
Parallel Implementation of Iterative Learning
Controllers on Multi-core Platforms

Mojtaba Haghi, Yusheng Yao, Dip Goswami, and Kees Goossens
Eindhoven University of Technology, the Netherlands

Email: {s.m.haghi, y.yao.1, d.goswami, k.g.w.goossens}@tue.nl

Abstract—This paper presents design and implementation
techniques for iterative learning controllers (ILCs) targeting
predictable multi-core embedded platforms. Implementation on
embedded platforms results in a number of timing artifacts.
Sensor-to-actuator delay (referred to as delay) is an important
timing artifact which influences the control performance by
changing the dynamic behavior of the system. We propose a
delay-based design for ILCs that identifies and operates in
the performance-optimal delay region. We then propose two
implementation methods – sequential and parallel – for ILCs
targeting the predictable multi-core platforms. The proposed
methods enable the designer to carefully adjust the scheduling
to achieve the optimal delay region in the resulting control
system. We validate our results by the hardware-in-the-loop
(HIL) simulation, considering a motion system as a case-study.

Index Terms—Embedded control, Iterative learning control,
Sensor-to-actuator-delay, Predictable multi-core platform.

I. INTRODUCTION

High precision motion systems are an important part of

industrial domains such as robotics [1], printing systems [2]

and many more [3]. The purpose of such systems is an accurate

and fast reference tracking [1], e.g., the trajectory for printer

head. One of the state-of-the-art control structures for high

precision control is iterative learning control (ILC) [4]. These

controllers are the mature version of feedforward controllers

with the emphasis of improving the control performance in

presence of model uncertainty and repetitive tasks (periodic

reference). In ILC, a feedback part stabilizes the closed loop

system and a feedforward part finds a sequence of desired

input signals over the period of the repetitive task, improving

reference tracking performance [4].

Low-cost embedded implementation of motion systems

are relevant in many industries [www.i-mech.eu]. Embedded

platforms are cost and energy efficient implementation solu-

tions [5]. These platforms perform dedicated computations

as a part of a larger mechanical or electrical system [6].

However, the limitation of computation resources is the key

constraint of using such platforms [7]. In control applications,

this constraint may impose undesirable timing artifacts such

as sensor-to-actuator delay and time-varying sampling period

which degrade the control performance.

Among the possible existing platforms, composable and

predictable platforms with no time-variation in execution time

would be a suitable solution for control applications [7].

Using such platforms results cycle-accurate sampling period

and execution times, which facilitate the control design by

guaranteeing temporal assumptions such as uniform sampling

period. Also, the jitter-free and deterministic execution times

allows the designer to consider the delay as a variable, as

well as accurately study the effect of temporal artifacts on

the control performance [8]. In the absence of such platforms

the designer may opt for robust controllers against uncertain

delay and/or time-varying sampling period which degrades the

control performance [9].

Sensor-to-actuator delay is one of the important timing

implications of an embedded implementation. While it is

considered in the design that the execution of a control loop

is instantaneous, the implementation of a control loop takes

a finite time from the start of sensing the plant output until

actuating it with the new input value [10]. Considering such

delay in the design step would improve the performance of

feedback and feedforward controllers.

In this paper we propose a delay-aware design for ILCs

which considers the sensor-to-actuator delay as a design

parameter and studies its influence on control performance.

Although, there is a mature literature in designing ILCs [4],

their implementations on embedded platforms and considering

the imposed timing constraints on the performance requires

further studies. For ILC implementation on embedded plat-

forms we start with a sequential implementation which offers

an adjustable delay to be treated as a design parameter. We

continue by proposing a novel parallel implementation which

is a scalable and conservative solution for ILC implementation

which can maximize the performance of the controller.

Our contributions:
1. Delay-based design of ILCs for motion systems, consid-

ering the delay as a design parameter and studying its influence

on control performance.

2. Proposing two ILC implementation solutions on com-

posable and predictable embedded platforms - sequential and

parallel.

3. Parallel implementation of ILCs on multi-core embedded

platforms, maximizing the control performance.

4. Performance evaluation and validation of the imple-

mented controllers by performing hardware-in-the-loop (HIL)

simulations.

