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Abstract—Wireless Sensor Networks (WSNs) are considered
as a promising solution in intra-vehicle networking to reduce
wiring and production costs. This application requires reli-
able and real-time data delivery, while the network is very
dense. The Time-Slotted Channel Hopping (TSCH) mode of
the IEEE 802.15.4 standard provides a reliable solution for
low-power networks through guaranteed medium access and
channel diversity. However, satisfying the stringent requirements
of in-vehicle networks is challenging and demands for special
consideration in network formation and TSCH scheduling. This
paper targets convergecast in dense in-vehicle WSNs in which
all nodes can potentially directly reach the sink node. A cross-
layer Low-Latency Topology management and TSCH scheduling
(LLTT) technique is proposed that provides a very high timeslot
utilization for the TSCH schedule and minimizes communication
latency. It first picks a topology for the network that increases
the potential of parallel TSCH communications. Then, by using
an optimized graph isomorphism algorithm, it extracts a proper
match in the physical connectivity graph of the network for
the selected topology. This network topology is used by a light-
weight TSCH schedule generator to provide low data-delivery
latency. Two techniques, namely grouped retransmission and
periodic aggregation, are exploited to increase the performance of
the TSCH communications. The experimental results show that
LLTT reduces the end-to-end communication latency compared
to other approaches, while keeping the communications reliable
by using dedicated links and grouped retransmissions.

Index Terms—Intra-vehicle networks, Wireless Sensor Net-
works, Topology Management, Time-Slotted Channel Hopping,
TSCH, Scheduling, Low-Latency, Industrial WSNs.

I. INTRODUCTION

Industrial Wireless Sensor Networks (WSNs) are usually
used for supervisory control, in which tens to hundreds
wireless nodes are distributed over a platform to send data
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Fig. 1. TSCH schedule for a star topology compared to a tree topology (LSF
is the slotframe length).

samples to a central node (sink node). For small size platforms
such as vehicles, all wireless sensor nodes are usually in
one-hop distance of each other, and are able to communicate
directly with the sink node. In such a platform, a star topology
may be used to form the required convergecast network.
Due to the high density of nodes in these WSNs, using
contention-based Medium Access Control (MAC) protocols
may lead to considerable internal interference though. The
IEEE 802.15.4 Time-Slotted Channel Hopping (TSCH) pro-
tocol [1] provides Time-Division Multiple Access (TDMA)-
based communications for low-power WSNs to prevent such
internal interference. This technique has lower communication
and power overhead compared to the contention-based IEEE
802.15.4 MAC, due to use of guaranteed communications. It
divides time into fixed time periods called timeslots that each
is enough to transmit a single packet and its acknowledgement.
A number of timeslots are grouped into a slotframe that repeats
over time. TSCH also enables parallel communications using
multiple Channel Offsets (and multiple slotframes) through a
channel hopping technique. A Channel Offset determines the
physical channels that should be used for transmissions in a
given timeslot. Assignment of timeslots and channel offsets
to the links and extracting a communication schedule, called
scheduling, is left to the upper layers in the protocol stack
(i.e., a sublayer between network and MAC layers).

The communication schedule has a high impact on the
performance of the WSN. There are several TSCH scheduling
algorithms such as [2], [3], [4], [5], [6], [7] that aim at im-
proving reliability and/or latency. These scheduling algorithms
usually assume the network communication topology (that is
determined by the network layer) as their input, and their
output differs for different input topologies. When a WSN is
small and dense, a wide range of topologies can be used for
it. A suboptimal topology may lead to larger slotframes that
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causes higher end-to-end communication latency, or unneces-
sary multi-hop communications that lead to lower reliability.
As an example (see Fig. 1), using the TSCH MAC together
with a star topology leads to a long slotframe and high packet
delivery latency when the number of nodes is increased. On
the other hand, a tree topology can reduce the slotframe
length and accordingly the latency of communications by
enabling parallel communications. This makes the topology
management and link scheduling challenging for dense WSNs.

In order to take advantage of parallel communications of
TSCH to reduce the data delivery latency, we propose the
Low-Latency Topology management and TSCH scheduling
(LLTT) technique. It is a cross-layer design which picks a
proper network topology at the network layer to maximize the
TSCH schedule utilization for the MAC layer. To match the
extracted topology with the physical connectivity graph of the
network, an optimized sub-graph isomorphism [8] algorithm
is proposed. In the matching process, the quality of links and
power plane of nodes are taken into account. The resulting
network topology graph is used as the input of a light-
weight TSCH schedule generator that minimizes the multi-hop
communication latency. We moreover use particular shared
timeslots for retransmission, called grouped shared timeslots,
in the schedule to increase the reliability of the multi-hop com-
munications. Furthermore, a periodic aggregation technique is
exploited to efficiently use the available bandwidth of multi-
hop links. LLTT has polynomial complexity; it makes the
TSCH schedule and accordingly behavior of the WSN pre-
dictable, targeting applications that require a prior knowledge
of the network behavior. In conclusion, the goal of this paper is
to minimize the average latency of guaranteed data converge-
cast in a small size and dense TSCH network. The proposed
technique targets industrial automation applications, such as
use cases in automotive, or factory automation. Wireless in-
vehicle networks are taken as a representative case study in this
paper. Experimental results show that LLTT achieves higher
reliability compared to a star topology when latency bounds
are defined for data validity. For high data generation rates, it
provides lower average end-to-end data delivery latency, even
compared to the TSCH minimal schedule [9].

The paper is organized as follows. The related work about
topology management and TSCH scheduling is overviewed
in the next section. The two main building blocks of LLTT,
namely topology management and low-latency scheduling,
are introduced in Sections III and IV. Section V introduces
the exploited aggregation technique and gives an analysis of
latency in the proposed mechanisms. Implementations and
experimental setups are presented in Section VI. The achieved
results are discussed in Section VII. Section VIII concludes.

