
 

A Distributed Safety Mechanism using Middleware 

and Hypervisors for AutonomousVehicles 
 

Tjerk Bijlsma 

Embedded Systems Innovations 

TNO 

Eindhoven, the Netherlands 

tjerk.bijlsma@tno.nl 

 

Andrii Buriachevskyi 

CTO 

NXP Semiconductors 

Eindhoven, the Netherlands 

andrii.buriachevskyi@nxp.com 

 

Alessandro Frigerio 

Electrical Engineering 
Eindhoven University of Technology 

Eindhoven, the Netherlands 

a.frigerio@tue.nl 

 

Yuting Fu 

CTO 

NXP Semiconductors 

Eindhoven, the Netherlands 

yuting.fu_1@nxp.com 

 

Kees Goossens 

Electrical Engineering 
Eindhoven University of Technology 

Eindhoven, the Netherlands 

k.g.w.goossens@tue.nl 

 

Ali Osman Örs 

BL AMP 

NXP Semiconductors 

Ottawa, Canada 

ali.ors@nxp.com 

 

Pieter J. van der Perk 

CTO 

NXP Semiconductors 

Eindhoven, the Netherlands 

peter.vanderperk@nxp.com 

 

Andrei Terechko 

CTO 

NXP Semiconductors 

Eindhoven, the Netherlands 

andrei.terechko@nxp.com  

 

Bart Vermeulen 

CTO 

NXP Semiconductors 

Eindhoven, the Netherlands 

bart.vermeulen@nxp.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract—Autonomous vehicles use cyber-physical systems to 

provide comfort and safety to passengers. Design of safety 

mechanisms for such systems is hindered by the growing quantity 

and complexity of SoCs (System-on-a-Chip) and software stacks 

required for autonomous operation. Our study tackles two 

challenges: (1) fault handling in an autonomous driving system 

distributed across multiple processing cores and SoCs, and (2) 

isolation of multiple software modules consolidated in one SoC. To 

address the first challenge, we extend the state-of-the-art E-Gas 

layered monitoring concept. Similar to E-Gas, our safety 

mechanism has function, controller and vehicle layers. We 

propose to distribute these safety layers on processors with 

different ASILs (Automotive Safety Integrity Level). Besides, we 

implement self-test, fault injection and challenge-response 

protocols to detect faults at runtime in the safety mechanism itself. 

To facilitate distributed operation, our mechanism is built on top 

of the DDS (Data Distribution Service) software middleware for 

safety-critical embedded applications, as well as DDS-XRCE 

(eXtremely Resource Constrained Environment) for resource-

constrained processor cores of the highest ASIL. To address the 

second challenge, our safety mechanism employs hardware-

assisted hypervisors to isolate software modules and implement 

fail-silent behavior of faulty software stacks. We validate our 

safety mechanism on the NXP BlueBox hardware platform using 

the LG SVL simulator, Baidu Apollo software framework for 

autonomous driving, and Xen hypervisor. Our fault injection 

experiments demonstrate that the distributed safety mechanism 

successfully detects faults in an autonomous system and safely 

stops the vehicle when necessary. 

Keywords—autonomous vehicle, automated driving, safety, 

middleware software, hypervisor, fault injection, E-Gas, DDS, DDS-

XRCE, Xen 

I. INTRODUCTION 

The automotive industry focuses on improving safety and 
comfort of the passengers while reducing energy consumption 
of the vehicles and air pollution. According to [1] most car 
accidents are attributed to human errors. Therefore, 
Autonomous Vehicles (AVs) are being designed to automate 
driving functionality and replace the human driver with reliable 
electronics and software. The degree of driving automation is 
categorized in five levels by the Society of Automotive 
Engineers [2].  Our study focuses on higher automation levels, 
where the vehicle is responsible for both lateral and longitudinal 
control as well as environment monitoring. 

We distinguish two major trends in autonomous systems: 
computation distribution and consolidation. The distribution of 
computations is driven by the increasing algorithmic complexity 
of autonomous functionality supporting diverse driving 
scenarios and environments. No single SoC can execute all 
functionality at required performance, power and cost levels. 
Hence, we witness a growing quantity and complexity of the 
Electronic Control Units (ECUs), SoCs and software 
architectures for autonomous systems [3]. Indeed, [5] reports 
over a hundred ECUs in a modern vehicle and according to [4] 
cars run millions of lines of code, even without achieving fully 
autonomous operation. Each automotive SoC integrates an 
increasing number of general-purpose processing cores and 
application-specific compute engines, such as DSPs, GPUs and 
neural network accelerators. To distribute processing AV 
software, frameworks such as Baidu Apollo [6] and Autoware 
[10] rely on middleware. Middleware software stacks, such as 
Data Distribution Service (DDS) [11] and Robot Operating 
System (ROS) [12], provide dynamic service discovery and 



seamless communication among distributed cores and SoCs. 
The computation distribution trend poses the challenge of 
handling faults in distributed processing. 

