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Abstract. Automotive Safety Integrity Level (ASIL) decomposition is a
technique presented in the ISO 26262: Road Vehicles - Functional Safety
standard. Its purpose is to satisfy safety-critical requirements by decom-
posing them into less critical ones. This procedure requires a system-level
validation, and the elements of the architecture to which the decomposed
requirements are allocated must be analyzed in terms of Common-Cause
Faults (CCF). In this work, we present a generic method for a bottom-
up ASIL decomposition, which can be used during the development of a
new product. The system architecture is described in a three-layer model,
from which fault trees are generated, formed by the application, resource,
and physical layers and their mappings. A CCF analysis is performed on
the fault trees to verify the absence of possible common faults between
the redundant elements and to validate the ASIL decomposition.

Keywords: ADAS, ASIL decomposition, automotive architecture, common-
cause fault analysis, fault trees, functional safety, ISO 26262

1 Introduction

Automotive Safety Integrity Level (ASIL) decomposition is a standardized prac-
tice presented in ISO 26262: Road Vehicles - Functional Safety [8]. This tech-
nique is used to reduce the criticality of safety requirements. It is generally
applied during the allocation of the ASIL values to the safety requirements.
The ASIL value of a requirement corresponds to a minimum ASIL that the
system, which consists of a given mapping of applications, resources, and lo-
cations, must be able to achieve. When sufficiently independent architectural
elements are present, the safety requirements can be split into less critical ones
and mapped to the independent elements.

Figure 1 shows an example of a simple application and its mapping to the
resources (1a) and a corresponding version in which the processing part proc is
implemented by two different functional nodes, proc1 and proc2, and executed
by different processors, ecu1 and ecu2 (1b). The split and merge nodes provide
the safety mechanisms to obtain the correct application functionality with high
reliability. They are implemented in this example by the sensor and the actu-
ator respectively. The application layer contains the ASIL related to a safety
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requirement, while the resource layer has ASIL specifications that must satisfy
the application requirements. The implementation resources are then mapped
to the physical layer.
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Fig. 1. Example application mapped on a resource graph (1a) with redundancy
(1b). The ASIL requirements for the application are shown above the application
nodes. The notation X(Y) refers to a decomposed requirement in which X is the
new value and Y the original.

To validate the ASIL decomposition shown in Figure 1, according to the ISO
26262 standard, the redundant elements must be independent, meaning that
they cannot have Common-Cause Faults (CCFs) that could result in a system
failure [8]. The independence must be analyzed in terms of software and hard-
ware design and implementation, failures of adjacent elements, environmental
factors, failure of common external resources, etc. The ASIL decomposition can
be approved only after the analysis of the CCFs.

In this paper we approach the ASIL decomposition in a bottom-up fashion.
Compared to a top-down approach, where the ASIL requirements are allocated
to an existing architecture, we modify the architecture introducing independent
elements on which the redundant requirements can be allocated.

To this end, we present a three-layer model of automotive Electrical and
Electronic (E/E) architectures. It is used to analyze the system with automated
tools, validate the ASIL requirements from the mapping of the applications, and
introduce system redundancy by modifying the structure of the architecture.
From the architecture model we generate fault trees for each application that is
executed in the vehicle. We use application, resource, and physical space model
to analyze the independence of the redundant parts of the system. A model im-
plemented since the early stages of the development phase helps the system ar-
chitects to maintain proper documentation and to trace the requirements on the
implementation. When comparing different solutions, a model-based approach
helps in making the trade-offs between safety, availability of the products, costs,
and performance of the implementation.
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An inspection of the fault trees allows the detection of a CCF that will cause
breaks in the modules’s independence assumptions, exposing the situations in
which the ASIL decomposition would not be valid.

The novel contribution of this work is:

– A three-layer model that consists of application, resource, physical layers,
and their mappings, that explicitly expresses redundancy with specific ap-
plication and resources elements, to perform the ASIL tailoring process on
the implementation level;

– Automated fault trees generation from the model, which are used in the CCF
analysis. This validates the independence of redundant elements, as required
by the ASIL decomposition process described in the ISO 26262 standard;

– Model transformations to modify the degree of redundancy of the system
and lower the ASIL requirements for single elements, while maintaining the
ASIL of the system as a whole.

