
32

Comparing Platform-aware Control Design

Flows for Composable and Predictable TDM-based

Execution Platforms

JUAN VALENCIA, DIP GOSWAMI, and KEES GOOSSENS, Eindhoven University

of Technology, The Netherlands

We compare three platform-aware feedback control design flows that are tailored for a composable and pre-
dictable Time Division Multiplexing (TDM)-based execution platform. The platform allows for independent
execution of multiple applications. Using the precise timing knowledge of the platform execution, we accu-
rately characterise the execution of the control application (i.e., sensing, computing, and actuating operations)
to design efficient feedback controllers with high control performance in terms of settling time. The design
flows are derived for Single-Rate (SR) and Multi-Rate (MR) sampling schemes. We show the applicability of
the design flows based on two design considerations and their trade-off: control performance and resource
utilisation. The design flows are validated by means of MATLAB and Hardware-in-the-Loop (HIL) experi-
ments for a motion control application.

CCS Concepts: • Computer systems organization → Embedded software; Real-time systems; • Com-

puting methodologies → Simulation types and techniques;

Additional Key Words and Phrases: Embedded control systems, switched linear systems, TDM execution
platforms, multi rate systems, Linear Quadratic Regulator (LQR)

ACM Reference format:

Juan Valencia, Dip Goswami, and Kees Goossens. 2019. Comparing Platform-aware Control Design Flows for
Composable and Predictable TDM-based Execution Platforms. ACM Trans. Des. Autom. Electron. Syst. 24, 3,
Article 32 (March 2019), 26 pages.
https://doi.org/10.1145/3315572

1 INTRODUCTION

Feedback control applications are used in a wide range of applications developed for cost-sensitive
industries that include industrial automation, consumer applications, automotive, avionics, and
many others. A great number of these applications demand high performance, low cost, and a
short time to market. Their control task is implemented by three sequential and repetitive opera-
tions: sense or measure data from the system under control (plant), compute the actuation signals,
and apply the actuation signals to the plant such that its behaviour is regulated. In many real-life

The authors acknowledge EU Grants. No. CATRENE CT217 RESIST, No. ECSEL 692455-2 ENABLE-S3, No. 737422 SCOTT,
and No. 737453 I-MECH, and NL Grant No. STW ZERO.
Authors’ address: J. Valencia, D. Goswami, and K. Goossens, Eindhoven University of Technology, Postbus 513, Eindhoven,
NB, 5600 MB, The Netherlands; emails: {j.valencia, d.goswami, k.g.w.goossens}@tue.nl.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1084-4309/2019/03-ART32 $15.00
https://doi.org/10.1145/3315572

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

https://doi.org/10.1145/3315572
mailto:permissions@acm.org
https://doi.org/10.1145/3315572

32:2 J. Valencia et al.

scenarios, the controllers are implemented onto embedded platforms with severe resource con-
straints (e.g., on computation and communication).

The current practice is to dedicate an embedded platform for each application to avoid sharing
resources. This guarantees interference-free execution of applications, which is essential to achieve
a high performance and reduce Time to Market (TTM). Without resource sharing, such design
solutions often lead to expensive implementations due to high cost of hardware.

Bringing multiple applications within a single embedded platform is a potential solution for
such expensive implementation, but it poses several challenges. The most notable among them is
to deal with inter-application interferences. Common approaches to tackle this challenge include
the use of multi-core embedded platforms, where each core of the platform is allocated to a single
application. However, other shared resources, such as cache memories and interconnections, lead
to interference between applications (Subramanian et al. 2015). An alternative approach is to par-

tition (or virtualize) resources in both time (e.g., scheduling) and space (e.g., memory regions) such
that all interference between applications due to resource sharing is avoided, and the development
and integration of multiple applications in the platform is eased and sped up.

Implementing precise Time Division Multiplexing (TDM) policies onto the embedded platform
execution is one technique to partition shared resources. One such example is the Composable
and Predictable System on Chip (CompSOC) embedded platform (Goossens et al. 2017). This plat-
form uses the Composable and Predictable Microkernel (CoMik), which cycle-accurately parti-
tions the processor execution in fixed duration slots (Nelson et al. 2014). In each of these slots, an
application executes without any interference from other applications. We consider TDM-based
execution platforms, such as CompSOC, as the implementation platform for the feedback control
applications.

Generally, the feedback control applications are required to guarantee stability and provide a
required performance. However, complying with requirements and enhancing performance do
not only depend on meeting timing deadlines, as is commonly regarded in real-time applications,
but, as we will see, it also depends on richer timing characteristics that are derived from both the
platform and the application executions.

Platform-aware model-based design of control systems has been reported to improve the control
application performance (Morelli and Natale 2014). That is, the knowledge of the precise execution
time information can explicitly be considered in the design of the controller to achieve a higher
performance, as well as to meet the design constraints. In this work, we present feedback control
design flows for efficient deployment of controllers onto composable and predictable platforms.
As a study case, we exploited the CompSOC platform timing mechanisms to use equidistant and
non-equidistant sampling intervals in the controller design.

Contributions: The contributions of this article are detailed as follows:

• Single-rate (SR) design flow: Platform configured with equidistant sampling. This con-
troller design has been adapted from Valencia et al. (2015) by replacing the pole-placement
design with an Linear Quadratic Regulator (LQR) controller (Åström and Murray 2008). We
use the settling time as the control performance metric. Thus, the LQR is tuned to optimise
the performance. We use Particle Swarm Optimization (PSO) for the LQR tuning (Medina
et al. 2017). We show that the SR design flow is suitable when the demand for the perfor-
mance is relatively low (i.e., a longer settling time is acceptable). Better performance can be
achieved with a higher resource utilisation.

• Multi-rate Local Optimal (MRLO) design flow: Platform configured to obtain a finite
sequence of periodic and non-equidistant sampling intervals. We further identify the most
frequently occurring sampling interval (nominal sampling interval) in the sequence. We

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:3

optimise the controller design for the nominal sampling interval. We adapted this design
from Valencia et al. (2015) by replacing the pole-placement controller with an LQR con-
troller accompanied with the PSO tuning technique. We ensure the overall switching sta-
bility between the non-equidistant sampling intervals by using a Lyapunov-based Linear
Matrix Inequality (LMI) stability condition. We show that the MRLO design flow is suitable
when the performance demand is also high (i.e., a short settling time is required). Better
performance can be achieved with a higher resource utilisation.

• Multi-rate Global Optimal (MRGO) design flow: Platform configured to obtain a finite
sequence of periodic and non-equidistant sampling intervals. The controller is designed by
using a time-lifted formulation of the overall system (i.e., augmented system that results
from the non-equidistant sampling intervals) such that it is transformed into a classic LQR
design problem. We adapted this design from Valencia et al. (2016) by adding a continuous-
time (CT) LQR heuristic technique. We show that the MRGO design flow is suitable when
the performance demand is high, and a higher resource utilisation is acceptable. Better per-
formance can be achieved with a higher resource utilisation.

• Experimental study case: A fourth-order motion control system plant has been consid-
ered to study the design flows. This plant is mainly composed of a mechanical setup where
the two masses are connected to each other by a flexible bar, and a motor is directly con-
nected to one of the masses. Such type of plant represents the characteristics of a wide range
of industrial settings (e.g., automotive, avionics, biomedical devices).

• Hardware-in-the-Loop (HIL) experiments: We present a HIL experiment on the Comp-
SOC platform. In this simulation, the controllers (i.e., derived from the SR, MRLO, and
MRGO design-flows) are implemented on a processor where applications run under a TDM
scheduling scheme. On a separate processor, the CT plant dynamics are emulated by run-
ning the discrete-time (DT) plant dynamics at a high sampling frequency.

• Validation: The design flows are validated with MATLAB and HIL experiments. In both
experiments, the settling time is evaluated for different amount of resources that are as-
signed to the control application. The comparison shows the feasibility of implementing
the proposed design flows onto an embedded platform to control a real plant.

• Design guidelines: We provide design guidelines that explain how to select and config-
ure the best design flow depending on the design considerations, namely settling time and
resource utilisation.

The remainder of the article is organised as follows. In Section 2, we present the related work
from which we have taken many inspiring ideas. The composable and predictable TDM-based
execution platform used in our work is presented in Section 3. The control application and the
characterisation of its timing properties are described in Section 4. In Section 5, we describe the
SR design flow, followed by the Multi-Rate (MR) design flows in Sections 6 and 7. In Section 8,
we present the experimental study, where we give details about the motion control study case, the
MATLAB and HIL experiments, the trade-off analysis between performance and resources allo-
cated to the application, the impact of the platform settings reconfigurations on the performance,
and the suggested design design guidelines. We finally draw conclusions in Section 9.

2 RELATED WORK

This work deals with the efficient implementation of feedback control applications on embed-
ded platforms. For decades, the development of embedded control applications has been based
on the separation of concerns principle between theoretical control and embedded systems disci-
plines (Årzén and Cervin 2005). The former is focused on control design with equidistant sampling

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:4 J. Valencia et al.

intervals with hard execution deadlines. The latter is focused on developing scheduling mecha-
nisms and computational models such that control applications meet these timing requirements
during runtime. This design philosophy led to simpler control system models that often restrict
control performance and stringent execution models with significant resource over-dimensioning.
In contrast, a huge body of work has been reported on the platform-aware design philosophy
where the emphasis is on co-design of control strategies and platform configurations (Cervin et al.
2003; Chang et al. 2017; Samii et al. 2009; Valencia et al. 2016; Wolf 2009). The idea is to take into
account properties of platform resources in the control design and thereby improve the control
performance.

