
Optimization of Cell-Aware ATPG Results
by Manipulating Library Cells’ Defect Detection Matrices

Zhan Gao1,2,3 Min-Chun Hu1,2,4 Joe Swenton2

Santosh Malagi2 Jos Huisken3 Kees Goossens3 Erik Jan Marinissen1,3

1 IMEC
Kapeldreef 75
3001 Leuven

Belgium
zhan.gao.ext@imec.be

min-chun.hu.ext@imec.be
erik.jan.marinissen@imec.be

2 Cadence Design Systems
1701 North Street

Endicott, NY 13760
United States of America

zgao@cadence.com
malagi@cadence.com

swenton@cadence.com

3 TU Eindhoven
Den Dolech 2

5612 AZ Eindhoven
the Netherlands

z.gao@tue.nl
j.a.huisken@tue.nl

k.g.w.goossens@tue.nl

4 National Tsing-Hua University
101, Section 2, Kuang-Fu Road

Hsinchu, 30013
Taiwan

minchunhu@gapp.nthu.edu.tw

Abstract – Cell-aware test (CAT) explicitly targets defects in-
side library cells and therefore significantly reduces the number
of test escapes compared to conventional automatic test pattern
generation (ATPG) approaches that cover cell-internal defects
only serendipitously. CAT consists of two steps, viz. (1) library
characterization and (2) cell-aware ATPG. Defect detection ma-
trices (DDMs) are used as the interface between both CAT steps;
they record which cell-internal defects are detected by which
cell-level test patterns. This paper proposes two algorithms that
manipulate DDMs to optimize cell-aware ATPG results with re-
spect to fault coverage, test pattern count, and compute time.
Algorithm 1 identifies don’t-care bits in cell patterns, such that
the ATPG tool can exploit these during cell-to-chip expansion
to increase fault coverage and reduce test-pattern count. Algo-
rithm 2 selects, at cell level, a subset of preferential patterns that
jointly provides maximal fault coverage at a minimized stimulus
care-bit sum. To keep the ATPG compute time under control, we
run cell-aware ATPG with the preferential patterns first, and a
second ATPG run with the remaining patterns only if necessary.
Selecting the preferential patterns maps onto a well-knownNP-
hard problem, for which we derive an innovative heuristic that
outperforms solutions in the literature. Experimental results on
twelve circuits show average reductions of 43% of non-covered
faults and 10% in chip-pattern count.

1 Introduction
To test digital logic integrated circuits (ICs) that are commonly syn-
thesized with pre-defined libraries of standard cells, conventional
ATPG tools target faults at the boundary of library cells only. Intra-
cell defects are only covered fortuitously, and hence not surprisingly,
these defects are found to be the root cause of a significant fraction
of test escapes [1]. Cell-aware test (CAT) explicitly targets intra-cell
defects and has shown to indeed significantly reduce the number of
test escapes [2–6].

The CAT methodology consists of two steps. In Step 1, library char-
acterization, for each library cell, all possible cell-internal defect
locations are identified [7]. Subsequently, analog simulation is per-

formed to identify which cell-internal defects are detected by which
cell patterns. The simulation results are encoded in a defect detection
matrix (DDM) which serves as input for Step 2, cell-aware ATPG.
For each cell instance in a chip design, an intra-cell defect is covered
if there is at least one cell pattern (1) which according to the DDM
detects this particular defect, and (2) which the cell-aware ATPG
tool is able to successfully expand from cell-to-chip level. Success-
ful expansion of a cell pattern to the chip level through ATPG is
not guaranteed and depends on the circuit environment of the cell in
question. However, many defects are detected by multiple cell pat-
terns, and these provide alternatives for the ATPG engine to get the
defect in question covered by at least one cell pattern for which the
cell-to-chip expansion is successful.

To the best of our knowledge, no prior work discloses details on how
DDMs are used for cell-aware ATPG. Several papers [2, 6, 8] com-
pare stuck-at and cell-aware pattern counts at cell level; however,
none of them describes how the reported cell-aware pattern counts
were identified from DDMs that contain exhaustive sets of fully-
specified patterns, and whether those patterns are allowed to contain
unspecified (don’t-care) bits.

In this paper, we assume a given set of DDMs with patterns for which
all stimulus bits and exactly one response bit are fully-specified, for
example as output of Step 1 of the CAT tool flow. The paper pro-
poses two algorithms that manipulate these DDMs, such that the re-
sulting DDMs, when used in Step 2 optimize the cell-aware ATPG
with respect to its key performance indicators (in order of decreas-
ing priority): fault coverage, test pattern count, and compute time.
Figure 1 shows the position of the two proposed DDM manipulation
algorithms in the CAT flow. The two algorithms can be used in iso-
lation, but actually deliver the best results when used in conjunction.

Algorithm 1 extends the DDMs to also include all partly-specified
cell patterns, i.e., patterns for which one or more stimulus bits are
don’t-care. The new DDM patterns allow ATPG to significantly in-
crease the fault coverage and reduce the final chip-pattern count. Al-
gorithm 2 selects, for a given DDM, a subset of patterns containing
minimized care-bit sum, that still detects the same defects as the ori-

Figure 1: None, one, or both Algorithms 1 and 2 proposed in this paper can be used in the CAT tool flow to manipulate DDMs to optimize the subsequent ATPG results.

ginal DDM. Forcing ATPG to first try to expand these preferential
patterns significantly reduces the ATPG compute times.

