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Abstract—From model-based design to implementation on
an embedded platform requires target-specific code generation,
compilation, and execution. Processor-in-the-loop (PIL) simu-
lation is an intermediate step meant for detailed testing and
debugging in the development process. This paper presents a
PIL simulation framework targeting multi-core FPGA-based
embedded platforms. The presented framework allows for a
fully automated process of performing PIL simulations on an
FPGA-based embedded platform — CompSOC - starting from a
Simulink model. The framework includes two PIL configurations
— one configuration executes only the controller code on the target
platform while other configuration executes both the controller
and the plant code on the target platform. It considers scheduling
of multiple applications and interference-free execution on the
target platform under the PIL configurations. Further, the frame-
work allows for logging various measurements of parameters
such as execution time, memory usage and so on in the PIL
configurations which can be used for testing and debugging
purposes.

Keywords-Model-based simulation; PIL simulation; Embedded
control.

I. INTRODUCTION

Embedded implementation of feedback control applications
poses several challenges in terms of stability and perfor-
mance [1]. A common assumption made in the controller
design phase is that control tasks/software execute periodi-
cally, sequentially and in a jitter-free fashion. In widely used
platforms such as Raspberry Pi, it is hard to achieve strictly
periodic and jitter-free execution due to interference with other
applications and system tasks sharing the platform. One way
to handle such non-deterministic execution is to design robust
controller for a range of execution jitter [2]. Often, such
design robustness comes at the cost of performance which may
not be acceptable in safety-critical domains. The alternative
approach is to go for an iterative design approach to take
the execution behavior into account [3]. This requires several
design iterations to model the non-deterministic execution
behavior and considering them in the controller design. Such
platform-specific iterative design cycle is time-consuming and
often, may not be feasible for many industrial scenarios.

The tailored embedded platforms for real-time applications
are interesting targets for control applications [4]. These
platforms offer properties such as determinism in execution
times and composablity in multi-application scenarios (which
guarantees interference free execution of applications). These
properties guarantee periodic and jitter-free execution of the
control applications. Such platform opens up potential for
nearly iteration-free and performance-oriented design of em-
bedded control systems [5].

The control design usually starts from model-in-the-loop
(MIL) simulations in model-based simulation environments,

whereas platform implementation requires platform-specific
code generation for the control application, uploading and
execution of the code on the platform, and logging and
analysing the results obtained from the platform [6]. These
steps are performed on the platforms using processor-in-the-
loop or hardware-in-the-loop (HIL) simulations as essential
intermediate steps.

In this paper, we present a PIL framework for model-based
simulations targeting multi-core platforms. A PIL simulation is
non real-time in nature which can have different configurations
with different purposes. Under the PIL-C (PIL-control task
only) configuration, the designed controller is executed on
the embedded platform and the model of the physical system
under study is simulated on the model-based environment
(e.g., Simulink). This configuration enables the designer to
verify the functional correctness of control code while exe-
cuted on the platform. Under PIL-CP (PIL-control task and
plant simulation) configuration, codes for both controller and
plant model are executed on the embedded platform. This
configuration is one step closer to HIL simulations as well as
final implementation, since the model is no longer executed
in simulation environment. It also enables the designer to
verify correctness of the code in view of controller/model
data exchange. Both configurations allow measuring relevant
parameters such as execution time, memory usage and so
on [7], which are used for temporal analysis of the control
algorithm and platform scheduling in the final implementation.

Although PIL simulation is widely used in the various
control applications, state-of-the-art PIL frameworks either
require hand-written codes and manual implementation [8],
(which is time consuming and error prone), or are designed
for specific applications [6], [7], [9], [10] (which can not
be generalized for other applications). Specific frameworks
that automate platform implementation from a model-based
control design only support low-capacity hardware modules
like Raspberry Pi [11] which are not suitable for industry-
scale control applications. Therefore, there is a need for a
unified framework for PIL simulations targeting FPGA-based
embedded platforms suitable for typical industrial control
applications.

The presented PIL framework offers the following key
features:

o Automatically generates the target-specific code for
FPGA-based embedded platform CompSOC from any
Simulink models environment (www.mathworks.com).
The platform offers composability and deterministic ex-
ecution behavior which in turn relevant for iteration-free
design flows.

o Automatically uploads and executes PIL simulation codes
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Fig. 1. Predictable embedded platform under consideration.

to the platform for both PIL-C and PIL-CP configura-
tions.

o Enables the designer to program the embedded platform
and decide on application scheduling and resource uti-
lization within the same simulation environment.

o Reports measurement of parameters such as execution
time, memory usage and so on for every PIL simulation.

