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Abstract—The Automotive industry is evolving towards a more
electronics-assisted driving and self-driving functionality. The
addition of complex subsystems has a great impact on the
current vehicle architectures, leading to safety concerns. In this
work we present a technique that follows the ISO 26262: Road
Vehicles - Functional Safety standard to introduce redundancy
in the architecture by using ASIL decomposition, and perform
a safety analysis of the modelled system. A three-layer model is
used to describe the application, the resources, and the physical
space of the vehicle. In this paper we introduce novel model
transformations to replicate parts of the application following
ASIL decomposition rules. Finally, we perform a cost analysis and
a probabilistic fault tree analysis on the architecture, making a
comparison between different possible solutions. The advantages
of these techniques, such as traceability and scalability, are shown
by modelling and analysing the lateral control application of a
real truck platooning system.

Index Terms—ASIL decomposition, EE Automotive Architec-
ture, Functional Safety, Probabilistic FTA

I. INTRODUCTION

According to the SAE automation levels [1], a level 4

or 5 autonomous vehicle is required to perform all driving

functions without the necessity of an immediate response from

a backup driver. To achieve that, the system has to be safe, and

redundancy has to be introduced to have backup modules that

can complete the driving task even when a failure in the main

module occurs. Different types of redundancy can be used, for

example spatial or temporal redundancy. In this paper we focus

on functional redundancy: a function is realized by diverse

implementations, both in terms of software and heterogeneous

hardware, to minimize the risk of a combined failure.

An important decision during the design of an autonomous

vehicle is choosing which type of architecture to use. For ex-

ample, a centralized architecture [2] consists of a single pow-

erful central unit that performs all the necessary operations,

such as sensor data fusion and vehicle control algorithms. The

network will experience congestion near the central unit com-

pared to a distributed architecture [3], where the sensors and

actuators are connected to distributed controllers to minimize

the cable lengths and the network congestion. Many variations

are possible in this, both in the architecture (domain based,

zonal architecture, etc.) and in the network topology (ring,

star, etc.).

With our work we provide:

1) A methodology to explore generic automotive archi-

tecture solutions by using correct ASIL decomposition

techniques, as specified by the ISO 26262 standard [5],

in an automated way on a modelled system.

2) A complete Fault Tree Analysis (FTA) that includes the

generation of a fault tree and the probabilistic FTA that

calculates the probability of failure of the total system,

and the Common Cause Faults analysis to identify pos-

sible violations of the independence rules required for

redundancy.

3) A cost analysis of the system, with the possibility to tailor

the cost metrics to fit any specific scenario.
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Fig. 1: Analysis of different level of safety for a lateral control

application in a truck platooning system.

As a result, it is possible to evaluate the trade-offs between

the safety and the cost of the architecture at each step during

its development. Figure 1 shows the results of our techniques

applied to a real ASIL D lateral control application used on the

truck platooning system described in Section VIII. Each point

in the plot corresponds to the cost and the failure probability of

a particular architecture that implement the lateral controller

application, with different levels of redundancy obtained by

using our model transformations. The model used in this work

is based on [4] and is described in Section IV.

As described in Section III, multiple types of ASIL de-

composition are allowed. For example, the curve RND-3 in

Figure 1 repeatedly decomposes ASIL D components into

ASIL B + ASIL B or ASIL A + ASIL C components.

The starting position 1 corresponds to an ideal system where

only ASIL D components are used. This situation is often

not possible to implement because of the non-availability

or the cost of ASIL D component, especially for general

purpose application. The Expand() transformation described



in Section VII substitutes with redundant implementation the

selected modules, and in this case the cost metric described

in Section VI leads to an increased cost of the system. The

effect of having a redundant system composed by multi-

ple less reliable components is also to increase the system

probability of failure, and this depends on the failure rates

assigned to the system, described together with the failure

probability calculation in Section V. By repeatedly applying

the Connect() transformation we can reduce the number of

separate redundant blocks by merging them together, reducing

both costs and failure probability of the system. In the final

position 3, only ASIL B redundant components are used for

executing the initial application functionality, while simple and

cheaper ASIL D specific components are only used to manage

the redundancy. The other curves in the plot correspond

to different types of ASIL decomposition or different cost

metrics, which lead to different costs and failure probabilities

for the same initial system.

