

A Distributed Safety Mechanism using Middleware

and Hypervisors for AutonomousVehicles

Tjerk Bijlsma

Embedded Systems Innovations

TNO

Eindhoven, the Netherlands

tjerk.bijlsma@tno.nl

Andrii Buriachevskyi

CTO

NXP Semiconductors

Eindhoven, the Netherlands

andrii.buriachevskyi@nxp.com

Alessandro Frigerio

Electrical Engineering
Eindhoven University of Technology

Eindhoven, the Netherlands

a.frigerio@tue.nl

Yuting Fu

CTO

NXP Semiconductors

Eindhoven, the Netherlands

yuting.fu_1@nxp.com

Kees Goossens

Electrical Engineering
Eindhoven University of Technology

Eindhoven, the Netherlands

k.g.w.goossens@tue.nl

Ali Osman Örs

BL AMP

NXP Semiconductors

Ottawa, Canada

ali.ors@nxp.com

Pieter J. van der Perk

CTO

NXP Semiconductors

Eindhoven, the Netherlands

peter.vanderperk@nxp.com

Andrei Terechko

CTO

NXP Semiconductors

Eindhoven, the Netherlands

andrei.terechko@nxp.com

Bart Vermeulen

CTO

NXP Semiconductors

Eindhoven, the Netherlands

bart.vermeulen@nxp.com

Abstract—Autonomous vehicles use cyber-physical systems to

provide comfort and safety to passengers. Design of safety

mechanisms for such systems is hindered by the growing quantity

and complexity of SoCs (System-on-a-Chip) and software stacks

required for autonomous operation. Our study tackles two

challenges: (1) fault handling in an autonomous driving system

distributed across multiple processing cores and SoCs, and (2)

isolation of multiple software modules consolidated in one SoC. To

address the first challenge, we extend the state-of-the-art E-Gas

layered monitoring concept. Similar to E-Gas, our safety

mechanism has function, controller and vehicle layers. We

propose to distribute these safety layers on processors with

different ASILs (Automotive Safety Integrity Level). Besides, we

implement self-test, fault injection and challenge-response

protocols to detect faults at runtime in the safety mechanism itself.

To facilitate distributed operation, our mechanism is built on top

of the DDS (Data Distribution Service) software middleware for

safety-critical embedded applications, as well as DDS-XRCE

(eXtremely Resource Constrained Environment) for resource-

constrained processor cores of the highest ASIL. To address the

second challenge, our safety mechanism employs hardware-

assisted hypervisors to isolate software modules and implement

fail-silent behavior of faulty software stacks. We validate our

safety mechanism on the NXP BlueBox hardware platform using

the LG SVL simulator, Baidu Apollo software framework for

autonomous driving, and Xen hypervisor. Our fault injection

experiments demonstrate that the distributed safety mechanism

successfully detects faults in an autonomous system and safely

stops the vehicle when necessary.

Keywords—autonomous vehicle, automated driving, safety,

middleware software, hypervisor, fault injection, E-Gas, DDS, DDS-

XRCE, Xen

I. INTRODUCTION

The automotive industry focuses on improving safety and
comfort of the passengers while reducing energy consumption
of the vehicles and air pollution. According to [1] most car
accidents are attributed to human errors. Therefore,
Autonomous Vehicles (AVs) are being designed to automate
driving functionality and replace the human driver with reliable
electronics and software. The degree of driving automation is
categorized in five levels by the Society of Automotive
Engineers [2]. Our study focuses on higher automation levels,
where the vehicle is responsible for both lateral and longitudinal
control as well as environment monitoring.

We distinguish two major trends in autonomous systems:
computation distribution and consolidation. The distribution of
computations is driven by the increasing algorithmic complexity
of autonomous functionality supporting diverse driving
scenarios and environments. No single SoC can execute all
functionality at required performance, power and cost levels.
Hence, we witness a growing quantity and complexity of the
Electronic Control Units (ECUs), SoCs and software
architectures for autonomous systems [3]. Indeed, [5] reports
over a hundred ECUs in a modern vehicle and according to [4]
cars run millions of lines of code, even without achieving fully
autonomous operation. Each automotive SoC integrates an
increasing number of general-purpose processing cores and
application-specific compute engines, such as DSPs, GPUs and
neural network accelerators. To distribute processing AV
software, frameworks such as Baidu Apollo [6] and Autoware
[10] rely on middleware. Middleware software stacks, such as
Data Distribution Service (DDS) [11] and Robot Operating
System (ROS) [12], provide dynamic service discovery and

seamless communication among distributed cores and SoCs.
The computation distribution trend poses the challenge of
handling faults in distributed processing.