II. RELATED WORK

Considering the impact of in-vehicle WSNs on reducing
the weight and manufacturing costs of vehicles, the design of
efficient and reliable wireless in-vehicle networks is getting
more and more research attention. In [10], authors show that
under high traffic loads, congestion plays an important role
in the performance of single channel WSNs. Authors propose

to use multiple base stations to mitigate this problem. The
authors of [11] show that using multi-hop networking for data
convergecast in a vehicle improves the performance compared
to single-hop convergecast. However, as a single channel and
contention-based MAC protocol is used, multi-hop commu-
nications together with low transmission powers reduce the
local contention in the network. This is the main reason for
the observed performance gain. On the other hand, multi-
hop communications increase the average transmission count,
which leads to higher energy consumption. In [12], authors use
extensive real-world experiments and show that an in-vehicle
WSN can be separated into different zones, considering the
behavior of wireless channels and link qualities. This can be
used to improve in-vehicle communication protocols. In [13],
Volvo group trucks technology presents a practical design
of an in-vehicle WSN. They use the IEEE 802.15.4 TSCH
protocol [1] as the MAC protocol for their experiments and
show that this protocol is sufficiently robust to host low-to-
medium time criticality. This robustness is due to the use of
guaranteed communications and channel hopping. This work
uses a network with only 10 nodes, while vehicles have the
potential to use a much higher number of wireless sensors.
For instance, a high end truck can have around 150 sensors
and assuming that 20% of this number can be migrated to
short range wireless links, we would have a WSN with a
node population of around 30 sensor nodes [14]. Compared
to single channel protocols, TSCH is a better candidate for
dense networks. This is because TSCH increases the network
throughput by enabling parallel communications on multiple
channels. This requires a network topology with links with
different sources and destinations. This can be reached by
defining multiple paths in the network that are at least two
hops.

The TSCH scheduling task is an NP-hard problem [15].
Thus, all the available scheduling algorithms use suboptimal
solutions, targeting specific performance parameters. For in-
stance, AMUS [5] is a centralized scheduling technique that
reserves sequential timeslots for the set of links along an end-
to-end route to reduce latency of multi-hop communications.
This increases the scheduling complexity for dense networks
in which the number of neighbors of each node is very
high. [16] proposes a latency-optimal scheduling algorithm for
convergecast in TSCH-based WSNs. The authors show that the
network topology affects the scheduling result and the end-to-
end communication latency.

The distributed scheduling techniques such as Orchestra
[3] and DeTAS [6] mainly focus on scalability and cannot
guarantee a latency bounded schedule, because global net-
work information is unavailable. However, some distributed
scheduling techniques target low latency communications. For
instance, Wave [17] aims to minimize latency by reducing the
schedule length, using a repeated conflict-free schedule called
wave.

All the scheduling algorithms that are proposed for the IEEE
802.15.4 TSCH protocol (e.g., [3], [4], [5], [6], [7], [17], [18])
require the network topology as an input and have no control
on it. Thus, they cannot guarantee a predefined bound for the
communication latency.
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Network topology management is considered a task of the
network layer. Topology management techniques typically aim
to find a set of links to construct the network in order to
provide energy efficiency [19], [20], [21], [22], delay bounds
[23], and/or handling node failure [24]. To the best of our
knowledge, there is no topology management technique that
takes TSCH parallel communications into account, in order to
increase the TSCH schedule utilization and reduce communi-
cation delay. As a cross-layer technique, LLTT manages net-
work topology based on the number of nodes in the WSN and
is able to provide a prior estimation of the resultant schedule
and communication latency. Energy efficiency is not playing a
role in our work, as in many automotive applications, energy
consumption of wireless nodes is of limited importance.

Using data aggregation for data collection in WSNs may
follow a tree-based or cluster-based approach [25]. In both
approaches, an aggregation point (e.g., cluster head) normally
waits until it receives data from a set of active sources and
then aggregates the data and forwards them to the sink node
[26]. DICA [7] is a distributed data aggregation technique for
single channel networks that uses data aggregation to employ
the available bandwidth efficiently. This technique intertwines
the network tree formation to reduce latency for aggregation.
In this work, we use a periodic aggregation technique in which
a period equal to a TSCH slotframe is used to aggregate data in
a subtree root. This technique manages the packet generation
rate based on the available bandwidth in the TSCH MAC layer.

Allocating shared timeslots in a TSCH schedule for retrans-
missions to improve communication reliability is proposed in
[27]. This technique also reduces the forwarding delay in a
WSN. In the current work we exploit shared retransmission
timeslots and dedicate each one to a group of links in the
network that have the same destination. This technique reduces
the contention on accessing these timeslots by reducing the
number of potential transmitters in each of them. Moreover, it
enables allocating them in parallel over multiple channels.

III. LLTT TOPOLOGY MANAGEMENT

In this section we introduce the topology management part
of the LLTT technique. Suppose that V = {ni : 1 ≤ i ≤ N}
is the set of N wireless sensor nodes deployed in an in-
vehicle convergecast WSN. Sensor nodes are either battery-
powered or ambient-powered [14] ]. E.g., all parts in the car
that do electro-mechanical tasks need the power line anyway.
Ambient-powered nodes include the IEEE 802.15.4-enabled
control units of the vehicle that have a wired connection (e.g.,
CAN-bus) with the central unit of the vehicle. LLTT topology
management consists of two steps. LLTT first selects a tree-
topology structure T based on the number of available nodes
in the network (right side of Fig. 2a). This fixed tree structure
is designed to provide high parallelism for the TSCH schedule,
which leads to short slotframes. Moreover, it reduces the
complexity of the TSCH scheduling algorithm, as the topology
is predictable. As a second step, LLTT topology management
maps each node of V to a vertex in T (right side of Fig. 2a-e).
In this process, link quality and the power condition of each
node are taken into account. After selecting the best topology
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(d) Matching after 8 iterations, children of node 8 are added
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Fig. 2. An example of matching in a small in-vehicle network with 11 nodes.
Matching is done based on the quality of physical links in the network to build
the network topology with high communication reliability. For simplicity of
the example, all links are assumed to be symmetric.

for the network, the scheduling part of LLTT (presented in the
next section) schedules the defined links in the TSCH context.