Finally, Section IX will explain the results of the ex-

periments performed on the lateral control application of

Section VIII.

II. RELATED WORK

In this section we present works that relate to this paper

in terms of modelling of autonomous vehicle architectures,

ASIL decomposition, fault tree analysis, and application of

the ISO 26262 standard in the design of automotive systems.

As mentioned in the introduction, ASIL decomposition is

generally used as a top-down method applied on the Functional

Safety Requirements (FSRs). In [6] an overview of the ASIL

decomposition technique is given, focusing on points of the

standard that could be misinterpreted. In [7] and [8] the authors

describe a methodology to allocate the ASIL values that are

assigned to a FSR to the architecture components following the

decomposition rules. In [9] the ASIL decomposition technique

is applied to a hybrid braking system using the Hip-HOPS tool

for safety analysis and design optimization. Similar work is

done also in the aerospace field, as in [10] where the authors

describe a method to allocate Development Assurance Levels.

As opposed to these works, in our work we use the ASIL

decomposition to modify the system architecture in order to

accommodate a decomposed FSR.

In [11] design space exploration of a system architecture

is performed with SMT solvers to improve the system safety

level by integrating safety mechanisms which are similar to

the transformations we use in this work to introduce system

redundancy. In [12] the design space exploration is performed

in an AUTOSAR environment, in which Software Components

are allocated to the hardware modules in the architecture and

a time analysis that considers the execution time and the

scheduling of the components is performed. In this paper we

assume that the allocation of the application is given, and that

it can be modified via the ASIL decomposition rules.

We base our automotive architecture models on [4], ex-

tending that work with a complete FTA and Cost Analysis

to evaluate design trade-offs in a quantitative manner.

In terms of fault tree analysis for automotive systems, [13]

describes an algorithm to generate the fault tree from a system

description. Our fault tree generation described in Section V is

based on this work. In [14] a generic structure for the failure

of an automotive component is described, with details on how

to refine the abstraction level on the hardware resources failure

modes.

The use of ASIL decomposition does not always follow the

correct rules and practices, as shown in multiple publications

such as [15]. With our work we offer automated model

transformations that follow the rules of ISO 26262, as well

as validation and quantification techniques for any automotive

architecture described by the model of Section IV, regardless

of how it was generated.

III. ISO 26262 AND ASIL DECOMPOSITION

The ISO 26262: Road Vehicles - Functional Safety is a

standard published in 2011 to address functional safety of

automotive systems. It takes into account the full product life-

cycle, from the concept idea to production and post-production

operations, according to a V-Model [5]. The standard de-

fines the Automotive Safety and Integrity Level (ASIL) as an

adaptation of the Safety and Integrity Level (SIL) from the

IEC 61508 standard [16]. ASIL is a risk-based parameter that

classifies an hazardous scenario into five levels, where QM

(Quality Management) is the lowest and D the most critical,

based on Severity, Probability of Exposure and Controllability.

The standard describes the ASIL decomposition procedure

as a technique to reduce the criticality of an FSR by splitting it

into multiple redundant requirements, each with a lower ASIL

value. Figure 2 shows the possible decomposition patterns that

are illustrated in the standard. The notation ASIL X(Y) is used

to track the original FSR and to ensure that the proper system

level analysis is performed at ASIL Y level.
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Fig. 2: ASIL decomposition patterns.

As the standard suggests, the ASIL decomposition technique

is generally applied on the requirements level. In this work

instead we use this technique in a later phase of the V-Model,

applying it on component level, modifying a given architecture

instead of allocating the requirements to existing components.

An FSR can be related to one or more functionalities, which

are implemented in the automotive system. In the following

section we establish which rules are required to apply the

decomposition technique on this lower level, ensuring that the



required independence between the redundant components is

achieved.