Automotive system cost restrictions dictate consolidation
(integration) of multiple functions on a single chip. Therefore,
SoC and software developers are challenged with safe co-
existence of several functions often with different safety
requirements. Next to traditional process-level separation with
Memory Management Units and OS-level separation on
multicore processors, modern processor architectures, such as
ARMv8, support running multiple OS stacks on software
hypervisors using hardware virtualization support [9].
Hypervisors, also known as Virtual Machine Monitors, are
capable of dynamically isolating and scheduling processing
resources, memory and I/O devices [8]. They have been
successfully used to safely consolidate, for example,
performance-hungry infotainment applications with safety-
critical instrument clusters software in automotive systems [7].

Safety-critical system developers adhere to safety standards,
such as ISO 26262 [14], ISO/PAS 21448 [15], and ARINC 653
[31], describing safe development procedures, design patterns,
fault models, safety mechanisms, etc. Furthermore, there exist
state-of-the-art industry-accepted safety concepts, such as
majority voting, built-in self-test and health monitoring [16].
Besides, fail-silent and fail-operational design patterns describe
how a subsystem can fail without erroneous output or even
continue its operation after a fault occurs [17].

Our study tackles two challenges in autonomous system
design: (1) handling faults in distributed processing and (2) safe
co-existence of consolidated software modules. This paper
makes the following contributions:

1. a layered safety mechanism concept leveraging the
middleware software to handle faults in an autonomous
system with distributed and redundant processing;

2. a safety mechanism using hypervisors to enforce fail-
silent behavior of complex software stacks;

3. a proof-of-concept evaluation of the first two
contributions on automotive-grade hardware running a
full AV software stack.

This paper continues with an overview of related work on
safety concepts, middleware and hypervisors. In Section III we

describe our distributed safety mechanism. Our experimental
setup based on simulation and fault injection is covered in
Section IV. Based on the conducted experiments we formulate
conclusions in Sections V.

II. RELATED WORK

The ISO 26262 safety standard introduces the concepts of
freedom from interference and co-existence relevant to our
study. Both concepts suggest isolation between consolidated
functions, which is addressed in our study using hypervisors.
Furthermore, the Automotive Safety Integrity Level (ASIL)
decomposition in the standard requires independence among
redundant elements contributing to the same safety goal. The
distributed nature of our safety mechanism running on separate
processors with different ASILs enables ASIL decompositions.

Our work originates from E-Gas [21] – a safety concept
widely adopted in the automotive industry for engine control
ECUs with the safety goal of avoiding unintended acceleration.
The left diagram in Fig. 1 illustrates the E-Gas layered safety
concept. The level 1 (L1) Function is monitored by the level 2 (L2)
Function Monitor (FM), which can disable the Function output
upon detecting a fault in L1 Function. Level 3 (L3) checks the
Function Controller SoC and L2 FM, while level 4 (L4) monitors the
Function Controller from outside. The original E-Gas concept
labeled the external controller monitor L3, for simplicity of
reference we call it L4.

Although E-Gas was originally devised for a single
controller, [22] applied the layered concept to multicore
processors and extended it to fail-operational redundant
architectures. Our work analyzes applicability of E-Gas to a
distributed processing architecture with multiple function
controllers, jointly cooperating on the execution of autonomous
driving. Furthermore, E-Gas was applied to processors with
hardware virtualization support for hypervisors by [23], which
benchmarked the virtualization technology against traditional
microcontrollers with an external monitoring ASIC and
multicore architectures. In contrast to [23] we use hypervisors
not only to isolate the functional and safety components, but also
to enforce fail-silent behavior of faulty software stacks.

