
A Performance Analysis Framework for
Real-Time Systems Sharing Multiple Resources

Shayan Tabatabaei Nikkhah, Marc Geilen, Dip Goswami, and Kees Goossens
Eindhoven University of Technology, the Netherlands

Email: {s.tabatabaei.nikkhah, m.c.w.geilen, d.goswami, k.g.w.goossens}@tue.nl

Abstract—Timing properties of applications strongly depend
on resources that are allocated to them. Applications often have
multiple resource requirements, all of which must be met for
them to proceed. Performance analysis of event-based systems
has been widely studied in the literature. However, the proposed
works consider only one resource requirement for each applica-
tion task. Additionally, they mainly focus on the rate at which
resources serve applications (e.g., power, instructions or bits per
second), but another aspect of resources, which is their provided
capacity (e.g., energy, memory ranges, FPGA regions), has been
ignored. In this work, we propose a mathematical framework
to describe the provisioning rate and capacity of various types
of resource. Additionally, we consider the simultaneous use of
multiple resources. Conservative bounds on response times of
events and their backlog are computed. We prove that the
bounds are monotone in event arrivals and in required and
provided rate and capacity, which enables verification of real-time
application performance based on worst-case characterizations.
The applicability of our framework is shown in a case study.

I. INTRODUCTION

Mapping applications onto resources is an essential step
in design and development of computational platforms. A
platform that hosts applications must provide correct function-
alities to users. However, besides the functional requirements,
users often have non-functional requirements such as perfor-
mance, security, and reliability demands. The performance
of an application, on which we focus in this work, depends
on resource shares allocated to that application (e.g., proces-
sor cycles, memory space, network bandwidth). Therefore,
to realize sound application mappings, services provided by
platforms must be sufficient to fulfill application performance
requirements.

Services either provided by resources or required by ap-
plications, can be expressed at various abstraction levels. In
the cloud context, cloud providers describe their provided
resources using high abstraction level quantities such as
the number of virtual CPUs (vCPUs) and the number of
gigabytes of RAM. In the edge computing context, where
platforms with limited resources are employed to run tasks,
services contain more details. Application deployments using
containers (e.g., Docker containers [1]) are common in edge
computing frameworks. Compared to services used by cloud
providers and users, services for containers are described at

This research has received funding from the Electronic Component Systems
for European Leadership (ECSEL) Joint Undertaking under grant agreement
No 783162 (FitOptiVis project). This Joint Undertaking receives support from
the European Union’s Horizon 2020 research and innovation programme.

lower abstraction levels such as (quota,period) which denotes
quota milliseconds of CPU in every period. In the embedded
context, abstraction levels can go even lower. For instance, in
a platform where processors are scheduled using the TDMA
scheme, the CPU service can be described by specifying
the exact TDM slots within a TDM frame [2]. An effective
modeling framework should allow applications to express their
required services at different abstraction levels for all types of
resources (e.g., processors, memories, I/O).

Almost always, applications require multiple resources to
execute. The performance analysis methods proposed in the
literature either consider only one type of resource (e.g., a
computation resource) or perform modular analysis whereby
applications are broken into separate tasks each mapped onto
one resource. However, in practice, applications often require
multiple resources at the same time for their execution. For in-
stance, on battery-powered platforms, besides the computation,
communication, and storage resources, applications require
energy without which other resources cannot be used.

The contributions of our mathematical framework are:
• a generic resource model whereby different types of

resource can be described by its rate and capacity
• a flexible model to describe the required service of appli-

cations whereby any requirement pattern can be expressed
(i.e., not only constant worst-case requirements)

• modeling simultaneous use of multiple resources.