Automotive system cost restrictions dictate consolidation 
(integration) of multiple functions on a single chip. Therefore, 
SoC and software developers are challenged with safe co-
existence of several functions often with different safety 
requirements. Next to traditional process-level separation with 
Memory Management Units and OS-level separation on 
multicore processors, modern processor architectures, such as 
ARMv8, support running multiple OS stacks on software 
hypervisors using hardware virtualization support [9]. 
Hypervisors, also known as Virtual Machine Monitors, are 
capable of dynamically isolating and scheduling processing 
resources, memory and I/O devices [8]. They have been 
successfully used to safely consolidate, for example, 
performance-hungry infotainment applications with safety-
critical instrument clusters software in automotive systems [7]. 

Safety-critical system developers adhere to safety standards, 
such as ISO 26262 [14], ISO/PAS 21448 [15], and ARINC 653 
[31], describing safe development procedures, design patterns, 
fault models, safety mechanisms, etc. Furthermore, there exist 
state-of-the-art industry-accepted safety concepts, such as 
majority voting, built-in self-test and health monitoring [16]. 
Besides, fail-silent and fail-operational design patterns describe 
how a subsystem can fail without erroneous output or even 
continue its operation after a fault occurs [17]. 

Our study tackles two challenges in autonomous system 
design: (1) handling faults in distributed processing and (2) safe 
co-existence of consolidated software modules. This paper 
makes the following contributions: 

1. a layered safety mechanism concept leveraging the 
middleware software to handle faults in an autonomous 
system with distributed and redundant processing; 

2. a safety mechanism using hypervisors to enforce fail-
silent behavior of complex software stacks; 

3. a proof-of-concept evaluation of the first two 
contributions on automotive-grade hardware running a 
full AV software stack. 

This paper continues with an overview of related work on 
safety concepts, middleware and hypervisors. In Section III we 

describe our distributed safety mechanism. Our experimental 
setup based on simulation and fault injection is covered in 
Section IV. Based on the conducted experiments we formulate 
conclusions in Sections V. 

II. RELATED WORK 

The ISO 26262 safety standard introduces the concepts of 
freedom from interference and co-existence relevant to our 
study. Both concepts suggest isolation between consolidated 
functions, which is addressed in our study using hypervisors. 
Furthermore, the Automotive Safety Integrity Level (ASIL) 
decomposition in the standard requires independence among 
redundant elements contributing to the same safety goal. The 
distributed nature of our safety mechanism running on separate 
processors with different ASILs enables ASIL decompositions. 

Our work originates from E-Gas [21] – a safety concept 
widely adopted in the automotive industry for engine control 
ECUs with the safety goal of avoiding unintended acceleration. 
The left diagram in Fig. 1 illustrates the E-Gas layered safety 
concept. The level 1 (L1) Function is monitored by the level 2 (L2) 
Function Monitor (FM), which can disable the Function output 
upon detecting a fault in L1 Function. Level 3 (L3) checks the 
Function Controller SoC and L2 FM, while level 4 (L4) monitors the 
Function Controller from outside. The original E-Gas concept 
labeled the external controller monitor L3, for simplicity of 
reference we call it L4. 

Although E-Gas was originally devised for a single 
controller, [22] applied the layered concept to multicore 
processors and extended it to fail-operational redundant 
architectures. Our work analyzes applicability of E-Gas to a 
distributed processing architecture with multiple function 
controllers, jointly cooperating on the execution of autonomous 
driving. Furthermore, E-Gas was applied to processors with 
hardware virtualization support for hypervisors by [23], which 
benchmarked the virtualization technology against traditional 
microcontrollers with an external monitoring ASIC and 
multicore architectures. In contrast to [23] we use hypervisors 
not only to isolate the functional and safety components, but also 
to enforce fail-silent behavior of faulty software stacks.  