The literature on platform-aware control design can broadly be classified based on the resource
category, namely, computation (Aminifar et al. 2015, 2016; Biondi et al. 2018; Cervin et al. 2003,
2011; Goswami et al. 2013; Medina et al. 2017; Samii et al. 2009; Schneider et al. 2013), communi-
cation (Bauer et al. 2014; Deng et al. 2016; Goswami et al. 2014; Roy et al. 2016), memory (Chang
et al. 2017), and power (Chang et al. 2014).

The key considerations of computation-aware control design methods are the trade-off analy-
sis between resource usage and control performance, efficient implementation and performance
optimisation. A trade-off analysis between the number of processing units used for the control ap-
plication and the performance is presented in Medina et al. (2017) for data intensive control loops.
Integrated communication and computation (priority-based) scheduling for distributed control is
solved by constraint logic programming formulation in Samii et al. (2009). The works in Aminifar
et al. (2015) and Cervin et al. (2003) present analysis frameworks to analyse the effect of execution
jitter on control performance. To this end, the sampling interval and delay play crucial role both
in control performance and scheduling. They are often used as an interface between the control
and embedded systems design paradigms. The optimal sampling interval is found with respect to
the control performance in Cervin et al. (2011) and Goswami et al. (2013) and similarly, the delay
is optimised in Schneider et al. (2013). Aminifar et al. (2016) present a response time analysis with
self- and event-triggered execution of control applications. Similarly, Biondi et al. (2018) present
response time analysis for controllers running under variable sampling intervals such as an engine
control system.

Along the direction of communication-aware control design, there has been emphasis on con-
trol/schedule co-design considering industrial bus systems such as FlexRay (Goswami et al. 2014;
Roy et al. 2016), CAN (Deng et al. 2016), as well as wireless networks (Bauer et al. 2014). The key
consideration is optimisation and analysis of the control performance taking account the band-
width restrictions, scheduling policy, and uncertainty of the communication systems in distributed
implementations. Co-optimisation considering memory-mapping of control applications has been
reported recently in Chang et al. (2017). In the context of electric vehicle, the power consumption
by the controller becomes a crucial design parameter and hence, optimised for a longer battery
life and control performance in Chang et al. (2014).

Overall, many state-of-the-art strategies offer synthesis frameworks to schedule and map ap-
plications onto a targeted embedded platform taking into account computation, communication,
memory, and power resources. Our approach differs in a number of aspects and takes inspiration
from many works (see Table 1). First, we deal primarily with feedback control applications
implemented onto a composable and predictable platform that allows for resource sharing
between applications (e.g., CompSOC platform (Goossens et al. 2017)). This platform uses a TDM
scheduling protocol that virtualises the resources that are assigned to applications into time
partitions where applications execute. This virtualisation enables independent development and
execution of applications, simplifying the mapping and scheduling of the applications to time
partitions per application (Çela et al. 2014), unlike works that must include the scheduling of

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:5

Table 1. Comparison with State-of-the-art Works

Work Scheduling
Performance
Evaluation Sampling Trade-off

Design
Flow Experiments

(Arzen et al. 2000)
- rate monotonic
- earliest deadline
first

- error between
reference and
measured output

- SR
- performance vs.
resource utilisation

no - not specified

(Aminifar et al. 2012)
- static-cyclic
- priority-based

- expected control
performance
- worst-case
control
performance

- SR
- runtime vs. # of
applications

yes - MATLAB

(Schneider et al.
2013)

- fixed-priority
preemptive
scheduling

- stability margin - SR

- schedulability vs.
performance
- performance vs.
utilisation

partial
- Co-sim.
framework

(Goswami et al. 2012) - time-triggered
- quadratic cost
function

- SR

- performance vs.
delay
- performance vs.
execution load

yes
- ILP-based
optimisation
- MATLAB

(Chang et al. 2018)
- fixed-priority
preemptive
scheduling

- settling time - MR - not specified no - INCHRON

our work - TDM-based - settling time
- SR
- MR

- performance vs.
utilisation
- performance vs.
platform settings

yes
- MATLAB
- HIL

applications in their designs (Aminifar et al. 2012; Arzen et al. 2000; Chang et al. 2018; Goswami
et al. 2012; Schneider et al. 2013). The time-triggered behaviour of the virtualisation mechanism
brings resource utilisation limitations for classical control approaches that are based on equidis-
tant sampling intervals (Aminifar et al. 2012; Arzen et al. 2000; Åström and Wittenmark 1990;
Cervin et al. 2003; Goswami et al. 2012; Schneider et al. 2013). In contrast, we exploit frequent
execution of the control application within its assigned partitions to increase the sampling
frequency and potentially the control performance, at the cost of dealing with non-equidistant
sampling intervals, similar to works (Chang et al. 2018; van Zundert and Oomen 2018). We present
different control laws (i.e., LQR, LMI-based), and we investigate their stability and optimisation
(e.g., PSO-based LQR tuning). We show how the design flows can be used to integrate manual and
automated procedures for each control strategy. We use MATLAB and HIL experiments to validate
our design-flows (MathWorks 2018). As seen in Table 1, many works focus on timing analysis
experimentation, whereas in our work we propose a HIL framework to verify the feasibility of
implementing our control designs in a real platform. We draw the design guidelines that are
based on the tradeoffs that we have explored on the resources assigned to the applications, their
performance, and the impact of the platform settings to the aforementioned design constraints.

In summary, our work is based on the TDM scheduling scheme that simplifies timing analysis of
the applications, provides time-based performance metrics that allows to have real estimation of
the effectiveness of our designs, allows for equidistant and non-equidistant sampling schemes to
exploit performance, presents tradeoffs explorations to help the design flow selection, and presents
HIL experiments to validate the implementation of our designs in a real embedded platform.

3 COMPOSABLE AND PREDICTABLE TDM-BASED EXECUTION PLATFORM

The CompSOC platform is configurable with processing units (processor tiles), interconnect Net-
work on Chip (NoC), and memory units (memory tiles) (Goossens et al. 2017). An example archi-
tecture is shown in Figure 1. The processor tile is composed of a MicroBlaze soft-core processor,

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:6 J. Valencia et al.

Fig. 1. Left: example of a TDM-based execution platform. Right: example for N = 4, with applications λC

and λ2 (where λC is the control application). The black blocks indicate the CoMik slots, while the blue and

white blocks indicate the application slots for applications λC and λ2, respectively. The TDM frame repeats

infinitely. The numbers below the TDM frame denote the slots, which are indexed from 0 to 3.

instruction and data memory, and Direct Memory Access (DMA). The memory tile contains the
Static Random-Access Memory (SRAM) memory interface, and the NoC provides the interconnec-
tions between the tiles. Resources are shared between applications with composable TDM arbiters,
which means that the time slots allocated to each application are strictly periodic in time and of
fixed duration with precision of a single clock cycle. This mechanism is used to partition the re-
sources, such that the applications are loaded and run without affecting or being affected by other
applications by even a single clock cycle. This makes it possible to implement a controller and
emulate plant dynamics independently of other applications.

The CoMik micro-kernel partitions each processor execution in a TDM frame of size N slots,
where each slot is composed of an application slot (i.e., where applications execute) of fixed du-
rationψ seconds and a CoMik slot (i.e., where the microkernel switches applications) of duration
ω seconds. Thus, during runtime, each application is executed in its allocated slots and it is sus-
pended every time a new CoMik slot starts. Its execution is only resumed in the next application
slot assigned to it. This execution scheme is illustrated on the top-right side of Figure 1. Two ap-
plications λC and λ2 execute independently of each other within their allocated blue and white
application slots, respectively.

4 EMBEDDED CONTROL SYSTEMS

Control applications regulate the dynamical behaviour of the plant. We deal with a common class
of dynamical systems that are modelled as a CT Linear Time-Invariant (LTI) system,

ẋ (t) = Acx (t) + Bcu (t), (1)

y (t) = Ccx (t), (2)

where x (t) ∈ Rn is the state of the plant, Ac ∈ Rn×n , Bc ∈ Rn×m ,Cc ∈ Rn are the state, input, and
output matrices, respectively.y (t) ∈ R1 is the output of the plant.u (t) ∈ Rm is the actuation signal

(i.e., signal used by the actuators to be applied to the plant) that is computed by the control law.

4.1 Embedded Execution

A control task is the sequence of sensing (reading of sensors), computing (computation of actuation
signals), and actuating (writing to actuators) operations. The execution of these operations de-
fines the control task execution time and the sampling interval, which are essential control design
parameters.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:7

Fig. 2. Timing diagram of the control application.

• Control task execution time T : The control task does not execute instantaneously.
Each of its operations has a finite execution time and the communication in the sensor-to-

computing, computing-to-actuating, and actuating-to-plant paths has also finite execution
time. This results in an execution that begins with the sensing operation and terminates at
the end of the actuating operation, and it is denoted by T .

• Sampling interval Sk : The sampling interval is defined as the time between two consecu-
tive sensing operations at samples k and k + 1 and it is described by Sk = tk+1 − tk , where
k ∈ N≥1. For the implementation, we make sure that the sampling interval is longer than
the control task execution time T , i.e., Sk > T .