Two links ni → nj and nm → nk are independent iff
{i, j} ∩ {m, k} = ∅. This is because each node can only
participate in one transmission or reception at a time. Two
independent links can perform communications at the same
time on different channels, while two dependent links should
be serialized. Assuming a star in-vehicle network, the sink
node is one side of all communications and all links will
be dependent. Thus, parallel communication is not possible.
To be able to maximally take advantage of TSCH parallel
communications to reduce latency, the number of independent
links in the network topology should be maximized. This
requires the convergecast network to follow a multi-hop tree
topology, rooted at the sink node. Accordingly, each link in a
subtree is independent of all the links in other subtrees of
the network (e.g., in Fig. 2e all links towards node 2 are
independent of links towards nodes 8 and 9).



4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 0, NO. 0, JANUARY 2018

While multi-hop communication provides more potential
parallelism in TSCH scheduling, it increases the average
transmission count in the network. This is because of packet
forwarding that leads to higher energy consumption. More-
over, multi-hop communication may cause higher end-to-end
packet error rates due to persistent interference. This requires
retransmissions at each hop which comes with extra required
timeslots per slotframe and thus higher data delivery latency.
To lower these costs, LLTT limits the number of hops to two.
LLTT constructs a two-level tree topology that each nodes in
the first level works as a router to forward the received data
from its children to the sink node. Limiting the number of
hops to two is in line with the fact that almost all wireless
sensor nodes in an in-vehicle network are able to directly
reach each other and a star network can satisfy the connection
requirements.

Assume that ST i ⊂ V, 1 ≤ i ≤ NST is the set of |ST i|
sensor nodes of the ith subtree, including the root of that
subtree. NST is the total number of subtrees in the network.
All the links in a subtree and the link from that subtree heading
towards the sink node are dependent. Thus for ST i, there are
|ST i| links that should be scheduled in serial timeslots. This
is equal to the degree of the root of ST i. also the NST links
towards the sink node are dependent, which makes it necessary
to allocate them into NST serial timeslots. Considering one
slotframe to be allocated for links of each subtree, a higher
number of nodes in each subtree leads to a longer slotframe
required for it. This increases the time between data generation
at end nodes and packet delivery at the sink node. A smaller
NST leads to higher average |ST i|, requiring longer slotframes
and vise versa. Thus, for all 1 ≤ i ≤ NST , |ST i| should be as
close as possible to the number of subtrees NST . This can be
reached through a balanced complete k-ary tree. A balanced
complete k-ary tree [28] is a rooted tree in which each node
has k children, except the last level which can be incomplete
as long as the distribution of leaf nodes is balanced.

We aim to find k = NST based on the number of nodes
in the network to build a balanced complete k-ary tree with
height two. As a balanced complete k-ary tree is a subgraph
of a perfect k-ary tree with k(k+1)+1 nodes, the maximum
number of nodes in a perfect k-ary tree with height two is
k(k + 1) + 1. The lower bound for the number of nodes in a
balanced complete k-ary tree is equal to the number of vertices
of the perfect (k-1)-ary tree.

k × (k − 1) + 1 < N ≤ k × (k + 1) + 1 (1)

Having N as the input, k can be calculated as

k = d
√
(4N − 3)− 1

2
e. (2)

To assign independent links to parallel slotframes of a
TSCH schedule, the number of available channels in the
Hopping Sequence List (|HSL|) is the upper bound for k. If the
number of nodes is higher than what a k-ary tree can support,
we build the network topology with |HSL| subtrees and divide
the leaf nodes to all the subtrees equally. In the remainder,
let T be the tree-topology structure derived in this way for a
given problem instance.

ALGORITHM 1: Network subgraph isomorphism
Input:
T : tree-topology structure
LQ: N ×N matrix that contains quality of the links between
each pair of nodes in the network
P : vector of length N , contains power condition of each node
Output:
NT: network topology graph

M = ∅;
Initialize G from LQ;
FindMatch(G,LQ, T, P,M, n1);
NT = ToTopology(T,M);
/* Merge the tree-topology structure and the

assigned node IDs to each vertex of it into a
topology graph */

FindMatch(G,LQ, T,M, v)
if |M | = N then

return ;
else

v := NextVertex(T, v);
H[] := ∅ ;
/* The history of nodes that are matched

to v in this iteration */
foreach u := NextMatch(G,LQ,P,M,H, v) do

add u to H[];
if IsFeasible(G, v, u) then

AddPairedSet(G,M, v, u);
FindMatch(G,LQ, T, P,M, v);
RemovePairedSet(v, u,G,M);

end
end

end
end

NextMatch(G,LQ,P,M,H, v)
u′ := M(parent(v ∈ T ));
/* The matched vertex of G to the parent of v

in T */
find u ∈ G such that

1) (u /∈M) ∧ (u /∈ H) ;
/* u is not already matched */
2) G(u, u′) = available link;
/* There is a physical link from u toward

its potential parent */
3) degree(u) ≥ degree(v);
/* The candidate u is at least connected

with the same number of nodes that is
required for connections of v in T */

4) if(u′ = sink) then P (u) = 1 is preferred;
/* Ambient-powered nodes are preferred to

be used as first level nodes */

5) W
(
LQ(u, u′), degree(u), P (u), ...