IV. AUTOMOTIVE ARCHITECTURE MODEL

To perform a system-level safety analysis of an automotive

architecture, information about the functionality of the system

and its implementation are both required. In particular, we

need the ASIL requirements and specifications of the soft-

ware and hardware resources to carry out an ISO 26262-

based analysis. Moreover, environmental information such as

temperature, vibrations, EMI, etc. is required to establish

Freedom From Interference (FFI) [5] and to validate ASIL

decomposition over redundant parts of the system. To complete

the independence analysis of the redundant parts, we must

also be able to identify Common Cause Faults in the system.

Finally, a quantifiable metric is required to compare between

different architecture solutions.

We use the model of [4] to describe the previous require-

ments and perform the functional safety analysis. The model

consists of three layers, each described by a graph:

G = (N,E) Application graph
H = (R,L) Resource graph
F = (P,C) Physical graph

Each graph contains a set of nodes and a set of edges. Each

edge is an ordered pair (i, j), where i is the source node and

j is the sink node.

The application graph is formed by the set of application

nodes N and the set of channels E, which forms the logical

relationships between the nodes. We assume that the FSR

was obtained from a preceding Hazard Analysis and Risk

Assessment (HARA). Each application node n has an ASIL

value A(n) that is defined by the FSR.

The resource graph contains the set of resources R and a

set of links L that describe the hardware architecture of the

system. Each resource r has an ASIL value A(r) that describes

the maximum safety level obtainable by that resource, also

called ASIL-X-ready resource.

The physical graph is composed of the set of physical

locations P and the physical connections C. In our Functional

Safety Analysis, the physical locations contain information

about the environmental factors required for the FFI analysis.

Automotive applications often have feedback loops to cor-

rect the inputs of the controllers, meaning that the application

graph G will often be a Directed Cyclic Graph (DCG).

A. An Example Sensor-to-Actuator Application

Figure 3 shows an example of a simplified redundant system

in which a data fusion system collects the data from a camera

and a GPS to control the steering actuator.

In the application layer, the communication between the

different modules is described by explicit communication

nodes, such as the camera stream or the GPS coordinates.

The function MapG(N) → P(R) defines the mapping of

the application nodes to the resources. For example, the GPS

coordinates are sent via the CAN bus, the CAN-to-Ethernet
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Fig. 3: Redundant system with camera and GPS data fusion.

gateway and the Ethernet connection eth2. The physical loca-

tions c1, c2, etc. represent the space in the vehicle in which

the cables are placed. For example, c4 connects the front of

the car, where the switches are positioned, with the rear, where

ecu2 is located. The function MapH(R) → P(P ) defines the

positioning of the resources into the physical space.

We use two special nodes in the application layer to identify

the redundant blocks: the splitter and the merger nodes. A

splitter replicates the input data to its output ports, while a

merger compares the redundant inputs and ensures only correct

output data is forwarded. The combination of these two types

of nodes creates the redundant blocks, in which each branch

that connects the two is a subsystem that works in parallel

with the others. In the example in Figure 3, the splitter and

merger nodes are implemented in the Ethernet switches.

Having an explicit redundancy pattern in the model allows

us to identify the redundant parts of the system in order to

apply and verify the ASIL decomposition rules. The inde-

pendence of the separate redundant branches (e.g. in terms

of used resources or locations) is necessary to validate the

decomposition.

V. FAULT TREE GENERATION AND ANALYSIS

The model of a generic system can be used to generate

the system fault tree. During the construction of the Safety

Case, the fault trees are generally manually constructed by a

safety expert. We follow instead the algorithm described in [4],

exploring the application graph from actuators to sensors, to

automatically generate the fault tree. For each node, a pattern

is generated. For example, the fault tree part related to the

node com a1 of Figure 3 is shown in Figure 4. The input



nodes are connected via an OR gate, and the only exception

to this rule is the merger node, which will propagate the effect

of its inputs via an AND instead of an OR gate by having the

possibility to chose which of its input data shall be propagated.

Failure com 1a

Location c4 

Fail

Resource 

eth3 Fail

Input Fail

Failure Split 2Failure Split 1

Fig. 4: Result of fault tree generation for the node com a1

from Figure 3.
A fault tree is a non-cyclic graph, but the application graph

can contain cycles. In the generation phase, when a cycle is

detected the fault tree is cut, since the cyclic dependencies are

not analyzed with the FTA.

