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Abstract—Embedded systems are increasingly based on multi-core platforms to accommodate a growing number of applications,

some of which have real-time requirements. Resources, such as off-chip DRAM, are typically shared between the applications using

memory interconnects with different arbitration polices to cater to diverse bandwidth and latency requirements. However, traditional

centralized interconnects are not scalable as the number of clients increase. Similarly, current distributed interconnects either cannot

satisfy the diverse requirements or have decoupled arbitration stages, resulting in larger area, power and worst-case latency.

The four main contributions of this article are: 1) a Globally Arbitrated Memory Tree (GAMT) with a distributed architecture that scales

well with the number of cores, 2) an RTL-level implementation that can be configured with five arbitration policies (three distinct and two

as special cases), 3) the concept of mixed arbitration policies that allows the policy to be selected individually per core, and 4) a

worst-case analysis for a mixed arbitration policy that combines TDM and FBSP arbitration. We compare the performance of GAMT

with centralized implementations and show that it can run up to four times faster and have over 51% and 37% reduction in area and

power consumption, respectively, for a given bandwidth.

Index Terms—Real-time systems, Globally Arbitrated Memory Tree, GAMT, Shared memory, Latency-rate Servers,

Mixed-Time-Criticality, Scalability.

✦

1 INTRODUCTION

THE complexity of embedded systems is growing, as
more and more applications are being integrated into

modern systems [1]. In consumer electronics, this trend is
caused by a digital convergence of application domains,
which has led to highly integrated devices like smart phones
and connected ultra-high definition television sets. Some
of the applications have real-time (RT) requirements and
must always finish their computations before a pre-defined
deadline. Missing a deadline may result in unacceptable
distortions of audio and video or in failure to implement
a given standard, which may result in considerable loss of
business. In contrast, other non-real-time (NRT) applications
do not have explicit deadlines and only try to execute as
fast as possible to feel responsive. A particular challenge is
that RT and NRT applications are deployed and executed on
the same platform, resulting in mixed-time-criticality systems,
even though they benefit from different design choices with
respect to predictability and performance.

To satisfy the computational requirements of an increas-
ing number of applications with low size, weight and power
consumption, (heterogeneous) multi-core platforms with
shared resources, such as off-chip memory, are used [2],
[3]. Sharing off-chip memory between cores, which we refer
to as memory clients, is typically done using a memory
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interconnect that multiplexes requests from different clients
using some arbitration policy. The choice of arbitration policy
depends on the requirements of the clients, which may be
diverse in terms of bandwidth and/or latency [4], [5]. Time-
Division Multiplexing (TDM) is a good policy for important
and less dynamic RT clients, such as display controllers,
since it provides temporal isolation when used in a non-
work-conserving manner (empty TDM slots are not used).
This makes their temporal behavior independent from other
applications, which enables incremental verification and re-
duces the costly verification effort [6]. However, non-work-
conserving TDM provides poor average-case performance,
since slack (empty slots) is not used. This is a problem in
the context of mixed-time-criticality systems, where work-
conserving arbitration that exploits slack to improve av-
erage performance is beneficial for NRT clients. A work-
conserving Round-Robin (RR) arbiter may hence be suitable
in case bandwidth and latency requirements of NRT clients
are fairly homogeneous and a priority-based arbiter in case
they are diverse. A great deal of flexibility is hence required
from the memory interconnect in a reusable platform for
mixed-time-criticality systems.

Existing memory interconnects struggle with these
trends and requirements for at least one of the following
three reasons: 1) they are not scalable in terms of area and
power with the increasing number of clients, 2) they do
not synthesize at the ever higher clock frequencies of off-
chip memories [7], 3) they only support a single arbitration
policy and cannot provide sufficient flexibility for a reusable
platform targeting mixed-time-criticality systems.

This article addresses this innovation gap by propos-
ing a Globally Arbitrated Memory Tree (GAMT) for complex
mixed-time-criticality systems. The four main highlights
of this article are: 1) a distributed architecture that scales



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 2

well in terms of area, power consumption and maximum
frequency as the number of clients increases. 2) the archi-
tecture supports five well-known arbitration mechanisms
(three distinct and two as special cases) in either work-
conserving or non-work-conserving mode, 3) the choice of
arbitration policy can be configured per client instead of
for all clients, further increasing arbitration flexibility, 4) a
worst-case analysis for a mixed arbitration policy, where
some clients use non-work-conserving TDM and others
work-conserving Frame-Based Static Priority (FBSP) [8]. We
experimentally verify that our hardware implementation of
GAMT behaves identically to the arbitration policies it is
configured to mimic and compare our distributed architec-
ture in terms of area, power, and maximum frequency to
centralized implementations. We also show that our derived
bound for the mixed arbitration policy is conservative and
that the clients under non-work-conserving TDM arbitration
enjoy temporal isolation.

The remainder of this article is organized as follows.
Related work is first discussed in Section 2, after which Sec-
tion 3 presents essential background material. Our Globally
Arbitrated Memory Tree is then introduced in Section 4, fol-
lowed by a worst-case analysis for a novel mixed arbitration
policy combining TDM and FBSP in Section 5. Experimental
results are then presented in Section 6, before we draw
conclusions in Section 7.

2 RELATED WORK

There is a large body of work focusing mixed-criticality sys-
tems [9], which is a term referring to safety-critical systems,
e.g. in the automotive and avionics domains, featuring a mix
of safety levels. In this context, hardware components like
networks-on-chips (NoCs) [10] and memory controllers [11],
[12] have been developed around the common theme that
tasks or transactions of non-critical clients are dropped
when critical clients overrun their execution bounds. In
contrast, our work does not consider safety levels, but
distinguishes clients with a mix of real-time and best-effort
requirements and focus on satisfying their different needs
for worst-case and average-case performance.

Existing memory interconnect architectures with pre-
dictable arbitration policies can be classified into centralized
and distributed architectures based on their implementation.
In a centralized implementation, the arbitration policy is
implemented in a single physical location. Centralized ar-
chitectures are easy to implement as the arbitration decision
is made at a central location using a single arbiter for all
clients. The centralized implementations in [13], [14], [15],
[16] consist of a tree of multiplexer stages for priority resolu-
tion among the clients and are not scalable in terms of clock
frequency. This is because the number of logic gates in the
critical path for multiplexing increases with the number of
clients, restricting their maximum synthesizable frequency.
This issue can be resolved by pipelining the multiplexer
stages, although this introduces additional arbitration de-
lays that must be considered both in performance analysis
and to guarantee functional correctness of the arbitration.
This is not discussed in the existing work mentioned above,
but is covered in this article.