)
has the

maximum value;
end
return u;

end

After picking a proper tree-topology structure for the WSN,
LLTT maps each node in the WSN to a vertex in that
structure. This mapping is based on the physical connectivity
graph of the network that captures link qualities. Sub-graph
isomorphism [8] is used to perform the mapping. We enhanced
the VF2 subgraph isomorphism algorithm [29] to reduce the
memory usage. Considering the high connectivity between
nodes in a dense WSN, this algorithms finds a match in
polynomial time.
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Algorithm 1 shows the high level functionality of LLTT
topology management. Besides topology structure T , this
algorithm gets the extracted link quality of each link in the
network (LQ) and the power condition of each node (P ) as its
inputs. Each element of P holds a value between 0 and 1 based
on the battery percentage of the node (1 shows an ambient-
powered node). The algorithm maintains a connectivity matrix
G. Each element of G gets a value of {no link, available link,
used link, and blocked link}. It is initially filled with no link
and available link values by applying a threshold to the LQ
values. The algorithm further maintains a vector M of network
nodes matched to T . It then starts from the root of T , which is
assigned to the sink node of the network (node n1 in Fig. 2a).
Then it goes through each vertex v of T , connected to already
matched vertices, and finds a match in G.

Fig. 2 shows some iterations of the matching technique for
a simple network with N = 11 sensor nodes deployed in
a vehicle. The physical connectivity graph (after applying a
threshold of 50% on the link qualities) is depicted on the left
side of Fig. 2a. For simplicity, the link quality of the two links
between each couple of nodes is considered to be the same in
this example. This figure also shows the balanced 3-ary tree
(using Eqn. 2 and N = 11) extracted for the depicted network,
rooted at node n1. The sequence of vertices for matching,
which is defined by subroutine NextVertex(), is shown
in Fig. 2a as red arrows in the tree topology structure. This
subroutine selects the subtree roots for matching first and then
goes throughout leaf nodes in each subtree. This is because
the link between each subtree root and the sink node is also
used for forwarding data from leaf nodes towards the sink
node and has a high impact on the reliability of the multi-
hop network. Using a history vector H , the algorithm keeps
track of the candidates that failed to be matched in the current
iteration. As shown in Algorithm 1, a set of rules is defined
to select a candidate match for a given vertex of v ∈ T .
The first three rules guarantee that u is a possible candidate
to be matched to v. The fourth rule guarantees the use of
ambient-powered nodes in the first level of the topology graph,
because they forward data from nodes in the second level and
consume more power than the second level nodes. Any IEEE
802.15.4-enabled sensor node with wired connection (e.g.,
CAN-bus) towards the central unit gets the highest priority
to be selected as the first level node. The last rule selects the
best possible candidate by assigning a weight to each of them.
The weighting function W determines the suitability of a node
to be matched to a vertex and can be calculated as{
(α LQ(u, u′) + β degree(u))× P (u)2 if degree(v) > 1

α LQ(u, u′)/(β degree(u)× P (u)2) if degree(v) = 1
(3)

where coefficients α and β are to be determined by the user
based on the link quality range and platform requirements.
For instance, if the application requires very reliable links,
LQ(u, u′) should be given a higher weight than the other
parameter. If the number of ambient-powered sensors in a
network is less than NST , to satisfy rule 4, some of the
first level nodes should be selected from the battery-powered
sensors. The function W gives a high weight to the nodes with

higher power levels to be matched to the first level nodes. By
running this algorithm every once in a while (e.g., when the
vehicle is going to be turned on), battery-powered sensors that
are used as the first level nodes will change if there is another
sensor available with higher battery charge. Re-running the
algorithm also handles the long-term changes in the link
qualities that are due to changes in the positioning of nodes,
obstacles in the environment and the transmission power of
nodes. Since TSCH is a multichannel protocol, short-term
changes in link qualities are handled by TSCH interference
mitigation techniques such as ATSCH [30], ETSCH [31], and
MABO-TSCH [32].

At each iteration, for the current vertex v and the selected
matching candidate u, subroutine IsFeasible() checks
whether by removing this node from G, and accordingly
removing all its incoming links and its parent (if the parent has
all its children matched), the graph G still remains connected.
Otherwise, u is not an actual match for v in this iteration.
If u is qualified to be matched to v, AddPairedSet()
adds pair (v, u) to M and applies the required changes to
G. These changes include: (1) changing the link between u
and its matched parent from available link to used link; (2) if
v is a leaf in T (degree(v) = 1), change all the available link
links to and from u in G to blocked link; (3) if the degree of
Parent(v) in T is equal to the number of used link links
towards Parent(u) in G, change all the available link links
to and from Parent(u) in G to blocked link. After these
changes, the connectivity graph G only keeps the links that still
can be used for matching. Fig. 2b shows the matching process
after 3 iterations, when all parent nodes are matched. Fig. 2c-e
show the matching process after 6, 8, and 10 iterations where
all children of each subtree root are matched. As depicted, after
matching children of each subtree root, all the blocked links
are removed from the possible candidate links for scheduling.

The algorithm proceeds to match the remaining vertices
of T to the remaining vertices of G by recursively call-
ing FindMatch(). By returning from each iteration of
FindMatch() due to a matching failure, all the applied
changes to the graph G in that iteration are restored by
calling RemovePairedSet(). The algorithm finishes when
a complete match (|M | = |T |) is found in the N th recursion.
Because this algorithm uses graph G (with four states for each
link) to keep track of changes in each iteration, it requires a
low amount of memory to execute. The match of T in G is
used as the network graph NT, as input of the low-latency
scheduling part of LLTT.