II. ANALYSIS

Services are required by applications when they are invoked
by incoming events (e.g., video frames, DMA transactions,
OpenCL kernel calls). A stream of incoming events is modeled
by a request function [3], [4] represented by a of monotone
function I : T → E which shows the total number of incoming
events up to a certain time instant (e.g., 1 in Fig. 1).
We use discrete-time models in this work. Hence, we have
T = N0. Also, we assume that events arrive atomically (i.e.,
E = N0). Each application requires a certain service from
one or more resources to handle an event. We assume that
the required service of applications can be characterized by a
set of functions Bi : P → S that specify the service that an
application requires from resource i when certain application
progress is made (e.g., 2 in Fig. 1). A service is modeled by
a set of pairs (q, u) ∈ R≥0 × ST which contain the quantity q
of service (a non-negative real number, e.g., # memory blocks,
processors in a cluster) and a unit u which shows the type

Application

Resource

Time

P
ro

vi
d

ed

R
a

te

R:T→S

③

Time

P
ro

vi
d

ed

C
ap

ac
it

y

C:T→S

④

ProgressR
e

q
u

ir
ed

Se

rv
ic

e

B:P→S
②

I:T→E
Time

#
 E

ve
n

ts①

R
e

sp
o

n
se

Ti

m
e

Event #

RT:E→T
⑧

TimeD
e

liv
e

re
d

Se

rv
ic

e

D:T→S
⑤

Time

P
ro

gr
e

ss

p:T→P

⑥

Time

B
a

ck
lo

g

BL:T→E

⑨

Time

#
 E

ve
n

ts

O:T→E

⑦

Fig. 1: Single application, single resource analysis

of service (chosen from ST, the set of all service types, e.g.,
cycles, kilobytes, joules, watts, quality level).

The provided service of a resource is modeled by two func-
tions describing the capacity of the resource (i.e., Ci : T → S,
see 3 in Fig. 1) and the rate at which the resource serves
the requestors (i.e., Ri : T → S, see 4). The capacity of a
resource describes the maximum service that the resource can
deliver to applications at all the time instants (e.g., battery
energy), and the rate describes the maximum service that the
resource can deliver to applications at each time instant (e.g.,
battery power). Resources such as processors and interconnect
resources do not have any constraints on the total service
they can allocate to applications; however, the service they
deliver at each time instant is constrained by their limited
bandwidth. In other words, their provided capacity is infinite,
but their provided rate is limited. Another class of resources
such as memories (space) and FPGA (area) can only accept
requests when the total service they deliver to applications at
that point has not reached their capacity. Finally, another class
of resources such as batteries has limits on both their provided
capacity (joules) and rate (watts).

Application progress is a non-negative rational number (i.e.,
P = Q≥0) indicating the number of (fully or partially) pro-
cessed events. Applications make progress only when they are
delivered the services they require from all resources. In other
words, all the required resources must provide enough service
at the same time, and application progress is limited by a
resource whose delivery results in the least progress. Thus, we
define pi : T → P as a function that specifies the maximum
progress of an application if it only requires resource i. Besides
being constrained by the availability of resources, application
progress is limited by the number of events (i.e., without
workload, there is no progress). Accordingly, the progress that
an application reaches at time t (p : T → P) is computed as:

p(t) = min(I(t),Min
i∈R

pi(t)) (1)

where R is the set of all resources and pi(t) depends on the

service that the application requires (given by Bi) as well as
the service that is provided by resource i at time t. An example
of application progress is indicated by 5 in Fig. 1. At each
time instant, pi(t) is the progress at which the total delivered
service does not exceed the provided capacity, and the service
that is delivered since the previous time instant does not exceed
the delivery rate:

pi(t) = Max{ρ ≥ p(t− 1) :

Bi(ρ)−Bi(p(t− 1)) v Ri(t) ∧
∀p(t− 1) ≤ λ ≤ ρ : Bi(λ) v Ci(t)}.

(2)

Where A v A′ is true when A′ contains all the services that
A has, and their values are not less than those in A, and the
subtraction operator subtracts the values of common services
and keeps the uncommon ones intact. Note that since the
required capacity is not necessarily monotonic (e.g., required
memory can decrease), in Eq. 2, we compare the required to
provided capacity for all the progress points from p(t − 1)
to ρ. For resources offering non-returnable services (e.g.,
processor cycles) at certain rates, the required service shows
the accumulative required service and is non-decreasing. At
each time instant, the service delivered to an application by
resource i depends on the progress that the application made
up to that instant (denoted by Di : T → S, e.g., 6 in Fig. 1).
Accordingly, we have Di(t) = Bi(p(t)).