There are also other safety mechanisms that have been
applied to distributed processing. For example, the EcoTwin

Function ControllerN

Function Controller1

Safety Controller

Diagnostics Topics (/diag)

Function Topics (/fun)

L3
Controller Safety

Mechanism
(hypevisor monitor,
self-test, heartbeat,
cha llenge-response,

fault injection)

L4
Vehicle Safety

Mechanism
(safety channel,

self-test,
heartbeat,

cha llenge-response,
fault injection)

Virtual MachineM

Virtual Machine1

L1
Function

(main
channel)

L2
Function
Monitor

(heartbeat,
cha llenge-
response,

fault injection)

Actuators

Sensors

Input,
Output

Function Controller

L1 Function

Monitoring Controller

Input Output

L4 Controller Monitoring

L3 Controller Monitoring

L2 Function Monitoring

Enable

hypervisor

Fig. 1. Simplified E-Gas monitoring concept (left) and our Distributed Safety Mechanism concept (right).

truck platooning project [18] deployed several distributed health
monitors reporting to a central arbiter that could switch vehicle
control from the nominal to the safety channel when a
malfunction is detected. Our study follows up on the EcoTwin
research by evaluating hypervisors and mapping the application
across automotive SoCs with different ASILs. Furthermore, [19]
describes a distributed health monitoring system with
virtualization using Adaptive AUTOSAR. However, they focus
primarily on health monitoring on a multicore processor,
omitting safety mechanism reactions and multi-SoC processing
using software middleware, which we evaluated in our work.

Due to high complexity of the autonomous driving
functionality, AV software frameworks split code in multiple
software modules adhering to the Service-Oriented Architecture
[20]. Inter-module communication and synchronization is
carried out by a software middleware, providing service
discovery, seamless data exchange among different platforms,
Quality of Service (QoS), security, real-time guarantees, etc.
Examples of middleware protocols include Cyber RT [24], DDS
[11], ROS [12], and SOME/IP [25]. Noteworthy, DDS features
real-time support, safety, security and good interoperability with
other middlewares, such as ROS. In general, many of the
middleware protocols adhere to the popular publish-subscribe
pattern [13], where a sender does not send data to a concrete
receiver, but publishes information on a common data bus. Other
modules subscribe to the updates of the information on the bus.
The data bus can be realized with an Ethernet network, on-chip
shared memory, serial interface, etc. Our Distributed Safety
Mechanism (DSM) reuses the middleware services to
coordinate operation of safety components. Compared to [26],
which also described a safety mechanism leveraging
middleware and hypervisors, we added handling of internal
faults in the DSM and studied different safety use-cases.

III. DISTRIBUTED SAFETY MECHANISM CONCEPT

A centralized health monitor is simple from the architecture
perspective. However, in distributed (autonomous) systems it
suffers from high reaction time and low observability. By
observability we mean the monitor’s ability to detect faults and
to read hardware and software state of the distributed
components in sufficient detail. The DSM concept depicted on
the right in Fig. 1 inherits the E-Gas layers for high observability
and quick reactions. However, the E-Gas concept is applied to a
single controller, whereas an AV has multiple function
controllers labeled Function Controller1 to Function ControllerN in
Fig. 1. Every Function Controller consolidates several Functions,
which we isolated in virtual domains, labeled as Virtual Machine1
to Virtual MachineM. The blue components in Fig. 1, such as L1
Function, refer to the inherent autonomous functionality, while
the elements of our DSM, such as L2 Function Monitor, are
colored green. Note that in contrast to E-Gas, the DSM layers
monitor distributed components in multiple Function Controllers
and VMs. For distributed operation the overall system employs
a publish-subscribe middleware software, communicating
through Diagnostic Topics (/diag) and Function Topics (/fun). The
input and output data of the function and safety control messages
get published on the /fun topics, whereas diagnostics data are
published on the /diag topics. Besides the Enable output of the E-
Gas concept for the fail-silent behavior, our DSM includes a
safety channel that can take over the vehicle control with

situational awareness using sensor and function data from the
/fun middleware topics. To ensure that only one publisher
controls the vehicle, the middleware can use QoS features, such
as strength (priority) in DDS [11] or the DSM can shut down all
but one publisher. Note that the distribution of the /fun and /diag
topics can be optimally realized using inter-chip or on-chip
hardware. For example, communication between L2 and L3 can
be kept on-chip, using shared memory, while L2 and L4 can
communicate via Ethernet. The same safety mechanism concept
applies to an integrated on-chip system, where the Function
Controllers are integrated with a Safety Controller in a single
package or die using different on-chip subsystems and cores.