The remainder of this paper is organized as follows. In Section 2,
we formally define DDMs and describe their usage in cell-aware
ATPG. In Sections 3 and 4, we describe the motivation and detailed
operation of Algorithms 1 and 2, respectively. Section 5 provides
experimental ATPG results and Section 6 concludes this paper.

2 Defect Detection Matrix and Its Usage
A DDM is a two-dimensional binary matrix. An example DDM is
shown in Figure 2; defects are represented by columns and cell pat-
terns by rows. If and only if cell pattern p detects defect d, ‘1’ is
marked at the matrix entry on the cross point of d and p.

Figure 2: Example defect detection matrix.

We define DDMs for standard cells as follows. Let c be a standard
cell with n inputs and m outputs, with n,m ∈ N+. Let Dc and Pc

be the sets of defects respectively patterns for Cell c. The locations
of the defects in Dc can be determined with algorithms described in
[7]; the ohmic value of the defects depends on expectations regard-
ing defect size. Pc can be any set of patterns for Cell c, provided that
in every pattern a stimulus bit for at least one cell input and exactly
one response bit for a cell output are specified. For cells with m out-
puts, m identical stimulus sets with responses on different outputs
are considered as different patterns. A DDM for cell c is specified
by function DDM c : Dc × Pc −→ {0, 1} with DDM c(d, p) = 1 if
and only if defect d is detected by pattern p.

The pattern set for defect d is defined by function psc : Dc −→
P(Pc) with psc(d) = {p ∈ Pc| DDM c(d, p) = 1}. Similarly, the
detection set of pattern p is defined by function dsc : Pc −→ P(Dc)
with dsc(p) = {d ∈ Dc|DDM c(d, p) = 1}.

Cell-aware ATPG uses as inputs a cell-level netlist of a chip design
and a set of DDMs corresponding to the cells occurring in that netlist
(see Figure 1). A defect d in cell c is called non-detectable if no ele-
ment of the exhaustive set of cell patterns detects d. Non-detectable
defects are removed from Dc, as ATPG has no means to detect them.
The remaining defects are detectable at cell level and also referred
to as faults. ATPG will determine whether, given the chip design,
cell-level test patterns for these faults can be expanded to chip level.
Let I be the set of cell instances that occur in the chip’s netlist and let
function t : I −→ C define the cell type of a given cell instance. The
set of faults F is defined by F = {(i, d) ∈ I×Dt(i)|pst(i)(d) 6= ∅}.

The goal of the cell-aware ATPG engine is for every fault f = (i, d),
i.e., detectable defect d in cell instance i, to expand at least one cell
pattern p that detects f (i.e., DDM t(i)(d, p) = 1) successfully from
cell to chip level. Expansion involves propagating the responses at
the outputs of library cell i to chip outputs, and justifying the spec-
ified stimuli at the inputs of library cell i to chip inputs. Expansion
might propagate and/or justify via other cell instances and their inter-

connecting nets. Successful expansion of the stimulus and response
bits for one fault in one particular cell instance typically covers other
faults as well; fault simulation can identify these cases and add the
detections to the set of overall detections. If expansion is not suc-
cessful, typically there are alternative cell patterns for the fault in
question, and their expansion can be tried as well. Only if expansion
is unsuccessful for all cell patterns that detect fault f at cell-level,
we declare fault f undetectable.

Conventional test methods consider per fault a single expansion task
location only. For example, for stuck-at ATPG, the propagation and
justification task are both defined at a single cell-terminal. For cell-
aware ATPG, a single propagation task is defined at one cell output
and, for k specified stimulus bits out of n inputs (with k ≤ n), k
additional justification tasks are defined at the k cell inputs. The
other (n − k) bits, a.k.a don’t-care bits are not induced in justifi-
cation tasks and therefore cause a higher probability of successful
expansion and hence higher fault coverage and fewer specified bits
in expanded chip patterns that allow further test pattern compaction.

3 Don’t-Care Bit Identification Algorithm
For some cell-internal faults, detection requires all inputs of the cell
to be specified. However, many faults can be detected while one or
more cell inputs are don’t-care. Figure 3 shows an example of both
cases in the AND2X1 cell from the Cadence GPDK045 library [9].
Locations of two cell-internal short defects are shown in Figure 3(a).
Defect d1 is a short between source and drain of NMOS transistor
N1 controlled by input A and d2 a short between Net1 and VSS. To
detect d1, both inputs should be specified. For d2 detection, when ei-
ther input is specified as ‘0’, the other input is don’t-care. Figure 3(b)
shows all fully- and partly-specified patterns for d1 and d2. Defect
d1 is detected by only fully-specified pattern p2; defect d2 can be
detected by all fully- and partly-specified patterns except pattern p4.

(a) d1 and d2 in cell schematic. (b) DDM for d1 and d2.

Figure 3: Examples of faults requiring either fully- or partly-specified cell
patterns for detection in an AND2X1 cell.