In distributed architectures, arbitration of memory
clients is performed in a distributed manner using multiple
arbitration nodes [17], [18], [19], [20], [21]. This deals with
the scalability problem with clock frequency by breaking
up arbitration into multiple smaller steps with less clients.
Distributed memory interconnects can be further classified
as either locally arbitrated or globally arbitrated depending
on whether the arbitration nodes work independently or
in a coordinated manner. Distributed memory interconnects
with local arbitration are presented in [17], [18], [21]. These
architectures consist of multiple arbitration stages connected
in a tree-like structure, where each arbitration stage uses RR
arbitration in [17], [21] and First-Come First-Serve (FCFS)
in [18]. In [22], a combination of non-work-conserving TDM
and work-conserving RR are used with the root arbiter
coordinating the scheduling decisions from the other arbi-
tration stages. Another example of distributed interconnects
with local arbitration is NoCs using priority-based packet
switching [10], [23]. The main problem with distributed
arbitration is that multiple independent arbitration stages
leads to larger area and power usage due to the buffering of
memory requests at every arbitration stage [24]. This prob-
lem can be avoided by means of back-pressure between the
arbitration stages, as proposed in [18], although at expense
of reduced performance in terms of latency and throughput.

The problem with distributed interconnects with local
arbitration is addressed by global arbitration, where the
scheduling decisions in different arbitration steps are co-
ordinated to eliminate the need for expensive intermediate
buffers. The most prominent example of this type of arbi-
tration is found in TDM-based NoCs [19], [20], [24], where
coordination is provided by a statically computed global
schedule. However, TDM arbitration is not suitable when
clients have diverse bandwidth and latency requirements.
For example, clients with low latency and low bandwidth
requirements must be allocated more than their required
bandwidth to meet their latency requirements, which is not
desirable when memory bandwidth is scarce. Although [25]
presents a NoC with global arbitration while providing
differential treatment to the clients using resource managers,
the synchronization of scheduling with control messages
reduces overall memory access performance.

From this review, we conclude that there is currently
no memory interconnect that scales well in terms of area,
frequency, and power consumption, while addressing di-
verse memory client requirements. This article addresses
this by proposing a Globally Arbitrated Memory Tree with
a scalable distributed implementation. It supports five well-
known arbitration policies, which can even be selected per
client to further increase the arbitration options. GAMT was
previously briefly introduced in [26]. This article extends
this work by explaining the architecture and operation in
more detail, as well as introducing the novel concept of
selecting arbitration algorithm per client. We demonstrate
this feature by proposing to mix non-work-conserving TDM
arbitration for RT clients and work-conserving FBSP arbi-
tration for NRT clients, a combination that is relevant for
mixed-time-criticality systems with diverse requirements.
We present the worst-case analysis for this combination and
experimentally show that the bound is conservative and that
TDM clients are temporally isolated.
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3 BACKGROUND

This section provides the necessary background information
to understand the contributions of this article. First, Sec-
tion 3.1 explains the concept of latency-rate servers, which
is the framework we use as a base for analysis of GAMT. Sec-
tion 3.2 then presents the five different existing arbitration
policies that the memory tree supports and describes how
they fit with the general latency-rate framework. Lastly, we
explain our assumptions on the real-time memory controller
connected to the memory tree in Section 3.3.

3.1 Latency-Rate Servers

Latency-rate (LR) [27] servers is a shared resource ab-
straction that guarantees a client ci sharing a resource a
minimum allocated rate (bandwidth), ρi, after a maximum
service latency (interference), Θi. The guaranteed service
provided to a client is independent of the actual behavior
of others and is based on resource reservations, combining
a notion of accounting (budgeting) and enforcement (e.g. no
more service when budget is depleted). The values of Θi and
ρi of each client depend on the particular choice of arbiter
and the reservations, as later explained in Section 3.2.

Figure 1 illustrates the requested service of a client over
time from a shared resource (upper solid line) and the pro-
vided service from the resource (lower solid line). The LR

service guarantee, the dashed line labeled ’service bound’
in the figure, provides a lower bound on the data that can
be transferred to a client during any interval of time. This
makes the LR server abstraction suitable for performance
analysis of streaming applications, such as audio and video
encoders/decoders [28], [29], [30], and wireless radios [30],
that are more concerned with the time to serve sequences of
requests rather than just a single request.

The main advantage of the LR abstraction is that it
captures the behavior of many different resources arbiters
and configurations in a unified manner. It can further-
more be integrated with well-known performance analy-
sis frameworks, such as network calculus [31], data-flow
analysis [32], or worst-case execution time (WCET) estima-
tion [33], allowing techniques from these frameworks to be
applied for any arbiter belonging to the class. Examples
of the LR abstraction being used to verify a system in
the contexts of network calculus and data-flow analysis are
provided in [30] and [34], respectively.
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Fig. 1. A LR server and associated concepts.

The LR service guarantee is conditional and only ap-
plies if the client requests enough service to keep the server

busy. This is captured by the concept of busy periods, which
are periods in which a client requests at least as much
service as it has been allocated (ρi) on average. This is
illustrated in Figure 1, where the client is in a busy period
when the requested service curve is above the dash-dotted
line with slope ρi that we refer to as the busy line. The
figure also shows how the service bound is shifted when
the client is not in a busy period (idle period). We have now
introduced all the necessary concepts to formally define a
LR server in Definition 1.

Definition 1 (LR server). A server is a LR server if and only
if a non-negative service latency Θi can be found such that the
provided service, wl

i, of a client ci is bounded by Equation (1)
during a busy period with duration l. The minimum non-negative
constant Θi satisfying the equation is the service latency of the
server.

wl
i ≥ max(0, ρi · (l −Θi)) (1)

Based on the LR service guarantee, it has been
shown [35] that the worst-case finishing time of the kth

request from a client i can be bounded by Equation (2),
where ski is the request size, Ak

i is the arrival time, and
Fk−1

i is the worst-case finishing time of the previous request
from the client. This bound is visualized for the kth request
in Figure 1. Note that this bound is slightly pessimistic
and that it has been shown that a reduced service latency
Θ′

i = Θi − 1/ρi + 1 can be used in Equation (2) [36].

Fk
i = max(Ak

i +Θi, Fk−1

i ) + ski /ρi (2)

3.2 Predictable Arbitration Policies

After introducing LR servers, this section presents five
existing arbitration policies that belong to the class, Time-
Division Multiplexing (TDM) [8], [30], Round Robin, Frame-
Based Static Priority (FBSP) [8], Priority-Based Budget
Scheduler (PBS) [37], [38] and Credit-Controlled Static-
Priority (CCSP) [16]. For each of these policies, we first ex-
plain their basic operation, followed by a brief description of
their corresponding bounds on service latency and allocated
rate.