The solid lines in Fig. 1 on the right denote physical inter-
chip or on-chip boundaries, while the dotted lines refer to a
virtually isolated domain, for example, by means of a
hypervisor. The hypervisor traditionally isolates different
function’s software stacks including OSes and provides
processor scheduling and memory allocation guarantees to
safety-critical functions [4]. On top of that we propose to use
hypervisors to implement a fail-silent behavior. If a faulty
software stack yields wrong output, such as erroneous vehicle
control commands, the DSM can detect it in one of its monitors
and instruct the hypervisor using the /diag topics to pause the
corresponding Virtual Machine (VM) domain. The silenced
faulty function is then replaced by a degraded mode or a full-
fledged redundant function in the DSM itself, which publishes
on /fun topics. The latency of the domain pause must be low to
respect the fault tolerance interval defined by the high-level
safety goal. Note that the middleware traffic to and from the
VMs in Fig. 1 goes through the hypervisor and hardware
virtualization support for memory and resource management.
Furthermore, the L3 Controller Safety Mechanism (CSM) monitors
the hypervisor and runs in a SoC subsystem outside of
hypervisor’s control on an ARM Cortex-R or -M safety core.

Thanks to the distributed architecture, the DSM can handle
hardware and software faults in various SoCs and ECUs.
Various prior-art monitoring techniques can be integrated in
DSM layers to support different fault models, such as a software
program deadlock, a memory cell bit flip, and a short-circuit.

Furthermore, the DSM concept supports redundancy for fail-
operational processing in autonomous driving. For example, L4

Vehicle Safety Mechanism (VSM) in Fig. 1 can integrate a safety
channel, which takes over vehicle control when a fault is detected
in the main channel of a Function Controller. Since L4 VSM has
access to the function data on the /fun topics, it can even identify
hazardous situations in the absence of faults discussed in
ISO/PAS 21448 [15] and overrule the main channel actuations.

Using Fig. 2 in the following subsection A we discuss three
scenarios, in which the DSM handles faults in the main
autonomous Function denoted as blue in Fig. 1. Then we cover
two scenarios with faults in the DSM itself in subsection B. Fig.
2 depicts simplified Finite State Machines (FSMs) of the DSM
L2 FM, L3 CSM, and L4 VSM. The initial states are marked (INITIAL).
The transitions labels have a prefix of the triggering element. For
example, CSM: challenge in L2 FM indicates the challenge that L3
CSM sends to L2 FM. Multi-line transition labels refer to multiple
events, which can independently trigger the state change.
Furthermore, state actions under the state title refer to

middleware operations, such as publish or subscribe, and
middleware topics, such as /diag for diagnostics and /fun for
autonomous function data and control.

A. Safety scenarios with a faulty function

Scenario 1: AV function fault. L2 FM, monitoring L1 Function
output on /fun, detects a problem in L1 Function and goes to the
FUNCTION_FAULT state. In this state L2 FM publishes FAULT
messages on /diag topics as long as L1 Function is faulty.
Otherwise, it goes back to the FUNCTION_OK state. L3 CSM notices
the FAULT on /diag topics and goes to the PAUSE_VM state along
the FM: FAULT on /diag transition. Then it quickly pauses the
faulty VM and publishes PAUSED to /diag. Triggered by the CSM:
PAUSED on /diag transition, L4 VSM goes to SAFE_MANEUVER and
publishes commands on /fun topics to safely maneuver the
vehicle using sensor data on /fun topics to avoid collision.

This sequence of events exemplifies the high observability
of L2 FM, a quick response by L3 CSM in the function controller
and a safety maneuver carried out by an independent vehicle-
level safety controller L4 VSM, which has access to the
environment perception data on the /fun topics for vehicle
control in diverse situations. The safety maneuvers that L4 VSM
can command the vehicle to perform include a safe stop, an
evasive maneuver or other vehicle-level safety actions. In the
described scenario above, the software middleware enables
seamless communication and coordinates safety-critical
activities. Note that the hypervisor in this scenario does not only
statically isolate the fault, but also actively silences the faulty
software stack to limit its interference with the rest of the system.

Scenario 2: implausible /fun data. Thanks to the data
distribution by the middleware, L4 VSM can periodically and
independently check /fun data streams from L1 Function for
plausibility. When such a check fails, L4 VSM follows the L1:
function fault* transition to PAUSE_VM, instructing L3 CSM to
pause the faulty VM by publishing the PAUSE request on the /diag

topic. After L3 CSM’s confirmation that the VM was paused, L4
VSM maneuvers the vehicle in SAFE_MANEUVER.

Scenario 3: VM failure. If a software module leaks memory
or blocks a hardware resource, the whole VM can fail. The L3
CSM monitors VM using hypervisor diagnostics. For example,
as soon as high CPU utilization is detected in a VM, the CSM:
VM fault transition moves L3 CSM to PAUSE_VM to prevent fault
propagation. Then L4 VSM takes over control of the vehicle.