The paper is organized as follows. Section II defines the

motion systems under the effect of delay and the case-study

motion system. Section III describes the ILC structure and

demonstrates the effect of delay on ILC performance. Sec-

tion IV demonstrates the embedded platform, and the sequen-

S C A S

Plant (System) Dynamics
x[k] x[k+1]u[k]

k+1k h
Dc

. . . t

Ts Tc Ta

Fig. 1. Timing diagram of an embedded control system.

tial and parallel ILC implementations. Section V illustrates and

discusses the HIL simulation results. The paper is concluded

in Section VI with some future studies proposed.

II. MOTION SYSTEMS UNDER THE EFFECT OF DELAY

We consider a motion system which can be represented as

linear time-invariant (LTI) systems. The continuous state-space

of such a system is given by,

Ẋ(t) = AX(t) +BU(t),

Y (t) = CX(t),
(1)

where X(t) ∈ Rn are the states of the system, U(t) is the

input, and Y (t) represent the system output.

The purpose of a control loop is to actuate the system with

the input signal U(t) so its output follows a desired reference

r(t) accurately. A control loop performs three main operations

of sensing, computation and actuation in a sequential and

periodic manner. Sensing operation reads the corresponding

sensor values of each state at equidistant time instances tk.

the sensed state are defined as:

x[k] := X(tk), k ∈ N≥1 (2)

Based on the x[k] and the control law, computation opera-

tion calculates the next control value u[k]. The control value

is updated from u[k− 1] to u[k] in the actuation. The interval

between two sensing operations is the sampling period h.

The execution of operations and the communications be-

tween them requires a finite time. Fig. 1 illustrates the exe-

cution behavior of the control loop in a sampling interval .

The delay from the start of the sensing until the end of the

actuation, imposed by implementation, is sensor-to-actuator

delay Dc. In this paper, we consider the case where Dc is

shorter than the sampling period h, which means: 0 ≤ Dc < h.

A. Delay modeling

The discrete-time representation of the system in (1), by

considering h and Dc is [10],

x[k + 1] = φx[k] + Γ0u[k] + Γ1u[k − 1],

y[k] = Cx[k],
(3)

where φ = eAh, and,

Γ0 =

∫ h−Dc

0

eAsBds, Γ1 =

∫ h

h−Dc

eAsBds.

Referring to (3), in each sampling interval, the system is

actuated by two control values of u[k−1] before the actuation

and u[k] after the actuation. This is caused by Dc and impacts

the system output and consecutively the performance. The

effect of Dc on control performance is studied through the

effect of the delay on zeros of the system.

B. Zero polynomial and zero loci

Zeros are the roots of zeros polynomial which is the

nominator of the systems transfer function in z frequency

domain. To derive zeros polynomial, we define augmented

stated space [11] by defining augmented states as ξ[k] =[
xT [k], uT [k − 1]

]T
,

ξ[k + 1] = φaugξ[k] + Γaugu[k],

y[k] = Caugξ[k],
(4)

where,

φaug =

[
eAh Γ1

0 0

]
, Γaug =

[
Γ0

I

]
, Caug = [C 0].

The transfer function of the system is derived from the state-

space (4) as [12]:

y[k]

u[k]
= G(z) =

Δ(z)

P (z)
= Caug(zIn − φaug)

−1
Γaug, (5)

where G(z) is the transfer function of the system, Δ(z) is the

zero polynomial and P (z) is the characteristic polynomial.

The zeros polynomial results from:

Δ(z) = Caugadj(zIn − φaug)Γaug. (6)

where adj(.) is the adjugate of a matrix, and In×n is the

identity matrix.

System zeros play a major role on transient behavior of

the system and the control performance. In motion systems,

the ideal case is when all the system zeros are stable which

means they are in the unity circle in the z-plane. The systems

with only stable zeros are called minimum-phase. Existence

of unstable zeros (zeros outside of unity circle) causes unde-

sirable degradation of the control performance. Referring to

(6), Γaug and φaug are functions of Dc. Therefore, different

values of Dc may change the position of the zeros and change

the system behavior. The effect of delay on the performance

is analyzed through the transition of system zeros for various

delay values. This analysis is called zero loci [10].