There are also other safety mechanisms that have been 
applied to distributed processing. For example, the EcoTwin 
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Fig. 1. Simplified E-Gas monitoring concept (left) and our Distributed Safety Mechanism concept (right). 



truck platooning project [18] deployed several distributed health 
monitors reporting to a central arbiter that could switch vehicle 
control from the nominal to the safety channel when a 
malfunction is detected. Our study follows up on the EcoTwin 
research by evaluating hypervisors and mapping the application 
across automotive SoCs with different ASILs. Furthermore, [19] 
describes a distributed health monitoring system with 
virtualization using Adaptive AUTOSAR. However, they focus 
primarily on health monitoring on a multicore processor, 
omitting safety mechanism reactions and multi-SoC processing 
using software middleware, which we evaluated in our work. 

Due to high complexity of the autonomous driving 
functionality, AV software frameworks split code in multiple 
software modules adhering to the Service-Oriented Architecture 
[20]. Inter-module communication and synchronization is 
carried out by a software middleware, providing service 
discovery, seamless data exchange among different platforms, 
Quality of Service (QoS), security, real-time guarantees, etc. 
Examples of middleware protocols include Cyber RT [24], DDS 
[11], ROS [12], and SOME/IP [25]. Noteworthy, DDS features 
real-time support, safety, security and good interoperability with 
other middlewares, such as ROS. In general, many of the 
middleware protocols adhere to the popular publish-subscribe 
pattern [13], where a sender does not send data to a concrete 
receiver, but publishes information on a common data bus. Other 
modules subscribe to the updates of the information on the bus. 
The data bus can be realized with an Ethernet network, on-chip 
shared memory, serial interface, etc. Our Distributed Safety 
Mechanism (DSM) reuses the middleware services to 
coordinate operation of safety components. Compared to [26], 
which also described a safety mechanism leveraging 
middleware and hypervisors, we added handling of internal 
faults in the DSM and studied different safety use-cases. 

III. DISTRIBUTED SAFETY MECHANISM CONCEPT 

A centralized health monitor is simple from the architecture 
perspective. However, in distributed (autonomous) systems it 
suffers from high reaction time and low observability. By 
observability we mean the monitor’s ability to detect faults and 
to read hardware and software state of the distributed 
components in sufficient detail. The DSM concept depicted on 
the right in Fig. 1 inherits the E-Gas layers for high observability 
and quick reactions. However, the E-Gas concept is applied to a 
single controller, whereas an AV has multiple function 
controllers labeled Function Controller1 to Function ControllerN in 
Fig. 1. Every Function Controller consolidates several Functions, 
which we isolated in virtual domains, labeled as Virtual Machine1 
to Virtual MachineM. The blue components in Fig. 1, such as L1 
Function, refer to the inherent autonomous functionality, while 
the elements of our DSM, such as L2 Function Monitor, are 
colored green. Note that in contrast to E-Gas, the DSM layers 
monitor distributed components in multiple Function Controllers 
and VMs. For distributed operation the overall system employs 
a publish-subscribe middleware software, communicating 
through Diagnostic Topics (/diag) and Function Topics (/fun). The 
input and output data of the function and safety control messages 
get published on the /fun topics, whereas diagnostics data are 
published on the /diag topics. Besides the Enable output of the E-
Gas concept for the fail-silent behavior, our DSM includes a 
safety channel that can take over the vehicle control with 

situational awareness using sensor and function data from the 
/fun middleware topics. To ensure that only one publisher 
controls the vehicle, the middleware can use QoS features, such 
as strength (priority) in DDS [11] or the DSM can shut down all 
but one publisher. Note that the distribution of the /fun and /diag 
topics can be optimally realized using inter-chip or on-chip 
hardware. For example, communication between L2 and L3 can 
be kept on-chip, using shared memory, while L2 and L4 can 
communicate via Ethernet. The same safety mechanism concept 
applies to an integrated on-chip system, where the Function 
Controllers are integrated with a Safety Controller in a single 
package or die using different on-chip subsystems and cores. 

The solid lines in Fig. 1 on the right denote physical inter-
chip or on-chip boundaries, while the dotted lines refer to a 
virtually isolated domain, for example, by means of a 
hypervisor. The hypervisor traditionally isolates different 
function’s software stacks including OSes and provides 
processor scheduling and memory allocation guarantees to 
safety-critical functions [4]. On top of that we propose to use 
hypervisors to implement a fail-silent behavior. If a faulty 
software stack yields wrong output, such as erroneous vehicle 
control commands, the DSM can detect it in one of its monitors 
and instruct the hypervisor using the /diag topics to pause the 
corresponding Virtual Machine (VM) domain. The silenced 
faulty function is then replaced by a degraded mode or a full-
fledged redundant function in the DSM itself, which publishes 
on /fun topics. The latency of the domain pause must be low to 
respect the fault tolerance interval defined by the high-level 
safety goal. Note that the middleware traffic to and from the 
VMs in Fig. 1 goes through the hypervisor and hardware 
virtualization support for memory and resource management. 
Furthermore, the L3 Controller Safety Mechanism (CSM) monitors 
the hypervisor and runs in a SoC subsystem outside of 
hypervisor’s control on an ARM Cortex-R or -M safety core. 