B. Safety scenarios with faults in the DSM

The safety mechanism should also cope with its internal
faults, which are called latent multi-point faults in the ISO 26262
[14]. There exist well-known techniques [16] to detect latent
faults, such as built-in memory and logic self-tests, challenge-
response protocols, runtime fault injections, and periodic
heartbeats. Below we give two examples of how challenge-
response protocols apply to our middleware-based DSM.

Scenario 4: DSM internal health status check. L4 VSM from
Fig. 2 checks the health status of L3 CSM in one of the Function
Controllers by publishing a challenge message on a /diag topic
and starting a timer. The challenge can be, for example,
computational to test the underlying processor core or storage-
focused to test memory operation. L4 VSM measures the time that
L3 CSM took to respond in order to detect missed real-time
deadlines. If L3 CSM is healthy, it receives the challenge on the
/diag topic, generates the response, and publishes it on the /diag
topic on time. L4 VSM then receives the timely response and
moves back to the VEHICLE_OK state. Otherwise it assumes that
L3 CSM is faulty and moves to the SAFE_MANEUVER state. As
shown in Fig. 2 L4 VSM can also check L3 CSM by instructing L2
FM to inject platform faults (e.g. high CPU usage) at runtime by
publishing the INJECT_FAULT request on /diag.

Scenario 5: hypervisor monitor. Another noteworthy use
case is L3 CSM’s monitoring of the hypervisor, on which the
Function Controllers run. According to the ISO 26262

Fig. 2. Simplified DSM’s Finite State Machines, where each transition is annotated with the origin level and related event.

FUNCTION_OK (INITIAL)

subscribe to /fun, /diag
monitor /fun, /diag
publish s tatus to /diag
publish responses to /diag

FUNCTION_FAULT

publish FAULT to /diag

L1: function fault
or

CSM: challenge
L1: good function

L2 Function Monitor (FM)

CONTROLLER_OK

subscribe to /diag
monitor controller, hypervisor, /diag
publish s tatus and responses to /diag

CHALLENGE_FM

publish challenge to /diag
monitor controller, hypervisor, /diag

CHALLENGE_VSM

publish challenge to /diag
monitor controller, hypervisor, /diag

PAUSE_VM

pause faulty function VM
publish PAUSED to /diag

PAUSE_AND_SAFE_STOP

pause the function VM
publish SAFE_STOP to /fun
publish PAUSED_STOP to /diag

POWEROFF_CONTROLLER

power off function controller

CSM: hypervisor fault

CSM: periodic timer
CSM: periodic timer

VSM: faulty response

VSM: good response

FM: good response

FM: faulty response

L3 Controller Safety Mechanism (CSM)

VEHICLE_OK

subscribe to /fun, /diag
monitor /fun, /diag
publish s tatus to /diag
publish response to /diag

PAUSE_VM

publish PAUSE request to /diag

L1: function fault*

L4 Vehicle Safety Mechanism (VSM)

CHALLENGE_CSM

publish challenge to /diag
publish INJECT_FAULT to /diag
monitor /diag

SAFE_MANEUVER

publish safe maneuver to /fun
publish SAFE_MANEUVER to /diag

CSM: PAUSED on /diag

VSM: periodic timer

CSM: faulty response

CSM: good response

CSM: PAUSED on /diag

SELF_TEST (INITIAL)

periodic self-test (hardware, software, network)

SELF_TEST (INITIAL)

periodic self-test (hardware, software, network)

INJECT_FAULT

inject a transient fault

CSM: periodic timer
CSM: self-test passed

VSM: periodic timer
VSM: self-test passed

FM: fault injected VSM: INJECT_FAULT on /diag

POWEROFF_CONTROLLER

power off safety controller

VSM: self-test failedCSM: self-test failed

CSM: VM fault
or

FM: FAULT on /diag
or

VSM: PAUSE on /diag

terminology [14], a failing hypervisor is a Common Cause Fault,
which can compromise the overall vehicle safety. To detect
hypervisor faults, L3 CSM runs in a neighboring yet isolated
safety subsystem outside of the hypervisor and continuously
monitors hypervisor heartbeats using on-chip communication
means such as shared memory or interrupts. When the missing
hypervisor heartbeat is detected, L3 CSM powers down the
Function Controllers by going to the POWEROFF_CONTROLLER state.
Meanwhile the silence from the function domain(s) moves L4
VSM into the SAFE_MANEUVER state.