We first introduce some notation conventions. Let FP be a set
of fully-specified patterns and PP an extended pattern set includ-
ing FP and all partly-specified patterns derived from FP. Function
r : PP × [1,m] −→ {H,L} with r(p, j) = s gives the response
value s of pattern p on output bit j.

We develop Algorithm 1, which extends a given DDM containing
fully-specified patterns with all partly-specified cell patterns that are
implied by the original DDM. A pattern consists of stimulus bits for
all n inputs and a response bit on exactly one of m outputs. To de-
termine if two given patterns p1 and p2 can generate a pattern with
one additional don’t-care stimulus bit, p1 and p2 should be identi-
cal in all bits, except for one stimulus bit j, where the two patterns
should have opposite logic values (thus, p1(j) =‘0’ and p2(j) =‘1’
or vice versa). Algorithm 1 consists of three main steps, which are

described below. Steps A and B are based on the well-known Quine-
McCluskey algorithm [10].

Algorithm 1 [DON’T-CARE BIT IDENTIFICATION ALGORITHM]
01: input: F , FP, DDM(F,FP);
02: output: PP, DDM(F,PP);
03: dictionary = ∅; PPdictionary = ∅; // Initialization
04: // Step A: Divide fully-specified patterns in lists, based on response bits
05: for all j ∈ [1,m] do {
06: dictionary[oj ,‘L’] = ∅; dictionary[oj ,‘H’] = ∅; // oj is the output pin name
07: for all p ∈ FP do {
08: if r(p, i) = ‘L’ then { dictionary[oj ,‘L’] ∪ p };
09: else { dictionary[oj ,‘H’] ∪ p};
10: } }
11: // Step B: Identify all partly-specified patterns for each list of dictionary
12: for all i ∈ [1,m] do {
13: Quine-McCluskey Algorithm identifying PP for dictionary[oi,‘L’]
14: Quine-McCluskey Algorithm identifying PP for dictionary[oi,‘H’]
15: // Record the corresponding fully-specified pattern set for pp
16: for all pp ∈ PP do { PPdictionary[pp] = FPpp; }
17: // Step C: Identify the detection set for each partly-specified pattern pp
18: for all pp ∈ PP do {
19: for all f ∈ F do {
20: DDM(f, pp) = DDM(f,FPpp[1]) ∧ ... ∧ DDM(f,FPpp[|FPpp|])); } }

Step A: We partition the fully-specified pattern set FP into at most
2m lists of which each has an identical response value on one of the
m outputs. Variable dictionary stores these lists of patterns (Line 4–
10). An example is shown as column “0 ‘X’ Bits” in Figure 4.

Step B: For each pattern list, we identify all partly-specified pat-
terns of PP that correspond to the fully-specified patterns in the list.
Both pp ∈PP and its corresponding fully-specified patterns FPpp are
recorded for the next step (Line 11–16).

Figure 4: Example matrix used in Step B in Algorithm 1 (based on [10]).

Each list identified in Step A is displayed in a matrix [10]; the
columns in this matrix display the cell patterns with increasing ‘X’
count, while the rows correspond to increasing ‘1’ count – see Fig-
ure 4. The fully-specified patterns end up in Column 0 ‘X’ Bits.
The green numbers in front of patterns are the identifiers of the pat-
terns. We can add a pattern into Column (i + 1) ‘X’ Bits on input
j (1 ≤ j ≤ n) if and only if in Column i ‘X’ Bits we already
have two patterns identical to the new partly-specified pattern, apart
from input j where one pattern has a ‘0’ and the other pattern has
a ‘1’. Iteratively, we search the patterns in Column i ‘X’ Bits and
identify patterns for Column i + 1 ‘X’ Bits, starting of course with
the given fully-specified patterns in Column 0 ‘X’ Bits. The algo-
rithm will certainly end in Column n ‘X’ Bits, but in typical cases
sooner. As per column, we are searching for patterns which differ in
only one stimulus bit, we can reduce compute time by considering
only pattern pairs in adjacent rows in the same column. In Figure 4,
one pattern with two don’t-care bits is displayed in Column 2 ‘X’
Bits: ‘XX1/L’. As indicated in green, this pattern originates from
four fully-specified patterns {1, 3, 5, 7} = {001/L, 011/L, 101/L,
111/L}. An important difference between the usage of the Quine-
McCluskey in logic optimization [10] and in our application is that
in the former, only patterns without check-mark are kept (two in the

example of Figure 4), while in the latter we use all patterns (eleven
in Figure 4).

Step C: In this step, the detection sets for the new partly-specified
patterns are calculated. A fault f is included in the detection set of
partly-specified pattern pp if and only if f is element of the detection
sets of all original fully-specified patterns that were used to derive
pp (Line 17–20).

We identify for 324 combinational cells of Cadence’s GPDK045
45nm CMOS library [9] 4,766 fully-specified cell patterns after
8 hours of analog simulations. Algorithm 1 derives 13,266 additional
partly-specified cell patterns (= 2.8× increase) in which 20,466 (=
30%) bits are identified as don’t-care. Compute time for Algorithm 1
is just ∼1 minute. However, this extended cell pattern set signifi-
cantly increases ATPG compute time, which we reduce in the next
section of this paper by Algorithm 2.