Thanks to the distributed architecture, the DSM can handle 
hardware and software faults in various SoCs and ECUs. 
Various prior-art monitoring techniques can be integrated in 
DSM layers to support different fault models, such as a software 
program deadlock, a memory cell bit flip, and a short-circuit. 

Furthermore, the DSM concept supports redundancy for fail-
operational processing in autonomous driving. For example, L4 

Vehicle Safety Mechanism (VSM) in Fig. 1 can integrate a safety 
channel, which takes over vehicle control when a fault is detected 
in the main channel of a Function Controller. Since L4 VSM has 
access to the function data on the /fun topics, it can even identify 
hazardous situations in the absence of faults discussed in 
ISO/PAS 21448 [15] and overrule the main channel actuations. 

Using Fig. 2 in the following subsection A we discuss three 
scenarios, in which the DSM handles faults in the main 
autonomous Function denoted as blue in Fig. 1. Then we cover 
two scenarios with faults in the DSM itself in subsection B. Fig. 
2 depicts simplified Finite State Machines (FSMs) of the DSM 
L2 FM, L3 CSM, and L4 VSM. The initial states are marked (INITIAL). 
The transitions labels have a prefix of the triggering element. For 
example, CSM: challenge in L2 FM indicates the challenge that L3 
CSM sends to L2 FM. Multi-line transition labels refer to multiple 
events, which can independently trigger the state change. 
Furthermore, state actions under the state title refer to 



middleware operations, such as publish or subscribe, and 
middleware topics, such as /diag for diagnostics and /fun for 
autonomous function data and control. 

A. Safety scenarios with a faulty function 

Scenario 1: AV function fault. L2 FM, monitoring L1 Function 
output on /fun, detects a problem in L1 Function and goes to the 
FUNCTION_FAULT state. In this state L2 FM publishes FAULT 
messages on /diag topics as long as L1 Function is faulty. 
Otherwise, it goes back to the FUNCTION_OK state. L3 CSM notices 
the FAULT on /diag topics and goes to the PAUSE_VM state along 
the FM: FAULT on /diag transition. Then it quickly pauses the 
faulty VM and publishes PAUSED to /diag. Triggered by the CSM: 
PAUSED on /diag transition, L4 VSM goes to SAFE_MANEUVER and 
publishes commands on /fun topics to safely maneuver the 
vehicle using sensor data on /fun topics to avoid collision. 

This sequence of events exemplifies the high observability 
of L2 FM, a quick response by L3 CSM in the function controller 
and a safety maneuver carried out by an independent vehicle-
level safety controller L4 VSM, which has access to the 
environment perception data on the /fun topics for vehicle 
control in diverse situations. The safety maneuvers that L4 VSM 
can command the vehicle to perform include a safe stop, an 
evasive maneuver or other vehicle-level safety actions. In the 
described scenario above, the software middleware enables 
seamless communication and coordinates safety-critical 
activities. Note that the hypervisor in this scenario does not only 
statically isolate the fault, but also actively silences the faulty 
software stack to limit its interference with the rest of the system. 

Scenario 2: implausible /fun data. Thanks to the data 
distribution by the middleware, L4 VSM can periodically and 
independently check /fun data streams from L1 Function for 
plausibility. When such a check fails, L4 VSM follows the L1: 
function fault* transition to PAUSE_VM, instructing L3 CSM to 
pause the faulty VM by publishing the PAUSE request on the /diag 

topic. After L3 CSM’s confirmation that the VM was paused, L4 
VSM maneuvers the vehicle in SAFE_MANEUVER. 

Scenario 3: VM failure. If a software module leaks memory 
or blocks a hardware resource, the whole VM can fail. The L3 
CSM monitors VM using hypervisor diagnostics. For example, 
as soon as high CPU utilization is detected in a VM, the CSM: 
VM fault transition moves L3 CSM to PAUSE_VM to prevent fault 
propagation. Then L4 VSM takes over control of the vehicle. 