C. Case-study motion system

In this paper, we study a forth-order dual rotary single-

input-multiple-output motion system [13]. The rotary position

of two masses are defined as θ1 and θ2 and their corresponding

rotary speeds as ω1 and ω2. By defining these as system states,

state space of the motion system is derived [14] as (7), where,

X(t) = [θ1, θ2, ω1, ω2]
t and,

A =

[
0 0 1 0
0 0 0 1

−7.08×104 7.08×104 −1.1×106 1.1×106

7.08×104 −7.08×104 1.1×106 −1.1×106

]
,

B =

[
0
0

1.173×104

1

]
, C =

[
1 0 0 0

]
.

(7)

0 1 2 3 4 5 6 7 8
Sensor-to-actuator-delay (ms)

0

1

2

3
N

um
be

r o
f u

ns
ta

bl
e

ze
ro

s

1

2

3

4

5

6

7

IL
C

 p
er

fo
rm

an
ce

Fig. 2. Number of unstable zeros and ILC performance of the case-study
motion system for h = 8ms and Dc ∈ [0, h).

The objective is to control the output θ1 to perform a

repetitive task. The repetitive task is modeled as a periodic

reference r(t) which should be followed accurately by the

output. The periodic reference in our case study is defined as

r(t) = sin(πt) which has a period of τ = 2 seconds.

Zero loci: To perform the zero loci analysis proposed in [8],

we first discretize the system equations using our case study

h = 8ms. Then, by considering each delay choice in the range

of 0 ≤ Dc < h, we derive the roots of Δ(z) (6).

Fig. 2 demonstrates the number of unstable zeros for the

delay range of 0 ≤ Dc < 8ms. There are four delay regions

with different number of unstable zeros.

• For 0 ≤ Dc < 0.1ms, the system has no unstable zeros. For

example, for Dc = 0.05ms the zero polynomial (6) and the

corresponding zeros of the system are,

Δ(z) = z4 + 1.7z3 + 1.71z2 + 0.93z + 7× 10−4,

z1 ≈ 0, z2 = −0.9391, z3,4 = −0.3843± 0.9186i,

where all the zeros are inside the unit circle and stable.

• For 0.1ms ≤ Dc < 1.1ms, the system has 2 unstable zeros.

• For 1.1ms ≤ Dc < 3.8ms, the system has 3 unstable zeros.

• For 3.8ms ≤ Dc < 8ms, the system has 1 unstable zero.

For example, for Dc = 5ms the zeros of the system are,

z1 = −5.6, z2 = −0.6875, z3,4 = −0.4573± 0.6i,

where z1 is the only unstable zero of the system.

In the next section we describe the ILC design and the

impact of Dc on its performance.

III. ILC DESIGN AND DELAY ANALYSIS

ILCs are mostly used where a motion system executes a

repetitive task for multiple times. An example of such system

is the inject head of a printing system, surveying the paper for

every page printed [2]. While the non-learning feedforward

controllers yield to the same tracking error for each task

iteration, ILC yield to iteration improving performance by

using the information in error signals from the previous

iterations [4]. An iteration is a complete execution of a cycle

of r(t). The number of samples per iteration is defined as

m = τ × h (m = 250 in our case-study). By defining the

notion of j as the task iteration, the calculation of ILC values

P lan t G(z)F eedba ck
Contr o l ler C(z)

ej
+

-

r yj+

Memory

Memory L

Q+

ILC

uf f j

Fig. 3. The architecture of the ILC.

for (j + 1)
th

iteration requires the information of jth iteration,

which are the error values ej and ILC input values uff j.

Fig. 3 illustrates the block diagram of an ILC. The control

input u[k] consists of two parts of feedback and ILC values:

u[k] = ufb[k] + uff j[k]. (8)

The feedback value ufbj[k] is the result of applying the

controller (C(z)) on error signal ej [k]:

ufb[k] = C(z)ej [k], (9)

where ej [k] = r[k]− yj [k]. The feedback design technique is

lead-lag [12] (which can be replaced by any state-of-the-art

design techniques) which aims to stabilize the system.