3.2.1 TDM and Round Robin

A TDM arbiter operates by periodically repeating a sched-
ule, or frame, with a fixed number of slots, f, each cor-
responding to a single resource access. Every client ci is
statically allocated a number of slots φi in the schedule
at design time, resulting in an allocated rate according to
Equation (3). GAMT assumes that the slots allocated to a
client appear consecutively in the schedule, as shown in
Figure 2. This assumption reduces both the hardware cost of
the implementation and the complexity of latency analysis
compared to arbitrary slot allocations. For a consecutive slot
allocation, the service latency of a client (in slots), Θtdm,
can simply be computed according to Equation (4) [8].
This corresponds to the worst-case scenario where the busy
period of a client starts just after the last slot allocated to
the client to maximize the number of interfering slots. More
complex methods for determining the service latency for
TDM arbiters with arbitrary slot allocations are presented
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in [39], [40]. Note that RR arbitration is a special case of
TDM, where each client is assigned a single slot in the frame,
and is hence covered by the same worst-case analysis.

Θtdm
i = 4

cici

Fig. 2. TDM schedule with frame size f = 6 and φi = 2 allocated slots
to client ci in a continuous manner. The allocated rate of ci is ρi = 2/6.

ρi = φi/f (3)

Θtdm
i = f − φi = f · (1− ρi) (4)

3.2.2 FBSP and PBS

Similarly to TDM, FBSP [8] is also a frame-based arbiter
with a fixed frame size and each client ci is allocated a
budget of slots, φi. However, unlike in TDM, there is no
static assignment of clients to the slots. Instead, each client is
assigned a unique static priority and the (backlogged) client
with the highest priority and one or more remaining budget
slots is granted service. When a client is granted service,
its budget is reduced by one. Note that in this article, we
refer to the clients with sufficient budget to get scheduled
as eligible clients. The budgets of the clients are reset to the
number of allocated slots at the end of each frame, making
the frame size the replenishment interval of the clients. Left-
over budget is not preserved between frames to prevent
high-priority clients from building up large budgets when
they are idle and later starve low-priority clients.

Since FBSP is frame-based just like TDM, it follows
that the allocated rate is determined by Equation (3). The
worst case for a client ci under FBSP arbitration is if a
request arrives starting a busy period at the same time as
all clients in the set of higher priority clients, HP

i
. If this

happens
∑

∀cj∈HPi
φcj slots from the end of the frame, the

higher priority clients interfere maximally just before the
frame repeats, replenishing their budgets and enabling them
to interfere maximally again before ci gets access to the
resource. The service latency hence considers two times the
maximum interference from higher priority clients. This is
expressed in Equation (5) [8] and illustrated in Figure 3.
Note that PBS [37], [38] can be seen as a special-case of FBSP
where there is a single high-priority client. This is covered
by the same worst-case analysis if all low-priority clients
assume they have the lowest priority.

Θfbsp
i = 6

ciHHHHHH

Fig. 3. FBSP arbiter with frame size f = 6 and φH = 3 allocated slots to
higher priority clients.

Θ
fbsp
i = 2 ·

∑

∀cj∈HPi

φcj (5)

3.2.3 CCSP

The distinguishing feature of the CCSP accounting mech-
anism is that it does not base budget replenishment on a
common frame. Instead, it uses a continuous replenishment
strategy that gives every client their allocated fraction of a
service unit, ρ, before every arbitration decision. In terms of
frame-based mechanisms, this can be understood as having
a frame size of one and allocate fractional slots to the clients.
A hardware implementation of this mechanism is presented
in [41].

The allocated service in a CCSP arbiter consists of two
parameters. In addition to the allocated rate used by both
TDM and FBSP, a client is associated with an allocated
burstiness, σ. The allocated burstiness determines the initial
budget of a client when it starts an active period (similar to
a busy period). For every arbitration decision, the budget
is incremented by the fractional allocated rate ρ and decre-
mented by one when the client is granted service. When the
client is not backlogged, it is only allowed to build up its
budget until its initial budget value to bound the maximum
budget it can accumulate, making the arbiter predictable.

It has been shown in [16] that the maximum interference
in a CCSP arbiter occurs when all higher priority clients start
their active periods at the same time. The service latency for
this case is computed according to Equation (6).

Θccsp
i =

∑
∀cj∈HPi

σj

1−
∑

∀cj∈HPi
ρj

(6)

3.2.4 Work-conservation

All arbitration policies described in this section can be
implemented either in a work-conserving or non-work-
conserving manner. The definition of a work-conserving
arbiter is that it is never idle as long as there is a client
with pending requests. In case there is no eligible client
when an arbitration decision has to be made, a non-eligible
backlogged client is scheduled according to a certain slack
management policy. For priority-based arbiters like FBSP or
CCSP, the same static priorities can be used to distribute
slack bandwidth. However, it is also possible to assign
slack bandwidth to NRT clients that benefit from improving
the average-case performance. Note that the budget of the
scheduled client in a work-conserving arbiter is not de-
ducted, since slack capacity is distributed for free. Whether
or not work-conservation is used has no impact on the LR

guarantees discussed in this article.

3.3 Real-time Memory Controllers

The bounds previously presented in this section are all
expressed in terms of abstract arbitration decisions (slots)
and need to be converted to clock cycles based on the worst-
case execution time (WCET) of a request in the considered
resource to apply in a real platform. In this work, GAMT
is assumed to be connected to a state-of-the-art real-time
memory controller, such as [42], [43], [44], that bound the
WCET of memory transactions by fixing the memory access
parameters, such as burst size and page policy, at design
time. For simplicity, we assume the same constant WCET
for read and write requests by taking the maximum of
both. This is not a very restrictive assumption as the WCET
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for read and write transactions can be made similar with
negligible loss in the guaranteed bandwidth [45]. Hence,
all memory requests are scheduled periodically at time
intervals of fixed duration called the scheduling interval (SI),
which is larger than or equal to the WCET of the requests.

4 GLOBALLY ARBITRATED MEMORY TREE

This section presents our proposed Globally Arbitrated
Memory Tree (GAMT) that can be configured with five dif-
ferent arbitration policies and supports work conservation
for improving average-case performance by distributing
slack. Before we present the scalable distributed architecture
and operation of GAMT, we first discuss the novel concept
by which we achieve scalability, global arbitration and sup-
port different arbitration policies.

To achieve scalability, we propose a distributed archi-
tecture, shown in Figure 4, with dedicated Atomizer (AT),
Accounting and Priority Assignment logic for each client and
Priority resolution among the N clients using a tree consisting
of N-1 pipelined multiplexer stages. The Atomizer first
splits incoming requests into equal-sized smaller requests,
called service units, with a service cycle duration of SCcc by
the Atomizer according to the fixed access size of the real-
time memory controller. Ensuring that all requests have the
same size reduces the complexity of the arbitration and
make the timing behavior of clients independent of each
others actual request sizes. The Accounting logic keeps track
of the eligibility of a client to receive service and uses a global
scheduling interval (SI) (i.e. global arbitration) of fixed dura-
tion, typically equal to SCcc, between scheduling decisions.
The Priority Assignment logic assigns a unique priority to
the client based on the arbitration policy and whether or
not the client is eligible, and the Priority resolution grants
service to the client with the highest priority. Once a client
is granted service, a feedback signal from the output of
the Priority resolution logic updates the client’s eligibility
status in its Accounting logic. Also, the eligibility status of
all clients is updated every scheduling interval. Note that
there is no communication between the dedicated Accounting
blocks to ensure that the complexity of the arbitration logic
does not increase with the number of clients. Furthermore,
the use of pipelined multiplexer stages for priority reso-
lution breaks the critical path and enables the logic to be
synthesized at higher clock frequencies. Since the arbitration
decision is made by the Accounting logic at the leaves of the
tree, the pipeline registers in the multiplexer tree are simple
registers of width equal to the data-path width, unlike the
flit-sized buffers at every arbitration stage in most existing
distributed implementations. Moreover, there is no back-
pressure required between the arbitration stages.