4 MINCOVER Algorithms
A library cell’s DDM can contain many cell patterns, especially if it
is extended to include all applicable partly-specified patterns. Typ-
ically, there is quite some overlap in the fault detection sets of any
pair of cell patterns. Successful pattern expansion from cell-to-chip
by the ATPG engine depends on the circuitry surrounding the cell in
question, and is not guaranteed. Consequently, the order in which
ATPG tries to expand the various cell patterns in a DDM has a big
impact on the ATPG compute time. Ideally, we want to expand a
small subset of the DDM patterns for which the union of their detec-
tion sets provides maximum fault coverage at cell level. However,
a traditional ATPG engine has no insight in overlap of the various
DDM patterns. Also, by expanding cell patterns with fewer spec-
ified bits, we increase the chance for success, but possibly at the
expense of a smaller fault detection set.

In this section, we first describe Algorithm 2, which selects a mini-
mized subset of DDM patterns with maximal cell-level fault cover-
age, i.e., identical to the combined fault coverage of all cell patterns
in the DDM. In this paper, we apply Algorithm 2 on DDMs with ex-
haustive cell-patterns to get full fault coverage at cell level. We refer
to the resulting patterns as the preferential patterns for that cell. We
show that identifying a minimal set of preferential patterns for a cell
is an NP-hard problem, we present a framework that enables us to
efficiently describe all prior algorithms addressing this problem, and
subsequently present an innovative and effective heuristic algorithm
that outperforms the prior art.

We use the subset of preferential cell patterns for two purposes. At
library level (even before a specific chip design on the basis of this li-
brary is available), the size of the preferential pattern subset is a use-
ful metric for how many patterns a particular library cell will need as
a minimum. However, the main usage of the preferential pattern sub-
set is during ATPG on a specific design, where we run ATPG in two
stages. In Stage 1, we only try to expand the preferential patterns
of the cell instances in the design. If the entire set of preferential
cell patterns expands successfully, we have obtained maximal fault
coverage with the smallest-possible number of cell patterns at mini-
mal ATPG compute time. However, typically a small fraction of the
preferential patterns fail to expand to chip level, and therefore the
chip-level fault coverage is not maximal. Thus, in Stage 2, we run
ATPG again, now providing the DDM information of the remain-
ing (non-preferential) patterns for all cell instances. This two-stage

ATPG keeps the ATPG compute time under control.

We have some variable definitions for the preferential pattern selec-
tion problem. P is the exhaustive fully-specified pattern set, thus
|P | = m × 2n. P ′ ⊆ P and represents the patterns that were spec-
ified to us in the input DDM. D is the set of all defects, for which
the locations were identified by [7]. F ⊆ D is the set of all de-
tectable defects, which we also call faults. F ′ ⊆ F is the union of
the detection sets for all patterns in P’.

Problem 1: Given fault set F and pattern sets P and P ′ with
P ′ ⊆ P . Each p ∈ P is associated with a detection set ds(p) ⊆ F
and

⋃
i∈P ′

(
ds(i)

)
= F ′ ⊆ F . Find a minimal set MC ⊆ P ′ such

that
⋃

i∈MC

(
ds(i)

)
= F ′. �

Problem 1 is equivalent to the Set Covering Problem, which was
proven to be NP-hard [11]. Therefore, we developed a heuristic
algorithm framework called MINCOVER to optimize MC. The al-
gorithm framework is outlined in Algorithm 2. In every iteration, we
employ a routine to move patterns from P ′ to either MC (‘select’)
or REST (‘deselect’) (Line 05) and update P ′ and F ′ accordingly
(Lines 06–07), until F ′ has been exhausted (Line 08).

Algorithm 2 [MINCOVER Framework]
01: input: F ′, P, P ′,DDM (F, P);
02: output: MC,REST ;
03: MC = ∅;REST = ∅; // Initialization
04: repeat {
05: Select/Deselect non-empty set of patterns Pat ⊆ P ′;
06: if Select then {MC = MC ∪ Pat ;P ′ = P ′\Pat; F ′ = F ′ \

⋃
i∈Pat ds(i);}

07: else { REST = REST ∪ Pat; P ′ = P ′\Pat; }
08: } until F ′ = ∅

The MINCOVER algorithm framework has numerous algorithm
instances, which all differ with respect to the sequence of se-
lect/deselect routines which are employed in Line 05. We refer to the
various routines we have developed with a single letter. A specific al-
gorithm instance of MINCOVER is expressed by a regular expression
describing a string of these letters, which represents the sequence of
routines employed subsequently in Line 05. The various routines
which we use are described below.

Definition 4.1 Pattern p is called an essential pattern if and only if
∃f∈F ′

(
ps(f) = {p}

)
. �

To cover all faults, all essential patterns must be selected. Typi-
cally, essential patterns also detect other faults, for which they are
not essential. As essential patterns need to be selected anyway, we
better do this early in the algorithm, thereby avoid having to include
other cell patterns covering the faults that are detected by essential
patterns. The routine of selecting all essential patterns for a given
DDM is denoted by letter ‘E’, has compute complexityO(|F ′|), and
is described as follows:
E: Pat= ∅; for allf ∈ F ′do { if |ps(f)| = 1 then Pat=Pat∪ ps(f)}.