These concepts are illustrated in Figure 2. In this work, we limit the scope to the delay resulting
from the control task computation, since all the operations (i.e., sensing-computing-actuating)
are performed within the embedded platform. Our methods can further be generalised to include
the delay resulting from the communication between actuators-plant-sensors encountered in a
distributed system.

4.2 Plant Discretisation

The plant dynamics, described in Equation (1), are sampled at DT instances tk with sample in-
dex k ∈ N≥1. Thus, the state of the plant can be described in DT as xk = x (tk). Additionally, the
actuation signal is updated under a Zero-Order Hold (ZOH) actuating scheme as u (t) = uk for
t ∈ [tk +T , tk+1 +T). The DT system dynamics (with time delay) can be represented by Åström
and Wittenmark (1990),

xk+1 = σxk + βuk + γuk−1, (3)

with

σ = Φ(Sk), β = Γ3 (Sk), γ = Γ2 (Sk),

where

Φ(τ) = eAC τ , Γ1 (τ) =

∫ τ

0
Φ(s)dsBC , Γ2 (τ) = Φ(τ −T)Γ1 (T), Γ3 (τ) = Γ1 (τ −T).

We define the augmented system state

zk = [xk uk−1]
′
, (4)

obtaining the augmented higher-order system that can be written in a DT form,

zk+1 = Âzk + B̂uk =

[
σ γ
0 0

]
zk +

[
β
I

]
uk , (5)

yk = Ĉzk = [Cc 0]zk , (6)

where I and 0 are the identity and zero matrices, respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:8 J. Valencia et al.

4.3 Control Performance

The objective of the feedback control application is to control the continuous-time system de-
scribed in Equation (1) such that the output y (t) → r as t → ∞, where r is the constant input
reference signal. The time it takes for the system output y (t) to reach and stay in a close region
(≤2%) around the reference value r is the settling time.

In this work, the control performance is measured in terms of the settling time achieved by a
controller, and we define the Quality of Control (QoC) as the inverse of the settling time as follows

QoC =
1

settling time
, (7)

where a shorter settling time leads to a higher QoC. Note that the presented design flows are not re-
stricted to any performance metric and they can be used considering other performance metrics. In
Section 8.4, we will consider settling time (i.e.,QoC = 1/settling time) and Integral Time-Weighted
Absolute Error (ITAE) (i.e.,QoC = 1/

∑
tk |yk − r |) metrics. However, since settling time has direct

implications on the real-time system behavior, we mainly focus on the results based on the settling
time.

4.4 Resource Allocation and Utilisation

Consider a TDM frame of size N slots, where the total TDM frame duration is given by N (ψ + ω)
seconds.

• Resource allocation: The periodic execution of the control application λC requires evenly
distributed allocated slots for an equidistant sampling. Considering the TDM frame of N
slots, they can be numbered as {0, 1, 2, . . . ,N − 1}. Thus, the resource allocation for λC is
given by a sequence A(λC) = (a1,a2, . . . ,aM), where ai ∈ {0, 1, 2, . . . ,N − 1}. The number
of slots allocated to λC is denoted by M = |A(λC) | with M ≤ N . M = 1 implies that only
one slot is allocated to λC and the allocation is periodic with period of N slots. For the cases
with M > 1, to ensure even distribution of slots, the following conditions are imposed,1

ai+1 > ai ∀ai ∈ A(λC), (8)

aM − aM−1 = aM−1 − aM−2 = · · · = a2 − a1 = a1 + N − aM , (9)

mod(N ,a2 − a1) = 0, (10)

where Equation (8) is given to define the order of the slot allocation, such that each slot
allocation ai is followed by a slot allocated in the future ai+1, and not otherwise. Equation (9)
conditions the slots allocation to have a period aM − aM−1 = aM−1 − aM−2 = · · · = a2 − a1.
Also, the expression a1 + N − aM considers the period from the last allocated slot aM and
the first allocated slot a1 of the following TDM frame. Finally, the condition in Equation (10)
is given to guarantee that N is a multiple integer of the separation between two consecutive
allocated slots within the TDM frame and therefore to achieve periodic allocation.

• Resource utilisation: Utilisation is referred as the resource the control task of a control
application λC uses as a fraction of the total TDM frame. This is given by

U (λC) = M
ET

N (ψ + ω)
100%, (11)

where E is the number of executions of the control task within ψ . E = 1 for SR sampling

(detailed in Section 5.1) and E = 	ψ

T

 for MR sampling (detailed in Sections 5.1 and 6.1).

1mod denotes the modulo operator.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:9

Fig. 3. Resource allocation examples for application λC , using a TDM frame with N = 4 slots. Top (a, b, c, d):

evenly distributed application slots. Bottom (e): unevenly distributed application slots—this allocation is not

allowed in the remainder of the article.

Note that λC execution is not interrupted within ψ . λC is designed such that within ψ the
control task runs once or multiple times with execution time T .

In Figure 3, we show examples of resource allocation and utilisation for N = 4. Within the white
slots any application may run (e.g., multimedia application), but we focus on the blue slots where
λC executes. In the top of the figure, we present examples of evenly distributed slots. Whereas
at the bottom of the figure, we present an example of unevenly distributed slots. We detail these
examples (labeled from (a) to (e)) as follows:

• In (a), when all the slots are usedA(λC) = {0, 1, 2, 3}, M = 4, and the control task runs twice
withinψ , the resource utilisation U (λC) = 4 2T

ψ+ω
100%.

• In (b) and (c), for allocationsA(λC) = {0, 2} andA(λC) = {1, 3}, M = 2, and when the control
task runs three times withinψ , the resource utilisation U (λC) = 2 3T

ψ+ω
100%.

• Alternatively, in (d) a single slot can be allocated to λC with M = 1, and when the control
task runs only once withinψ , U (λC) = T

ψ+ω
100%.

• In (e), we present an example of unevenly distributed slots allocated to λC , where A(λC) =
{0, 1}, M = 2, and the control task runs twice within ψ . From Equations (8)–(10), note that
the first and third conditions are met, meaning that the number of slots are correct. However,
the second condition is violated with a2 − a1 � a1 + N − a2, and the periodicity is violated
by not allocating evenly distributed slots.

4.5 Platform-awareness and Its Constraints

We consider the TDM-based execution scheme in the CompSOC platform illustrated in Figure 1,
and the control task execution described in Section 4.1 and illustrated in Figure 2. These executions
give us the precise timing information that can be used in the design of the controller. This is what
we refer to as platform-awareness and to compare the SR and MR design flows presented in this
article, we have constrained the platform-awareness with the following conditions:

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:10 J. Valencia et al.

• The number of slots allocated to λC is constrained by the conditions in Equations (8)–
(10). Such an allocation allows us to directly compare the three design flows, because it
allows both SR and MR sampling. It is important to notice that the allocation of slots for
MR controllers is not limited to evenly distributed slots but also contiguous and unevenly
distributed allocation of slots can be used, as presented in Valencia et al. (2016), where con-
tiguous allocation led to a higher QoC.

• The control task of λC always starts running at the beginning of the allocated application
slots and its operations (i.e., sensing, computing, actuating) execution do not spread across
multiple slots.

• Given λC , its control task runs E = 1 time for the SR design flow and E = 	ψ

T

 times for the

MR design flows within each of its allocated application slots. To that end, we configure

ψ ≥ 	ψ

T

T .

5 SINGLE-RATE DESIGN FLOW

In this section, we present the platform-aware design flow for feedback controllers whose execu-
tion is based on a SR sampling scheme.

5.1 Single Rate Sampling

A SR sampling (equidistant sampling interval) scheme for λC is achieved by customising the plat-
form such that it meets the constraints defined in Section 4.5. Recall that for this type of sampling
the control task runs only once withinψ . Thus, the single rate sampling interval for λC with allo-
cation A(λC), and a TDM frame with N , M ,ψ , and ω is given by

hSR =
N

M
(ψ + ω). (12)

Let us consider an example where the TDM frame is composed of N = 4 slots, and allocation
with M = 2 slots to λC (depicted in Figure 4). The SR sampling interval is hSR = 2(ψ + ω) seconds.
At kth sample, the sampling interval is given by Sk = h

SR .

5.2 Control Design

The design of the SR controller can be done with a classical model-based control methodology
(Kuo 1992), e.g., pole-placement or LQR.

Control law: The control law in this design design flow is updated with a sampling interval
hSR and it is of the form

uk = Kzk + Fr when Sk = h
SR , (13)

where K and F are the feedback and feedforward controllers, zk is defined as per Equation (4), and
r is the constant input reference signal.

Closed-loop system dynamics: Given the control law in Equation (13), the closed-loop system
dynamics are obtained by using the DT augmented higher-order system from Equation (5) as

zk+1 = (Â + B̂K)zk + B̂Fr . (14)

Feedback control gain K : The feedback gain K is designed using the LQR methodology that
minimises the DT cost function

J =
∞∑

k=1

(z ′kQ̂zk + u
′
k R̂uk), (15)

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:11

Fig. 4. SR platform-aware sampling scheme for λC with allocation A(λC) = {0, 2}.