IV. LLTT SCHEDULING

The output of the topology management part of LLTT is
a two-hop tree network. In this section, we present the low-
latency timeslot allocation for such a tree topology in detail.
Algorithm 2 shows the process of low-latency scheduling. This
algorithm allocates all the links in each subtree and the link
from that subtree to the sink node to one slotframe with a
unique channel offset for all timeslots. This is because the
links in each subtree are dependent, while they are independent
of the links in other subtrees. The links from subtree roots
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ALGORITHM 2: Low-latency schedule generator
Input:
LSF : slotframe size given by (4)
NT: network topology graph
NReTx: number of required retransmissions for each subtree
Output:
Schedule[slotframe][timeslot]: TSCH scheduling matrix
/* Allocate shared timeslots towards the sink

node at the end of first slotframe */
for i← (LSF −NReTx + 1) to LSF do

Schedule[1][i] := [SH, sink node];
end
for sf← 1 to NST do

/* The timeslot for the link from the current
subtree root to the sink node */

slot := LSF −NReTx − sf + 1;
/* Allocate a dedicated timeslot from the

subtree root towards the sink node */

Schedule[sf ][slot ] := [root of(ST sf), sink node];
/* Allocate shared timeslots towards the

subtree root right before the current
timeslot */

for i← 1 to NReTx do
slot := slot− 1 ;
if slot = 0 then

slot := LSF −NReTx ;
end
Schedule[sf ][slot] := [SH, root of(ST sf)];

end
/* Allocate dedicated timeslots for the

subtree right before the shared timeslots
*/

foreach ni ∈ ST sf do
slot := slot− 1 ;
if slot = 0 then

slot := LSF −NReTx;
end
Schedule[sf ][slot] := [ni, root of(ST sf)];

end
end

Level 1

Level 2

n1

n2 n8 n9

n6 n5 n4 n7 n11 n3 n10

LSF = 6

C
ha

nn
el

 o
ff

se
t n4→n2 n5→n2 n6→n2 SH→n2 n2→n1 SH→n1

n11→n8 n7→n8 SH→n8 n8→n1

n3→n9 SH→n9 n 9→n1 n10→n9

Fig. 3. The TSCH schedule of an example network that is generated by
Algorithm 2 (SH indicates shared slots).

towards the sink node, are also dependent and should not be
parallelized. Furthermore, a link from a subtree root towards
the sink node is dependent on the links in that subtree.
Accordingly, multiple parallel slotframes can be used for links
of different subtrees.

The required LSF is given to the algorithm as an input. It
can be calculated as:

LSF =Max[degree(v)|v ∈ NT] + (2×NReTx) (4)

where NReTx is the number of timeslots required for grouped
retransmission in each subtree. It may be defined by the user
or be extracted based on the communication statistics of the
network. Fig. 3 shows the schedule that is generated by this
algorithm for an example network and NReTx = 1.

Forward 
packet

Wait for next 
active timeslot

Data generation

Time

Time

Time

Slotframe

TX

RX TX

RX
Data delivery

n2→n1 n4→n2 n2→n1 n4→n2 n2→n1 n4→n2

n1

n2

n4

Fig. 4. TSCH timeline of one packet transmission in a two-hop route from
n4 to n1.

We define a grouped retransmission timeslot as a shared
TSCH timeslot that is dedicated only for packet retransmis-
sions of all links with the same destination. Assigning grouped
retransmission timeslots in LLTT is based on the subtrees
and is done by assigning a number of shared timeslots for
possible retransmissions of all links in a subtree. Each grouped
retransmission timeslot can only be used to transmit packets
that are not acknowledged in their dedicated timeslots. The
scheduling algorithm starts with allocating the last timeslots
of the first slotframe for the grouped retransmission timeslots
towards the sink node (the blue timeslot in Fig. 3). Because
all subtree roots are possible transmitters in these timeslots,
these timeslots cannot be used in other slotframes. Then
the algorithm creates a slotframe for each subtree, using the
already started slotframe for the first subtree. For each subtree,
it allocates a timeslot for the link from that subtree root
towards the sink node, together with the links in that subtree.
Because these links are all dependent they are allocated to the
same slotframe. Because of the dependency between the links
in the first level of the network, our algorithm uses different
timeslots for the links from each subtree root towards the sink
node (green timeslots in Fig. 3).

Considering the example network in Fig. 3, there is a
two-hop path from n4 to n1 (sink node). This path requires
two sequential TSCH timeslots to establish the end-to-end
connection. As shown in the timeline diagram of Fig. 4, the
end-to-end latency is equal to sum of the buffering time at
the source node (n4) and the intermediate node (n2). The data
buffering time at n4 may vary from 0 to LSF , while The
buffering time at n2 depends on the placement of the allocated
timeslots for the link in the second level and the following link
in the first level within the TSCH slotframes. To reduce the
buffering time at the intermediate nodes (subtree roots), the
timeslots allocated for the links in a subtree should be before
the timeslot allocated for the link from the root of that subtree
towards the sink node.

To reduce the latency also for the failed transmissions
during dedicated timeslots, grouped retransmission timeslots
for the links in each subtree (red timeslots in Fig. 3) are
allocated between the dedicated timeslots for the second and
first levels. Then the algorithm continues with allocating
dedicated timeslots for all the links in that subtree, before
the shared timeslots. Since this scheduling algorithm is based
on a predefined topology structure, it has a low complexity
compared to other central scheduling algorithms for the TSCH
networks.

The LLTT schedule provides guaranteed access to the
medium for all links, targeting reliable and low-latency com-
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munications. This is done through parallel TSCH commu-
nications and a reduced slotframe length that increase the
frequency of allocated timeslots to each link, supporting high
data rates. A node in the second level of the network that
has a lower data generation rate than the allocated bandwidth,
can wake up and transmit in its allocated timeslots only if
there is a packet ready for transmission in its MAC buffer.
Thus, there is no power overhead for these nodes and low
latency is still ensured. However, not all in-vehicle sensor
nodes require low latency or high data rate communications.
For those sensor nodes, a super-schedule can be used with
a size of multiple LLTT slotframe sizes. The multiplication
factor can be selected based on the data generation rate of the
sensor node and the maximum allowed latency. This technique
minimizes power consumption of the second level nodes and
reduces the power consumption of the forwarding nodes at the
first level, as they only listen to the allocated timeslot every
multiple slotframes.

V. DATA AGGREGATION AND LATENCY ANALYSIS

LLTT uses topology management and scheduling to provide
a collision-free and low-latency TSCH schedule. Disabling
retransmissions, the worst-case packet forwarding delay in an
intermediate node can be expressed as the maximum time
difference between the links in the second level of the two-
hop tree and the following links in the first level (the time
between Rx and Tx at n2 in the timeline diagram of Fig. 4).
This delay, in terms of timeslots, is equal to LSF . Since the
timeslot duration is a constant in our work, we consider latency
in terms of timeslots and do not convert to time.