Definition 4.2 Pattern p is called a subset pattern if and only if
∃i∈P ′

(
ds(p) ⊆ ds(i)

)
. �

Subset patterns are not necessary to be expanded by the ATPG en-
gine, provided their superset patterns can be expanded successfully.
Hence, the subset patterns can be deselected and moved from P ′ to
REST. Routine S, in which for a given DDM all subset patterns are
collected in Pat consists of two nested loops and hence has compute
complexity O(|P ′|2):

S: Pat = ∅; for all p1, p2 ∈ P ′ do {
if ds(p1) ⊆ ds(p2) then Pat = Pat ∪{p1}}.

For many DDMs, routines E and S alone are insufficient to assign
all DDM patterns to either MC or REST. In that case, we resort to a
greedy selection of a single cell pattern which we add to the selected
pattern set MC. We have formulated two greedy routines differ-
entiated only by their cost functions h(p). In both greedy routines,
with compute complexityO(|P ′|), a pattern pg is selected for which
holds h(pg) = MAX p∈P ′

(
h(p)

)
.

tmp = 0;
for all p ∈ P ′ do {if h(p) ≥tmp then tmp=h(p); pg = p};
Pat = {pg}

In greedy routine G, h(p) =
∑

f∈ds(p)
(
DDM (f, p)

)
= |ds(p)|.

Our second greedy routine, denoted by letter W, assigns a weight
h(p) =

∑
f∈ds(p)

(DDM (f,p)
|ps(f)|

)
to each pattern p ∈ P ′. Weight h(p)

increases if p has a large detection set ds(p), but also increases for
detected faults f ∈ ds(p) that have a small pattern set ps(f). Faults
with a small pattern set have only few alternatives for detection, and
hence trying expansion of such a pattern early on might be impor-
tant.

In prior work addressing the Set Covering Problem, a classic heuris-
tic solution is the Greedy Algorithm [12], denoted in our framework
as G+: routine G is iteratively performed until F ′ is empty. Chvátal
[13] showed that solutions obtained by G+ can be at most a factor
ln|F ′| larger than an optimum solution. Selecting all essential pat-
terns before applying the Greedy Algorithm (EG+) can reduce this
factor from at most ln|F ′| to log|F ′|, which was proven later by
Qayyum [14]. Agathos & Papapetrou [15] used routines S, E, and G
to compose two optimization algorithms, viz. SEG+ and (SE)+G+,
in a communication application.

We make the following observations regarding algorithm composi-
tions. Essential patterns should be selected first: E. Selecting es-
sential patterns can introduce new subset patterns, and vice versa,
deselecting subset patterns (S) can introduce new essential patterns
on the still unclassified remaining test patterns in the DDM. Apply-
ing sequences of only E and S routines can lead to a situation where
no further essential or subset patterns can be identified, while still
not all patterns in the DDM are classified as selected or deselected.
In such a case, we might need to apply a greedy routine (G or W) to
make progress. Execution of G or W cannot introduce new essential
patterns, but it can generate new subset patterns. Performing S only

Algorithm Preferential Patterns Bits in Pref. Patterns
Composition Essential Greedy Total Care Don’t-Care

G+ [12] 0 1428 1428 5092 0
SEG+ [15] 1038 375 1415 5028 67
EG+ [14] 1007 408 1413 4980 9
(SE)+G+ [15] 1200 210 1410 5013 9
(ES)+G+ 1200 210 1410 4956 66
((SE)+G)+ 1340 68 1408 5002 9
(ES)+(G(SE)+)+ 1340 68 1408 4946 65
EW+ 1007 393 1400 4761 207
(ES)+W+ 1147 253 1400 4959 66
(SE)+W+ 1139 261 1400 4902 9
(ES)+(W(SE)+)+ 1139 261 1399 4810 140
ED+ (x = 33) 1007 395 1402 4747 233
(ES)+D+ (x = 33) 1139 262 1401 4819 155
(SE)+D+ (x = 1) 1147 253 1400 4956 12
(ES)+(D(SE)+)+ (x = 33) 1139 262 1401 4819 157

Table 1: Results for 15 MINCOVER algorithm compositions for 324 combi-
national cells of the GPDK045 library [9].

before G or W does not make sense, because greedy selection will
never select subset patterns and S has higher compute complexity.

We have defined a number of MINCOVER algorithms: seven using
greedy routine G, and four using greedy routine W. Table 1 lists the
aggregate results for these 11 MINCOVER algorithms on 324 com-
binational cells of Cadence’s GPDK045 library [9]. The algorithms
with our novel greedy routine W consistently outperform the algo-
rithms based on greedy routine G, which is described in the literature.
Based on the observations above, we expected algorithm composi-
tion (ES)+(W(SE)+)+ to perform the best, and the experimental
results in Table 1 indeed confirm that.

Actually, what we are really after is not minimization of the number
of preferential patterns, but minimization of the sum of care bits in
the preferential patterns. Fewer care bits implies (1) lower probabil-
ity for conflicts and hence more successful expansions, which should
increase fault coverage and reduce test pattern count, (2) fewer spec-
ified bits in the chip-patterns, which should allow more compaction
and reduce test pattern count, and (3) less work to expand them,
which implies reduced ATPG compute times.