The paper is organized as follows. In Section II the targeted
embedded platform is demonstrated. In Section III the motion
system and the control application under study is described.
In Section IV possible PIL configurations for the control
application are defined. In Section V the developed PIL
framework and automatic target-specific code generation are
presented. Finally, in Section VI the results of PIL-C and PIL-
CP simulations of the designed controller is presented.

II. COMPOSABLE MULTI-CORE PLATFORM

The embedded platform targeted in this paper is Comp-
SOC [4]. The architecture of this platform is tile-based,
which offers the configuration of a number of memory and
processor tiles, and their interconnections through network-
on-chip (NOC). Fig. 1 illustrates a possible architecture of the
platform with two MicroBlaze soft-core processor tiles.

The platform is capable of composable execution of multi-
application scenarios using partitioning on processor tiles,
memory resources and interconnections. This guarantees an
isolated and interference free implementation for each appli-
cation regardless of presence of other applications. This is
clearly beneficial for controllers as well as a plant model
running on the platform. To do this, the platform uses a
predictable and composable micro-kernel (CoMik) to create
virtual processors (VPs) as processing resources. Each VP
utilizes a portion of processing resource available on the
underlying physical processors and their interconnections (i.e.
NoC communications). A periodic time-division-multiplexing
(TDM) policy is used on all processors and interconnections.
This enables the platform to achieve real-time performance
with cycle accurate time granularity.

To achieve this, the TDM is split into /N partition slots with
1; clock cycles lengths, separated by CoMik slots with a fixed
length of w clock cycles. The CoMik slots are responsible of
jitter-free context switching between VPs. Each application in
one or more slots on (possibly) multiple processors intercon-
nected by NOC connections. Applications are swapped in and
out transparently and perfectly periodically by CoMik. Fig. 1

illustrates an example of a TDM table with 3 partition slots on
the first processor tile, running periodically and sequentially.

IIT. CONTROL APPLICATION

This section describes the motion system and the control
application unser study. We consider a dual rotary fourth-order
single-input-multiple-output motion system [12]. Defining 6,
and 65 and their respective rotary speeds of w; and wo as the
system states, the corresponding state-space model is adopted
by the experiments of [13], and is as follows:

X(t) = AX(t) + BU(t),

(1)
Y (t) = CX(t),
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The control task here is to design control input U(¢) which
makes 6, to follow a desired reference r(t).

A. System Discretization

Since the target platform for implementing the controller is
a digital system, the first step is to discretize the state-space
model. By defining equally-distanced time instances t; the
discrete equivalent of system states are defined as:

Z‘[k‘] = X(tk), kENzl. 3)

Similarly, y[k], u[k] and r[k] are defined.
Defining sampling period h = t}, — t;_1, the discrete-time
equivalent of system Eq. 1 is :

zlk + 1] = gx[k] + Tulk], @
ylk] = Ck],

where ¢ = 4", and T' = foh e Bds. The control task

changes to design u[k] which makes y[k]| follow r[k].

B. Control Design and Implementation

The controller we have chosen is a 2-DOF feedback-
feedforward controller, which is defined as:

ulk] = Kz[k] + Frk], (3)

where K and F' are feedback and feedforward controllers
respectively. the block diagram representing the above control
system is as shown in Fig. 2.

The state-feedback controller (K) aims to stabilize the
system. The design technique for K is linear quadratic reg-
ulator(LQR) (which can be replaced by any state-of-the-art
design techniques). The feedforward conrtoller is a closed-loop
model inversion which guarantees accurate reference tracking.
Referring to Fig. 2, we define closed-loop transfer function
(which represents dynamic relation of the feedback+plant
loop) as G¢ . Now if we design feedforward controller equal
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Fig. 3. Pseudo code of the control application.

(or approximately equal) to GalL it makes the transfer function
from reference r[k] to the output y[k] equal to 1, which means
perfect tracking of the reference.

The Model-in-the-loop (MIL) validation of the designed
controller is performed using the presented block diagram in
Fig. 2 by Simulink model-based simulation environment. In
MIL simulation, the correctness of the control algorithm is
verified given certain assumptions (e.g., periodicity and jitter-
free execution times). The next step is hardware implementa-
tion using PIL simulations.