Fig. 5. SR design flow. The control design is highlighted within the dashed box.

with Q̂ � 0 and R̂ � 0, the DT state and control weighting matrices of the LQR2. Having large Q̂
compared to R̂ puts emphasis on making the state small possibly at the cost of large actuation
signals but potentially leading to a short settling time. By increasing R̂, large actuation signals are
penalised, typically leading to a slower response. To minimise the settling time and maximise the
QoC as per Equation (7) an LQR tuning is used to find the values of Q̂ and R̂. In this work, the
PSO algorithm of Medina et al. (2017) has been used. This algorithm explores the tuning of the Q̂
and R̂ matrices as a parallel problem. It defines a swarm population composed of a finite number
of individuals (i.e., random values that set the contents of the Q̂ and R̂ matrices). Each individual
moves according to a velocity that is determined in every iteration by a random component, a
personal best position of each individual, and a global best position of the swarm. Thus, in each
iteration the feedback control gain K is designed and the QoC of the controller is evaluated.

Feedforward control gain F : The feedforward gain F is computed, for the closed-loop dynamic
described in Equation (14), by following the design in Hellerstein et al. (2004).

5.3 Design Flow

We propose the design flow shown in Figure 5,3 which is composed of seven parts. (i) λC require-
ment on QoC andT shape the resource utilisationU (λC). (ii) The platform settings (Section 3) and
the resource allocation (Section 4.5) can be derived from the targeted resource utilisation. (iii) From

2The inequality (ϑ � 0) ϑ � 0 means that the matrix ϑ is symmetric and positive (semi-)definite.
3Note that there are manual and automated parts in all the design flows of this article. Manual parts that involve reallocation

and reconfiguration comprise a new resource utilisation. Automated parts belong to one simulation program.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:12 J. Valencia et al.

there, the SR sampling interval is computed (Section 5.1). (iv) The feedback control gain K is com-
puted by using the PSO (Section 5.2). (v) The static feedforward control gain F is computed. (vi) The
requirement on QoC is evaluated and if it is met, the design flow ends. (vii) If the QoC requirement
is not met, then the feasibility of varying the resource utilisationU (λC) is verified. If the resource
utilisation can be modified, then one can either reallocate more slots to the application (i.e., increas-
ing M as long it is M < (N − # of other applications running in the platform)) or change platform
settings (i.e.,ψ , ω, N), to derive new timings for the execution of λC (e.g., sampling interval hSR).
Otherwise, if the resource utilisation cannot be modified, then no feasible solution can be found
with this design flow on this platform.

Example 5.1. Considering the configuration ω = 40.96μs, ψ = 2.95904ms, N = 10, M = 10, and
T = 0.99ms. U (λC) = 33% with sampling interval hSR = 3 ms leading to a QoC = 66.67 [1/s].

6 MULTI-RATE LOCAL OPTIMAL DESIGN FLOW

In this section, we present the platform-aware design flow for feedback controllers whose exe-
cution is based on a MR sampling scheme and their performance is optimised for their nominal
sampling interval.

6.1 MR Sampling

A MR sampling (finite and periodic sequence of non-equidistant sampling intervals) scheme for λC

is achieved by customising the platform such that it meets the constraints defined in Section 4.5.

Recall that for this type of sampling the control task runs 	ψ

T

 times withinψ . For a given slot al-

location within a TDM frame, λC executes according to a finite and periodic sequence of sampling

intervals hMR
j where j ∈ {1, 2}. The sampling interval hMR

1 occurs 	ψ

T

 − 1 times within each ψ ,

whereas hMR
2 occurs only once between two consecutive allocated ψ . The duration of both sam-

pling intervals is given by

hMR
1 ≥ T , (16)

hMR
2 = hMR

1 + ��ψ −
⎢⎢⎢⎢⎢⎣ ψ

hMR
1

⎥⎥⎥⎥⎥⎦ hMR
1

� +
(N
M
− 1
)
ψ +

N

M
ω, (17)

where the variation ofT is very small (i.e., due to the interference-free characteristics of the Comp-
SOC platform) andT ≤ hMR

1 < ψ . hMR
2 is equal to the summation of the last hMR

1 sampling interval

withinψ , the remaining time withinψ that is given byψ − 	 ψ

hM R
1

hMR

1 , and the time between two

consecutive allocated application slots that is given by (N
M
− 1)ψ + N

M
ω.

In Figure 6, we illustrate the MR sampling with an example where N = 4, M = 2, and A(λC) =

{0, 2}. Within each ψ , the control task runs 	ψ

T

 = 3 times. hMR

1 ≥ T and hMR
2 = hMR

1 + (ψ −
3hMR

1) +ψ + 2ω. hMR
1 is the nominal sampling interval, since it occurs more frequently, whereas is

hMR
2 is the longer and less frequently occurring sampling interval. At the kth sample, the sampling

interval is given by Sk = h
MR , where hMR ∈ {hMR

1 ,h
MR
2 }.

6.2 Control Design

The design of the MRLO controller exploits the frequent runs of the control task within ψ to
achieve a high performance. Essentially, we optimise the performance of an independent controller
designed for the nominal sampling interval hMR

1 using the SR design flow detailed in Section 5. To
guarantee that the system is stable during runtime, when the system runs between the periodically
non-equidistant sampling intervals, we use a Lyapunov-based design that includes the controller
designed for hMR

1 to obtain the controller for the sampling interval hMR
2 .

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:13

Fig. 6. MR platform-aware sampling scheme for λC withA(λC) = {0, 2}. The sampling intervals arehMR
1 and

hMR
2 . For MRLO: The periodic sequence of non-equidistant sampling intervals along one TDM frame is given

by (hMR
1 ,hMR

1 ,hMR
2 ,hMR

1 ,hMR
1 ,hMR

2). For MRGO Section 7.1: The periodic sequence of non-equidistant sam-

pling intervals is given by H = (hMR
1 ,hMR

1 ,hMR
2 ,hMR

1 ,hMR
1 ,hMR

2).

Control law: The control law changes with the sampling intervalshMR
1 and hMR

2 , and it is given
by

uj = Kjzk + Fjr when Sk = h
MR
j . (18)

Closed-loop system dynamics: The closed-loop dynamics depend on the sampling intervals
and the control law. It is obtained using the DT augmented higher-order system dynamics in
Equation (5). With sampling interval hMR

j and the control law in Equation (18), the closed-loop
dynamics is given by

zk+1 = (Âj + B̂jKj)zk + B̂jFjr , (19)

where Âj and B̂j are the DT augmented system matrices for the sampling interval hMR
j .

Switching behaviour: The sampling intervals switch between hMR
1 and hMR

2 . Thus, the closed-

loop dynamics switch between the two systems (Â1 + B̂1K1)zk + B̂1F1r and (Â2 + B̂2K2)zk + B̂2F2r
according to the order of the periodic sequence of non-equidistant sampling intervals. Stability of
this switched system is governed by the feedback gains K1 and K2. Note that the feedforward
gains do not influence the stability of the overall system. Therefore, for the stability analysis, we
consider the system matrices, α1 = Â1 + B̂1K1 and α2 = Â2 + B̂2K2. For the example in Figure 6,
the switching sequence is given by α1 → α1 → α2 · · · .

Nominal sampling interval: The focus of this controller design flow is to optimise the con-
troller QoC by locally optimising the performance of the control gain that is designed for the

nominal sampling interval. It is important to configureψ ≥ 	ψ

T

T , such that the control task runs

multiple times withinψ as depicted with the example in Figure 6, whereψ ≥ 3T leading to a nom-

inal sampling interval hMR
1 that is repeated 	ψ

T

 − 1 = 2 times withinψ .

Nominal feedback control gain K1: The nominal feedback control gain K1 is computed for
the nominal sampling interval hMR

1 , following the methodology described in Section 5.2.
Switching feedback control gain K2: To guarantee the stability of the overall system under

the switching behaviour explained above, we perform the DT Lyapunov stability test to find a
Common Quadratic Lyapunov Function (CQLF) P ∈ Rn×n , such that the LMIs P � 0, α ′1Pα1 − P ≺
0, and α ′2Pα2 − P ≺ 0 are feasible. With these LMIs, we evaluate the stability of the system as well
as compute the switching feedback control gain K2 using the following procedure. First, by using
α1 and α2 on the LMIs, we solve for K2. However, this leads to non-linear matrix inequalities (i.e.,
leads to a term where K2 is multiplied by P). To solve this, we rewrite the LMIs by using the Schur

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:14 J. Valencia et al.

Fig. 7. MRLO design flow. The control design is highlighted within the dashed box.

complement (Crabtree and Haynsworth 1969) as follows:⎡⎢⎢⎢⎢⎣
−P (Â1 + B̂1K1)′

(Â1 + B̂1K1) −P−1

⎤⎥⎥⎥⎥⎦ ≺ 0,
⎡⎢⎢⎢⎢⎣

−P (Â2 + B̂2K2)′

(Â2 + B̂2K2) −P−1

⎤⎥⎥⎥⎥⎦ ≺ 0. (20)

To resolve the above non-linearity, we use a variable substitution by defining Y = P−1, where
Y ∈ Rn×n , and we pre- and post-multiply by the linearisation operator diag(Y , I) to obtain4⎡⎢⎢⎢⎢⎣

−Y Y (Â1 + B̂1K1)′

(Â1 + B̂1K1)Y −Y

⎤⎥⎥⎥⎥⎦ ≺ 0,
⎡⎢⎢⎢⎢⎣

−Y YÂ′2 + YK
′
2B̂
′
2

Â2Y + B̂2K2Y −Y

⎤⎥⎥⎥⎥⎦ ≺ 0. (21)

Finally, we define

K2 =WY−1, (22)

whereW ∈ Rn . Thus, the LMIs are reformulated as⎡⎢⎢⎢⎢⎣
−Y Y (Â1 + B̂1K1)′

(Â1 + B̂1K1)Y −Y

⎤⎥⎥⎥⎥⎦ ≺ 0,
⎡⎢⎢⎢⎢⎣

−Y YÂ′2 +W
′B̂′2

Â2Y + B̂2W −Y

⎤⎥⎥⎥⎥⎦ ≺ 0, (23)

and if there exist matrices Y andW , the system is stable with the switching between the systems
α1, and α2, and K2 is given by Equation (22).