Problem 2: Given fault set F and pattern sets P and P ′ with
P ′ ⊆ P . Each p ∈ P is associated with a detection set ds(p) ⊆ F
and

⋃
i∈P ′

(
ds(i)

)
= F ′. All p ∈ P have n stimulus bits of

which cb(p) are care bits. Find a set MB ⊆ P ′ with minimal∑
i∈MB

(
cb(i)

)
such that

⋃
i∈MB

(
ds(i)

)
= F ′. �

Problem 2 is NP-hard; the proof is as follows.

Proof: Assume Problem 2 is not an NP-hard problem. If for a cer-
tain problem instance ∀p∈P ′

(
cb(p) = n

)
, then

∑
i∈MB

(
cb(i)

)
=

n × |MB|. In that case, Problem 2 becomes Problem 1, viz. find a
minimum set MB such that

⋃
i∈MB

(
ds(i)

)
= F ′. Problem 1 was

already shown to beNP-hard. This implies a contradiction with our
assumption and hence Problem 1 is NP-hard. �

The algorithm we propose for Problem 2 is based on what we
have learned from the algorithms for Problem 1. Essential pat-
terns should be selected first if we want to cover all faults: routine
E. Partly-specified patterns are typically subset patterns of their
fully-specified counterparts. Therefore, we will not use routine S,
as that will deselect many partly-specified patterns and that does
not help to reduce the number of care bits. Finally, we define a
new greedy selection routine, which we call D. It is a modified
version of routine W, as we have seen that W consistently outper-
formed G. To let the cost factor that governs greedy selection also
include the number of don’t-care bits in a particular pattern, we use
h(p) =

∑
f∈ds(p)

(DDM (f,p)
|ps(f)|

)
× (n − cb(p) + x). Here, x ∈ N+

is a means to balance the relative importance of both cost-factor
components

∑
f∈ds(p)

(DDM (f,p)
|ps(f)|

)
and n− cb(p).

We experimented on the 324 combinational cells of the GPDK045
library [9] with all MINCOVER algorithms from Table 1, where we
replaced greedy routines G or W by routine D, while varying x. Based
on the observations above, we expected algorithm ED+ to perform
best, and that was indeed the case. In Figure 5, we show the pattern
counts and care-bit sums for x ∈ [1..500]. The minimum care-bit
sum is obtained for x = 33. The exact pattern and care-bit counts are
given in the last row of Table 1. The care-bit sum is lower than with
all other MINCOVER algorithms based on greedy routines G and W,
as now this has become an explicit selection criterium in D, while the
total preferential pattern count has only increased marginally from

1399 to 1402. Compute times for each algorithms on all 324 library
cells was ∼0.1 second and thus negligible.

Figure 5: Results of algorithm ED+ for varing values of x on 324 combina-
tional cells of the GPDK045 library [9].

5 Experimental Results
We performed cell-aware ATPG with Cadence’s ATPG tool Modus
(version 19.1) on twelve circuits [16–19] that were first mapped onto
Cadence’s GPDK045 45nm CMOS library [9]. For each circuit, we
compare the cell-aware ATPG results for optimized DDMs versus
non-optimized DDMs. The non-optimized DDMs contain exhaus-
tive sets of fully-specified cell patterns (i.e., with m × 2n patterns
for a cell with n inputs and m outputs). The optimized DDMs were
obtained by two steps. Step a, Algorithm 1 was used on the non-
optimized DDMs to create extended DDMs, which in addition to
the exhaustive set of fully-specified patterns also contain all possi-
ble partly-specified patterns; Step b, we generated two DDMs out
of each extended DDM: one with only preferential patterns, identi-
fied by MINCOVER algorithm ED+, and one with the remaining cell
patterns. These two sets of DDMs were used in two-stage ATPG.

Results are presented in Table 2. This table has four main columns:
(1) design data, (2)

∑
cell patterns, (3)

∑
care bits, and (4) ∆ ATPG

results (comparing ATPG with optimized to non-optimized DDMs).

More cell instances with more inputs per cell improve the effective-
ness of our optimization algorithms. The GPDK045 library that we
used in the experiments reported in this paper is rather small and
its cells have at most six inputs; this means that the benefits ob-
tained with circuits based on GPDK045 are rather pessimistic with
what would be possible for larger, industrial standard-cell libraries.
The column ‘Design Data’ consists of three sub-columns: the cir-
cuit name, the number of combinational cell instances in the cir-
cuit |I|, and the weighted average number of inputs per cell instance∑

k∈[1..6]
(
k × |{i ∈ I|ni = k}|

)
/|I|.

Subsequently, columns ‘
∑

cell patterns’ and ‘
∑

Care Bits’ present
the results of our DDM optimization algorithm, each in five identical
sub-columns. The first and second sub-columns give the summed
number of cell patterns resp. care bits in the non-optimized and
the extended DDMs (as obtained by Algorithm 1) for all instances
i ∈ I , while the third sub-column gives the increase factor from
non-optimized to extended DDMs. Sub-columns 4 list how many
of the patterns in the extended DDMs are selected by MINCOVER
algorithm ED+ and the last sub-columns express that number as a
fraction of the pattern count in the extended DDMs; the smaller that
fraction, the more effective our two-stage ATPG approach might be.