In this work, we assign a failure rate λ to each base event of

the generated fault tree. Table I shows the failure rates values

that were used in the experiments for this work for the resource

layer. The failure rates are related to the type of resource and

to their ASIL specification. We assume splitter and merger

resources to be highly reliable components and their failure

rates are lower by a factor of 10 compared to other types

of resources. The λ value related to the physical position is

10−11 failures per hour and it conveys information about the

environmental conditions and the probabilities of accidents to

impact a specific position of the vehicle.

TABLE I: Resources failure rates (failures/hour).
Resource Type QM A B C D

Splitter or Merger 10e-6 10e-7 10e-8 10e-9 10e-10

Other 10e-5 10e-6 10e-7 10e-8 10e-9

To compute the total failure probability of the system, we

translate the fault tree into a Binary Decision Diagram (BDD)

using an If-Then-Else (ITE) structure as described in [17].

This step will reduce the complexity of calculating the failure

probability of the system directly on the fault tree. A variable

ordering is created by traversing the fault tree from top to

bottom and from left to right, so that the base events that

impact more directly the Top Level Event come first. Each base

event is represented in the ITE structure as ITE(b event,1,0),

where b event is the variable. The following equations are

followed to perform an operation <op> between two ITE

structures J = ITE(X,f1,f2) and G = ITE(Y,g1,g2) :

J<op>G = ITE(X, f1<op>G, f2<op>G) if X<Y (1)

J<op>G = ITE(X, f1<op>g1, f2<op>g2) if X=Y (2)

The possible operations depend on the gates present in the

fault tree: addition when an OR gate is found, multiplication

in case of an AND gate. The constructed ITE structure for the

Top Level Events corresponds to the BDD that represents the

system, where the variables correspond to the fault tree’s base

events and have an associated failure rate. We calculate the

total system failure probability by following the BDD rules.

The conversion between fault tree and BDD computational

cost grows exponentially with the number of redundant blocks

that are present in the application graph. That is due to the

recursive nature of the ITE operations of Equations 1 and 2

combined with the effect of calculating the ITE structure for

each of the possible paths present in the graph, whose number

increases exponentially with each new ASIL decomposition. To

improve the scalability of the method for systems that have

more than a few separate redundant blocks we introduce a

new approximation technique that aims to reduce the number

of possible different paths present in the application graph.

The approximation consists in removing the failure events

related to the nodes that form the redundant branches from the

fault tree, connecting directly the splitter’s failure event to the

corresponding merger’s input failure event via an OR gate.

For the example of Figure 3, the failure probability of

the system without the approximation is 2.04180e−7 fph,

compared to 2.04179e−7 fph with the approximation. The

approximation lowers the number of nodes in the fault tree

from 87 to 51, but more importantly, halves the number of

possible paths, for each of the n ASIL decomposition a 2n

factor. The fact that the failure events related to the branches

do not have a significant impact on the failure probability of

the system is due to the merger node: the AND gate on its

inputs leads to a multiplication of the failure rates of these

events. The order of magnitude of multiplied λ can be expected

to be much lower compared to the rest, as illustrated in Table I.

For more complex applications (695 nodes in the fault tree for

position 1 of Figure 1) it is not possible to calculate the failure

probability without the approximation.

The approximation also requires that the nodes in the

separate branches do not share common base events, which

would also invalidate the independence of the redundant parts

as required by the ASIL decomposition rules of the ISO

26262 standard. The algorithms check these assumptions. An

analysis of the nodes that form the branches highlights possible

Common Cause Faults (CCFs) when the same base event is

found on nodes belonging to different branches. For example,

when the nodes dfus
1

and dfus
2

of Figure 3 are mapped on

the same ECU, the base event related to the failure of the

hardware component will be present for both the nodes and a

warning for a potential CCF is issued. The warning informs

the user that the ASIL decomposition is not valid, as well as

the results obtained by using the approximation in the failure

probability calculation.