As sensory data is often very short, aggregation can be used
at the intermediate nodes in the multi-hop paths to efficiently
use the available bandwidth. When aggregation is used, all
the data packets received from the second level nodes are
aggregated with the subtree root’s own data to be sent to
the sink node. Aggregation reduces the number of timeslots
in each slotframe needed by the nodes for forwarding data
items received from others. This leads to more efficient use
of available bandwidth of each link. Furthermore, it reduces
the average communication latency due to reducing the size
of the slotframe. We use a periodic aggregation at the network
layer in periods of one slotframe. Shorter periods may cause
overloading the MAC which increases the latency due to
packet buffering after aggregation. On the other hand, longer
periods lead to higher latencies due to longer buffering time
for packets before aggregation. The aggregation ideally should
be done exactly before the allocated timeslot to the link from
the subtree root towards the sink node, in order to lower the
forwarding latency at the subtree roots. This requires a notion
of TSCH MAC timing at upper layers (i.e., network layer),
which is not practical. This periodic aggregation may lead to
a delay of maximum LSF , when a data packet is received
exactly after the aggregation at the network layer. In this case,
the data should wait for one slotframe to be aggregated with
the next packet. Thus, in total the maximum packet forwarding
latency in an intermediate node is 2× LSF .

Considering the data buffering time at the source node (see
Section IV) and forwarding delay at intermediate nodes, the
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Fig. 5. Analytical worst case packet delivery latency vs the number of nodes
in the network for TSCH schedules of star and LLTT topologies.

maximum packet delivery latency is 3× LSF . Using (2) and
(4), the Worst Case Packet Delivery Latency (WCPDL) (when
retransmissions are disabled) is:

WCPDLNo ReTx = 3× LSF

= 3×Max[degree(n)|n ∈ NT]

≤ 3× (d
√
(4N − 3)− 1

2
e+ 1).

(5)

Using retransmission timeslots to increase the reliability of
the network leads to higher data delivery latency in a network.
This higher delay has two reasons: 1) longer slotframes due
to retransmission timeslots and, 2) the timeslot gap between
the dedicated and retransmission timeslots for the links in the
first level of the network. The retransmission timeslots in the
second level are allocated in such a way that they cause an
extra latency of only one timeslot, due to the longer slotframes.
This delay is therefore covered in the first point.

The dedicated timeslot for the link from the root of each
subtree towards the sink node is the last point of data delivery
when there is no retransmission. This is while with retransmis-
sion, the last chance for data delivery at the sink node is the
allocated retransmission timeslot. This costs a latency equal
to the gap between the dedicated and retransmission timeslots
for the links towards the sink node which is at most equal
to LSF − 1. Accordingly, the WCPDL when the maximum
number of retransmissions is one can be extracted by (6).

WCPDLReTx = 4× LSF − 1 (6)

Fig. 5 shows the analytical WCPDL for star and LLTT
networks for different numbers of nodes. As shown, WCPDL
in a star TSCH network increases linearly with the number
of nodes in the network, because all the links in the net-
work are dependent. Using a two-hop network in LLTT, the
WCPDL is proportional to the square root of the number
of nodes in the network. This plot also shows the WCPDL
when retransmissions are enabled, and 10% of the slotframe
bandwidth is allocated for a maximum retransmission count of
one. For a star network, due to the gap between a dedicated
and shared timeslot for transmissions of a link (which is at
maximum equal to the LSF − 1), retransmissions lead to
a double latency compared to star with no retransmissions.
LLTT with retransmissions can still provide a better latency
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Fig. 6. Experimental testbed with 30 JN5168 [33] wireless sensor nodes
distributed over a car.

bound compared to star with no retransmission when the
number of nodes in the network exceeds 32.

VI. EXPERIMENTAL SETUPS

We set up an experimental testbed of 31 NXP JN5168
dongles [33] in a car for evaluation (Fig. 6). These dongles
include a wireless microcontroller which integrates a 32-
bit RISC processor and a 2.4GHz IEEE 802.15.4 compliant
transceiver. The transmission power of nodes is set to 0 dBm.
Each dongle runs the Contiki OS with TSCH as the MAC
protocol. The topology management and scheduling parts of
LLTT are done centrally using Matlab on a host computer
that is connected to the sink node (n1) via a UART interface.
The TSCH schedule is distributed by the sink node through
an extra timeslot at the beginning of the first slotframe that
is allocated for downstream data. The sink node initiates the
network as the PAN coordinator and all nodes periodically
generate data packets to be delivered to the sink.

To provide the LQ matrix for LLTT, initially, the network
goes through an identification phase. In this phase, each node
gets a dedicated timeslot and periodically broadcasts random
packets to all other nodes. Accordingly, each node can extract
quality of all its possible incoming links. We use Packet
Reception Ratio (PRR) as the quality metric (LQI of incoming
packets can be used as well). After a predefined number of
transmissions by each node, the sink node collects the results
from all nodes and reports them to the host computer. Because
this step is done once and only at the initialization of the
network, the overhead is negligible.

For the used network with 30 sensor nodes and one sink
node, the network topology is a complete 5-ary tree (NST =
5). We consider one third of the nodes as ambient-powered
sensors that are placed in different parts of the car. The rest
are considered as battery-powered. The schedule generated by
LLTT is broadcast to all nodes by the sink node. Then the main
phase of the experiment starts, in which each node generates
and sends periodic data packets.

