublished)

experiments done by us have shown that the chance to success-

fully expand an arbitrary cell pattern is ∼66%; and this is con-

firmed by what is reported as ‘gate-exhaustive fault coverage’ in

[19].

At the end of Step 1, library characterization, we have gener-

ated two sets of DDMs for all library cells: WF-DDMs and

HF-DDMs. The two DDMs have the same matrix dimensions,

i.e., their defect/fault columns and cell pattern rows are identical.

WF-DDMs and HF-DDMs only differ with respect to resistance-

dependent faults, as in their defect-detecting pattern sets accord-

ing to the WF-DDM matrix are true subsets of their HF-DDM

counterparts. Modus’ cell-aware ATPG can be executed on the

basis of either WF-DDMs or HF-DDMs.

Feeding exclusively WF-DDMs to the ATPG engine makes that

the tool attempts to detect cell-internal faults only by means

of those cell patterns that are able to detect the weakest still-

detectable defect variant. With only WF-DDMs, we simply do

not inform Modus that other cell patterns might be able to detect

harder variants of the same defect. Cell-aware ATPG on the ba-

sis of WF-DDMs also causes the fault coverage reported by the

ATPG engine to be the weakest-fault coverage (wfc). The wfc

will end up lower than the regular fault coverage fc based on HF-

DDMs, as the WF-DDMs contain less alternative cell patterns

that each offer a chance to detect the target fault by successfully

expansion to chip level. However, the benefit of WF-CAT ATPG

is that by explicitly targeting weakest-faults, wfc is expected to

be significantly higher than when cell-aware ATPG is performed

on the basis of HF-DDMs only.

As shown in Step 2 in Figure , our WF-CAT ATPG tool flow con-

sists of three stages. First, we focus on detection of the weakest

faults, as detection of a weak fault implicitly guarantees detec-

tion of all harder variants of the same defect, while to opposite is

not necessarily true. This is done by executing Modus cell-aware

ATPG on the basis of WF-DDMs. A first set of test patterns TP1

is generated, along with their wfc. Test pattern set TP1 certainly

also already provides significant regular fault coverage fc, but as

Stage 1 focussed exclusively on maximizing wfc, it is possible

that fc is not yet maximal. Therefore, in Stage 2 we determine

fc for TP1 by performing fault simulation on the basis of HF-

DDMs. The still undetected hardest faults are than targeted in

Stage 3, in which top-off ATPG on the basis of HF-DDMs max-

imizes fc and generates an additional set of test patterns TP3.

6 ATPG Experimental Results
We performed ATPG with Cadence’s Modus v19.1 on eleven

circuits [20–22] that were mapped onto Cadence’s GPDK045

45nm CMOS library [18]. For each circuit, we compare the reg-

ular CAT results versus our new WF-CAT results. In our experi-

ments, we run the regular cell-aware ATPG with the HF-DDMs

based on super-hard short defects of 0Ω and super-hard open

defects of 1TΩ. Results are presented in Table 1 in which cir-

cuits are sorted by increasing cell instance count. The table has

six main columns: (1) circuit name, (2) design data, (3) weak-

est fault coverage escapes (= 1 − wfc), (4) hard fault coverage

escapes (= 1 − fc), and the differences∆ between regular CAT

and WF-CAT with respect to (5) chip test patterns and (6) ATPG

compute time.

The column ‘Design Data’ consists of three sub-columns. In the

first one, we list the number of cell instances |I| in the circuit. In

the second sub-column, we list the resistance-dependent faults

Frd as fraction of the total number of faults (see Equation (6.1)).

In the third sub-column we list for the faults in Frd the average

difference between the numbers of hardest-fault and weakest-

fault cell patterns, ∆P (see Equation (6.2)).

Frd =

∑

i∈I
|{d ∈ Dc(i)|wpsc(i)(d) ⊂ hpsc(i)(d)}|

∑

i∈I
|{d ∈ Dc(i)|hpsc(i)(d) 6= ∅}|

(6.1)

∆P =

∑

i∈I

∑

d∈Di

(

|hpsc(i)(d)| − |wpsc(i)(d)|
)

∑

i∈I
|{d ∈ Di|wpsc(i)(d) ⊂ hpsc(i)(d)}|

(6.2)

In Equations (6.1) and (6.2), I is the set of cell instances, Dc is

the set of defects for cell c, and c(i) is a function that returns the

cell type of cell instance i, with i ∈ I .

Columns ‘Weakest FCov. Escapes (= 1−wfc)’ and ‘Hard FCov.

Escapes (= 1 − fc)’ present fault coverage escape data for the

weakest faults and the hard faults, each in three identical sub-

columns. With the term fault coverage escapes we refer to the

fraction of non-covered faults. The first and second sub-columns

give fault coverage escapes for resp. CAT and WF- CAT, while

the third sub-column lists the relative reduction of the CAT fault

coverage escape percentage by the WF-CAT fault coverage es-

cape percentage. These two columns address the main key per-

formance indicator for ATPG: test quality. The larger the re-

ported reduction, the more effective our WF-CAT methodology.