Five well-known arbiters belonging to the class of LR

servers can currently be mimicked by configuring the Ac-
counting and Priority Assignment logic. In TDM and RR,
the responsibility of the Accounting logic is to keep track
of the current slot, which essentially is the deciding factor
for a client to get service. In FBSP, PBS, and CCSP the
Accounting logic keeps track of the budget of the client.
The priority level assigned to an eligible client by the
Priority Assignment logic is based on the arbiter configu-
ration, which guarantees a minimum bandwidth and/or a

Priority 

assignment
Priority 

resolution

Priority 

assignment

Accounting
Priority 

assignment

Accounting

Accounting

Update state

ATClient1

ATClient2

ATClientn

To memory 

controller

FIFO

Fig. 4. High-level architecture of the Globally Arbitrated Memory Tree.

maximum latency according to the LR abstraction. In TDM
and RR, there can only be one eligible client at a time, and
hence, the highest priority is assigned to the client that is
statically assigned to the slot. For FBSP, PBS and CCSP, the
priority levels that are computed at design time to meet
a certain bandwidth/latency requirement [8] are assigned
to the eligible clients. At run time, multiple clients may be
eligible and enter the tree. Note that for slack management
in work-conserving mode, i.e. when none of the eligible
clients are backlogged, the backlogged non-eligible clients
are assigned with unique priorities that are lower than
the lowest priority level assigned to an eligible client. The
priority levels in the work-conserving mode depends on
the slack management policy, which could be the same or
different from the regular arbitration policy.

4.1 GAMT Architecture and Operation

After presenting the high-level concepts of GAMT, we pro-
ceed by discussing its distributed architecture and operation
in more detail.

4.1.1 GAMT Architecture

Figure 5 shows the detailed architecture of GAMT in which
the clients are at the leaves of the tree and the memory
controller (MC) and DRAM at the root. The Accounting and
Priority Assignment (APA) logic for each client is located in
the network interface (NI) to which the client is attached.
The 2-to-1 multiplexers (Mux) implementing the priority
resolution are interconnected in a tree-like structure with
a NI (NId) at the root of the tree, which interfaces with the
memory controller.

NI1
d1

Priority resolution

APA

v1

NI2

Mux3

Mux1

p1

a1

d5

v5

a5

p5
NId

d2

v2

p2

a2

NI3
d3

v3

NI4

p3

a3

d4

v4

p4

a4

d7

v7

p7

a7

APA

APA

APA

v6

d6

a6

p6
Mux2

MC DRAM

c1

c2

c3

c4

Fig. 5. Detailed architecture of GAMT along with the memory shared by
four clients c1 − c4. The valid signal used to indicate a new request
is denoted by v, the data/command lines d, priority lines p and the
acknowledgment signal a.

When an eligible request is scheduled, the request valid
(v) signal is asserted and the data/command (d) and the
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priority (p) of the client are transmitted over the bus. When
two valid inputs of the multiplexer stage arrive at the
same clock cycle, the one that carries the highest prior-
ity is granted access and the other is dropped. Note that
competing requests are guaranteed to arrive on the same
clock cycle because of the global scheduling interval. When
a service unit arrives at the root, NId generates an acknowl-
edgment (a) signal that is sent back to the client, which
removes the request from the head of its request queue
and the current state of the Accounting logic is updated
(details are presented later in Section 4.2). The dropped
service units are not removed from their request buffers (no
acknowledgment) and they are re-scheduled during the next
SI. Note that if the request of an eligible client is dropped
during a scheduling interval, the client remains eligible in
the next scheduling interval. One drawback of this approach
is that dropping and rescheduling requests could increase
the switching activity, and hence, the power consumption.

It can be seen that the minimum SI duration (SImin)
must at least be equal to or greater than the total time from
a request is scheduled until its acknowledgment arrives
back at the source NI. Otherwise, the eligibility status of the
clients in the Accounting logic will be outdated for the next
service unit, resulting in incorrect functional behavior. The
minimum SI hence depends on the number of multiplexer
stages in the tree, which in turn depends on the number of
clients in the system. For a balanced tree, this constraint is
given by SImin ≥ 2 × log2(N), where N is the number of
memory clients since each multiplexer stage introduces one
cycle delay in both the request and response paths.

The WCET for a memory read and write request is given
by 2× log2(N)+SCcc and log2(N)+SCcc, respectively. For a
16-bit IO DDR3-800 memory device, the SCcc for the smallest
request size of 16 Bytes is 25 clock cycles [46] assuming a
close-page policy [8]. If we assume that GAMT runs at the
same clock frequency as the memory, the minimum SI of 12
cycles for up to 64 clients is less than the SCcc for the smallest
request size. This ensures that requests are scheduled fast
enough to ensure that there is always a request for the
memory to serve and hence that the pipeline delays in
GAMT are not a performance bottleneck. Moreover, with
larger request sizes and faster memories, the WCET of
requests in clock cycles increases making this constraint
insignificant. However, note that GAMT may not be suitable
for SRAMs where data can be accessed in just a few clock
cycles.

For a read request, the response arrives back at the
source on a pipelined response path. In this section, we
assume the same clock domain and data-path width for
both GAMT and the memory controller to ensure that their
SIs are of the same duration. Hence, the buffer in the
memory controller does not overflow as the service unit
(if any) scheduled by the tree will be consumed by the
memory during the same SI. However, it is possible to
have different data-path widths for the memory tree and
the controller and run them at different speeds by coupling
the GAMT and memory controller, as proposed in [24].
During the periodic DRAM refresh operation in the memory
controller, the service unit arriving at the root is dropped
and rescheduled again. The refresh duration need not be an
integer multiple of service cycle duration and the pending

request will be served immediately in the first service cycle
after the refresh operation is finished. Note that the impact
of refresh needs to be taken into account for the worst-case
memory bandwidth and latency computation [8].