The application performance is given by the output event
stream. O(t) denotes the total number of outgoing events up
to time t (e.g., 7 in Fig. 1) and is derived from the progress
function by O(t) = bp(t)c. From this, we can compute the
response time of each event and the backlog at each time
instant. To do so, we first define two functions that map the
incoming/outgoing event number to the time at which the event
arrives/finishes. Arrival/finishing time of events are defined as:

A(n) = Inf{t : I(t) ≥ n}, F (n) = Inf{t : O(t) ≥ n} (3)

where A(n) is the arrival time of the nth event, and F (n) is its
finishing time. Subsequently, the (worst-case) response time of
events is computed as:

RT(n) = F (n)−A(n), WCRT = Sup
n∈N

RT(n) (4)

where RT(n) is response time of the nth event (e.g., 8 in
Fig. 1), and WCRT is the worst-case response time of all
events. The backlog, which shows the required buffer size
(e.g., 9), is computed as BL(t) = I(t)−O(t), and the worst-
case backlog is its maximum value.

III. BOUNDS OF APPLICATION PROGRESS

Our analysis method works when the concrete traces of
event streams, required resources, and behavior of resources
are known. However, usually, these concrete traces are not
known at design time (or even run time), but the bounds of all
the traces are given (denoted by l and u for lower and upper
bounds). We first show that the application progress is mono-
tone in event arrivals, provided service, and required service.

0 0.5 1
0

5

10
C

P
U

 In
st

ru
ct

io
ns 106

Required

(a) CPU inst.

0 0.5 1
0

5

A
cc

el
er

at
or

 In
st

. 107

(b) Accelerator inst.

0 0.5 1
0

1

2

3

F
P

G
A

 R
eg

io
ns

(c) FPGA regions

0 0.5 1
0

5

10

15

M
em

or
y

(B
yt

es
) 105

(d) Memory space

0 0.5 1
0

5

M
em

or
y

T
ra

ns
. 107

(e) Memory trans.

0 0.5 1
0

1

2

3

E
ne

rg
y

(J
ou

le
s) 10-3

(f) Battery energy

0 10 20 30
0

10

C
P

U
 In

st
ru

ct
io

ns 108

Provided
Delivered

(g) CPU inst.

0 10 20 30
0

1

2

3

A
cc

el
er

at
or

 In
st

. 109

(h) Accelerator inst.

0 10 20 30
0

2

4

F
P

G
A

 R
eg

io
ns

(i) FPGA regions

0 10 20 30
0

1

2

M
em

or
y

(M
B

s)

106

(j) Memory space

0 10 20 30
0

1

2

M
em

or
y

T
ra

ns
. 109

(k) Memory trans.

0 10 20 30
0

5

10

15

E
ne

rg
y

(J
ou

le
s)

(l) Battery rate

0 10 20 30
0

0.01

0.02

0.03

E
ne

rg
y

(J
ou

le
s)

(m) Battery capacity

Fig. 2: Required ((a)-(f), plotted against progress), provided ((g)-(m)), and delivered ((g)-(m), plotted against time) services

Using this, we compute bounds on application progress. All
the following theorems are proved by mathematical induction
on t (they are omitted for lack of space).

Theorem 1. (Progress is monotone in event arrivals) Let I(t)
and I ′(t) be two event streams of an application such that for
any time instant t : I(t) ≤ I ′(t), and let {(Ri, Ci)} be a set
of rates and capacities provided to the application. Then, for
the application progress we have ∀t : p(t) ≤ p′(t).

Theorem 2. (Progress is monotone in provided service) Let
(Ri, Ci) and (R′i, C

′
i) be two traces of the service provided

by resource i such that for any time instant t : Ri v R′i and
Ci v C ′i. Let I(t) be an event stream. Then, ∀t : p(t) ≤ p′(t).