The rest of the paper is organized as follows: Section 2 provides an overview
of the ISO 26262 safety standard. Section 3 describes the architecture model
that is used in this work, and Section 4 discusses redundancy in terms of model
transformations. Section 5 introduces fault trees and the generation algorithm
to synthesize them from the architecture model. Section 6 presents the related
work and Section 7 concludes the paper by summarizing our results.

2 ISO 26262: Road vehicles - Functional Safety

The ISO 26262: Road Vehicles - Functional Safety standard, published in 2011,
addresses the safety aspects of automotive E/E architectures, considering both
random and systematic system failures. It is an automotive-specific adaptation
of the IEC 61508 standard [7], which focuses on functional safety of general
electronic systems.

The ISO 26262 standard is divided into 10 parts, analyzing safety require-
ments during all the product life-cycle. It provides guidelines on the management
of safety requirements, as well as which safety requirements are necessary for the
concept phase of the product, its hardware and software development, the pro-
duction and the validation of the system. Moreover, it provides guidance on
ASIL-oriented requirements and decomposition. A second edition of the stan-
dard will be published in 2018 focusing on motorbikes and providing guidance
on the application of the standard and ASIL definition to hardware components.

2.1 Automotive Safety and Integrity Level

Safety can be measured with the Automotive Safety Integrity Level (ASIL) con-
cept, which is similar to the Safety Integrity Level (SIL) of IEC 61508. The
ASIL system uses a risk-based approach that takes into account the Severity,
Exposure, and Controllability of a potential harm. There are five possible levels:
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from the most critical ASIL D to the least critical ASIL A and a QM (quality
management) level that refers to non-safety-critical items. Figure 2 shows how
the ASIL values are calculated based on the three risk parameters. The highest
level D corresponds to all the risk parameters being at their maximum: S3 corre-
sponds to life-threatening or fatal injuries, E4 to a high probability of exposure
and C3 to a difficult to control or uncontrollable risk.

2.2 Requirement Decomposition

The ISO 26262 standard “provide(s) rules and guidance for decomposing the
safety requirements into redundant safety requirements to allow ASIL tailoring
at the next level of detail” [8]. Lower ASIL requirements for the implementation
resources on which the application nodes are mapped on could be necessary for
three main reasons during the product development:

1. Elements with the maximum criticality level are not available. Creating
ASIL D compliant devices is a difficult task, and often the highest safety
level can be achieved only by exploiting the knowledge of the application
that the device will support. This is not possible for general purpose ele-
ments or resources that are shared by many applications.

2. High-ASIL software is difficult and expensive to develop and test. The same
holds for the software development tools used;

3. The production process used to create a safety-critical component is expen-
sive. Decomposing the system into less-critical elements may be the most
cost-efficient solution.

C1 C2 C3
E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B
E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C
E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

S1

S2

S3

Fig. 2. ASIL determination table
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Fig. 3. Possible decomposition schemes

Figure 3 shows the acceptable ASIL decomposition schemes defined by the
standard, which follow the rule of Equation 1. To the ASIL values, QM to D, we
assign a number from 0 to 4, and the following relation must be satisfied:

ASILorig ≤
∑

ASILdecomp (1)

The standard uses the notation ASILdecomp(ASILorig) to mark which el-

ements have been decomposed and trace the original requirement. Additional
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procedures must be carried out when decomposing ASIL D requirements, for
example, the test and the integration of each decomposed element shall be im-
plemented in compliance with ASIL C. In particular, when a requirement is
decomposed into redundant elements, it is necessary to establish independence
between them for the original safety requirement to be correctly satisfied. For
example, the redundant elements should not depend on a common resource, such
as a shared battery, that could cause them to fail simultaneously, i.e. a CCF.

3 Three-Layer Architecture Model

When describing Advanced Driving Assistance Sytems (ADAS) or Autonomous
Driving (AD) related applications, the sense-think-act paradigm is generally
used. It is a common concept used in Robotics, which separates an application
into three main domains:

a) Sense: an application will always start by collecting information about the
surrounding environment or the vehicle status from one or more sensors.

b) Think: the collected data is then processed. Different design approaches can
be used to determine if it will happen, for example, in a centralized architec-
ture, where a single module will analyze the data, or in a distributed fashion,
in which multiple modules will analyze the different sensor data.

c) Act: the final part of an application involves the actuators, which modify
the status of the vehicle.

In this work we assume that all applications follow this paradigm, and in the
application graph a path from each actuator to at least one sensor always exists.