IV. EXPERIMENTAL EVALUATION

To check feasibility of our DSM concept, we prototyped the
DSM and conducted fault injection experiments.

A. Experimental setup with the DSM prototype

We prototyped the DSM concept in a Hardware-In-the-Loop
(HIL) simulation setup. The setup integrates the LG SVL
simulator [27] on a simulation PC and the Baidu Apollo 3.0 AV
software stack [6] on the NXP BlueBox hardware prototyping
platform [28] for autonomous driving, see Fig. 3. The LG SVL
simulator models the environment and vehicles to provide
sensor data to the Apollo software. Apollo processes sensor data
as if they were obtained from real-life sensors and feeds
actuation signals back to the simulator to drive the vehicle.

For compatibility with middleware-based AV software, we
built the DSM on top of the DDS middleware. Due to resource
constraints safety cores of the S32R274 SoC can run only a DDS
subset, called DDS-XRCE. We built the L4 VSM on S32R274,
using the open-source eProsima Micro XRCE-DDS [29], which
connects a DDS-XRCE Client to DDS through a DDS-XRCE Agent,
running on full DDS. In order to interlink different middlewares
in our system, we built software bridges and integrated the DDS-
XRCE Agent on LS2084. As to virtualization we used the Docker
container engine and Xen hypervisor [30]. The Xen hypervisor
supports spatial and temporal isolation as well as VM
management operations, such as domain pause, which we used
to realize the fail-silent behavior.

By mapping the DSM and AV software modules on SoCs
according to their ASILs and resources in Fig. 3, our prototype
implements a subset of the DSM concept from Fig. 1:

1. L1 Function is implemented by Apollo software modules.
Apollo software modules run on quality managed SoCs,
except for the vehicle control module allocated to a Xen
hypervisor Domain U on the ASIL C processor S32V234.

2. L2 FM in Domain U reads L1 Function output from /fun and
publishes diagnostics to /diag. To evaluate our DSM we
disabled Apollo’s safety mechanism.

3. L3 CSM in Domain 0 monitors and pauses Domain U if
needed. It subscribes to /diag for requests or challenges
from L4 VSM and publishes the status of hypervisor
domains to /diag. Due to engineering complexity we did
not run L3 CSM outside of Xen as defined in Section III.

4. L4 VSM is mapped on the ASIL D SoC S32R274. It can
trigger L3 CSM to perform domain pause using /diag. The
failover operation is carried out by L4 VSM publishing
hard stop setpoints to /fun. The hard stop brakes the
vehicle disregarding sensor data.

B. Latency measurements of pausing a virtual machine

The DSM must quickly silence a faulty virtual machine to
prevent fault propagation. In our experiments the domain
shutdown of the virtual machine took much more time compared
to the domain pause operation. Hence, we use the Xen pause
operation on the ASIL C S32V234 processor running the Null
scheduler of the Xen hypervisor. The Null scheduler minimizes
the scheduling overhead thanks to the static one-to-one mapping
of virtual to physical cores. The pause latency includes the
runtime of the libxl_domain_pause() function from Xen’s libxl
library and the overhead of the Yocto Linux in Domain 0 to start the
pause operation triggered by an external middleware message.
In 2000 experiments the arithmetic mean of the pause latencies
was 55us, while the maximum outlier reached 1.5ms. Although
this latency was low enough to silence a faulty VM within the
fault tolerance interval of the safety goal to avoid collisions, the
high outliers suggest the need for more deterministic scheduling
in the hypervisor and VM kernels to carry out the VM pause.

C. Fault injection experiments to validate the DSM concept

To validate scenarios from Section III, we simulated road
situations and injected faults into the system. A driving scenario
is created in the LG SVL simulator, where the ego vehicle
controlled by Apollo drives on a two-lane city road. In the

Fig. 3. Architecture of the Hardware-In-the-Loop experimental setup composed of a simulation PC and an automotive-grade platform for autonomous vehicles.