VI. COST CALCULATION

To identify the trade-offs between the failure probability and

the cost of an architecture, we perform a cost calculation based

on the ASIL values of the resources. We consider different cost

metrics to highlight the flexibility of the tool in the exploration.

Table II shows one possible cost metric, where the cost

of the splitter and merger resources is lower than other re-

source types, assuming that since they perform a very specific

functionality, their cost could be lower because of a simpler

safety analysis and certification process. As previously shown

in Figure 1, different cost metrics can be used and can be

tailored to a specific case.



TABLE II: Exponential Cost Metric 1
res Type QM A B C D

Functional 5 50 500 5000 50000

Communication 4 40 400 4000 40000

Sensor 8 80 800 8000 80000

Actuator 8 80 800 8000 80000

Splitter 1 10 100 1000 10000

Merger 1 10 100 1000 10000

VII. ASIL-ORIENTED MODEL TRANSFORMATIONS

A. Expand, Connect and Simplify transformations

Transformations can be applied to the model described in

the previous section to modify the level of redundancy of

the system. To adhere to the ISO 26262 standard the ASIL

decomposition rules must be applied on the component level as

explained in [4]. Equation 3 expresses the relationship between

the resulting ASIL value, the FSR and its implementation in

the resource layer.

ASIL(node) = min(A(node),A(MapG(node))) (3)

Equation 4 expresses the relation to the ASIL value of a

redundant block in relationship with the ASIL values of the

splitter, merger and the redundant branches. These formulas

are used to assign the correct ASIL values on the transformed

modules obtaining the desired ASIL for the redundant system.

ASILblock = min(ASIL(split),
∑

b∈branches

ASILb,ASIL(merg)) (4)

We perform three transformations on the graphs: Expand(),

Connect(), Reduce().

The function Expand(app node) allows us to implement a

redundant solution for the application node by substituting it

with the structure shown in Figure 5, as presented in [4].

A splitter ns is added for each input and a merger nm is

added for each output of the application node. In the example

scenario, the node n is substituted by two redundant nodes,

n1 and n2, and connected to the splitter and the merger via

communication nodes. In case of expanding a communication

node, the structure will be slightly different, containing only

one communication node per branch and new communication

nodes as input and output of the splitter and merger. The

new ASIL value of the redundant block is calculated as in

Equation 4. Depending on the ASIL values assigned to the

resulting nodes we can obtain a higher or equal ASIL value

for the block. Even if this transformation adds 7 extra nodes

to the graph, the resulting cost could still be lower based on

the cost metric that is used, since the splitter and the merger

nodes can be executed by specific resources, while n1 and n2

are now mapped on less critical cheaper resources.

ns

c1a n1 c1b

nm

c2bc2a n2

n

Expand()

Fig. 5: Result of transformation Expand(n) applied on a

functional node n.

The function Connect(RBlock1, RBlock2) takes two consec-

utive redundant blocks and merges them into a single one, as

shown in Figure 6. In order for this transformation to be ASIL-

equivalent, the following conditions must be satisfied:

1) The ASIL values of RBlock1 and RBlock2 must be the

same;

2) The number of redundant branches in RBlock1 and

RBlock2 must be the same;

3) The middle communication node c must not be connected

to any external node different from nm and fs;

4) For each branch in RBlock1 there must be a branch in

RBlock2 with the same ASIL value.

When the four conditions are satisfied, if the branches with

the same ASIL are connected and nm, c, and fs are removed,

then the resulting redundant block will have the same ASIL

value as the combination of RBlock1 and RBlock2.

In case of a single-fault scenario, the Connect() transforma-

tion does not change the reliability of the system. Note that in

a two or more-faults scenario the transformed system is more

prone to experience a system failure.

ns

nc1a n1 nc1b

nm

nc2bnc2a n2

fs

fc1a f1 fc1b

fm

fc2bfc2a f2

c

ns

nc1a n1 nc1b

nc2bnc2a n2

fc1a f1 fc1b

fm

fc2bfc2a f2

Connect()

Fig. 6: Transformation Connect(BlockN,BlockF)

Last, the new Reduce(app comm1, app comm2) transfor-

mation simplifies two consecutive communication nodes. This

situation could happen as a consequence of one of the previous

transformations and the two consecutive communication nodes

are not necessary for the analysis since they both contain the

same information. The nodes app comm1 and app comm2

are substituted with a single communication node which is

connected to the graph. If the ASIL values of app comm1

and app comm2 were different, the lowest ASIL value of the

two is assigned to the resulting node.