The ILC input of each iteration consists of a constant-size

set of input values uff j[k], where:

uff j+1[k] = Q(q)(uff j[k] + L(q)ej [k + 1]), (10)

where Q and L are robustness and learning filters respectively

and q is the forward time-shift operator qx[k] = x[k + 1]. By

transforming the ILC equation (10) to frequency domain and

replacing the ej [k] by its definition, we realize:

Uff j+1(z) = Q(z)[Uff (z)j + zL(z)(R(z)− Yj(z))]. (11)

Among various approaches to design ILC, we focus on model

inversion. In this design, the L(z) filter is designed using a

model inversion technique. The output can be defined as a

product of the reference and the feedforward input as [12]:

Yj(z) =
C(z)G(z)

1 + C(z)G(z)︸ ︷︷ ︸
Process Sensitivity

R(z)+
G(z)

1 + C(z)G(z)
Uff j(z). (12)

We define L(z) as the inverse of process sensitivity, and Q(z)
as unity gain. By replacing Yj(z), L(z) and Q(z) in (11) by

their definition and replacing the resulted Uff j+1(z) in (12),

we realize for (j + 1)th,

Yj+1(z) = R(z). (13)

where the output asymptotically tracks the reference [4].

Although the inversion technique leads to perfect tracking

of the reference, it may not be a suitable solution for non-

minimum phase systems (system with unstable zeros) since

the inverse of the process sensitivity leads to an unstable filter,

which results in undesirable large control signals [4]. In this

case the L(z) is designed by an stable approximate inversion.

Considering ZPETC as one of the approximate methods [15],

the L(z) filter is designed as,

CoMik

Processor Tile 1

1VEP

C M

VEP2

M CoMik

Processor Tile 2

VEP4

Mik

VEP5

CCC

. . .

Memory Tile

ω

TDM period for N=3

ψ1

MikMi

ω ω
VEP3

ψ2 ψ3 ω

Fig. 4. Predictable embedded platform under consideration.

L(z) = P̃S
−1
(z) =

P (z)

Δs(z)Δ∗
u(z)

, (14)

where P (z) and Δs(z) are the characteristic function and the

stable zeros polynomials of the process sensitivity respectively.

Δ∗
u(z) is derived by flipping the coefficients of Δs(z) which

is the unstable zeros polynomial of the process sensitivity.

A. Effect of sensor-to-actuator delay on ILC performance

As discussed in Section II, different values of sensor-to-

actuator delay results different number of unstable zeros. In

the case of ILC design this means a different design of L(z)
for different Dc values. Therefore, it is important to consider

the delay as a design parameter and find an optimal value for

the delay which offers the least number of unstable zeros.

Fig. 2 depicts the control performance of the ILC designed

for the case-study against different delay values, where the P
is the performance metric and:

P−1 =

N∑
k=1

(r[k]− y[k])2. (15)

N = 1000 is the number of samples for 4 iterations. The

maximum performance is achieved for Dc < 0.1ms where

the system has no unstable zeros and the direct inversion for

L(z) is realized. In the case where this Dc is not feasible in

the implementation, the sub-optimal delay region is 3.8ms <
Dc < 8ms where the system has only one unstable zero.

In the next section we discuss the implementation of delay-

based ILC design on the embedded platform.

IV. EMBEDDED ILC IMPLEMENTATION

In this paper we target the CompSOC embedded platform

[7]. CompSOC is a tile-based embedded platform which con-

sists of a number of processor tiles, local and shared memories

and their interconnections. Fig. 4 demonstrates a possible

configuration of the platform with two soft-core MicroBlaze

as the processor tiles.

The platform can perform a composable execution of multi-

ple applications on each processor tile, isolating the processor,

memories and their interconnections in the application level.

This enables an interference-free implementation of multiple

applications. The composable property is the result of a

predictable and composable micro-kernel (CoMik). CoMik

creates virtual execution processors (VEPs) as processing

resources. It dedicates a specific portion of underlying physical

processors and their interconnections to each VEP.