Finally, in the last column, we compare cell-aware ATPG based on
optimized DDMs to non-optimized DDMs. The three sub-columns
address the three key performance indicators of ATPG: test qual-
ity, test execution time, and test generation time. Test quality is ex-
pressed as the fraction the non-covered faults, i.e., 100% - fault

Design Data
∑

i∈I cell patterns
∑

i∈I Care Bits ∆ ATPG Results: Optimized vs. Non-Optimized
Name |I| WAvg. Inp. NonOpt Extended Ext/NonOpt Pref. Fraction NonOpt Extended Ext/NonOpt Pref. Fraction Non-Cov. Faults Chip Patterns ATPG Time (s)

b15 [17] 2933 2.95 31800 92166 2.90× 12505 13.6% 122140 309736 2.54× 38468 12.4% -66.81% -15.55% +10.6 = +33.28%
b20 [17] 3212 2.65 30200 72682 2.41× 14985 20.6% 103676 229320 2.21× 42488 18.5% -7.00% -8.26% +9.6 = +60.21%
aes [18] 3320 2.82 35284 111762 3.17× 13606 12.2% 143812 415573 2.89× 40869 9.8% -53.01% -0.93% +29.8 = +409.47%
b21 [17] 3482 2.63 32068 75666 2.36× 16520 21.8% 107832 234869 2.18× 45909 19.5% -3.93% -13.07% +10.2 = +47.62%
dtmf[16] 3726 2.72 38542 121242 3.15× 15150 12.5% 151670 430595 2.84× 45190 10.5% -41.49% -21.80% +24.6 = +81.32%
b22 [17] 5036 2.64 46752 110196 2.36× 23668 21.5% 158148 341442 2.16× 66579 19.5% -5.36% -12.95% +19.1 = +63.40%
M0 [19] 5289 2.94 61568 207910 3.38× 20475 9.8% 253516 738554 2.91× 65407 8.9% -49.18% -20.45% +36.2 = +79.64%
b17 [17] 8981 2.94 97784 288230 2.95× 38043 13.2% 378564 976797 2.58× 117426 12.0% -64.32% -8.30% +49.1 = +50.52%
fpu [18] 19136 2.97 220544 616994 2.80× 84950 13.8% 844492 2092037 2.48× 265413 12.7% -60.98% -11.89% +128.9 = +270.86%
b18 [17] 20545 2.94 227466 659616 2.90× 88879 13.5% 877958 2238668 2.55× 274329 12.3% -64.32% -5.49% +133.9 = +59.04%
M3 [19] 32626 2.95 388412 1293250 3.33× 129329 10.0% 1602836 4615396 2.88× 414499 9.0% -42.42% +6.03% +135.3 = +10.96%
b19 [17] 40298 2.93 441896 1283378 2.90× 173509 13.5% 1702888 4349339 2.55× 533648 12.3% -62.61% -12.56% +314.2 = +76.95%
Avg. 12382 2.84 137693.0 411091.0 2.88× 52634.9 14.7% 537294.3 1414360.5 2.56× 162518.8 13.1% -43.45% -10.43% +75.1 = +103.61%

Table 2: The results of Algorithms 1 and 2 on the cell pattern and care-bit counts, and the effect on key ATPG performance indicators for twelve circuits.

coverage. We report how much our optimization reduces the fraction
of non-covered faults. For example: for benchmark circuit b15, the
non-optimized cell-aware fault coverage was 97.65%, while the op-
timized fault coverage increased to 99.22%; this constitutes a reduc-
tion of the fraction of non-covered faults with 1−(1−99.22%)/(1−
97.65%) = −66.81%. In column ‘Chip Patterns’ we give the delta-
percentage of the number of test patterns generated with optimized
DDMs in comparison to what non-optimized ATPG can achieve.
Both these columns show that our approach has only benefits for
test quality (on average, 43.45% less non-covered faults) and test
execution time (10.43% less test patterns). However, these benefits
are achieved through a significantly extended DDM (on average for
the twelve circuits 2.84×more cell patterns), ATPG execution times
are bound to increase (on average +103.61%). The two-stage ATPG
approach makes that the increase in ATPG compute time remains un-
der control. Running ATPG on the extended DDMs in a single run
increased the compute time on average with an additional 101.3%.

Figure 6: Optimization of ATPG results with minBit pattern sets.

Figure 6 shows the weighted average number of inputs of the cell
instances in a circuit is a good indicator for the reductions in non-
covered faults and test patterns that can be achieved by the combi-
nation of Algorithms 1 and 2 as described in this paper. Only circuit
M3 is an anomaly, perhaps due to its specific circuit structure.