Simulation PC

Yocto Linux

NXP BlueBox Automotive Platform

Ethernet Router

Xen Hypervisor

Middleware
bridges

+
DDS-XRCE

Agent

Docker Container Engine Docker Container Engine

Apollo
(Perception)

Vehicle Safety
Mechanism

Controller Safety Mechanism

Xen Platform Monitor

Analyze

Response (domain pause)

Domain 0

Yocto Linux

LS2084
(Quality Managed)

S32V234
(ASIL C)

DDS-XRCE Client

Domain 0Observe

Analyze

Response
(hard stop)

Apollo
(Localization,

Prediction,
Planning,

Dreamview)

Domain U

Apollo
(Control)

4x ARM Cortex-A53

S32R274
(ASIL D)

Intel CPU
(Quality Managed)

DDS-XRCE Client

FreeRTOS

lockstep PowerPC
 e200z4

6x Core i7

Apollo Ubuntu 14.04

8x ARM Cortex-A72

Function
Monitor

Nvidia GPU
GTX 1070
(Quality

Managed)

Ubuntu 18.04

 Software Application

Safety Mechanism

Isolation

Virtualization

Middleware

Operating System

Hardware

Legend

Ubuntu 14.04Ubuntu 18.04 Ubuntu 14.04 Ubuntu 18.04

LG SVL
AV Simulator

+
Safety Scenario

Testing
Framework

distance there is a stationary obstacle. To reach its destination
ahead of the obstacle, the ego vehicle must change lanes.

First, we validated the most typical Scenario 1 from Section
III by injecting an invalid vehicle control message with
acceleration actuation setpoint above the allowed 100%. The
extended Function Monitor in Domain U from Fig. 3 reported this
abnormal command to Control Safety Mechanism, which paused
the Domain U VM, and Vehicle Safety Mechanism subsequently
stopped the vehicle. Furthermore, we evaluated Scenario 2 by
injecting an invalid vehicle control message with brake and
acceleration actuation setpoints simultaneously equal to 100%.
Thanks to a simple check in the Vehicle Safety Mechanism, the
vehicle was stopped right upon the detection of the fault. For
Scenario 3 we used the stress Linux tool to overload the CPU in
Domain U, while the ego vehicle is changing lane. Consequently,
the Apollo control module output was published at a
significantly lower rate. Without the DSM, the ego vehicle
started to wobble and eventually crashed into an obstacle on the
road. With our DSM enabled, however, the Controller Safety
Mechanism promptly paused the faulty VM and the Vehicle Safety

Mechanism successfully performed a hard stop. Finally, we
validated Scenario 4 by killing the Controller Safety Mechanism in
Domain 0. This was quickly noticed by the challenge-response
protocol logic in the Vehicle Safety Mechanism, which then
brought the ego car to a full stop without accidents.

V. CONCLUSION

To handle faults in distributed processing we designed a
distributed safety mechanism based on the E-Gas layered safety
concept and DDS publish-subscribe middleware. The DDS
middleware protocol together with its subset, DDS-XRCE,
enabled us to map the safety mechanism to resource-constrained
processor safety cores with appropriate ASIL features.
Furthermore, our DSM leveraged hardware-supported
hypervisors to isolate faults and block propagation of failures.
On top of traditional isolation, we used the hypervisor to pause
the faulty software stack, implementing the fail-silent behavior
useful for constructing large safety-critical systems. Besides
handling faults in the autonomous functions, our mechanism
deployed the following techniques to handle internal
malfunctioning: challenge-response, self-test, and fault
injection. The key aspects of the DSM concept were
successfully evaluated on automotive SoCs in the NXP BlueBox
HIL setup with the LG SVL autonomous driving simulator.
Upon injection of an artificial fault into the system, the DSM
safely stopped the simulated vehicle driven by the Baidu Apollo
autonomous driving software stack.

REFERENCES

[1] S. Singh, “Critical reasons for crashes investigated in the national motor
vehicle crash causation survey,” NHTSA, Washington, DC, USA, Rep.
DOT HS 812 506, 2018.

[2] Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle
Automated Driving Systems, SAE Standard J3016_201401.

[3] K. Jo, J. Kim, D. Kim, C. Jang and M. Sunwoo, “Development of
autonomous car—Part II: A case study on the implementation of an
autonomous driving system based on distributed architecture,” IEEE
Trans. Ind. Electron., vol. 62, no. 8, 2015, pp. 5119-5132.

[4] O. Burkacky, J. Deichmann, G. Doll, and C. Knochenhauer, “Rethinking
car software and electronics architecture,” McKinsey&Company, 2018.

[5] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi and L. Kilmartin,
“Intra-Vehicle Networks: A review,” IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 2, 2015, pp. 534-545.

[6] Baidu Apollo, “Apollo open platform.” Accessed September 2019.
[Online]. Available: http://apollo.auto

[7] S. Karthik et al., “Hypervisor based approach for integrated cockpit
solutions,” in Proc. IEEE 8th ICCE-Berlin, 2018, pp. 1-6.