The results of the application layer transformations are

mapped to the resource graph and the ASIL decomposition

is verified via the Common Cause Fault analysis described in

Section V.

B. Effects of the model transformations and mapping on the

system failure probability and cost

The failure probability and the cost of the system are strictly

related to the resource and physical layers. The mapping of the

application takes an important part in deciding which hardware

modules are used in the final architecture. To evaluate the

effects of the model transformations we first assume that for

each new node in the application graph a new resource with

the appropriate ASIL value is used in the resource graph.

The example of Figure 7 shows an expansion of a node

n, which has 1 input and 2 outputs in the original graph.

The initial failure probability of the system is 7.07e− 9,

and after the transformation it becomes 6.39e− 9. The use

of reliable splitter and merger resources reduces the failure



probability by replicating the functionality of node n. The

cost of reliable resources with a specific role can be lower

than reliable general purpose hardware. The shift of the high

reliability requirements from the processing hardware to the

safety management parts can thus reduce the system cost.
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Fig. 7: Expansion of a node with 1 input and 2 outputs.

Figure 8 shows an example of the Expansion() transfor-

mation applied to a node with 3 inputs and 3 outputs. In

this scenario, the resulting failure probability is 1.28e−8 fph,

compared to the initial system that has 1.21e−8 fph. Even

if the splitter and merger resources have individually lower

λ than a functional resource with the same ASIL level, the

introduction of 6 new resources in the system increases the

complexity and each resource adds its individual failure rate

to the probability calculation. This shows that it is not always

beneficial to introduce redundancy in the system, depending

on the λ values of the resources that are being used and the

system configuration. In this scenario, a 1 input to 2 output

node is worth to expand, while a 3 to 3 is not.
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Fig. 8: Expansion of a node with 3 inputs and 3 outputs.

For Figure 6, the initial graph failure probability is 5.49e−9
and after the Connect() transformation it becomes 4.26e−9.

By removing the hardware on which nm, c, and fs are mapped,

the resulting system achieves a lower failure probability.

The Reduce() transformation is instead used mostly inside

the redundant branches, and will not result in an impactful

variation of the system failure probability, while reducing the

cost by reducing the number of used resources.

The mapping has a strong impact on the outcome of the

analysis. Figure 9 shows two different usages of the resources

by the same application. In the first case, the system failure

probability is 8.29e−9 fph, while in the second one 4.26e−9
fph. Assuming that the application nodes mapped on the same

resource do not interfere with each other or increase the failure

rate of the resource because of its sharing, the second solution

will have a less complex hardware architecture that can achieve

a higher grade of reliability. Advanced mapping algorithms can

be used to identify the minimum set of necessary resources to

achieve the minimum failure probability for the system, but

we defer these techniques to future work.
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Fig. 9: Individual resource for each application node (a) and

shared resources for multiple application nodes (b).

VIII. THE ECOTWIN PLATOONING PROJECT

In this work we apply the analysis and transformations to the

truck platooning project of the EcoTwin consortium [18]. In

a truck platoon trucks autonomously follow a primary vehicle

with a short distance, allowing significant fuel savings. The

EcoTwin project focused on the development of a level 2+ [1]

system architecture by using a Safety Executive Pattern, in

which two channels, a main and a safety backup one, work in

parallel and are monitored by a Health Management System.

The starting point consisted of a non-redundant system that

did not satisfy the functional safety requirements because of

the non-availability of ASIL D ready resources to run the self-

driving algorithms. In our work we retrace the manual design

process with our automated framework, which analyses the

architecture providing cost and reliability information at each

decomposition step. Our framework’s input is a valid graph in

terms of FSR, which models the ideal system where ASIL D

resources are available. Our model transformations ensure the

previously manual steps are automated and checked for cost

and reliability at each step.