IV. PIL CONFIGURATIONS

The PIL simulation is performed by executing a part of the
simulation on the target platform. Fig. 3 presents a pseudo
code of the PIL simulation for the control structure shown
in Fig. 2. The control application is divided into two tasks —
control task (C) and the plant simulation (P). At each time
instance ¢, the control task reads the current output x[k] and
reference r[k| and and computes the next control input u[k]
by applying feedback and feedforward controllers. The plant
simulation reads the current control input u[k] and applies it to
the system state-space Eq. 4 obtaining the resulted output y|[k]
and states x[k]. This process is then performed periodically
until the end of the simulation time.

Since the PIL simulation is governed by Simulink, the signal
generator and data logger are performed in this environment.
Simulink is responsible for providing the time instances ¢; and
reference values (k] and plotting the output y[k|. Based on the
mapping of the rest of the blocks, we define two possible PIL
configurations of PIL-C (PIL-control task only) and PIL-CP
(PIL-control task and plant simulation).
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Fig. 4. PIL-C configuration. The embedded platform is implemented on
a PYNQ-Z2 FPGA board. The host PC which runs Simulink communicate
with the board through TCP/IP or serial connection sending r[k] and z[k],
and receiving the resulted u[k].

A. PIL-Control Task Only (PIL-C)

In this configuration only the control task (C) is executed
on the target platform and the plant simulation (P) stays in
Simulink environment as illustrated in Fig. 4. The PIL-C
configuration allows to evaluate execution times and other
constraints (e.g., memory) of implementing a control task
on the target platform. Since the target platform executes a
multi-application TDM policy, the PIL-C code is uploaded
and executed only on its specific virtual platform (VP) to
avoid (mutual) interference with other applications sharing the
platform. Referring to Fig. 4, during the simulation, Simulink
provides tj, r[k], and z[k] and sends them to the virtual
platform allocated to PIL-C and halts the simulation until
the response of the platform is received. The platform then
executes the generated code of the control task composable
from other applications and sends back the new control input
u[k] to Simulink. Then Simulink resumes the simulation, gives
the new control input to the plant simulation and computes the
plant output y[k] and states z[k].

B. PIL-Control Task and Plant Simulation (PIL-CP)

In this configuration both control task (C) and plant sim-
ulation (P) are executed on the target platform as illustrated
in Fig. 5. The benefit of this PIL configuration is simulating
the plant on the targeted platform which is one step closer
HIL, since this configuration evaluates the data exchange (in
terms of data-types, precision and so on) between the control
task and the plant. Similar to PIL-C, the PIL-CP code is
uploaded and executed only on its specific virtual platform
(VP). Referring to Fig. 5, Simulink provides ¢, and r[k]
and sends them to the virtual platform allocated to PIL-C
and halts the simulation until the response of the platform
is received. The platform then executes the generated code
and gives back the new output value y[k] to Simulink. Then
Simulink continues the simulation by plotting the output and
giving new values to the platform.

V. PIL FRAMEWORK

In this section we describe the development process of the
PIL framework.
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Fig. 5. PIL-CP configuration. Both control task and plant simulation are
simulated on the platform. The host PC which runs Simulink communicate
with the board through TCP/IP or serial connection sending 7[k], and receiving
the resulted y[k].

A. Code-generation

The targeted platform described in Section II is imple-
mented on PYNQ-Z2 FPGA board (www.tul.com.tw). The
board has a 650MHz dual-core Arm Cortex-A9 processor with
512M B available memory. The board enables communication
with the host PC using both serial and Ethernet connections.
To enable target-specific code generation, we defined the
platform described in Section II as a new target hardware in
Simulink. Through this, we handed platform properties, such
as Microblaze as the processor, data types, endianness, and
largest atomic size to Simulink.

The code generation is performed by a developed tool-
chain which adopts Mathworks embedded coder toolbox
(www.mathworks.com) which automatically generates target-
specific code. The process for generating code is trivial. The
designer should decide which part of the simulation is to be
executed on the platform. This part is then encapsulated in a
subsystem. By choosing the developed tool-chain, generating
code is to simply build the subsystem as a PIL block. The
result is divided in two parts. First is a library with the
corresponding generated codes for the subsystem. Second is
a PIL block which is responsible for code upload and I/O
exchange between Simulink and the platform through PIL
simulations.

B. PIL simulation

The next step is to run the PIL simulation. Doing this is
to normally simulate the model including the PIL block. The
steps of the simulation is as follows.