To execute the VEPs on each processor, a periodic time-

division-multiplexing (TDM) policy is applied on all pro-

cessors and interconnections. Executing the VEPs by the

TDM order, enables the platform to achieve the real-time

performance and cycle-accurate time granularity. Executing

the TDM table periodically, enables the periodic and sequential

execution of VEPs. Predictability of the platform ensures

constant execution times for the tasks which are periodically

executed within the VEPs.
Each TDM is the execution of a table which consists of N

partition slots. These slots can have specific lengths in clock

cycles, indicated by ψi, and are separated by N CoMik slots

with a constant length of ω = 4096 clock cycles. The CoMik

slots enable the jitter-free context switching between partition

slots. Each VEP is addressed to one or more partition slots on

(possibly) multiple processors and they are swapped in and out

periodically and transparently by CoMik. In Fig. 4 the TDM

scheduling of processor tile 1, demonstrates an example of a

TDM table with 3 different-sized partition slots.
We are interested in the implementation and scheduling

of the ILCs. The ILC application is a sequential execution

of three operations of sensing, computation and actuation on

each sampling interval. The sampling interval is executed

periodically with a sampling period of h = 8ms (for our

case-study). The sampling period must be kept constant in

the implementation. One way to achieve constant/uniform h
is to design a TDM table of length h and hence,

h = (N × ω +

N∑
n=1

ψi)/Fp, (16)

where Fp = 100MHz is the operating frequency of the

platform.
To implement the ILC operations, we first measure their

corresponding execution times based on which design the

TDM scheduling. For the controller in our case-study, the

measured (constant) execution times in clock cycles are,

Ts = 35, TcFB = 125, TcFF = 900, Ta = 50, (17)

where the execution of computation is divided into two parts.

TcFB is the time to calculate ufb[k] using (9), and TcFF is

the time to calculate uff j [k] using (10). Since the platform

is predictable, the resulting execution times are constant for

every sampling interval. This is an important property since it

results a cycle accurate value of Dc in every sampling interval.

The value of Dc depends on the scheduling method.

A. Sequential Implementation
In the sequential implementation, each of the control op-

erations are mapped to one of the partition slots and are

treated as a separate VEP. The size of each partition slot is

defined to be bigger than the worst case execution time of

their corresponding operation. Also, defining partition slots

less than 1024 clock cycles requires additional programming

considerations which is avoided in this work. Referring to (17)

the sizes of partition slots in clock cycles are defined as:

ψs = ψa = 1024, ψc = 1536, (18)

ψdψcψs

. . .

TDM period= h

 S A

Dc

Ts Tc TaTT
C

Plant (System) Dynamics
xj[k] uj[k] xj[k+1]

S
ω

Fig. 5. Scheduling of the sequential implementation where S:sensing,
C:computation, A:actuation. The black blocks are the CoMik slots and
white blocks are the partition slots.

where ψs, ψc, and ψa are the size of partition slots of sensing,

computation, and actuation respectively.

The Dc is the least when we schedule three operations

sequentially in the first three partition slots. In this case the

value of Dc is:

Dc = (2× ω + ψs + ψc)/FP + Ta ≈ 0.11ms, (19)

Referring to Fig. 2, Dc is in the 0.1ms ≤ Dc < 1.1ms region,

which results in two unstable zeros. Since the performance-

optimal delay of 0 ≤ Dc < 0.1ms is not achievable, we

propose a scheduling to derive Dc in the region 3.8ms ≤
Dc < 8ms which results in one unstable zero. Fig. 5 depicts

the TDM table of this scheduling. By adding a delay slot with

a size of ψd = 385000 in clock cycles, between computation

and actuation, we change the value of Dc to:

Dc = (3× ω + ψs + ψc + ψd)/Fp + Ta = 4ms, (20)

which the best achievable ILC performance.

The sequential implementation is a solution for implement-

ing ILCs when the designer wants to accurately choose the

values of Dc. It is suitable for a single-core implementation.

However, small values of Dc, if desired (like our case-

study), may not be achieved by using such an implementation.

Therefore we propose the parallel implementation which offers

smaller values of Dc and better performance.

B. Parallel Implementation

By studying the definition of the ILC and the sequential im-

plementation, one can realize two important properties which

would improve the implementation for multi-core scenarios:

1. Referring to (10), the ILC input in each sample uff j+1[k]
is a function of the error and the ILC input of the previous

iteration. Therefore, all of the ILC input values for the current

iteration can be calculated at once, at the end of the previous

iteration. This calculation also can be done outside of the

control scheduling supposedly in parallel, in a separate tile.

2. Consider the execution times in (17) and Dc in (19). A

considerable part of Dc are CoMik slots. To remove this, we

combine all three operations in a single slot and dedicate a

partition slot (long enough to fit all three operations) to the

whole control application.