4.1.2 Operation

Figure 6 shows an example timing behavior of the GAMT
instance in Figure 5 when there are pending read/write
requests to be scheduled in the FIFOs of NI1 and NI3
from clients c1 (read) and c3 (write), respectively (irrelevant
signals are omitted for clarity). We consider an SI duration
of 7 clock cycles and write payloads and read responses
with a size of four words in this example. At the begin-
ning of the first SI (grey vertical lines), the APA logic in
NI1 and NI3 assert the valid signals, v1 and v3, and the
data/command of the requests are issued on d1 (req) and
d3 (req), respectively. We assume that client c1 has higher
priority than c3 and their priorities are sent over p1 and
p3, respectively (not shown in Figure 6). Since there are no
pending requests in NI2 and NI4, the multiplexers Mux1
and Mux2 grant access to both requests arriving from NI1
and NI3, respectively. The requests arrive at Mux3 after a
delay of one clock cycle introduced by the first multiplexer
stage. However, Mux3 grants access to the request arriving
from NI1 since it has the highest priority, and the request
from NI3 is dropped. Once the root NI receives the valid
signal on v7, it sends back an acknowledgment on a7 after
one clock cycle delay as shown. The acknowledgment is sent
back to the source NI1 over a fully-pipelined response path
and arrives back at NI1 after three clock cycles. The request
is then removed from the head of the FIFO in NI1 and the
APA status is updated. In the next scheduling interval, NI3
reschedules the dropped request as it did not receive an
acknowledgment. The response for the read request arrives
from the memory after the WCET of the read request when
the memory controller issues the response data on d7 (resp),
which is sent back to c1 over a non-blocking response path.

clkt

1 2 3 4 5 6 7 8 9 10 11 12 13

vn V1,3 V5,6

d1 (req)
d3 (req)
d5 (req)
d6 (req)
d7 (req)

an

d7 (resp)

d1 (resp)
d5 (resp)

C3
(1) C3

(2) C3
(3) C3

(4) C3
(1) C3

(2) C3
(3) C3

(4)

C3
(1) C3

(2) C3
(3) C3
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(2) C3
(3) C3

(4)
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(1) C3

(2) C3
(3) C3
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(1) C1

(2) C1
(3) C1
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(1) C1

(2) C1
(3) C1
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(1) C1

(2) C1
(3) C1

(4)

C1

C1

C1

V7 V3 V6 V7

a7 a5 a1 a7 a6 a3

Fig. 6. Example timing diagram showing scheduling of read and write
requests (req) from clients c1 and c3, respectively, and read responses
(resp) from memory. All valid and accept signals are combined and
shown together as (vn) and (an), respectively.

4.2 APA Architecture and Configuration

In this section, the generic RTL architecture of the Account-
ing and Priority Assignment (APA) logic is first presented
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and then we show how it can be configured to operate as
either TDM, RR, FBSP, PBS or CCSP.

The RTL architecture of the proposed generic APA logic
is shown in Figure 7. In the NI, the Atomizer splits an
incoming request into smaller service units (corresponding
to the fixed request size assumed by most real-time memory
controllers) and the FIFO buffer stores all pending service
units from a memory client. Work-conserving mode of the
arbitration policy is enabled by setting the register WC to
one, which enables the data valid signal (v) to be asserted
whenever there is a request pending in the FIFO. Note that
in work-conserving mode, the priority level of the memory
client will be lower than any priority level in the non-work-
conserving mode. Work conservation is disabled by setting
WC to zero, which means the valid signal is asserted only
when a client is eligible (has enough budget) to get service
and is backlogged.

1
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Fig. 7. Generic APA architecture that can be configured to operate as
either TDM, RR, FBSP, PBS or CCSP arbitration.

Algorithm 1 shows the logical operation of the Account-
ing and Priority Assignment blocks1. In Accounting, the
SI counter (SIC) asserts a valid signal, vSI, indicating the
start of every new SI. At every SI (line 2), the value in
register Current credits (CuCr), which is used to determine
the eligibility status of a client, is updated according to the
following different scenarios: When there are no backlogged
requests, i.e. bl is not asserted, the value in CuCr is set to the
initial budget stored in register Initial credits (InCr) using
the multiplexer logic that selects InCr when the output of
the Adder is greater than or equal to the initial budget
(lines 3-4). The RI counter (RIC) is used by frame-based arbi-
tration policies to replenish the budget every replenishment
interval by asserting vRI, which causes CuCr to be reset to
the value in RCr (Reset credits) (lines 5-6). When the above
two conditions are not satisfied, CuCr is incremented by the
value in the register Numerator (Nr) (lines 7-9). Addition is
performed using a full-adder, Adder, with one of its inputs
connected to CuCr and the second input to Nr when it is
in addition (ADD) mode. The Adder is in the ADD mode
by default and the subtract (SUB) mode is enabled when
the acknowledgment (a) signal is valid. As explained in
Section 3.2, accumulating a large budget in CCSP mode is
not allowed when the client is not backlogged. On a valid
acknowledgment signal, CuCr is decremented by the value

1. For clarity in presentation, the pseudo code is split into two pro-
cedures, Accounting and Priority Assignment. Accounting is triggered
by signals acknowledgment (a) and backlogged (bl) signals, whereas
Priority Assignment is purely combinatorial logic.

in register Denominator (Dr) (lines 11-13). Note that the
value of Aout returned (line 15) at the end of the procedure
is passed to the Priority Assignment block and also used as
the next state value of CuCr during the next iteration of the
Accounting procedure.

Algorithm 1 Accounting and Priority Assignment logic

Input signals: Acknowledgment (a), Backlogged (bl)
Output signal: Priority (p)

1: procedure ACCOUNTING(a, bl)
2: if vSI then
3: if (!bl) & (Aout ≥ InCr) then
4: CuCr← InCr
5: else if vRI then
6: CuCr← RCr
7: else
8: Aout← CuCr + Nr
9: CuCr← Aout

10: end if
11: else if (a) & (Aout ≥ LB) then
12: Aout← CuCr - Dr
13: CuCr← Aout
14: end if
15: return Aout
16: end procedure

17: procedure PRIORITY ASSIGNMENT(Aout)
18: if LB ≤ Aout ≤ UB then
19: p← SP
20: else
21: p← SPO
22: end if
23: return p
24: end procedure

The Priority Assignment logic selects a priority level
stored in the register Static priority (SP) when the value of
the Adder output, Aout, falls in between the values stored in
registers Lower bound (LB) and Upper bound (UB) (lines 18-
19). A different priority level with a constant offset, config-
ured in the register SP plus offset (SPO), is selected (lines 20-
21) for non-eligible clients in work-conserving mode to
ensure that they are not provided service in the current SI
while there are still eligible clients. The value of the offset
needs to be selected according to the slack management
policy, discussed in Section 3.2. When a client is scheduled
in work-conserving mode, no credits are deducted from its
budget, and to ensure this its current budget level is checked
against the sufficient budget limit in LB before enabling
CuCr (line 11).

4.3 APA Configurations

After presenting the functionality of the Accounting and
Priority Assignment block, we continue by showing how to
configure it to mimic the five supported arbiters in the class
of LR servers. A summary of the different programmable
registers in APA and the initial values that need to be con-
figured to implement the supported arbitration policies are
shown in Table 1. This section discusses these configurations
in more detail and relate them to the arbitration policies
they correspond to. Note that many other configurations of
the APA logic are possible, although many of them are not
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likely to be useful as they may correspond to policies that
are starvation-prone or impossible to analyze. However, it
may be possible to configure the logic to correspond to other
well-known algorithms.