Feedforward control gains F1 and F2: The feedforward gains F1 and F2 are computed for the
closed-loop dynamics α1 and α2 following the design in Hellerstein et al. (2004).

6.3 Design Flow

We propose the design flow shown in Figure 7, which is composed of ten parts. (i) λC requirement
on QoC and T shape the resource utilisation U (λC). (ii) The platform settings (Section 3) and the
resource allocation (Section 4.5) can be derived from the targeted resource utilisation. (iii) From
there, the MR sampling intervals are computed (Section 6.1). (iv) If it is feasible to design the

4diag(a,b, . . .) operator returns a diagonal matrix with the elements of the matrices a, b, . . . are placed on the main diagonal.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:15

feedback control gain K1, then the design flow continues to part (v) or it goes to part (ii) otherwise
(i.e., a different resource utilisation is selected to vary the nominal sampling interval). (v) The feed-
back control gainK1 is computed by using the PSO (Section 5.2). (vi) Later, we evaluate the feasibil-
ity of the LMIs to guarantee stability usingK1 as per Equation (23). If the solution is infeasible, then
it is necessary to modify the resource utilisation. That is, reallocate resources or change platform
settings to derive new timings for λC . (vii) If the solution is feasible, then the feedback control gain
K2 is computed as per Equation (22). (viii) The static feedforward control gains F1 and F2, are com-
puted. (ix) The requirement on QoC is evaluated and if it is met, the design flow ends. (x) If the QoC
requirement is not met, then the feasibility of varying the resource utilisationU (λC) is verified. If
the resource utilisation can be modified, then one can either reallocate more slots to the applica-
tion (i.e., increasing M as long it is M < (N − # of other applications running in the platform)) or
change platform settings (i.e.,ψ ,ω, N), to derive new timings for the execution of λC (e.g., sampling
interval hMR

1 and hMR
2). Otherwise, if the resource utilisation cannot bet modified, no solution can

be found with this design flow on this platform.
Unlike the SR design flow in Section 5.3, the control gains K1 and K2 cannot be freely designed.

Since K1 is optimised for performance, this might be an aggressive control gain that might lead to
an infeasible solution to compute K2.

Example 6.1. Considering the same configuration of Example 5.1: ω = 40.96μs,ψ = 2.95904ms,
N = 10, M = 10, and T = 0.99ms. U (λC) = 66% with sampling intervals hMR

1 = 1 ms and hMR
2 =

2ms leading to QoC = 142.86[1/s].

7 MULTI-RATE GLOBAL OPTIMAL DESIGN FLOW

In this section, we present the platform-aware design flow for feedback controllers whose ex-
ecution is based on MR sampling. Their design offers a stabilising solution that transforms the
switching MR system to a classic LQR control design problem, where heuristics are used to find
the tuning parameters of the LQR to achieve high QoC.

7.1 MR Sampling

A MR sampling (finite and periodic sequence of non-equidistant sampling intervals) scheme for λC

is achieved by customising the platform such that it meets the constraints defined in Section 4.5.

Recall that for this type of sampling the control task runs 	ψ

T

 times within ψ , with finite and

periodic sequence of sampling intervals hMR
j where j ∈ {1, 2}. This sequence is represented by the

tuple

H =
(
hMR

1 , . . . ,h
MR
1 ,h

MR
2

) N
M , (24)

where the number of sampling intervals hMR
j in H is denoted by ρ = 	ψ

T

 N

M
. H (i) denotes the

ith sampling interval in H , where 1 ≤ i ≤ ρ. In this tuple hMR
1 occurs 	ψ

T

 − 1 times within each

ψ , whereas hMR
2 occurs only once between two consecutive allocated ψ . The duration of both

sampling intervals can be calculated as per Equations (16) and (17) from Section 6.1.
In Figure 6, we illustrate the MR sampling with an example where N = 4, M = 2,A(λC) = {0, 2},

and ρ = 6. Within each ψ , the control task executes 	ψ

T

 = 3 times. Thus, hMR

1 > T and hMR
2 =

hMR
1 + (ψ − 3hMR

1) +ψ + 2ω. The elements of the tuple are defined as H (1) = hMR
1 , H (2) = hMR

1 ,
H (3) = hMR

2 , H (4) = hMR
1 , H (5) = hMR

1 , and H (6) = hMR
2 . At the kth sample, the sampling interval

is given by Sk = H (i).

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:16 J. Valencia et al.

7.2 Control Design

The MRGO controller is designed to find a solution for the overall MR switched system to achieve
high performance. Our technique transforms the overall MR control design problem to the classical
LQR design by using a time-lifted reformulation.

Control law: The control law is given by

ui = Kizk + Fir , (25)

where Ki and Fi are feedback and feedforward gains used when the sampling interval Sk = H (i).
Thus, there are ρ combinations of (Ki , Fi). This is illustrated in Figure 6, where ρ = 6 combinations
of these control gains are used sequentially and according to the order of sampling intervals in the
tuple H .

Closed-loop system dynamics: Closed-loop system considering the DT augmented higher-
order system dynamics in Equation (5) and control law in Equation (25) is given by

zk+1 = (Âi + B̂iKi)zk + B̂iFir , (26)

where Âi = Â and B̂i = B̂ are the augmented state and input matrices for the sampling interval
Sk = H (i).

Switching behaviour: Since the sampling intervals periodically repeat according to the order
inH , the resulting DT system dynamics periodically switch between ρ closed-loop dynamics given
by Equation (26).

Control problem: Let us first define the DT representation of the cost by

J =
∞∑

k=1

∫ tk+1

tk

[
x (s)
u (s)

] ′ [
Qc 0

0 Rc

] [
x (s)
u (s)

]
ds =

∞∑
k=1

z ′kQ̂izk + u
′
k R̂iuk , (27)

where Qc and Rc are the CT state and control weighting matrices, respectively. The DT state and
control weighting matrices are represented by Q̂i and R̂i , respectively (Valencia et al. 2016).

The control problem can now be formulated as follows: Given z1 = [x ′1 u
′
0]′

J�(z1) = min
{uk }

(J), subject to system in Equation (5),

where this problem does not have a closed-form solution for arbitrary tk . However, on the Comp-
SOC platform, the sampling intervals occur in the periodic sequence H . Hence, the set of possible
Âi and B̂i can be pre-computed and result in a DT Linear Periodically Time-Varying (LPTV) system
for which the control problem can be solved using periodic Riccati equations.

Time-lifted Reformulation: For a DT-LPTV system with ρ sampling intervals, the dynamics
and cost have the periodicity property

X̂k+ρ = X̂k , X ∈ {Â, B̂, Q̂, R̂}.
With a TDM period index δ , the time-lifted reformulation (Bittanti and Colaneri 2008)

z (δ+1)ρ+1 = Ãzδ ρ+1 + B̃ūδ , δ ∈ N≥0, (28)

gives the dynamics over one TDM period, where5

Ã =

⎡⎢⎢⎢⎢⎢⎣
1∏

l=ρ

Âi

⎤⎥⎥⎥⎥⎥⎦ , B̃ =

⎡⎢⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎢⎣

2∏
l=ρ

Âi

⎤⎥⎥⎥⎥⎥⎦ B̂1

⎡⎢⎢⎢⎢⎣
3∏

l=ρ
Âi

⎤⎥⎥⎥⎥⎦ B̂2 · · · Âρ B̂ρ−1 B̂ρ

⎤⎥⎥⎥⎥⎥⎦ ,

5∏1
l=ρ

Ai denotes (for ρ ≥ 1) the multiplication Aρ Aρ−1 · · ·A2A1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:17

and the cost can be written as

J = lim
p→∞

p∑
δ=0

z̄ ′δ Q̄z̄δ + ū
′
δ R̄ūδ = lim

q→∞

q∑
δ=0

z ′δ ρ+1Q̃zδ ρ+1 + ū
′
δ R̃ūδ , (29)

Q̃ = Ā′Q̄Ā, R̃ = R̄ + B̄′Q̄B̄,

using the augmented variables

z̄δ =

⎡⎢⎢⎢⎢⎢⎢⎣
zδ ρ+1
...

zδ ρ+ρ

⎤⎥⎥⎥⎥⎥⎥⎦ , ūδ =

⎡⎢⎢⎢⎢⎢⎢⎣
uδ ρ+1
...

uδ ρ+ρ

⎤⎥⎥⎥⎥⎥⎥⎦ ,
Q̄ = diag(Q̂i),

R̄ = diag(R̂i),

and using the dynamics within the TDM period

z̄δ = Āzδ ρ+1 + B̄ūδ , (30)

where

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

Â1

Â2Â1
...