Therefore, we propose a parallel implementation, where a

separate core is dedicated to ILC calculation that calculates all

the ILC input values of the current iteration at the end of the

h hDc h
. . .

1

SCA

Uff Ejj Uff j+1

SCA SCA SCA

 CILC . . .

. . .

. . .

. . .
k=m-1 k=m k=1 k=2

End of j th iteration Start of (j+1)th iteration
.

Shared memory
ILC Tile

Control Tile

C 2

f jjff +1
3

Fig. 6. Scheduling of the parallel implementation. SCA is the merged
operation of sensing, feedback computation, and actuation, executed on the
control tile. CILC (ILC computation) is mapped to the ILC tile. At the final
step of jth iteration (k = m), Uff j+1 is calculated by the ILC tile and

handed over to the control tile to be used in (j + 1)thiteration.

previous iteration and provide them to the control tile. Fig. 6

demonstrates the parallel implementation.

In every sampling interval, the merged operation SLC senses

the system state, calculates the ufb[k] using (9), combines it

with uff j [k], provided by the ILC tile, and actuate the system

with u[k]. In the final sampling interval of each iteration where

k = m (k = 250 in our case-study), the control tile gives

two vector sets of error values {Ej}m×1 and control values

{Uff j}m×1
of the whole iteration to the ILC tile through the

shared memory (1 in the Fig. 6). Next, the ILC tile calculates

all the ILC input values for the next iteration {Uff j+1}m×1
(2

in Fig. 6), and hand it over to the control tile through the shared

memory (3 in Fig. 6). When the new iteration starts, in each

sampling interval, SLC operation reads the corresponding ILC

input value uff j+1[k] from the memory and calculates u[k].
The scheduling of the control tile has two partition slots.

The first one is dedicated to SCA operation and has a length

of ψSCA = 1024 considering the execution times in (17). The

second one is idle and is defined to keep the size of the TDM

table equal to h. This slot can be dedicated to another time-

critical application in multi-application scenarios. The ILC tile

has a different schedule. In this tile, there is a single partition

slot dedicated to CILC which is executed once per iteration.

The execution time for CILC is:

TcILC = m× TcFF . (21)

In our case-study m = 250, and using (17), TcILC = 225000.

Using such scheduling, the value for Dc is:

Dc = Ts + TcFB + Ta = 2.5ns. (22)

This is because TcILC does not contribute to Dc due to parallel

execution. The resulting Dc is in the performance-optimal

region with no unstable zero. In this case, L(z) in (11) is

the direct inversion of the process sensitivity and referring to

(13) the perfect tracking of the reference is achieved.

An alternative single-core solution similar to parallel im-

plementation is to use the idle slot of the control tile at

the end of each iteration (see Fig. 6) to perform the ILC

computation. However, referring to (21) in the case of higher

TcFF (complex ILC designs which require more computation)

or higher number of samples per iteration (e.g m = 2500 in

0 2 4 6 8
-4

-2

0

2

4

0

0.02

0.04
Reference
HIL output (Dc=0.1 ms)

Error

0 2 4 6 8
-4

-2

0

2

4

IL
C

 o
ut

pu
t

0

0.02

0.04
Reference
HIL output (Dc=2.5ns)

Error

0 2 6 84
-4

-2

0

2

4

0

0.02

0.04
Reference
HIL output (Dc=4ms)

Error

Fig. 7. ILC output and error for Dc = 0.11ms (a), 2.5ns (b), and 4ms (c).

TABLE I
PERFORMANCE MEASUREMENT WITH DIFFERENT DELAY VALUES

Implementation (Delay) P (HIL)
Sequential(0.11ms) 3.0776

Parallel(2.5ns) 16.1933

Sequential(4ms) 3.4231

our case-study), the idle slot may not be sufficient for the ILC

computation, since the size of the idle slot is bounded by the

chosen sampling period. On the other hand, the in parallel

implementation utilizes a separate core for CILC and can

execute it at the same time with the execution of the control

loop on the other tile without any limitation imposed by h.