B. Safety scenarios with faults in the DSM 

The safety mechanism should also cope with its internal 
faults, which are called latent multi-point faults in the ISO 26262 
[14]. There exist well-known techniques [16] to detect latent 
faults, such as built-in memory and logic self-tests, challenge-
response protocols, runtime fault injections, and periodic 
heartbeats. Below we give two examples of how challenge-
response protocols apply to our middleware-based DSM. 

Scenario 4: DSM internal health status check. L4 VSM from 
Fig. 2 checks the health status of L3 CSM in one of the Function 
Controllers by publishing a challenge message on a /diag topic 
and starting a timer. The challenge can be, for example, 
computational to test the underlying processor core or storage-
focused to test memory operation. L4 VSM measures the time that 
L3 CSM took to respond in order to detect missed real-time 
deadlines. If L3 CSM is healthy, it receives the challenge on the 
/diag topic, generates the response, and publishes it on the /diag 
topic on time. L4 VSM then receives the timely response and 
moves back to the VEHICLE_OK state. Otherwise it assumes that 
L3 CSM is faulty and moves to the SAFE_MANEUVER state. As 
shown in Fig. 2 L4 VSM can also check L3 CSM by instructing L2 
FM to inject platform faults (e.g. high CPU usage) at runtime by 
publishing the INJECT_FAULT request on /diag. 

Scenario 5: hypervisor monitor. Another noteworthy use 
case is L3 CSM’s monitoring of the hypervisor, on which the 
Function Controllers run. According to the ISO 26262 

 

Fig. 2. Simplified DSM’s Finite State Machines, where each transition is annotated with the origin level and related event. 
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terminology [14], a failing hypervisor is a Common Cause Fault, 
which can compromise the overall vehicle safety. To detect 
hypervisor faults, L3 CSM runs in a neighboring yet isolated 
safety subsystem outside of the hypervisor and continuously 
monitors hypervisor heartbeats using on-chip communication 
means such as shared memory or interrupts. When the missing 
hypervisor heartbeat is detected, L3 CSM powers down the 
Function Controllers by going to the POWEROFF_CONTROLLER state. 
Meanwhile the silence from the function domain(s) moves L4 
VSM into the SAFE_MANEUVER state. 

IV. EXPERIMENTAL EVALUATION 

To check feasibility of our DSM concept, we prototyped the 
DSM and conducted fault injection experiments. 

A. Experimental setup with the DSM prototype 

We prototyped the DSM concept in a Hardware-In-the-Loop 
(HIL) simulation setup. The setup integrates the LG SVL 
simulator [27] on a simulation PC and the Baidu Apollo 3.0 AV 
software stack [6] on the NXP BlueBox hardware prototyping 
platform [28] for autonomous driving, see Fig. 3. The LG SVL 
simulator models the environment and vehicles to provide 
sensor data to the Apollo software. Apollo processes sensor data 
as if they were obtained from real-life sensors and feeds 
actuation signals back to the simulator to drive the vehicle. 

For compatibility with middleware-based AV software, we 
built the DSM on top of the DDS middleware. Due to resource 
constraints safety cores of the S32R274 SoC can run only a DDS 
subset, called DDS-XRCE. We built the L4 VSM on S32R274, 
using the open-source eProsima Micro XRCE-DDS [29], which 
connects a DDS-XRCE Client to DDS through a DDS-XRCE Agent, 
running on full DDS. In order to interlink different middlewares 
in our system, we built software bridges and integrated the DDS-
XRCE Agent on LS2084. As to virtualization we used the Docker 
container engine and Xen hypervisor [30]. The Xen hypervisor 
supports spatial and temporal isolation as well as VM 
management operations, such as domain pause, which we used 
to realize the fail-silent behavior. 

By mapping the DSM and AV software modules on SoCs 
according to their ASILs and resources in Fig. 3, our prototype 
implements a subset of the DSM concept from Fig. 1: 

1. L1 Function is implemented by Apollo software modules. 
Apollo software modules run on quality managed SoCs, 
except for the vehicle control module allocated to a Xen 
hypervisor Domain U on the ASIL C processor S32V234. 

2. L2 FM in Domain U reads L1 Function output from /fun and 
publishes diagnostics to /diag. To evaluate our DSM we 
disabled Apollo’s safety mechanism. 