For regular CAT, wfc is determined by fault simulation of the



Circuit Design Data Weakest FCov. Escapes (=1-wfc) Weakest FCov. Escapes (=1-fc) ∆ Chip ∆ ATPG

Name |I| Frd ∆P CAT WF-CAT ∆(1-wfc) CAT WF-CAT ∆(1-fc) Test Patterns Compute Time

b15 [20] 2,933 43.4% 4.54 2.00% 0.95% -52.45% 0.49% 0.45% -7.16% +32.1% +115.1%

b20 [20] 3,212 43.3% 3.52 0.56% 0.23% -58.60% 0.17% 0.17% 0.00% +15.2% +61.7%

aes [21] 3,320 41.2% 4.70 0.41% 0.05% -87.91% 0.04% 0.04% -4.29% +13.9% +64.8%

b21 [20] 3,482 42.1% 3.33 0.62% 0.36% -42.36% 0.29% 0.29% 0.00% +14.7% +60.9%

b22 [20] 5,036 43.0% 3.42 0.56% 0.27% -52.11% 0.21% 0.21% 0.00% +15.9% +73.2%

M0 [22] 5,289 41.0% 5.74 0.81% 0.23% -71.66% 0.16% 0.16% -1.07% +25.6% +51.6%

b17 [20] 8,981 43.3% 4.58 1.79% 0.74% -58.55% 0.44% 0.42% -4.21% +24.0% +84.2%

fpu [21] 19,136 45.7% 4.66 0.29% 0.16% -45.48% 0.14% 0.13% -13.09% +37.2% +73.1%

b18 [20] 20,545 43.9% 4.55 1.52% 0.61% -59.77% 0.36% 0.33% -10.27% +28.8% +76.2%

M3 [22] 32,626 42.2% 5.60 1.03% 0.33% -68.00% 0.22% 0.15% -28.84% +37.8% +15.2%

b19 [20] 40,298 43.6% 4.53 1.50% 0.61% -59.27% 0.37% 0.34% -7.56% +25.1% +84.1%

Avg. 12,382 43.0% 4.47 1.01% 0.41% -59.65% 0.26% 0.24% -6.95% +24.7% +69.1%

Table 1: Comparison of CAT vs. WF-CAT ATPG results for 11 circuits w.r.t fault coverages fc and wfc, chip-level test pattern count, and ATPG compute time.

regular CAT test patterns on the basis on WF-DDMs. The re-

sults show that on average, WF-CAT reduces the weakest-fault

coverage escapes (1 − wfc) with 59.7%. Column ‘Hard FCov.

Escapes (= 1− fc)’ shows the comparison of the hard fault cov-

erage escapes between regular CAT and WF-CAT. The results

show that our WF-CAT achieves a higher fault coverage also on

hard faults.

The last two columns present two other key performance indi-

cators for ATPG: test execution time and test generation time.

In column ‘∆chip patterns’, we give the increase in test pat-

terns required by WF-CAT in comparison to regular CAT. Sim-

ilarly, the last column shows the increase of the ATPG compute

time(including ATPG, fault simulation, and top-off ATPG) for

WF-CAT. Both columns show that on average, to achieve 59.7%

reduction on the weakest-fault coverage escapes, we need 24.7%

more test patterns (i.e., more test execution time) and 69.1%

more ATPG compute time (i.e., test generation time) per chip

design.

7 Conclusion
CAT based on only one resistance value for short defects and an-

other one for opens always compromises the resulting test qual-

ity. If the considered defect resistance value is hard (weak), for

a significant fraction of the potential defects this leads to incor-

rect, oversized (undersized) cell-pattern sets for weaker (harder)

variants of those defects, and hence to overestimation (under-

achievement) of the actual fault coverage.

This paper presents WF-CAT, which targets per defect location

the weakest still-detectable defect variant, as its detection im-

plicitly guarantees detection of all harder variants of the same

defect, as well as a ‘super-hard’ variant of the defect. We have

built an experimental tool flow on top of Cadence’s Modus CAT

functions, consisting of two steps. Step 1 characterizes library

cells, by first identifying their potential intra-cell short and open

defect locations. Next, analog simulation for a set of defect resis-

tance values determines the critical (= weakest still-detectable)

resistance per defect-pattern combination, which is stored in a

CR(B)M. Step 2, cell-aware ATPG, uses the CR(B)M to target

both the weakest as well as ‘super-hard’ faults, thus covering

both ends of the detectable-defect resistance range. Defect char-

acterization is time consuming, and even more so if performed

for multiple resistances values. If defects are simulated from

hard to weak, we can reduce simulation time significantly by

dropping defects once they become undetectable. Experimental

results for a set of eleven benchmark circuits show that on aver-

age WF-CAT reduces wfc escapes with 59.7% at a cost of 24.7%

more chip-level test patterns and 69.1% more ATPG compute

time.
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