1∏
l=ρ−1

Âi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0

B̂1 0 0

Â2B̂1 B̂2 0 0
...

. . .
. . .

...⎡⎢⎢⎢⎢⎣
2∏

l=ρ−1
Âi

⎤⎥⎥⎥⎥⎦ B̂1

⎡⎢⎢⎢⎢⎣
3∏

l=ρ−1
Âi

⎤⎥⎥⎥⎥⎦ B̂2 · · · B̂ρ−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with l ∈ N[1,ρ].

Feedback control gainsKi : Note that the matrices (Ã, B̃, Q̃, R̃) in Equations (28) and (29) do not
depend on the TDM period index δ , i.e., they are time-invariant. The lifted problem thus has the
standard time-invariant DT LQR form, which can be solved efficiently. For this lifted reformulation
standard optimal control methods can find the optimal solution (Åström 1970; Bertsekas 2005),

J�(z1) = z ′1P̃z1, (31)

where P̃ is the unique positive definite solution to the Discrete-Time Algebraic Riccati Equation
(DARE),

P̃ = Ã′P̃Ã + Q̃ − (B̃′P̃Ã)′(R̃ + B̃′P̃ B̃)−1 (B̃′P̃Ã).

Furthermore, V (z) = z ′P̃z is a Lyapunov function that ensures stability for the optimal control
actions

ūδ = K̃zδ ρ+1, (32)

K̃ = −(R̃ + B̃′P̃ B̃)−1 (B̃′P̃Ã). (33)

This is the solution to the lifted problem over one TDM period, and can be transformed into a state
feedback for the original DT-Linear Time Variant (LTV) system described with Equation (25).

From Pρ+1 = P̃ , the solutions Pi can be found from the solution to the standard finite horizon
Discrete-Time Dynamic Riccati Equation (DDRE),

Pi = Â′iPi+1Âi + Q̂i − (B̂′iPi+1Âi)′(R̂i + B̂
′
iPi+1B̂i)−1 (B̂′iPi+1Âi),

which represents the Discrete-Time Periodic Riccati Equation (DPRE) when Pi+ρ = Pi (Varga 2008).
The feedback control gains Ki are computed by

Ki = −(R̂i + B̂
′
iPi+1B̂i)−1 (B̂′iPi+1Âi). (34)

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:18 J. Valencia et al.

Fig. 8. MRGO design flow. The control design is highlighted within the dashed box.

Feedforward control gains Fi : The feedforward gains are computed for the closed-loop dy-
namic α (k,i) following the design in Hellerstein et al. (2004).
Qc and Rc matrices initialisation: In this design flow, we have shown that the CT cost func-

tion is translated into its DT equivalent. This cost function is further extended for the time-lifted
reformulation of the DT-LPTV representation of the system that switches between the sampling
intervals in H . This means that we need to initialise the CT Qc and Rc matrices or the DT Q̂i and
R̂i matrices, and evaluate their impact on the QoC. To initialise the values of the Qc and Rc matri-
ces, we use a heuristic that consists of choosing the diagonal values of these matrices, such that
the control performance is optimised in DT. To improve the design flow it would be necessary to
automate the optimisation of the Q̂i and R̂i matrices for higher QoC. However, this procedure it
not investigated in this work.

7.3 Design Flow

We propose the design flow shown in Figure 8, which is composed of seven parts. (i) λC require-
ment on QoC andT shape the resource utilisationU (λC). (ii) The platform settings (Section 3) and
the resource allocation (Section 4.5) can be derived from the targeted resource utilisation. (iii) From
there, the periodic sequence H of non-equidistant sampling intervals is computed (Section 7.1).
(iv) Thus, the feedback control gains Ki are computed as per Equation (34) following the design
in Section 6.2. (v) The static feedforward control gains Fi are computed. (vi) The requirement on
QoC is evaluated and if it is met, the design flow ends. (vii) If the QoC requirement is not met,
then the feasibility of varying the resource utilisation U (λC) is verified. If the resource utilisation
can be modified, then one can either reallocate more slots to the application (i.e., increasing M as
long it is M < (N − # of other applications running in the platform)) or change platform settings
(i.e., ψ , ω, N), to derive new timings for the execution of λC (e.g., sampling intervals hMR

1 and
hMR

2). Otherwise, if the resource utilisation cannot bet modified, then no solution can be found
with this design flow on the platform.

Unlike the SR and MRLO design flows in Sections 5.3 and 7.3, none of the control gains Ki can
be freely designed. In this particular design flow, the design of the Ki gains are subjected to the
cost function in Equation (29).

Example 7.1. Considering the same configuration of Example 5.1: ω = 40.96μs,ψ = 2.95904ms,
N = 10, M = 10, and T = 0.99ms. U (λC) = 66% with sampling intervals hMR

1 = 1 ms and hMR
2 =

2ms leading to QoC = 250[1/s].

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:19

8 EXPERIMENTAL STUDY

In this section, we present the experimental study we have carried out to evaluate the design flows
presented in Sections 5 to 7. We will dive into details of the plant that we used, the MATLAB and
HIL experimets, the trade-off analysis derived from two design considerations: QoC and U (λC).
Moreover, we will evaluate the impact of the platform settings on QoC, and finally we present
design guidelines.

8.1 Platform Configuration

The allocation of slots to applications, N ,ψ , andω, are defined at design time.ω is fixed at 40.96μs,
whereas ψ is application dependent and we have set it up with values in the range of 3–30ms
for the experiments reported in this article. The control task execution time is measured during
runtime and it is T = 0.99ms.

The customisation of the platform settings has a strong influence on the control task execution
time. On the one hand, choosingψ = T only allows for the SR design flow implementation, because
the control task will execute once within ψ . This implies that if T is short, ψ will be also short.
Thus,ψ → ω, and therefore the resource utilisationU (λC) goes down significantly, because more
resources will be used by the CoMik microkernel. On the other hand, choosing ψ � T allows for
both SR and MR design flows implementation. If the SR design flow is used in this scenario, then
the resource utilsiation will decrease, because the control task will run once within ψ and the
remaining available processing time withinψ will be unused. In essence, the SR design flow has a
lower resource utilisation and this is where it falls short. To avoid this lower resource utilisation,
we have used MR design flows. They use longerψ (i.e., to avoidψ → ω) andψ is used as much as

possible (i.e., 	ψ

T

 times).

8.2 Setup: Motion Control System

We consider a motion control system that is composed of a mechanical setup, an electrical circuit
for actuation, and an embedded platform. The mechanical setup is composed of two masses con-
nected to each other by a flexible bar. The motor is connected directly to one of the masses, and
two encoders measure the rotation in each mass (Geelen et al. 2016). The electrical circuit con-
verts the digital actuation signal to an analog input that is applied to the plant. An instance of the
CompSOC platform (depicted in Figure 1) where λC executes, is synthesised on a Xilinx ML605
Virtex6 FPGA-based development kit (Xilinx 2018).

The mechanical and electrical circuits are described with the CT LTI model from Equation (1),
where the state of the plant x (t) = [θ1 θ2 ω1 ω2]

′
is composed of angular positions (θ1, θ2), an-

gular velocities (ω1, ω2), and the state and input matrices are defined by (adapted from the model
presented in Geelen et al. (2016))

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1

−1.0886e+7 1.0886e+7 −1.9740e+3 1.4740e+3
1.0886e+7 −1.0886e+7 1.4740e+3 −1.9740e+3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0
0

997450
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Cc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
′

.

(35)

8.3 MATLAB and HIL Experiments

8.3.1 MATLAB Experiments. The MATLAB simulation is essential to verify the correct func-
tionality of the control gains that have been designed for the previously described design flows.
This experiment consists of the following steps. (i) Control design of the feedback and feedforward
gains for the respective design flow (i.e., SR, MRLO, or MRGO). (ii) Simulation of the DT system by

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:20 J. Valencia et al.

Fig. 9. MATLAB and HIL experiments comparison for the DT system output yk .

calculating the states at each sample k , where the states depend on the selected design flow (i.e.,
Equation (14) for SR, Equation (19) for MRLO, and Equation (26) for MRGO). (iii) Update the sam-
pling interval Sk at each sample k depending on the design flow (i.e., Sk = h

SR for SR, Sk = h
MR

for MRLO, and Sk = H (i) for MRGO).

8.3.2 HIL Experiments. The HIL experiment allows for the validation of the control design
flows. These are validated by implementing the controller and emulating the plant dynamics on
independent processor tiles. Hence, there is an exchange of electrical signals between the con-
troller and the plant (Karpenko and Sepehri 2006; Ogan 2015; Palladino et al. 2009; Truong 2012).
We built a HIL experiment using one instance of the CompSOC platform with the architecture
shown in Figure 1. One processor tile runs the control application under a TDM-based execution
scheme. The other processor tile runs the DT plant dynamics at a high frequency (�T) to emulate
the CT behaviour of the plant.

The HIL experiment can be divided in two parts. (i) Control application implementation, where
we simulate the sensing and actuating operations as read and write operations of the system states
and actuation signals to and from off-chip memory locations. In between these operations the
computation of actuation signals (uk , Equation (13); u1,2, Equation (18); and ui , Equation (25)) is
done by using the control gains calculated off-line by the design flows described in Sections 5–7,
respectively. (ii) The emulation of the CT plant dynamics is done by running the DT plant dynamics
of the plant at a very high frequency, with the DT dynamics (without time delay (Åström and
Wittenmark 1990)) of the plant represented by xk+1 = σxk + ηuk , where η = Γ1 (τ) and the state of
the plant is sampled at Sk = 100μs.