[8] A. Burns and R. I. Davis, “Mixed criticality systems – a review,” 12th ed,
Dept. Comput. Sci., University of York, 2019.

[9] R. Mijat and A. Nightingale, “Virtualization is coming to a platform near
you,” ARM, Version 8.0, 2011.

[10] S. Kato et al., “Autoware on board: enabling autonomous vehicles with
embedded systems,” in Proc. 9th ACM/IEEE International Conference on
Cyber-Physical Systems, 2018, pp. 287-296.

[11] OMG, “DDS Foundation.” Accessed September 2019. [Online].
Available: https://www.dds-foundation.org

[12] M. Quigley et al., “ROS: an open-source Robot Operating System,” in
Proc. ICRA Workshop on Open Source Software, 2009.

[13] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed
systems,” in Proc. 11th ACM Symposium on operating systems principles,
1987, pp. 123-138.

[14] Road Vehicles: Functional Safety, ISO Standard 26262-1, 2018.

[15] Road vehicles: Safety Of The Intended Functionality, ISO/PAS Standard
21448, 2019.

[16] B. W. Johnson, “Fault-tolerant microprocessor-based systems,” IEEE
Micro, vol. 4, no. 6, 1984, pp. 6-21.

[17] A. Avizienis, J. Laprie, B. Randell and C. Landwehr, “Basic concepts and
taxonomy of dependable and secure computing,” IEEE Trans.
Dependable and Secure Computing, vol. 1, no. 1, 2004, pp. 11-33.

[18] T. Bijlsma, M. Kwakkernaat and M. Mnatsakanyan. “A real-time multi-
sensor fusion platform for automated driving application development,”
in Proc. IEEE 13th International Conference on Industrial Informatics,
2015, pp.1372-1377.

[19] M. Neukirchner, “Building performance ECUs with Adaptive
AUTOSAR,” 10th AUTOSAR open conference, USA, 2017.

[20] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, “Service-
Oriented Computing: state of the art and research challenges,” Computer,
vol. 40, no. 11, 2007, pp. 38-45.

[21] “Standardized E-Gas monitoring concept for gasoline and diesel engine
control units,” EGAS Workgroup, Version 6:57, viii, 2015.

[22] M. Grosmann, M. Hirz, and J. Fabian, “Efficient application of multi-core
processors as substitute of the E-Gas (Etc) monitoring concept,” in Proc.
SAI Computing Conference, 2016, pp. 913-918.

[23] Y. Nakagawa, S. Arai, and R. Mariani, “Virtualization technology, and
applying to E-Gas monitoring concept,” FISITA 2014 World Automotive
Congress, vol. 20, the Netherlands, 2015, pp. 86-92.

[24] Baidu Apollo, “Cyber RT Introduction.” Accessed July 2019. [Online].
Available: https://github.com/ApolloAuto/apollo/tree/master/cyber

[25] SOME/IP, “Scalable service-Oriented MiddlewarE over IP (SOME/IP).”
Accessed September 2019. [Online]. Available: http://some-ip.com

[26] P. J. van der Perk, “A distributed safety mechanism for autonomous
vehicle software using hypervisors,” M.S. thesis, Dept. Elect. Eng.,
Eindhoven University of Technology, the Netherlands, June 2019.

[27] LGSVL Simulator, “LGSVL simulator.” Accessed September 2019.
[Online]. Available: https://www.lgsvlsimulator.com

[28] NXP Semiconductors, “NXP BlueBox: Autonomous Driving
Development Platform.” Accessed September 2019. [Online]. Available:
https://www.nxp.com/bluebox

[29] eProsima, “eProsima Micro XRCE-DDS.” Accessed September 2019.
[Online]. Available: https://micro-xrce-dds.readthedocs.io/en/latest/

[30] M. Raho, A. Spyridakis, M. Paolino and D. Raho, “KVM, Xen and
Docker: a performance analysis for ARM based NFV and cloud
computing,” in Proc. IEEE 3rd Workshop on Advances in Information,
Electronic and Electrical Engineering, 2015, pp. 1-8.

[31] Avionics Application Standard Software Interface, ARINC 653 Standard,
1996.

http://apollo.auto/
https://www.dds-foundation.org/
https://github.com/ApolloAuto/apollo/tree/master/cyber
http://some-ip.com/
https://www.lgsvlsimulator.com/
https://www.nxp.com/bluebox
https://micro-xrce-dds.readthedocs.io/en/latest/