TABLE 1
APA programmable registers and their configuration for TDM/RR,

FBSP/PBS and CCSP arbitration policies.

Arbitration policy
Register TDM/RR FBSP/PBS CCSP

InCr f f · ρ σ · dr
CuCr 0 f · ρ σ · dr
RCr 0 f · ρ Not used
Nr 1 0 nr
Dr 0 1 dr
SP Unique for each

client
Unique for each

client
Unique for each

client
SPO SP + Offset SP + Offset SP + Offset
UB Last slot in frame > f · ρ High value
LB First slot in frame 1 nr − dr
SIC SI SI SI
RIC f · SI f · SI Not used

4.3.1 TDM and RR

When configured in TDM mode, the Accounting logic keeps
track of the progress of the current frame in terms of number
of slots and the Priority Assignment logic sets the priority
of a client to the highest value available during its contin-
uously allocated slots in the frame. In Accounting, CuCr is
initialized to zero and is incremented by one every SI by
configuring Nr with a value of one, which keeps track of
the current slot in the frame. To identify the start of a new
frame, the RIC is configured to assert vRI every frame by
setting it to count down from f · SI clock cycles. This resets
CuCr to zero by loading the value from RCr, which needs
to be initialized to zero to restart counting the slots for the
new frame. In TDM, there is no budgeting required, and
hence, the value in Dr is initialized to zero so that ack does
not affect the value in CuCr as it switches the Adder to SUB
mode. Note that RR is a special case of TDM where only one
slot is allocated to each client, i.e. the frame length is equal
to the total number of clients.

In Priority selection, LB needs to be configured with the
starting slot number of the client in the frame and UB with
the ending slot number according to the continuous number
of slots allocated to the client in the frame. In non-work-
conserving mode, the priority level of clients configured
in SP does not matter as only a single client schedules its
request in a scheduling interval. For operation in work-
conserving mode, we need to assign unique priority to each
client in SP such that there is no conflict of priorities when
SPO is selected, i.e. the priority levels of all clients in SPO
must be less than in SP. For example, when the slack man-
agement policy is such that the average-case performance of
bandwidth-demanding NRT clients needs to be increased,
as explained in Section 3.2, SPO can be assigned priority
levels in descending order starting from the client with
largest bandwidth requirement. Note that InCr is not used
in TDM mode, but is configured to the maximum value of
f to ensure that CuCr is not updated from InCr.

4.3.2 FBSP and PBS

In FBSP and PBS modes, the Accounting logic keeps track
of the current budget of a client in terms of number of slots
in a frame of size f, and the Priority Assignment logic sets
the priority level of the client on the priority lines as long as
sufficient budget is available. At the start of every frame,
CuCr is initialized with f · ρi = φi, which corresponds
to the number of slots allocated to client ci in a frame,
i.e, the maximum budget. The current budget needs to be
decremented by one whenever a service unit gets scheduled,
i.e. when an acknowledgment arrives back, and hence, Dr
is configured with one. To replenish the budget at the start
of every new frame, the RIC enables the multiplexer logic
to update the initial budget from RCr to CuCr at the end
of every frame. Note that Nr is set to zero as it is not used
for budget replenishment. SP needs to be configured with
the priority (determined at design time to meet the latency
requirements) of the client and SPO with a constant offset.
LB needs to be configured with a value of one and UB with a
value greater than f·ρi such that the priority in SP is selected
for a number of service units equal to f · ρi in a frame. Note
that InCr is not used in FBSP mode, but is set to a maximum
value of f · ρ to avoid initialization of CuCr from InCr.

4.3.3 CCSP

In CCSP mode, the Accounting logic keeps track of the
current budget level of a client based on a continuous
replenishment policy and the Priority Assignment logic sets
a higher priority for the client on the priority lines based on
its current budget. Each client is initialized with an initial
budget of σ·dr in CuCr and InCr. The budget stored in CuCr
is replenished by incrementing at a rate of nr, configured
in Nr, every SI and depleted by subtracting dr, configured
in Dr, when an acknowledgment arrives back, where nr
and dr are integers used to represent the allocated rate,
ρ = nr/dr [41]. In the Priority Assignment logic, SP and
SPO are configured with the client’s priority level and with
a constant offset, respectively, just like for FBSP and PBS.
LB is set to dr as dr − nr is the minimum budget required
to select SP and that Aout is CuCr+nr at the beginning of
every SI, which determines the priority level. UB needs to be
set to a sufficiently large value such that it is larger than the
maximum budget that can ever built up, which is bounded
in [16].

5 MIXED ARBITRATION POLICIES

Having presented the architecture and operation of GAMT
and shown how to configure the Accounting and Priority
Assignment (APA) logic, this section continues by intro-
ducing the concept of mixed arbitration policies. The key
idea is that the APA logic allows any of the five arbitration
policies to be selected per client, as opposed to jointly for all
clients, greatly increasing the arbitration options without any
additional hardware cost.

Examples of interesting mixed arbitration policies cur-
rently supported by GAMT are combinations of either TDM
or Round Robin with a priority-based policy like CCSP, PBS
or FBSP. These policies are largely motivated by the latency
requirements that they can satisfy. Priority-based arbiters
result in high-priority clients getting very low latencies at
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the expense of latencies of low-priority clients getting very
high [8] (see also Equations (5) and (6)). In contrast, Round
Robin arbitration treats all clients equally and gives the
same latency to all of them. Intuitively, a mixed policy is use-
ful in cases where the latency requirements of the clients are
somewhere in the middle and neither policy can efficiently
satisfy their requirements. In that case, some clients can be
served in a Round Robin manner, getting equal treatment,
while others use priorities to efficiently cater to more diverse
latency requirements. Replacing the Round Robin policy
with non-work-conserving TDM in this scenario gives free-
dom to allocate different bandwidth to each client, but more
importantly, non-work-conserving TDM provides temporal
isolation between clients and ensure that both the actual and
the guaranteed bandwidth and latency are independent of
others. This is a useful property for verification e.g. in the
context of certification for safety-critical systems, such as
airplanes [47], [48]. In the following section, we proceed
by analyzing one of these interesting policies, namely the
combination of TDM and FBSP.

5.1 TDM+FBSP Arbitration

This section proposes a novel arbitration policy where some
clients use non-work-conserving TDM arbitration to achieve
temporal isolation, while others use work-conserving FBSP
arbitration to reduce their average latency and satisfy di-
verse requirements in terms of bandwidth and latency. This
is a compelling and intuitive combination of policies, since
they are both based on periodically repeating frames, mak-
ing their combined behavior easy to reason about. Through-
out this article, we will refer to this mixed arbitration policy
as TDM+FBSP.