As LLTT is a cross-layer design performing topology man-
agement as well as scheduling, we use some combinations of
known networking and scheduling techniques for our perfor-
mance comparison. We use a pure star network with a schedule
that dedicates one unique timeslot to each node. In addition,
we built two setups with combinations of RPL [34] and two
TSCH scheduling mechanisms, namely the minimal schedule
[9] and Orchestra [3]. For the TSCH minimal schedule,
we use LSF = 1 timeslot (slotted ALOHA), which leads
to 100% duty cycle for all nodes. For Orchestra, we used

TABLE I
EXPERIMENTAL SETUPS AND THEIR SLOTFRAME LENGTH

Network LSF Comment

LLTT 7
Schedule size of 6, using (4)
+ One timeslot for EB advertisement

LLTT+ReTx 7+2 2 timeslots for retransmissions

Star 30+1
One dedicated timeslot for each node
+ One timeslot for EB advertisement

Star+ReTx 31+6 6 timeslots for retransmissions
Minimal 1 All timeslots active for Tx/Rx
Orchestra 31 sender-based slotframe

the sender-based schedule, which was reported to have the
best performance for convergecast [3], with LSF = 31 and
Enhanced Beacon (EB) slotframe size 53.

We perform experiments with retransmissions enabled and
disabled for all the setups. We consider 20% retransmission
bandwidth for each link, and accordingly decide on the number
of shared retransmission timeslots for LLTT. For the minimal
schedule, we conduct multiple experiments with different
maximum number of link layer retransmissions from 1 to 3,
and report the best results in terms of latency and reliability. To
reduce contention on shared timeslots in the star network, we
assign each shared timeslot to a group of 5 nodes, based on the
retransmission bandwidth. This increases the size of the star
slotframe by 6 when the network consists of 30 sensor nodes
and one sink node. As Orchestra uses a hash of the nodes’
MAC address to assign timeslots to nodes, there is a chance
of allocating the same timeslot for multiple links. Because
all nodes are in the range of each other and have a high data
generation rate, this leads to interfered communications within
the network and thus packet failures. The experimental results
showed that only few nodes were able to deliver their data to
the sink node. Thus, the results for RPL in combination with
Orchestra were ultimately not considered in the performance
analysis discussed in the next section. Orchestra is better suited
for larger and lower density networks than the ones considered
in this work. The network setups and their slotframe sizes are
summarized in Table I.

VII. PERFORMANCE ANALYSIS

We investigate two metrics to evaluate the performance
of LLTT. The end-to-end Data Delivery Ratio (DDR) is the
ratio between the received data samples at the sink node and
the total number of data samples generated by the source
node. The end-to-end latency is the time between data sample
generation by the source node and its reception at the sink
node. In the following, first we analyze the data delivery
performance of LLTT, when different latency bounds are
considered for validity of data by the application. Moreover,
to evaluate the effect of shared retransmission timeslots, we
performed a set of experiments in presence of controlled
interference. Second, we investigate the performance of LLTT
for different data generation rates.

A. Data Delivery vs Latency

Fig. 7 shows the average DDR for different protocols and
latency bounds, when the network is in an interference-free
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Fig. 7. Average DDR for different latency bounds in an interference-free
environment. Red error bars show the distribution of DDR for all nodes in
the network.

environment. A homogeneous data generation rate of 2Hz
is used for all the nodes. Red error bars show the worst
and best DDR for all 30 non-sink nodes in the network.
When the applied latency bound is infinite so latency has
no effect on data validity, both LLTT and star networks
have a DDR higher than 98%. By using the retransmission
timeslots, DDR is increased to 99.7% for both, while in the
best case, RPL+Minimal has an average DDR of 64% with
maximum retransmissions of one. For higher retransmissions,
RPL+Minimal faces high traffic load of retransmitted packets,
leading to worse DDR and latency.

We use the results of the unbounded latency experiment
and apply four latency bounds of 30, 25, 20, and 15 timeslots
duration to it, i.e., 300, 250, 200, and 150 ms for a TSCH
timeslot duration of 10 ms. Each bar in Fig. 7 shows the
percentage of valid data that is delivered to the sink node
within the specified latency bound. As shown, by reducing
the latency bound, there are less valid data packets delivered,
especially for the star network. This is mostly because data
has to wait in the MAC buffer of the source node for the
next active timeslot to be transferred. This waiting time varies
from 0 to LSF . Because the star network has the longest
slotframe, it causes higher average latency compared to others
and thus it is affected more by the latency bounds. This effect
is more visible when retransmission slots are used, caused
by the longer slotframes. LLTT reduces the buffering time at
the source nodes by using very short slotframes. Thus, even
for a latency bound of 25 timeslots, both versions of LLTT
still deliver the same percentages of data packets as in the
unbounded scenario.

Fig. 7 shows that DDR of both versions of RPL+Minimal
is almost the same for all latency bounds from 30 down
to 15 timeslots. This is because all the timeslots are active
for transmissions of all nodes and a generated packet at
application layer can be transmitted at the same slot in MAC
layer. The DDR drop observed when going from unbounded
to the 30 slot latency bound is due to the use of the back-
off mechanism after transmission failures, which cause longer
latencies that improve DDR in the unbounded scenario but
invalidate data under latency bounds.

Fig. 8 shows the latency distribution of each node for
LLTT and star networks. The results confirm the analytical
WCPDL (Section V), considering one extra timeslot at each
slotframe for network advertisement. This means that for a
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Fig. 8. End-to-end latency distribution of each node’s communication towards
the sink node. X-axes show the node number and the red lines show the
maximum observed packet delivery latency for all nodes.
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Fig. 9. Average DDR for different latency bounds, in presence of controlled
interference on 4 out of 16 channels.

higher number of nodes than what is used in these experiments,
LLTT even performs better than the star network. Another
observation of Fig. 8 is that five nodes in both LLTT exper-
iments have lower latencies than other nodes. These are the
subtree roots which have one-hop communications towards the
sink node, while other nodes have two-hop communications.
Accordingly, the in-vehicle network designer may decide to
select the nodes with more stringent latency requirements as
the subtree roots.