V. PERFORMANCE ANALYSIS WITH HIL SIMULATIONS

To validate the ILC design and implementation, we per-

formed HIL simulations. The platform depicted in Fig. 4 is

synthesized on PYNQ FPGA board [www.tul.com.tw]. The

architecture consists of three MicroBlaze tiles where one is

the control tile and one is the ILC tile (idle in the sequential

implementation). The third tile is used to implement the

system model in (1) with a sampling period of 100μs to mimic

the continuous behavior of the system.

Fig. 7 illustrates the results of the HIL simulations for

the first 4 iterations. Fig. 7(a) and Fig. 7(c) are the results

of sequential implementation with Dc = 0.11ms (the least

achievable delay in the sequential implementation in (19))

and Dc = 4ms (the sub-optimal delay) respectively. Fig. 7(b)

is the result of the parallel implementation. Table I provides

the performance values for different implementations where

P is defined in (15). The results validate that the parallel

implementation offers the highest performance, followed by

the sequential implementation with Dc = 4ms.

VI. CONCLUSIONS

In this paper, we proposed design and implementation of

ILCs targeting multi-core and predictable embedded platforms.

We demonstrated that considering the sensor-to-actuator delay

in ILC design and choosing the optimal delay range improves

the tracking performance. To implement the ILC, we proposed

the sequential and parallel implementations on TDM-based,

predictable embedded platforms. While sequential implemen-

tation is suitable to carefully tune the delay in a single-

core implementation, parallel implementation, as a multi-core

solution, enables the designer to realize negligible delay and

maximize the control performance. We validated our approach

by HIL simulations on a predictable multi-core platform.

Possible extensions of this work are the delay-based design

of motion controllers similar to ILC, and the implementation

of ILC with techniques other than model inversion.

ACKNOWLEDGMENTS

This work was partially supported by the H2020 project

I-MECH (GA no.737453).

REFERENCES

[1] K. Ohnishi et al., “Motion control for advanced mechatronics,”
IEEE/ASME Transactions on Mechatronics, pp. 56–67, March 1996.

[2] J. Bolder, T. Oomen, S. Koekebakker, and M. Steinbuch, “Using iterative
learning control with basis functions to compensate medium deformation
in a wide-format inkjet printer,” Mechatronics, vol. 24, no. 8, 2014.

[3] Purtojo and Wahyudi, “Integral anti-windup scheme of full-state feed-
back control for point-to-point (ptp) positioning system,” in 2008 Inter-
national Conference on Electronic Design, Dec 2008, pp. 1–6.

[4] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE control systems magazine, pp. 96–114, 2006.

[5] D. Goswami, R. Schneider, A. Masrur, M. Lukasiewycz, S. Chakraborty,
H. Voit, and A. Annaswamy, “Challenges in automotive cyber-physical
systems design,” in SAMOS, 2012.

[6] M. Barr, “Embedded systems glossary,” Neutrino Technical Lib., 2007.
[7] K. Goossens et al., “NOC-based multiprocessor architecture for mixed-

time-criticality applications,” Handbook of Hardware/Software Code-
sign, pp. 491–530, 2017.

[8] M. Haghi, F. Wenguang, D. Goswami, and K. Goossens, “Delay-
based design of feedforward tracking control for predictable embedded
platforms,” in ACC, 2019.

[9] H. Yan et al., “H∞ output tracking control for networked systems
with adaptively adjusted event-triggered scheme,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, no. 99, pp. 1–9, 2018.

[10] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory
and design. Courier Corporation, 2013.

[11] M. B. Cloosterman et al., “Stability of networked control systems
with uncertain time-varying delays,” IEEE Transactions on Automatic
Control, vol. 54, no. 7, pp. 1575–1580, 2009.

[12] K. Ogata, Discrete-time control systems. Prentice Hall Englewood
Cliffs, NJ, 1995, vol. 2.

[13] W. Geelen et al., “The impact of deadline misses on the control
performance of high-end motion control systems,” IEEE Transactions
on Industrial Electronics, vol. 63, no. 2, pp. 1218–1229, 2016.

[14] J. Boot, Frequency response measurement in closed loop: brushing up
our knowledge, ser. DCT rapporten 2003.059. TU/e.

[15] M. Tomizuka, “Zero phase error tracking algorithm for digital control,”
Journal of Dynamic Systems, Measurement, and Control, vol. 109, no. 1,
pp. 65–68, 1987.