To use this policy, the clients are individually config-
ured according to the TDM or FBSP column in Table 1,
respectively. However, to achieve temporal isolation, the
TDM clients must be configured to have higher priority than
the FBSP clients. This configuration guarantees that a TDM
client always has the highest priority in the system during
its allocated slots. As an example, consider two TDM clients,
c1 and c2, allocated to the first three slots in a frame of
size five with the remaining two slots reserved for FBSP
clients c3 and c4 with rates rates ρi = 1/5 each. Table 2
shows the initial values that need to be set to the different
programmable registers for the four clients. The TDM clients
are assigned higher priority (SP) than FBSP clients and LB
and UB parameters are used to allocate them consecutively
in the beginning of the frame. We have used a constant
offset value of 4 to configure SPO, which is the minimum
value that makes sure all clients have unique priorities at all
times.

5.2 Analysis of TDM+FBSP

After defining TDM+FBSP arbitration, we continue by de-
riving its worst-case analysis according to the LR frame-
work. Since TDM clients are guaranteed to always have the
highest priority, nothing changes in their analysis and they
can be analyzed independently from the FBSP clients (and
each other). This means that the bounds on allocated rate
and service latency from Equations (3) and (4) are still valid
for the TDM clients under TDM+FBSP arbitration.

TABLE 2
Example initialization of the programmable registers for TDM+FBSP.

Register c1 c2 c3 c4
CuCr 0 0 1 1
RCr 0 0 1 1
Nr 1 1 0 0
Dr 0 0 1 1
SP 1 2 3 4

SPO 5 6 7 8
UB 1 3 2 2
LB 1 2 1 1

While the high priority of TDM clients make them obliv-
ious of their FBSP counterparts, the reverse does not hold.
This is because all FBSP clients have lower priorities than the
TDM clients and must wait for them during their allocated
slots. The most general way to incorporate this into the
worst-case analysis is by adding all TDM clients to the set
of higher priority clients for all FBSP clients and continue to
use Equations (3) and (5) to compute the allocated rate and
service latency, respectively. This bound on service latency
may intuitively seem pessimistic, since the FBSP analysis
assumes that all higher priority clients interfere twice with
the client under analysis, first at the end of a frame and then
in the beginning of the following frame when budgets have
been replenished. While this is possible for FBSP clients
where slots are dynamically assigned to clients based on
their priority and availability of pending requests, it may
not be obvious that it can happen for TDM clients that are
statically assigned to slots. Figure 8a illustrates that this is
indeed possible by considering a TDM+FBSP arbiter with
frame size f = 6, repeated twice. The frame in the figure has
φT = 2 total slots allocated to TDM clients and φH = 3 total
allocated slots to FBSP clients with higher priority than FBSP
client ci under analysis. In the worst case, client ci starts a
busy period just before the allocated TDM slots in the first
frame in the figure. It then first suffers 2 slots of interference
from the TDM clients, followed 3 slots of interference from
higher priority FBSP clients before the end of the frame.
Once the second frame starts, the budgets of higher priority
clients have been fully replenished, allowing them to inter-
fere during another 3 slots. Before this interference ends,
we are back at the statically assigned TDM slots, enabling
the TDM clients to interfere a second time before client ci
receives service. This example results in a maximum service
latency Θmix

ci
= 10 slots.

A reduced bound on service latency can be obtained by
constraining the slot assignment for the TDM clients to be
consecutive in the beginning (or end) of the frame, as shown
in Figure 8b. This assignment prevents the TDM clients from
interfering twice by ensuring that the FBSP clients cannot
continuously interfere between the TDM allocations in the
two frames, as shown in Lemma 1. Note that concentrating
the TDM slots of all TDM clients in the beginning or end of
the frame does not impact their service latency in any way,
since the bound in Equation (4) is independent of where
the continuous allocation of each client is in the TDM table.
Based on Lemma 1, Theorem 1 then proceeds by showing
that our proposed TDM+FBSP arbitration policy belongs to
the class of LR servers.
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δ′ = 1δ = 3

(a) The TDM clients interfere twice in the worst-case sce-
nario with unconstrained slot assignments.

Θmix
i = 8

HHH ciHHT TT T H

δ = 4 δ′ = 0

(b) The TDM clients only interfere once in the worst-
case scenario when assigned slots in the beginning of the
frame.

Fig. 8. TDM+FBSP arbiter with frame size f = 6, repeated twice, and
φH = 3 allocated slots to higher priority FBSP clients and φT = 2 to
TDM clients.

Lemma 1. TDM clients only interfere once with FBSP clients
in the worst-case scenario under TDM+FBSP arbitration if their
slots are assigned consecutively in the beginning or end of the
frame.

Proof. We prove the lemma by contradiction by assuming
that the TDM clients ∀cj ∈ TDM interfere twice with an
FBSP client ci under analysis. This means that the higher
priority FBSP clients are able to continuously interfere be-
tween two sets of continuous slots assigned to TDM clients
in consecutive frames.

We define δ as the distance from the end of the collective
TDM allocation until the end of the frame. Similarly, we
define δ′ as the distance from the start of the frame until the
start of the TDM allocation. These definitions are illustrated
in Figure 8. To continuously interfere, Equation (7) must
hold to allow the set of higher priority FBSP clients, HPi,
to bridge the gap between two sets of TDM allocations.

∑

∀cj∈HPi

φj ≥ max(δ, δ′) (7)

Since the allocated TDM slots are continuously assigned
either in the beginning or end of the frame, we maximize δ
or δ′, respectively, and get

max(δ, δ′) = f −
∑

∀cj∈TDM

φj

Combining these two inequalities and rearranging gives
us

∑

∀cj∈HPi

φj +
∑

∀cj∈TDM

φj ≥ f

However, this means that the slots allocated to the higher
priority FBSP clients and the TDM clients must be greater
than or equal to the frame size, which is not possible since
at least one slot must be assigned to the FBSP client ci under
analysis. This contradicts the initial assumption that the
TDM clients interfere twice, which concludes the proof.

Theorem 1. TDM+FBSP arbitration belongs to the class of
LR servers. Assuming all TDM clients have continuous slot
assignments in the beginning of the frame, the service latency
of the clients is given by Equations (4) and Equation (8) for TDM
and FBSP clients, respectively.

Θmix
i = 2 ·

∑

∀cj∈HPi

φj +
∑

∀cj∈TDM

φj (8)

Proof. Since TDM clients have higher priority than FBSP
clients, nothing changes in their analysis and existing ser-
vice latency results hence hold without modification. To
prove the theorem, it hence suffices to show that Equa-
tion (9) holds for an FBSP client ci under analysis during
a busy period of length l. We are only interested in values of
l > 2 ·

∑
∀cj∈HPi

φj +
∑

∀cj∈TDM φj , since these are the only

values for which wl
i > 0.

wl
i ≥ max(0, ρi · (l − 2 ·

∑

∀cj∈HPi

φj +
∑

∀cj∈TDM

φj) (9)

The worst-case interference from TDM clients equals∑
∀cj∈TDM φj by Lemma 1, since they can only interfere

once, and 2 ·
∑

∀cj∈HPi
φj for FBSP clients by Equation (5).