3. L3 CSM in Domain 0 monitors and pauses Domain U if 
needed. It subscribes to /diag for requests or challenges 
from L4 VSM and publishes the status of hypervisor 
domains to /diag. Due to engineering complexity we did 
not run L3 CSM outside of Xen as defined in Section III. 

4. L4 VSM is mapped on the ASIL D SoC S32R274. It can 
trigger L3 CSM to perform domain pause using /diag. The 
failover operation is carried out by L4 VSM publishing 
hard stop setpoints to /fun. The hard stop brakes the 
vehicle disregarding sensor data. 

B. Latency measurements of pausing a virtual machine 

The DSM must quickly silence a faulty virtual machine to 
prevent fault propagation. In our experiments the domain 
shutdown of the virtual machine took much more time compared 
to the domain pause operation. Hence, we use the Xen pause 
operation on the ASIL C S32V234 processor running the Null 
scheduler of the Xen hypervisor. The Null scheduler minimizes 
the scheduling overhead thanks to the static one-to-one mapping 
of virtual to physical cores. The pause latency includes the 
runtime of the libxl_domain_pause() function from Xen’s libxl 
library and the overhead of the Yocto Linux in Domain 0 to start the 
pause operation triggered by an external middleware message. 
In 2000 experiments the arithmetic mean of the pause latencies 
was 55us, while the maximum outlier reached 1.5ms. Although 
this latency was low enough to silence a faulty VM within the 
fault tolerance interval of the safety goal to avoid collisions, the 
high outliers suggest the need for more deterministic scheduling 
in the hypervisor and VM kernels to carry out the VM pause. 

C. Fault injection experiments to validate the DSM concept 

To validate scenarios from Section III, we simulated road 
situations and injected faults into the system. A driving scenario 
is created in the LG SVL simulator, where the ego vehicle 
controlled by Apollo drives on a two-lane city road. In the 

 

Fig. 3. Architecture of the Hardware-In-the-Loop experimental setup composed of a simulation PC and an automotive-grade platform for autonomous vehicles. 
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distance there is a stationary obstacle. To reach its destination 
ahead of the obstacle, the ego vehicle must change lanes. 

First, we validated the most typical Scenario 1 from Section 
III by injecting an invalid vehicle control message with 
acceleration actuation setpoint above the allowed 100%. The 
extended Function Monitor in Domain U from Fig. 3 reported this 
abnormal command to Control Safety Mechanism, which paused 
the Domain U VM, and Vehicle Safety Mechanism subsequently 
stopped the vehicle. Furthermore, we evaluated Scenario 2 by 
injecting an invalid vehicle control message with brake and 
acceleration actuation setpoints simultaneously equal to 100%. 
Thanks to a simple check in the Vehicle Safety Mechanism, the 
vehicle was stopped right upon the detection of the fault. For 
Scenario 3 we used the stress Linux tool to overload the CPU in 
Domain U, while the ego vehicle is changing lane. Consequently, 
the Apollo control module output was published at a 
significantly lower rate. Without the DSM, the ego vehicle 
started to wobble and eventually crashed into an obstacle on the 
road. With our DSM enabled, however, the Controller Safety 
Mechanism promptly paused the faulty VM and the Vehicle Safety 

Mechanism successfully performed a hard stop. Finally, we 
validated Scenario 4 by killing the Controller Safety Mechanism in 
Domain 0. This was quickly noticed by the challenge-response 
protocol logic in the Vehicle Safety Mechanism, which then 
brought the ego car to a full stop without accidents. 

V. CONCLUSION 

To handle faults in distributed processing we designed a 
distributed safety mechanism based on the E-Gas layered safety 
concept and DDS publish-subscribe middleware. The DDS 
middleware protocol together with its subset, DDS-XRCE, 
enabled us to map the safety mechanism to resource-constrained 
processor safety cores with appropriate ASIL features. 
Furthermore, our DSM leveraged hardware-supported 
hypervisors to isolate faults and block propagation of failures. 
On top of traditional isolation, we used the hypervisor to pause 
the faulty software stack, implementing the fail-silent behavior 
useful for constructing large safety-critical systems. Besides 
handling faults in the autonomous functions, our mechanism 
deployed the following techniques to handle internal 
malfunctioning: challenge-response, self-test, and fault 
injection. The key aspects of the DSM concept were 
successfully evaluated on automotive SoCs in the NXP BlueBox 
HIL setup with the LG SVL autonomous driving simulator. 
Upon injection of an artificial fault into the system, the DSM 
safely stopped the simulated vehicle driven by the Baidu Apollo 
autonomous driving software stack. 
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