The application graph in Figure 10 describes the model

of the original lateral control application. Virtual splitters are

used when multiple sensors are acquiring information about

the same objects and their data is used together in a sensor

fusion algorithm. A single channel analyses sensors data to

create a world model and provides the steering control signal

for the steering actuator.

IX. RESULTS

The experiments performed in this work transform the

original application graph of the EcoTwin project shown in

Figure 10 into the application graph shown in Figure 11. In

the resulting graph two redundant branches are generating the

actuator input signals, compared to the initial graph in which

the autonomous driving functionality was executed by a single
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Fig. 10: Original non-redundant input application graph. In

blue the nodes that are expanded in the experiments.

flow. Multiple metrics and types of transformations can be

used, as shown in Figure 1, to obtain the redundant system:

BB, AC, RND refer to the ASIL decomposition possibilities

of Figure 2, while the numbers correspond to different cost

metrics. To explain the results, we use the cost metric of Ta-

ble II and an Expand() transformation that sets an ASIL value

of the redundant branches according to the decompositions

[2-1-1-1] of Figure 2, and assigns the original ASIL value to

the splitters and mergers. Figure 12 shows the results of the

analysis in terms of Failure Probability vs Costs.

The model transformations are:

1) Expand() the functional and communication nodes that

form the decision part of the system, highlighted in

Figure 10. All these transformation but one increase the

cost of the system and its failure probability. That is

because for each node introduced by the replication a

new resource is added to the resource layer, creating

complexity in the architecture. The initial cost value is

998800 with a failure probability of 6.37e−9 fph, point A

in Figure 12, reaching 1843000 and 2.14e−8 fph at point

B, where the maximum expansion is reached.

2) Connect() and Reduce() to connect the redundant blocks.

The curve is linear, since all the nodes that are removed

were ASIL D, connecting branches with ASIL B values.

The achieved cost is 1229000, with a failure probability
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Fig. 12: Analysis of different level of redundancy for a lateral

control application in a truck platooning system.

of 9.07e−9 fph at point C of the curve. The cost of

the current system as well as its failure probability

are higher than the original system, but the mapping

has not been optimized yet. Moreover, the redundant

system utilizes ASIL D components in the modified part

of the application graph only for the splitter and the

merger nodes and only ASIL B for the computational

resources. In a real project it is likely that no ASIL D

components are available (at a low cost) thus requiring

these transformations.

3) Finally, after applying both the Connect and the Reduce

transformations, the mapping modification described in

Section VII-B is performed where possible, obtaining

a system with a cost of 1019000 units and a failure

probability of 6.72e−9 fph at point D. The final re-

sults uses ASIL D components only for the splitter and

merger nodes, which are specific functions related to

the redundancy management, while functional nodes are

implemented by ASIL B components, which are generally

available for general purpose application in automotive

systems. This solution achieves a failure probability and

a cost similar to the initial ideal (but infeasible) architec-

ture, where only ASIL D components were used. More

mapping optimization techniques can be used to further

reduce the costs and the failure probability of the system.

X. CONCLUSIONS

In this paper we presented a framework for safety analysis

of automotive systems. The ASIL decomposition technique of

the ISO 26262 standard is followed to modify the redundancy

of the system on the implementation-level. The automotive

system is described with a 3-layer model, on which trans-

formations can be applied to modify the configuration and

maintaining the required ASIL value. Fault trees are generated

from the model and are used to perform Common Cause Fault

analysis for validation of the decomposition and a probabilistic

analysis is performed to obtain the system failure probability.

A cost is calculated from the model to analyze the trade-offs

between safety and cost of the system with different config-

urations. This framework can take part of the building of the

Safety Case for an automotive system, providing meaningful

information to the system architects, as well as traceability

of the FSRs on the architecture, scalability, automatic fault

trees generation, quantitative metrics and validation of the ISO

26262 standard safety techniques.

The methodology is proven on the lateral control applica-

tion of a real truck platooning system, obtaining a complete

analysis of the system to guide the system implementation.
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