3.1 Model Description

Modeling the automotive E/E architecture is necessary to analyze the system.
To validate ASIL decomposition it is necessary to include both the descriptions
of the applications, the implementation resources used, and the physical space
of the vehicle.

A three-layer approach is used: the architecture is described in terms of
application, resource, and physical layers. The application layer contains disjoint
application graphs, while the resource and physical layers contain one graph.

The application layer can contain multiple graphs, each describing a different
application. Each application is related to a specific safety requirement, for ex-
ample availability of the system for a certain task, derived from the safety goals,
analyzed during the Hazard Assessment and Risk Analysis (HARA) phase. The
application layer describes the functional architecture of the vehicle by defin-
ing the relationships between the software nodes via a directed cyclic graph
G = (N,E) for each application, where N is the set of software nodes and E is
the set of edges that connect the nodes. Each node has an ASIL requirement,
which is originally inherited from the initial safety requirement, but can be low-
ered by the ASIL decomposition procedure. The edges indicate information flow
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between the nodes, but do not have any capacity or timing properties, which are
expressed by explicit communication nodes. Each node has a specific type:

a) Functional: the computational aspects of an application;
b) Communication: the communication aspects of an application;
c) Sensor: the data source of an application;
d) Actuator: the data sink of an application;
e) Splitter: node that replicates the input data to its output ports;
f) Merger: node that compares the redundant inputs and ensures only correct

outputs are forwarded.

Note that the splitter and merger nodes are necessary to describe the redun-
dant elements of the system, and will be discussed in the following sections.

The resource layer describes the implementation architecture of the vehicle,
comprising of hardware and software elements. The resources are expressed with
a directed cyclic graph H = (R,L), in which R is the set of resources and L
is the set of links that connect them. Each resource can provide multiple types
e.g.:

a) Functional: a resource on which the application functional nodes can be
mapped on, like a processor or a controller;

b) Communication: resources that represent the different types of automotive
networks (LIN, CAN, FlexRay, MOST, Ethernet) or direct connections;

c) Sensor: a resource that collects data, like a camera or a wireless receiver;
d) Actuator: a resource that interacts with the physical environment by exe-

cuting the desired operations, for example the braking actuator;
e) Splitter: a resource capable of forwarding the data received on an input ports

to multiple output ports;
f) Merger: a resource capable of deciding which input data is correct and for-

wards it to its output ports.

We model generic resource-resource dependencies in the resource layer. To
show one example, we use the power supply, but any other shared resource can
be modeled in the same way and included in the CCF analysis.

g) Power Source: a resource that provides the power supply for other resources,
for example a battery;

h) Power Line: a resource that distributes the power supply to other resources.

Each resource has a set of types, and the application nodes with that type can
be mapped on that resource. Hybrid resources can be described properly by the
model, for example a gateway would be both a Functional and a Communication
resource, and might have Splitter or Merger capabilities too. Each resource has
an ASIL value, representing the maximum ASIL value that it can satisfy for a
specific safety requirement, usually referred to as a ASIL-X ready resource.

The physical layer is described similarly by a cyclic graph F = (P,C), where
P is the set of physical locations and C the set of connections. The description
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of the physical space is inspired by [10], in which the authors focus on the
study of the wiring costs in an E/E architecture and they model the system
to analyze wire routing and splice allocations. In our proposed approach, the
physical locations can describe: the areas of the vehicle in which the ECUs and
hardware components can be placed, which have a limited available space, and
the paths in which the communication wires can be positioned and their length.

The interconnections between the different graphs show the mapping of the
applications to the hardware resources, and of the hardware resources to the
physical locations of the vehicle. Figure 1 is an example of the first two graphs
and the relationships between them; it does not show the physical graph to which
the resources would be mapped.

4 Model Transformations

Reducing the criticality of each module as much as possible apparently lowers
the cost of the product while maintaining high safety. In practice more compli-
cations are introduced in the design: safety mechanisms must ensure that the
proper functionality is preserved, new communication interfaces are added to
the architecture, and a system-level analysis must be performed to ensure that
the redundant elements are sufficiently independent.

As a base example, Figure 4 shows the new elements that are introduced
in the architecture after the duplication of a single node n, which has only one
input and one output for simplicity’s sake:

– ns has a splitter type, it collects the inputs and redirects them to the redun-
dant paths;

– c1a and c1b are the new communication nodes that describe the channels
between the splitter and the functional nodes;

– n1 and n2 are the redundant functional nodes;
– c2a and c2b are the new communication nodes that describe the channels

between the two functional nodes and the merger;
– nm has a merger type, it checks the input correctness of the data from the

redundant paths and forwards only correct data.