Theorem 3. (Progress is monotone in required service) Let
I(t) be an event stream and {(Rj , Cj)} a set of services
provided to an application. Additionally, let Bi and B′i be
two required service functions of resource i such that at any
progress (point) ρ : Bi(ρ) v B′i(ρ). Then, ∀t : p(t) ≥ p′(t).

Using these theorems, we can compute bounds of appli-
cation progress (i.e., pl and pu) using the bounds of incom-
ing events, provided services, and/or required services . For
this purpose, we replace them in Eq. 1 and 2 with their
bounds. Subsequently, using the (monotone) floor function,
bounds of the number of outgoing events are computed (e.g.,
Ol = bplc). We obtain RT and BL upper bounds using the
bounds of incoming and outgoing events. For example, the
upper bounds of response times are conservatively computed
as RTu(n) = Fu(n)−Al(n) where:

Fu(n) = Inf{t : Ol(t) ≥ n}; Al(n) = Inf{t : Iu(t) ≥ n}.

IV. AN ILLUSTRATIVE CASE STUDY

In this section, we show the applicability of our proposed
framework using an illustrative example. In this example, we
consider a battery-powered platform containing a processor
(providing 100 MIPS computation power) coupled to a 2 MB

memory through a bus with 100 mega transactions per second
bandwidth and an FPGA accelerator through a separate bus.
The battery harvests energy at 1 mW, has a maximum power
of 0.5 W, and is initially out of charge. The platform runs
few applications including a heterogeneous implementation of
JPEG decoder where IDCT and IQZZ tasks are offloaded to
the accelerator, and other tasks run on the processor. Required
services of a single-core JPEG decoder have been character-
ized using Valgrind [5], and the heterogeneous implementation
is characterized by modifying the model of the single-core
version. A stream of incoming events for the JPEG application
is characterized as (period, jitter) = (4 sec, 0.2 sec).

The services required by the JPEG decoder to execute one
event are shown in Fig. 2a to 2f. Here, progress is the nor-
malized number of executed CPU and accelerator instructions.
The provided and delivered services are depicted in Fig. 2g
to 2m. Note that for resources whose provisioning rates are
limited, the accumulated provided services are shown (e.g.,
Fig. 2g). It can be seen in Fig. 2j that due to the usage of
other applications, at some time instants, the provided memory
capacity is 1 MBs which is not enough to run JPEG decoder.
Hence, the application cannot make progress at these time
instants, which affects its response times. Consequently, if the
memory allocations were static, the JPEG decoder could not
be mapped on the platform, unlike our case where applications
can share the same memory space.

Having computed the maximum progress that an application
can reach if it only requires one resource (i.e., pi), we can
identify the resources which have slowed down the application
progress (i.e., bottlenecks). Fig. 3a depicts the bottlenecks
over time. We can see the major bottlenecks are the memory
space and the processor which are shared among the running
applications. However, other resources such as the accelerator
have also slowed down the progress at some time intervals.

The computed bounds for the application progress and
response times of event are illustrated in Fig. 3b and 3c .

CPU
2.50 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

Time (s)

Accelerator
Memory Space

Memory Bus
Incoming Events

(a)

0 10 20 30

Time (s)

0

5

10

P
ro

gr
es

s Trace
Lower Bound
Upper Bound

(b)

0

5

10

R
es

p.
 T

im
e

(s
)

0 2 4 6

Event #

Upper Bound Trace

(c)

Fig. 3: Bottlenecks (a), progress (b), and response times (c)

The actual values for the application trace is also shown for
comparison. The bounds of incoming events are computed
according to [6]. It can be seen that in all cases the computed
bounds are conservative and can be used to analyze the
application based on the worst-case characterizations.