Code Compilation: The simulation starts with building
an executable to be uploaded to the platform. Since the target
platform has MicroBlaze processors, the suitable compiler
is MB-GCC. The created tool-chain provides the compiler
library and address it in Simulink. The compiled output is an
executable *.ELF’ file.

Code Upload: CompSOC platform is a composable
platform running multiple applications at the same time. In
the code upload it should be considered that the controller
must be uploaded on its specific virtual platform (VP). Fig. 6

Download to board
[[] makefile Parallel Execution
MB-gcc options:
Alternative gcc compiler:
Number of virtual platforms in TDM table: 3
Virtual platform for PIL application: |3
Size of PIL Virtual platform in clock cycles: | 10000
Check TDM
Communication Protocol: Serial -

CompSOC TDM with current parameters

PIL Virtual platform

remaining resource
0000

Fig. 6. The created menu in the tool-chain which enables the designer to
define TDM variables as well as communication channel for the simulation.

represents the menu added to the simulation preferences
where the designer defines the number of virtual platforms,
TDM allocation and the size of the virtual platform allocated
to the control application. The menu interactively plots the
TDM wheel visualizing resource utilization of each VP and
the remaining available processing units in TDM wheel to be
allocated.

Considering these user-defined preferences, Simulink
uploads the executable on the corresponding VP using the
TCP/IP connection.

Simulation: The simulation is performed by the same
procedure described in Section IV. The communication
channel between Simulink and the platform can be either a
serial or TCP/IP. The designer can choose one of them using
the same menu in Fig. 6. Both communication channels are
verified using Matlab defined benchmark tests resulting a
bandwidth of 4500 bytes per second (B/s) for the serial and
18000(B/s) for the TCP/IP. While TCP/IP provides higher
bandwidth, the designer can opt for serial communication to
use a single connection for both communication and power
supply to the board.

VI. RESULTS

To validate the PIL framework, the designed controller
discussed in Section III is simulated. Fig. 7 illustrates
the PIL-C simulation in the Simulink environment. The
considered sampling period for control design is 10ms. The
reference signal r(t) is 2sin(wt). The plant is simulated using
Eq. 4 in a 100us sampling period to mimic the continuous
behavior of the motion system. The designed TDM schedule
for the platform has 3 VPs with equal size of 10ms. For
both PIL-C and PIL-CP configurations, only VP2 is allocated
to the PIL simulation and the two rest were used for other
applications. Fig. 8 and Fig. 9 are the result comparison
between PIL and MIL simulations for PIL-C and PIL-CP
respectively. For PIL-C the results of MIL and PIL are
identical. For PIL-CP however, there is a difference between
MIL and PIL. The reason could be the change in precision
when the code generator replaces plant parameters by their
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TABLE I
EXECUTION TIMES AND MEMORY USAGES FOR 4 SECONDS SIMULATION
PIL Configuration PIL-C PIL-CP
Avg. Execution Time in Each Step (ns) 600 140457
Total Execution Time (11s) 48003 || 11566663
Size of ‘.ELF’ Executable (K Bytes) 19 22

numeric equivalent.

Execution time and memory: The constructed framework
is able to report the memory usage and execution times.
TABLE. I represents the reported values for both simulations.
Execution time in each step is the time spent on the platform
to execute one step of the simulation. Total execution time
is the total time spent on the platform to complete the
simulation, considering simulation is lasted for 4 seconds.
The execution times and memory usage for PIL-CP is
higher than PIL-C, since the platform needs to simulate the
plant which runs at a higher frequency and requires more
computation in each step.

VII. CONCLUSION

In this paper, we proposed a model-based PIL simulation
framework which targets composable multi-core platforms.
The framework enables the designer to perform PIL simu-
lations in Simulink model-based environment and schedule
the embedded platform within the same environment. The
composable embedded platform enables multi-applications
scenarios where PIL simulation is executed next to other
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Fig. 8. PIL simulation output for PIL-C configuration. The MIL and PIL
results are identical in this configuration.
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Fig. 9. PIL simulation output for PIL-CP configuration. The left hand scale
is for simulation outputs and the right hand scale is for the difference between
MIL and PIL simulations.

applications running on the platform without any interference.
The deterministic executions on the platform enables accurate
measurement of execution times for PIL simulations. This
is beneficial for model-based validation of a wide range of
control algorithms considering the hardware constraints. The
results validates the functionality of the PIL framework for
both configurations. The work can be extended by enabling
the framework to perform HIL simulations as well as using
multi-core nature of the platform, mapping different parts of
the simulation different cores.
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