Retransmission timeslots are effective when physical layer
links are not 100% reliable, otherwise they only lead to
longer slotframes and higher latencies (Fig. 8c and 8d). To
evaluate the effect of the shared retransmission timeslots on
communication reliability and latency, we conduct a set of
experiments in presence of wireless interference. We used
four interference generators to block 4 out of 16 frequency
channels used for TSCH channel hopping by continuously
generating dummy packets. Fig. 9 shows the DDR results of
these experiments for different latency bounds. Since 75% of
the channels are not interfered, 75% of the links are expected
to have successful communications. This is visible for the star
experiment (with infinite latency bound), since all the commu-
nications are single hop. Due to multi-hop communications in
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LLTT and RPL+Minimal, the average DDR is lower. The high
variation in DDR results of each experiment (red error bars)
is because of difference in reliability level of one-hop and
two-hop communications.

For all the experiments with retransmissions, we set the
maximum retransmission count to one. As observed in Fig. 9,
grouped retransmission timeslots improve the average DDR
about 24% and 20% for LLTT and star network, respectively.
For RPL+Minimal, this improvement is less than 15%. This
is because retransmissions impose more contention in the
Minimal schedule.

A star network with retransmissions experiences a high drop
in DDR when latency bounds apply. This implies higher aver-
age latency. This happens because failed packets should wait
for shared retransmission slots. Longer slotframes due to addi-
tion of retransmission slots is another reason. Retransmission
timeslots in LLTT are allocated in such a way that they impose
the lowest possible latency increase for single and multi-
hop communications. For RPL+Minimal, the latency overhead
of retransmissions is much lower, because all timeslots for
transmissions and retransmission can take place after one
back-off period. For very low latency bounds, the performance
of the LLTT and star networks, which use dedicated timeslots,
gets closer to the performance of RPL+Minimal with shared
timeslots.

B. Effect of Data Generation Rate

To evaluate the performance of LLTT under different data
generation rates, we picked five data generation rates (1, 2, 3,
5, and 10 Hz), and performed experiments for each network
type with each data rate. No latency bound is considered for
data validity. We performed these experiments in presence
of interference generators. Since the slotframe size of both
versions of LLTT is less than 10 timeslots (for 30 non-sink
nodes) and aggregation is used by subtree roots, it can handle a
data generation rate of 10 Hz (one packet every 10 timeslots).
On the other hand, star uses a slotframe size of 31 timeslots
and if more than one packet is injected to the TSCH MAC
every 31 timeslots, latency increases dramatically. In order to
prevent this, we use periodic local data aggregation in star
networks with a period of one slotframe. Higher packet gen-
eration rates for RPL+Minimal lead to higher contention rates
and lower performance. This decreases DDR when retransmis-
sions are disabled, and increases latency when retransmissions
are enabled. We use the periodic aggregation technique for
RPL+Minimal with a period of 3Hz. This reduced contention
helps more packets to be delivered per time unit, but with a
higher average latency.

Fig. 10 shows the average achieved DDR and latency in
each network under different data rates. This figure reveals
that both versions of LLTT have almost the same average end-
to-end latency for different data rates. For RPL+Minimal, the
achieved latency increases when increasing the data generation
rate and, at the same time, average DDR goes down. This
is due to higher contention which increases failure rate as
well as the waiting time for packet (re)transmissions. While
aggregation only affects the packet size and has no effect on
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Fig. 10. a) average DDR and b) average data delivery latency for different
networks, for different data generation rates.

the contention rate, for data rates higher than 3Hz, the achieved
DDR is almost the same for both RPL+Minimal setups (with
and without retransmission). In contrast, periodic aggregation
increases the average latency with about half the aggregation
period, i.e., 16 timeslots, for data rates higher than 3Hz. The
same happens for the star setup when the data generation
period is lower than LSF . For star without retransmission
timeslots, this happens for data rates higher than 3Hz with
a latency increase of around 16 timeslots (LSF = 31). This
is while for star with retransmission timeslots, this effect is
observed for data rates higher than 2Hz with about 19 timeslots
latency increase (LSF = 37).

As all the communications of LLTT and star use dedicated
links, they show almost constant DDR for all data rates. When
shared retransmission slots are exploited, lower data rates lead
to higher DDR. This is because of the lower contention on
shared retransmission timeslots that increases the chance of
packet delivery for failed transmissions on dedicated timeslots.
For low data generation rates, LLTT with retransmission
timeslots provides similar DDR to the star and RPL+Minimal
networks with retransmission, while it has over 25% lower
average latency. Furthermore, for high data generation rates,
LLTT outperforms star with almost 60% and RPL+Minimal
with 70% lower average latency. It shows the ability of LLTT
to provide reliable and low latency data communications for
a dense network with high communication loads.

VIII. CONCLUSIONS

This paper proposes LLTT, a cross-layer design for reli-
able and low-latency data convergecast in dense TSCH-based
industrial wireless sensor networks. Based on the number
of nodes in the network, LLTT picks a balanced two-level
complete k-ary tree as the topology structure of the network.
This tree-topology structure provides a high number of in-
dependent links, which paves the way for a high degree of
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parallelism in TSCH schedules. Employing an optimized graph
isomorphism algorithm, LLTT extracts a proper match for
the selected tree structure in the connectivity graph of the
network. The extracted network topology is used by a light-
weight TSCH schedule generator to find a highly parallelized
TSCH schedule. This schedule generator allocates grouped
shared retransmission timeslots among dedicated timeslots to
improve communication reliability. Periodic data aggregation
is used to improve bandwidth utilization.

Experimental results in an in-vehicle testbed with 31 sensors
nodes show that LLTT is able to provide low-latency data
delivery. Experiments show that for high data generation rates,
the periodic aggregation technique of LLTT keeps the average
communication latency low. A star network and a network
with RPL routing and minimal schedule face latency increase
under high data generation rates.

It is an interesting future direction of research to monitor
link-qualities at run-time and update the used links in the
network, based on the long-term changes in the link qualities
and/or application requirements.
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