8.3.3 MATLAB-HIL Comparison. In Figure 9, we compare the MATLAB and HIL experiments,
with yMATLAB and yHIL the outputs, respectively. In these experiments, the platform has been con-
figured withψ = 5.95904ms, N = 10 slots, and M = 1 slot. The design flows compute the following
timing properties:hSR = 60ms,hMR

1 = 1ms, andhMR
2 = 56ms. In Figure 9(a) the comparisons of the

simulation outputs is presented. In essence, the three design flows have been simulated and it can
be seen the difference between SR (top plot) and MR (middle and bottom plots) sampling (i.e.,
equidistant and non-equidistant samples). Note that both MATLAB and HIL experiments show
very similar results, which means that the implementation of such controller is feasible for the

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:21

Fig. 10. Comparison of the QoC with respect to the resource utilisation U (λC) for each design flow.

studied motion system. In Figure 9(b) the absolute errors of the simulation outputs are shown. The
error for the SR design flow (top plot) is very small due to the use of a single controller. Finally, the
error for the MR design flows (middle and bottom plots) appears with the switching between hMR

1
and hMR

2 but it does not exceed 4% with respect to the static reference signal that is set to 0.05 ra-
dians (see Figure 9(a)). These results show that both type of experiments are closely matching. In
what follows, we focus on analysing the results and perform trade-off analysis.

8.4 Trade-off Analysis: QoC and U (λC)

We run several experiments to evaluate the impact of U (λC) on the QoC for each design flow.
To that end, we set the platform up with ω = 40.96μs. We variedψ = 2.95904, 4.95904, 5.95904ms,
N = 1, 2, 6, 10 slots, and M = 1 slot or M = 10 slots with N = 10. In Figure 10, we compare the QoC
based on settling time (see Figure 10(a)) and ITAE (see Figure 10(b)) withU (λC). As expected, it can
be seen that the trends depend on the selected metric. We explain further results using the QoC
based on the settling time (see Equation (7)). It can be seen, a common trend is the increase in QoC
when more resources are assigned to λC . One can also note that the MRLO and MRGO design flows
bring high performance with at least ≈ 40% of the resources allocated to λC . Another interesting
result is that the QoC of the SR design flow only reaches up to 25% of the resource utilisation. This
is due to the fact thatψ � T . Thus, even when the TDM frame only has one application slot N = 1,
a great part ofψ is unused. This lower platform resource utilisation is one of the shortcomings of
the SR design flow.

8.5 Impact of Platform Settings

As presented in the design flows, the platform settings can be reconfigured to meet design require-
ments. However, the CoMik slot durationω can be considered to be limited by the implementation
(i.e., we run the hardware as fast as possible and minimise ω). Thus, we focus on the application
slot duration ψ and the number of slots within the TDM frame N . We varied these settings for
a control task execution time T = 0.99ms. In what follows, we only refer to Figure 11 for ease of
reading. Please refer to Table 2 to see the corresponding sampling intervals used in the presented
experiments in Figure 11.

• Application slot duration ψ: In Figure 11(a), we present the results of the QoC in terms
of ψ values. The increase in ψ , leads to a QoC deterioration of the SR design flow, since

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:22 J. Valencia et al.

Fig. 11. Impact ofψ and N to the system output for the SR, MRLO, and MRGO design flows. (a) Fixed N = 10
slots, varied ψ with 2.95904, 4.95904, and 5.95904ms, and varied M with 1 and 10 slots. (b) Fixed M = 1 slot,

varied N with 1, 2, 6, and 10 slots, and variedψ with for 2.95904 and 5.95904ms.

Table 2. Sampling Intervals for Experiments Presented in Figure 11

ψ [ms] N [slots] M [slots] hSR [ms] hMR
1 [ms] hMR

2 [ms]

Sa
m

p
li

n
g

in

Fi
gu

re
11

(a
)

295904 10 1 30 1 29
2.95904 10 10 3 1 2
4.95904 10 1 50 1 47
4.95904 10 10 5 1 2
5.95904 10 1 60 1 56
5.95904 10 10 6 1 2

Sa
m

p
li

n
g

in

Fi
gu

re
11

(b
)

295904 1 1 3 1 2
2.95904 2 1 6 1 5
2.95904 6 1 18 1 17
2.95904 10 1 30 1 29
5.95904 1 1 6 1 2
5.95904 2 1 12 1 8
5.95904 6 1 36 1 32
5.95904 10 1 60 1 56

Top: Sampling intervals when ψ is varied (Figure 11(a)). Bottom: Sampling intervals when N is varied
(Figure 11(b)).

the sampling interval hSR increases. Similar results can be seen for the MRGO design flow
when M = 1. The QoC in this case decreases with longer ψ , due to the enlargement of the
sampling interval hMR

2 (29, 47, and 56ms for an increasing ψ) while hMR
1 does not change.

When M = 10, hMR
2 remains constant at 2ms regardless ofψ . This leads to a fairly high and

constant QoC, since the sampling interval h2
MR does not change significantly. The MRLO

design flow QoC shows a different trend for which a longer ψ improves the QoC. This is
due to the fact that the control task runs more often withinψ (2, 4, and 5 for an increasing
ψ). For the same design flow, the impact of increasing M to 10 slots is reflected by an overall
increase in the QoC due to shorter sampling intervals hMR

1 = 1ms and hMR
2 = 2ms.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:23

Fig. 12. Design guidelines in terms of QoC and U (λC).

Table 3. Design Guidelines in Terms of the Platform Parameters

Design flow Choice ofψ Choice of N

SR Smallψ is always good
- Depends on application sharing
- Small is better

MRLO Largeψ is always good
- Depends on application sharing
- Small is better

MRGO
- Less sensitive toψ
- Small is recommended

- Depends on application sharing
- Small is better

• TDM frame slots number N : In Figure 11(b), we present the results of the QoC in terms
of the frame slots nummber N , for a fixed M = 1, while varying N with 1, 2, 5, and 10 slots,
and varying ψ with 2.95904 and 5.95904ms. For the SR design flow, increasing N enlarges
the sampling interval hSR that leads to a QoC deterioration. For the MRLO design flow, we
see two scenarios forψ = 2.95904 and 4.95904ms. For the smallerψ , we notice that the QoC
decreases with larger values of N . This enlarges the TDM frame with more slots and make
the sampling interval hMR

2 longer (2, 5, 17, and 29ms for an increasing N), which negatively
influences the QoC. For the larger ψ , the controller manage to achieve the reference with
a high QoC regardless of N . This happens because the control task runs more frequently
withinψ , meaning that the controller can sample and control more frequently (with nominal
sampling interval and feedback control gain hMR

1 and K1, respectively). For MRGO design
flow, the QoC presents two type of behaviours. The former one is given by a high QoC for
N = 1, 2 slots. This results from the short sampling intervals in those configurations. The
latter one is given by a decreasing QoC for N = 6, 10 slots, which is due to the increasing
sampling interval hMR

2 .

8.6 Design Guidelines

One can notice that there is no optimal design flow that guarantees fastest settling time and least
amount of resources. However, we see that each design flow has its benefits and drawbacks de-
pending on the requirements and platform configurations. Therefore, we present the following
design guidelines that are illustrated in Figure 12 accompanied with Table 3.

• QoC and resource utilisation U (λC): When resource utilisastion is low (below 25%,
which further depends on the platform configuration), SR and MRGO perform better than
MRLO. When U (λC) is in the range of 25–70%, both MRGO and MRLO can be used while
MRGO performs better. WhenU (λC) is in the range of 70–80%, both MRGO and MRLO can

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

32:24 J. Valencia et al.

be used while MRLO performs better. WhenU (λC) > 80%, both MRGO and MRLO perform
equally good.

• Choice ofψ: For the SR design flow, a smallerψ is always good. A largerψ is recommended
for MRLO for a high U (λC). MRGO is less sensitive to the choice ψ while a smaller ψ is
recommended.

• Choice of N : A smaller N is good for all the three design flows. However, a small N implies
less number of applications can be executed on the platform. Depending on the number of
other application that need to run on the platform, N should be chosen as small as possible.

9 CONCLUSIONS

We have presented three platform-aware control design flows that have been validated and com-
pared using MATLAB and HIL experiments. We have shown in our experiments that each design
flow can be used depending on the requirements that are given on the QoC and a targeted re-
source utilisation. Furthermore, we have shown how the time precision offered by composable
and predictable platforms can be exploited to design SR and MR control systems considering var-
ious design constraints. For future work, a multi-rate observer/estimator module will be designed
to address the cases where all states are not measurable. This is often the case in real-life physical
systems.

REFERENCES

A. Aminifar, P. Eles, and Z. Peng. 2015. Jfair: A scheduling algorithm to stabilize control applications. In Proceedings of the

21st IEEE Real-time and Embedded Technology and Applications Symposium. 63–72.
A. Aminifar, S. Samii, P. Eles, Z. Peng, and A. Cervin. 2012. Designing high-quality embedded control systems with guar-

anteed stability. In Proceedings of the IEEE 33rd Real-time Systems Symposium. 283–292.
A. Aminifar, P. Tabuada, P. Eles, and Z. Peng. 2016. Self-triggered controllers and hard real-time guarantees. In Proceedings

of the Design, Automation Test in Europe Conference Exhibition (DATE). 636–641.
K. Arzen, A. Cervin, J. Eker, and L. Sha. 2000. An introduction to control and scheduling co-design. In Proceedings of the

39th IEEE Conference on Decision and Control, Vol. 5. 4865–4870.
Karl-Erik Årzén and Anton Cervin. 2005. Control and embedded computing: Survey of research directions. IFAC Proc.