Both the splitter and the merger nodes are single points of failure for the
applications, which means that they will be safety-critical elements that must
have at least the same ASIL requirements as the original node n. They perform
generic operations on the inputs and outputs of the redundant blocks, for ex-
ample a merger could be a comparator of a classic k-out-of-n model [1] or part
of an health monitoring system which decides which output to use. The other
elements of the two branches instead follow the rule presented in Equation 1.

A transformation of the resources can be applied in a similar way. High re-
liable splitter and a merger resources will manage the redundant independent
resources. The replicated application nodes do not always have a one-to-one rela-
tionship with the transformed resources. In a bottom-up approach, the designer
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Fig. 4. Node duplication

will make this kind of transformations to the applications and resources layers
to create redundant architectures.

Even from a simple transformation, it is clear that replication will introduce
a lot of complexity in the system. From a single safety-critical node we introduce
at least two nodes, the splitter and the merger, with the same ASIL value as
the original one. In this case, since their functionality is very specific, it is pos-
sible to obtain these elements with contained costs compared to a more generic
safety-critical one. Moreover, new connections are created and additional latency
is introduced by the extra communication and the splitter and merger function-
ality. New constraints for the design are introduced to meet the independence
requirements: redundant application nodes must be mapped on independent re-
sources, and independent resources must be positioned in independent locations.
In this work we consider only the safety aspect of these modifications.

5 Common-Cause Fault Analysis for ASIL validation

The information provided by the application, resource, and physical layers al-
lows us to compute the ASIL value obtained with the implementation of each
application. If the obtained value is lower than the requirements, it means that
the resources cannot satisfy them, and either a different mapping or a different
implementation must be used.

The computed ASIL value requires a Common-Cause Fault analysis per-
formed on the three layers of the model to be valid. This analysis can either be
manual or automated.

In this work, we generate a fault tree for each application, which is used for
an automatic CCF analysis. This analysis recognizes redundancy in the model
by searching for splitter-merger combinations, and uses the nodes and resources
dependencies to determine any possible CCF.

This analysis can also be used to validate a new model after a transformation.

5.1 Fault Trees in Automotive Systems

Fault Tree Analysis (FTA) is a common top-down Safety Analysis, in which an
undesired top-level event is identified and then its causes are considered.

In this work we consider as the top-level event the failure of an application
for a specific safety goal, for example the system availability, that manifests itself
through the failure of at least one of the actuators. Each node, starting from the
actuators, can fail because of different reasons:
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– Internal failure of the hardware resource on which the application node is
mapped or of the software component that implements the functionality;

– Failure of the location on which the used resource is mapped;

– Dependent resource failure. The resource on which the application node is
mapped may depend on other resources, such as the power supply;

– Input Failure. Failure of node A that provides data to node B leads to the
failure of the node B.

Figure 5 shows the fault tree generated for each node. The same structure
is generated for each input application node, until the final sensors are reached,
according to the assumption of sense-think-act applications. This type of fault
tree is based on [6], in which the authors use Dynamic Fault Trees to describe
ADAS related applications and perform a FTA.

Node 
Failure

Location 
Fail 

Input Fail
Power 

Supply Fail

...
Power 
Source 

Fail

Previous 
Node 1 Fail

Previous 
Node N Fail

Power Line 
Fail

Internal Fail

HW FailSW Fail

Fig. 5. Subtree for each application node

The internal failure base event could be further developed as in [6], where
the hardware and the safety mechanisms implemented in the resources are con-
sidered.

5.2 Fault Tree Generation

The fault tree generation algorithm is based on [11]. We assume that the failure
of a safety requirement corresponds to the failure of at least one of the related
application’s actuators. All the actuators are assumed to have the same impor-
tance for the success of each application. Assuming a sense-think-act paradigm,
we can always expect to find a path from an actuator to a sensor.