V. RELATED WORKS

Performance analysis is a crucial step in both designing
real-time systems and their run-time adaptations. Hence, works
related to performance analysis cover a wide span of research
scopes ranging from designing embedded systems to resource
management in clouds. In the cloud and fog computing con-
text, the task offloading and Virtual Machine placement tasks
boil down to mapping applications to computational platforms
(e.g., edge devices) such that their Quality of Service demands
(e.g., latency requirements) are met and a cost function is
minimized. Numerous solutions are proposed to solve this
problem (see [7], [8]) where the common step is comparing the
required resources of applications/VMs to resources provided
by platforms. The proposed solutions consider simple models
(e.g., maximum memory usage, number of virtual CPUs) for
resource services, which leads to design for the worst-case and
degrades the resource utilization.

In the embedded domain, more detailed models and math-
ematical approaches have been proposed. Network Calculus
(NC) [3] is a mathematical framework that models traffic
flows and network components to analyze the performance of
message flows by computing bounds of delay and backlogs.
Inspired by NC, Real-Time Calculus (RTC) [4], [9] provides
an analytical methodology for embedded real-time systems
to determine the performance of event-driven tasks running
on communication and computation resources. Interface-based
design [10] uses RTC to build and analyze complex systems
by composing simpler components using their interfaces. RTC
is used to check the feasibility of compositions. Many other
analytical frameworks are built on top of RTC and interface-
based compositional analysis (e.g., [11], [12]), which con-
sider more complicated settings such as probabilistic real-time
systems and multi-mode components. However, RTC and its
variants only consider computation and communication re-

sources whose models only contain provisioning/consumption
rates, and resources with limited capacity are not included
in their frameworks. Additionally, for each component, they
consider requirements on only one resource, which limits their
practicality. Synchronous Data Flow Graphs and its variants
are modeling techniques whereby application tasks can be
modeled by a set of actors connected by channels [13]. Each
actor is mapped to one resource, and based on the provided
service of the resource, timing analysis can be performed.
Although various types of resources and scheduling policies
are considered, the models do not consider multiple resource
requirements for each actor (e.g., processor cycles and battery
energy). Additionally, the dynamic resource allocation (e.g.,
dynamic memory) is not modeled.

Considering all the above, we propose a mathematical
framework where every type of resource is modeled by its
rate and capacity (rather than just rate). Additionally, using the
notion of progress, multiple resource requirements for a single
application as well as complex requirement patterns can be
expressed. The monotonicity of our approach allows us to use
worst-case characterizations to compute bounds on application
progress (i.e., real-time behavior).

VI. CONCLUSION

Our proposed mathematical framework extends the exist-
ing performance analysis approaches by offering a generic
model for every type of resource and considering multiple
resource requirements at the same time. The applicability of
our proposed framework is illustrated in the JPEG decoder
case study, which shows how our models can improve resource
utilization.

REFERENCES

[1] D. Merkel, “Docker: lightweight Linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, 2014.

[2] S. Sinha et al., “Composable and predictable dynamic loading for time-
critical partitioned systems on multiprocessor architectures,” Micropro-
cessors and Microsystems, vol. 39, no. 8, 2015.

[3] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer Science & Business
Media, 2001, vol. 2050.

[4] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS, 2000.

[5] N. Nethercote, R. Walsh, and J. Fitzhardinge, “Building workload
characterization tools with valgrind,” in ISWC, 2006.

[6] E. Wandeler, A. Maxiaguine, and L. Thiele, “On the use of greedy
shapers in real-time embedded systems,” TECS, vol. 11, no. 1, 2012.

[7] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, 2015.

[8] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: A survey,” arXiv preprint arXiv:1810.00305, 2018.

[9] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs.” in DATE, 2003.

[10] E. Wandeler and L. Thiele, “Interface-based design of real-time systems
with hierarchical scheduling,” in RTAS, 2006.

[11] L. Santinelli and L. Cucu-Grosjean, “A probabilistic calculus for prob-
abilistic real-time systems,” TECS, vol. 14, no. 3, 2015.

[12] L. T. Phan, I. Lee, and O. Sokolsky, “Compositional analysis of multi-
mode systems,” in ECRTS, 2010.

[13] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: Schedul-
ing and synchronization. CRC press, 2018.