6 Conclusion
DDMs represent the result of characterizing which cell-internal de-
fects are detected by which cell patterns. This paper presents two
algorithms that manipulate DDMs to improve the results of subse-
quent cell-aware ATPG runs. Algorithm 1 extends a given DDM
to include all patterns with don’t-care bits, with as objectives to in-
crease fault coverage and reduce test-pattern count. This typically
leads to a large increase in cell patterns. Algorithm 2, an innovative
heuristic solution for a well-known NP-hard problem, identifies a
subset of cell patterns with minimized care-bit sum, yet maximal
fault coverage. These preferential patterns are tried for cell-to-chip
expansion first by the cell-aware ATPG tool, while, if necessary, the

remaining patterns are handled in a second ATPG run.

An attractive benefit of both algorithms is that they are executed as
part of library characterization: once per library, instead of once per
IC design. The two algorithms can be used stand-alone, but provide
best results when used in conjunction. In this paper, we report results
on their combined usage. For a set of twelve benchmark circuits, on
average the non-covered faults were reduced with 43% and the test
pattern count with 10%. The two-stage ATPG approach helped to
keep the compute time under control. Despite that, the compute time
increased, but as compute time is an non-recurring engineering cost
only, we consider it acceptable in view of the improvements in the
other two key ATPG performance indicators.

Acknowledgments
We thank the following persons for their support. At Cadence Design Systems: Vivek Chicker-
mane, Franck Gerome, Anton Klotz, and Mike Vachon. At IMEC: Kristof Croes, Peter Debacker,
Ingrid De Wolf, Alessio Spessot, Ibrahim Tatar, and Diederik Verkest. At National Tsing-Hua
University: Cheng-Wen Wu. Zhan Gao is financially supported by the China Scholarship Council
(CSC) and Cadence Design Systems.

References
[1] S. Eichenberger et al. Towards a World Without Test Escapes: The Use of Volume Diag-

nosis to Improve Test Quality. In Proc. IEEE International Test Conference (ITC), pages
1–10, October 2008. doi:10.1109/TEST.2008.4700604.

[2] F. Hapke et al. Defect-Oriented Cell-Aware ATPG and Fault Simulation for Industrial Cell
Libraries and Designs. In Proc. IEEE International Test Conference (ITC), pages 1–10,
November 2009. doi:10.1109/TEST.2009.5355741.

[3] F. Hapke et al. Cell-Aware Test. IEEE Transactions on Computer-Aided Design,
33(9):1396–1409, September 2014. doi:10.1109/TCAD.2014.2323216.

[4] A.D. Singh. Cell Aware and Stuck-Open Tests. Proc. IEEE European Test Symposium
(ETS), pages 1–6, May 2016. doi:10.1109/ETS.2016.7519316.

[5] W. Howell et al. DPPM Reduction Methods and New Defect Oriented Test Methods Ap-
plied to Advanced FinFET Technologies. In Proc. IEEE International Test Conference
(ITC), pages 1–10, October 2018. doi:10.1109/TEST.2018.8624906.

[6] S.P. Dixit, D.D. Vora, and K. Peng. Challenges in Cell-Aware Test. In Proc. IEEE European
Test Symposium (ETS), pages 1–6, May 2018. doi:10.1109/ETS.2018.8400700.

[7] Z. Gao et al. Defect-Location Identification for Cell-Aware Test. In Proc.
IEEE Latin-American Test Symposium (LATS), pages 1–6, March 2019.
doi:10.1109/LATW.2019.8704561.

[8] F. Hapke et al. Defect-Oriented Cell-Internal Testing. In Proc. IEEE International Test
Conference (ITC), pages 1–10, November 2010. doi:10.1109/TEST.2010.5699229.

[9] Cadence Design Systems. Reference Manual Generic 45nm Salicide 1.0V/1.8V 1P 11M
Process Design Kit and Rule Decks (PRD) Revision 4.0, 2014.

[10] E.J. McCluskey. Minimization of Boolean Functions. The Bell System Technical Journal,
35(6):1417–1444, Nov 1956. doi:10.1002/j.1538-7305.1956.tb03835.x.

[11] R.M. Karp. Reducibility among combinatorial problems. Proc. a Symposium on the Com-
plexity of Computer Computations, page 85–103, March 1972. doi:10.2307/2271828.

[12] D.S. Johnson. Approximation Algorithms for Combinatorial Problems. Journal of
Computer and System Sciences, 9(3):256–278, December 1974. doi:10.1016/S0022-
0000(74)80044-9.

[13] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

[14] A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying for flooding broadcast mes-
sages in mobile wireless networks. In Hawaii International Conference on System Sciences,
pages 3866–3875, Jan 2002. doi:10.1109/HICSS.2002.994521.

[15] S. Agathos and E. Papapetrou. On the Set Cover Problem for Broadcasting in Wireless
Ad Hoc Networks. IEEE Communications Letters, 17(11):2192–2195, November 2013.
doi:10.1109/LCOMM.2013.091913.131765.

[16] Santosh Malagi. Cadence Cell-Aware Test Rapid Adoption Kit. http://support.
cadence.com, 2019.

[17] Scott Davidson. ITC99 Benchmark Home Page. https://www.cerc.utexas.edu/
itc99-benchmarks/bench.html, 1999.

[18] OpenCores.org. https://www.opencores.org, 1999.
[19] Arm Cortex-M Series Processors. https://developer.arm.com/ip-products/

processors/cortex-m.