Algorithm 1 accepts an application graph G and the top-level event eT as
inputs, and then calls the recursive procedure DevelopSubTree for each of the
application actuators. The function MappedResource returns the resource on
which an application node is mapped, while the function MappedLocation returns
the physical location on which the resource is positioned.
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For each node, a top fault event is created, to which the four possible fault
events described previously in this section are connected via an OR gate. The
function Predecessor finds all the inputs of an element in its graph. It is used
to find all the inputs of the current application graph node, for which a new
sub-tree will be generated with the DevelopSubTree procedure and connected
to the input failure event of the parent node. In case of a merger type node,
this connection is made through an AND gate, meaning that an input failure is
acquired only when all the different input branches of a redundant part of an
application fail. In case of a sensor type node, no input nodes can be found,
the input failure event is deleted and the sub-tree is returned. For all the other
nodes, a failure of any of its input leads to a fault, so they are connected with
an OR gate.

The power supply event is developed in the DevelopResourceSubTree proce-
dure, which is similar to DevelopSubTree, but works on the resource and physical
layers only. This procedure is generic for resource-resource dependencies, and in
this example we use it to generate the power supply fault tree. Each resource can
be connected to one or more power source via power lines, which are modeled as
resources in the graph. This recursive function travels through the graph, from
a resource to each of its power supply, instantiating three types of events: a fault
in the power line or power source resource, a fault in the physical location and
a fault from the parent power supply resource.

Each element of the fault tree graph is related to the relevant architecture
node. The fault trees are saved as graphs, but also exported in the text based
Galileo format [5], which is a generic format supported by commercial FTA tools.
By adding to the graph information related to the fault rates of each element
and the fault probabilities of external events, it is possible to analyze them with
the commercial tools and compute reliability metrics for the design.

5.3 Example Scenarios

In this section we discuss three possible scenarios in which our analysis can pro-
vide important information to the system architect. In Figure 6a we see the ap-
plication showed previously in Figure 1b, its mapping to the hardware resources
and their positioning in the physical space. The redundant communication re-
sources are correctly placed in different parts of the vehicle so that they will not
suffer from CCF related to the environment, while ecu1 and ecu2 are placed
in the same location f2. This is an example in which a CCF related to a com-
mon location is found, and a warning is issued to the designer by our analysis
tools. Note that in this situation, proc1 and proc2 are two different function. If,
for example, the function proc1 was used in both redundant branches, then the
possibility of a CCF derived from a systematic fault in the function would have
been highlighted by the tool.

A second scenario in which a CCF is found is shown in Figure 6c. Two
different power supplies are used for the redundant paths of the first example.
Since both the power lines are connected to elements of both the branches, a
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Algorithm 1 Fault Tree Generation
Inputs: Application graph G, Resource graph H, Physical graph P , Top-Level
Event eT
Output: Fault Tree F

1: procedure GenerateFT(G, eT )
2: for ni ∈ N s.t. NodeType(ni) = actuator do

3: ei = DevelopSubTree(ni)

4: CreateGateOR(eT , ∀ei)
5: procedure DevelopSubTree(n)
6: Fsub = CreateNodeEvent(n)

7: r = MappedResource(n)
8: p = MappedLocation(r)
9: e1 = CreateResourceBasicEvent(r)
10: if NodeType(n) != sensor then e2 = CreateInputFaultEvent(n)

11: e3 = CreatePowerSupplyEvent(r)
12: e4 CreateLocationBasicEvent(p)
13: CreateGateOR(Fsub, (e1, e2, e3, e4))
14: if NodeType(n) = sensor then Return Fsub

15: for nj ∈ Predecessor(n) do

16: ej = DevelopSubTree(nj)

17: for sk ∈ Supply(r) do

18: ek = DevelopResourceSubTree(rj, powerSource, powerLine)

19: CreateGateOR(e3, ∀ek)
20: if NodeType(nj) = merger then

21: CreateGateAND(e2, ej)
22: else

23: CreateGateOR(e2, ej)

24: Return Fsub

25: procedure DevelopResourceSubTree(r, types)

26: FresSub = CreateResourceDependencyEvent(r)

27: p = MappedLocation(r)
28: e1 = CreateResourceBasicEvent(r)
29: e2 = CreateLocationBasicEvent(p)
30: if ((Predecessor(r) != NULL) and (ResourceType(Predecessor(r)) ∈

types)) then e3 = CreateResourceInputEvent(r)

31: CreateGateOR(FresSub, e1, e2, e3)
32: if Predecessor(r) = NULL then Return FresSub

33: for rj ∈ Predecessor(r) do

34: if ResourceType(r) ∈ types then

35: DevelopResourceSubTree(rj)

36: CreateGateOR(e3, ∀rj)
37: Return FresSub
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Fig. 6. Example of different scenarios and the CCF analysis results

failure of a single supply will lead to a system failure. The designer is again
warned about the possible CCF, which invalidates the ASIL decomposition.