Vol. 38, 1 (2005), 191–202.
Karl J Åström. 1970. Introduction to Stochastic Control Theory. Elsevier.
Karl Johan Åström and Richard M. Murray. 2008. Feedback Systems: An Introduction for Scientists and Engineers. Princeton

University Press.
Karl J. Åström and Björn Wittenmark. 1990. Computer-controlled Systems: Theory and Design (2nd Ed.). Prentice-Hall, Inc.,

Upper Saddle River, NJ.
N. W. Bauer, S. J. L. M. B. van Loon, N. van de Wouw, and W. P. M. H. M. Heemels. 2014. Exploring the boundaries of robust

stability under uncertain communication: An NCS toolbox applied to a wireless control setup. IEEE Control Syst. Mag.

34, 4 (Aug. 2014), 65–86.
Dimitri P. Bertsekas. 2005. Dynamic Programming and Optimal Control. Athena Scientific. 3rd ed. Vols. 1 and 2.
A. Biondi, M. D. Natale, and G. Buttazzo. 2018. Response-time analysis of engine control applications under fixed-priority

scheduling. IEEE Trans. Comput. 67, 5 (May 2018), 687–703.
Sergio Bittanti and Patrizio Colaneri. 2008. Periodic Systems: Filtering and Control. Vol. 5108985. Springer Science & Business

Media.
Arben Çela, Mongi Ben Gaid, Xu-Guang Li, and Silviu-Iulian Niculescu. 2014. Resource Allocation in Distributed Control and

Embedded Systems. Springer International Publishing, Cham, 9–29.
A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen. 2003. How does control timing affect performance? Analysis

and simulation of timing using Jitterbug and TrueTime. IEEE Control Syst. Mag. 23, 3 (June 2003), 16–30.
A. Cervin, M. Velasco, P. Marti, and A. Camacho. 2011. Optimal online sampling period assignment: Theory and experi-

ments. IEEE Trans. Control Syst. Technol. 19, 4 (July 2011), 902–910.
Wanli Chang, Dip Goswami, Samarjit Chakraborty, and Arne Hamann. 2018. OS-aware automotive controller design using

non-uniform sampling. ACM Trans. Cyber-Phys. Syst. 2, 4, Article 26 (July 2018), 22 pages.
W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and S. Andalam. 2017. Memory-aware embedded control systems

design. IEEE Trans. Comput.-aided Design Integr. Circ. Syst. 36, 4 (Apr. 2017), 586–599.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

Platform-Aware Control Design Flows for TDM-based Execution Platforms 32:25

W. Chang, A. Pröbstl, D. Goswami, M. Zamani, and S. Chakraborty. 2014. Battery- and aging-aware embedded control
systems for electric vehicles. In Proceedings of the IEEE Real-time Systems Symposium. 238–248.

Douglas E. Crabtree and Emilie V. Haynsworth. 1969. An identity for the Schur complement of a matrix. Proc. Amer. Math.

22, 2 (1969), 364–366.
P. Deng, Q. Zhu, A. Davare, A. Mourikis, X. Liu, and M. D. Natale. 2016. An efficient control-driven period optimization

algorithm for distributed real-time systems. IEEE Trans. Comput. 65, 12 (Dec. 2016), 3552–3566.
W. Geelen, D. Antunes, J. P. M. Voeten, R. R. H. Schiffelers, and W. P. M. H. Heemels. 2016. The impact of deadline

misses on the control performance of high-end motion control systems. IEEE Trans. Industr. Electron. 63, 2 (2016), 1218–
1229.

Kees Goossens, Martijn Koedam, Andrew Nelson, Shubhendu Sinha, Sven Goossens, Yonghui Li, Gabriela Breaban, Reinier
van Kampenhout, Rasool Tavakoli, Juan Valencia, Hadi Ahmadi Balef, Benny Akesson, Sander Stuijk, Marc Geilen, Dip
Goswami, and Majid Nabi. 2017. NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications. Springer
Netherlands, Dordrecht, 491–530.

D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. 2012. Time-triggered implementations of mixed-criticality
automotive software. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE’12). 1227–
1232.

D. Goswami, A. Masrur, R. Schneider, C. J. Xue, and S. Chakraborty. 2013. Multirate controller design for resource- and
schedule-constrained automotive ECUs. In Proceedings of the Design, Automation Test in Europe Conference Exhibition

(DATE’13). 1123–1126.
D. Goswami, R. Schneider, and S. Chakraborty. 2014. Relaxing signal delay constraints in distributed embedded controllers.

IEEE Trans. Control Syst. Technol. 22, 6 (Nov. 2014), 2337–2345.
Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. 2004. StateSpace Feedback Control. IEEE.
M. Karpenko and N. Sepehri. 2006. Hardware-in-the-loop simulator for research on fault tolerant control of electrohydraulic

flight control systems. In Proceedings of the American Control Conference. 7.
Benjamin C. Kuo. 1992. Digital Control Systems (2nd ed.). Oxford University Press, Inc., New York, NY.
MathWorks. 2018. What Is Hardware-in-the-Loop Simulation? Retrieved from https://nl.mathworks.com/help/physmod/

simscape/ug/what-is-hardware-in-the-loop-simulation.html.
Róbinson Medina, Sander Stuijk, Dip Goswami, and Twan Basten. 2017. Exploring the trade-off between processing re-

sources and settling time in image-based control through LQR tuning. In Proceedings of the Symposium on Applied

Computing (SAC’17). ACM, New York, NY, 1456–1459.
M. Morelli and M. Di Natale. 2014. An MDE approach for the design of platform-aware controls in performance-sensitive

applications. In Proceedings of the IEEE Emerging Technology and Factory Automation (ETFA’14). 1–8.
A. Nelson, A. Beyranvand Nejad, A. Molnos, M. Koedam, and K. Goossens. 2014. CoMik: A predictable and cycle-accurately

composable real-time microkernel. In Proceedings of the Design, Automation Test in Europe Conference Exhibition

(DATE’14). 1–4.
Ron T. Ogan. 2015. Hardware-in-the-Loop Simulation. Springer London, London, 167–173.
A. Palladino, G. Fiengo, F. Giovagnini, and D. Lanzo. 2009. A micro hardware-in-the-loop test system. In Proceedings of the

European Control Conference (ECC’09). 3833–3838.
D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty. 2016. Multi-objective co-optimization of flexray-based

distributed control systems. In Proceedings of the IEEE Real-time and Embedded Technology and Applications Symposium

(RTAS’16). 1–12.
S. Samii, A. Cervin, P. Eles, and Z. Peng. 2009. Integrated scheduling and synthesis of control applications on distributed

embedded systems. In Proceedings of the Design, Automation Test in Europe Conference Exhibition. 57–62.
R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty. 2013. Multi-layered scheduling of mixed-criticality

cyber-physical systems. J. Syst. Architect. Embed. Syst. Design 59, 10-D (2013), 1215–1230.
L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. 2015. The application slowdown model: Quantifying and

controlling the impact of inter-application interference at shared caches and main memory. In Proceedings of the 48th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’15). 62–75.
N. Truong. 2012. Hardware-in-the-loop approach to controller design and testing of motion control systems using xPC

target. In Proceedings of the 4th International Conference on Intelligent and Advanced Systems (ICIAS’12), Vol. 1. 117–121.
J. Valencia, D. Goswami, and K. Goossens. 2015. Composable platform-aware embedded control systems on a multi-core

architecture. In Proceedings of the Euromicro Conference on Digital System Design. 502–509.
J. Valencia, E. P. van Horssen, D. Goswami, W. P. M. H. Heemels, and K. Goossens. 2016. Resource utilization and quality-of-

control trade-off for a composable platform. In Proceedings of the Design, Automation Test in Europe Conference Exhibition

(DATE’16). 654–659.
J. van Zundert and T. Oomen. 2018. LPTV loop-shaping with application to non-equidistantly sampled precision mecha-

tronics. In Proceedings of the IEEE 15th International Workshop on Advanced Motion Control (AMC’18). 467–472.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

https://nl.mathworks.com/help/physmod/simscape/ug/what-is-hardware-in-the-loop-simulation.html
https://nl.mathworks.com/help/physmod/simscape/ug/what-is-hardware-in-the-loop-simulation.html

32:26 J. Valencia et al.

A. Varga. 2008. On solving periodic Riccati equations. Numer. Lin. Alg. Appl. 15, 9 (2008), 809–835.
Wayne Wolf. 2009. Cyber-physical systems. Computer 42, 3 (Mar. 2009), 88–89.
Xilinx. 2018. Virtex-6 FPGA ML605 Evaluation Kit. Retrieved from https://www.xilinx.com/products/boards-and-kits/

ek-v6-ml605-g.html.

Received August 2018; revised February 2019; accepted February 2019

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 3, Article 32. Pub. date: March 2019.

https://www.xilinx.com/products/boards-and-kits/ek-v6-ml605-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v6-ml605-g.html