Figure 6d shows an example in which two applications have redundant ele-
ments. Since the two applications are independent from each other, it is possible
to map them on the same independent resources. The ASIL decomposition as-
sumptions will be valid, in this scenario no CCFs are present.

Figure 6b shows the generated fault tree for the first scenario, when consid-
ering a single power line and a battery to supply all the resources. The base
events marked in red represent the CCF related to the placement of the re-
dundant ECUs to the same locations and their common power supply. For this
simple illustrative scenario the fault tree contains 59 events, 32 OR gates and
one AND gate. In a realistic automotive system the number of nodes for each
safety requirement is higher, and in combination with the high number of safety
requirements the resulting graph will contain thousands of nodes. Without an
automated framework, the safety engineers would have to manually create and
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maintain those graphs, resulting in a more time consuming safety analysis and
validation of the system, with possibilities for human errors.

6 Related Work

In [12] the authors present a method to allocate the Safety Integrity Levels (SIL)
in a top-down automated process, supported by the commercial tool HiP-HOPS.
The system architecture is analyzed to find which elements affect the different
safety requirements and a top-down allocation of the minimum SIL values is
performed. Our approach differs from theirs since we modify the architecture
with model transformations in order to satisfy redundant safety requirements
with new independent resources. However, the two methods can be used in com-
bination during different phases of the design to validate each other’s results.

Additional information about ASIL decomposition are given in [4] and [17],
where it is made clear that introducing redundancy in safety-critical systems is
a difficult task and must be taken care of by making appropriate considerations:
adding an additional resource without considering its position inside the system
and its dependencies is not enough for a valid decomposition.

In [6] Dynamic Fault Trees and their analysis are used to provide information
about the reliability of automotive systems using the STORM tool. Since our
fault trees are generated in the common Galileo format, they can be analyzed
with commercial or open-source tools like STORM to obtain parameters such
as the Mean Time To Failure of the system. An equivalent model that can be
used for the safety analysis instead of the Fault Tree is the Reliability Block
Diagram [3], but we decided to use Fault Trees to focus on the failure of the
safety requirement.

In [10] the authors introduce a model for the wires used in an automotive
system, optimizing the wire routing to minimize the harness expenses. This
model contains more details related to these than our model, and could be used
to describe the physical connections in a more refined way.

The authors in [14] describe an approach that supports the mapping of soft-
ware elements to hardware resources, using the AutoFocus3 tool, in an AU-
TOSAR and ISO 26262 context. We currently perform the mapping step manu-
ally. A similar Design Space Exploration that considers tasks scheduling, latency,
and costs is necessary to automate this process.

The work presented in [16] takes a step into the direction of a generalized
functional architecture for autonomous vehicles: currently there is no standard
Autonomous Driving system, but a step towards a common solution is neces-
sary to speed up the development and validation parts, included the safety case
analysis. With our work provide an environment that allows a system archi-
tect to describe generic automotive systems to compare them and decide on the
most efficient solutions. It will help determine which will be the trends and most
appropriate decisions for the future automotive systems. For example, the dis-
cussion between Centralized [15] versus Distributed [9] architecture design, but
also more types of architectures like Domain-based [13] or more recent ideas like
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Zonal [2], makes more sense when compared on a real system. They all have their
pros and cons. By modeling the system and compare the same applications with
different topologies it is possible to determine the efficiency of each solution.

7 Conclusions

In this work we presented a system-level analysis that validates an ASIL de-
composition according to the ISO 26262 standard. We focus on the validation of
the decomposition applied on a transformed system architecture, in which the
designer has introduced redundancy via specific elements, hence a bottom-up
method for the development of the redundant parts of the system.

Our validation is based on a CCF analysis performed on fault trees generated
from the system architecture model. The model describes the system in terms of
applications, resources, and physical layers and their mappings. The model, the
fault tree generation, and the CCF analysis are implemented in Python, using
the graph-tool library.

Our results show how a structured method to the ASIL decomposition process
is necessary for a formal validation of the redundant system. We have seen that,
even for a simple and artificial scenario, the generated fault trees contain a high
number of events, making the CCF analysis a complex task to perform manually.
By automating part of the safety analysis, the development of a safety-critical
product becomes faster and less prone to human error.
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