Client ci has hence received maximum interference from
other clients when l =

∑
∀cj∈TDM φj + 2 ·

∑
∀cj∈HPi

φj .
This implies that it has already received maximum inter-
ference from both TDM clients and higher priority FBSP
clients in the current frame and that it receives its φi

consecutively allocated slots without interruption during
l ∈ [Θmix

i +1,Θmix
i +φi] (see e.g. second frame in Figure 8b).

After this, lower priority FBSP clients are served, potentially
followed by unallocated slots until the end of the frame.
The following frames are identical to this frame in the worst
case, since it features maximum interference from all clients.
Client ci hence receives φi of service for every f slots from
this point onwards.

The provided service to ci is minimum just before the
allocated service is provided in a frame. It is hence sufficient
to show that the LR guarantee is satisfied for all time
instants l′ = Θmix

i +n · f, where n ∈ N. At these time instants,
Equation (9) becomes

wl′

i ≥ ρi · (Θ
mix
i + n · f −Θmix

i ) = ρi · n · f (10)

Knowing that the provided service equals wl′

i = n · φi at
these points, we arrive at

wl′

i = n · φi ≥ ρi · n · f (11)

The proof is concluded by exploiting that ρi = φi/f for a
frame-based arbiter by Equation (3), which implies that the
inequality holds for all l′. This shows that the LR guarantee
holds for an FBSP client ci with Θmix

i = 2 ·
∑

∀cj∈HPi
φj +∑

∀cj∈TDM φj .

The proof that TDM+FBSP belongs to the class of LR

servers is a very useful theoretical result that enables the
proposed mixed arbitration policy to be used for WCET
or throughput estimation of real-time applications using
several well-known performance analysis frameworks, as
previously explained in Section 3.1.
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6 EXPERIMENTS

In this section, we present the functionality verification of
GAMT and evaluation of its real-time guarantees in mixed
arbitration mode. Also, we show the performance compari-
son of GAMT with respect to centralized implementations.

6.1 Experimental Setup

The experimental setup consists of the RTL implementa-
tion of GAMT [49] and centralized implementations of
two different arbitration policies, TDM [50] FBSP [41], and
CCSP [8], with a 32-bit data-path. We used Cadence En-
counter RTL compiler and the 40 nm nominal Vt CMOS
standard cell technology library from TSMC with the worst-
case process corner for logic synthesis to determine the
power and area usage and the maximum synthesizable
frequency.

6.2 Verification of Functional Correctness

We ensured the functional correctness of GAMT by com-
paring the scheduling decisions made by the FPGA imple-
mentation of GAMT (with 16 clients) at every scheduling
interval with C++ reference models of centralized imple-
mentations of TDM, FBSP, and CCSP. Note that the other
supported arbitration policies are special cases of these
three arbiters and do not require additional verification.
We used synthetic traffic generators for the clients to gen-
erate random traffic to cover both backlogged and non-
backlogged conditions and verified the functionality (for
several thousands of scheduling decisions) in both work-
conserving and non-work-conserving modes of all the three
arbitration policies. We found that all scheduling decisions
made by both GAMT and the centralized implementations
were the same, which strongly suggests that GAMT correctly
implements the different arbitration policies. Since all decisions
in GAMT are made identically to the centralized reference
implementations, the timing analyses of the original arbiters
can be used for GAMT as well with an only addition of the
constant propagation delay in GAMT.

6.3 Real-time performance evaluation

To evaluate the conservativeness of the analytically com-
puted latency bounds, we performed experiments using the
FPGA implementation of GAMT with eight memory clients
configured using TDM arbitration policy and eight clients
using FBSP. We selected a frame size of 16, with each TDM
client allocated to one slot and a rate of 1/16 allocated to
each FBSP client. As required by our analysis in Section 5,
the slots of the TDM clients are all consecutively assigned
in the beginning of the TDM frame. Unique priorities are
furthermore assigned to all the clients with the highest
priority to the TDM clients. To measure the service latency
introduced by the arbitration in GAMT alone (excluding
self-interference), we configured the traffic generators to
generate traffic with a single outstanding request.

Figure 9 shows the average latencies of all the TDM
(1-8) and FBSP (9-16) clients computed over 1500 memory
requests. The solid vertical line above the average latency
indicates the measured maximum latency and the (red)

horizontal line the worst-case latency bound of the differ-
ent clients. We computed the reduced worst-case latency
bound (in service cycles) using Equation (2), as explained
in Section 3.1. Note that the service latencies for TDM and
FBSP clients are based on Equations (4) and (8), respectively.
The computed bound in service cycles is converted to clock
cycles by multiplying with the service cycle length and the
pipeline delay of four cycles (corresponding to four stages)
is then added to it. We can see that the maximum observed
latencies of all requests from all clients are smaller than
the derived bounds, suggesting the bounds are conservative.
Also, both the average and maximum latency of FBSP clients
increase with decreasing priority, which shows that mixing
arbitration policies provides us with sufficient flexibility to
shape the latency distributions according to client require-
ments.
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Fig. 9. Average service latency of requests of all TDM and FBSP clients
in a system consisting of 16 clients. The solid vertical line indicates the
measured maximum latency for each client and the (red) horizontal line
shows the worst-case latency bound.

To verify whether the clients with TDM arbitration pol-
icy are temporally isolated from other clients, we repeated
the same experiment with the FBSP clients turned off. We
then compared the observed latencies of all the requests
of all TDM clients with and without the presence of FBSP
clients. We found that all requests of the TDM clients have
identical observed latency both when run independently
and in the presence of other clients. This evidence strongly
suggests that there is complete timing isolation for TDM clients,
i.e. that their execution is not affected by other clients even
by a single clock cycle.

Finally, we evaluate the gain in average-case perfor-
mance due to the efficient slack utilization in the mixed
arbitration mode of GAMT, i.e. possibility of exploiting slack
across multiple arbitration policies. With the same number
of TDM and FBSP clients as before, and with maximum
two outstanding requests2, experiments were performed
with the FBSP clients configured both in work conserving
and non-work-conserving modes. Our experimental results
suggest that the FBSP clients in work-conserving mode has
over 32% reduction in average-latency than the TDM clients
compared to non-work-conserving mode.

2. The rate allocated to all the clients is 1/16, and hence, a second
request is required (in the current frame) to utilize the slack (if any)
before the credits are replenished.
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6.4 Comparison with Centralized Implementations

We synthesized the design of GAMT and the centralized
implementations of TDM, FBSP and CCSP for different
number of clients, i.e. 4, 8, 16, 32 and 64 to determine
the maximum synthesizable frequency. For TDM and FBSP,
we have used a frame size such that each client gets four
slots and for CCSP, we used registers with 16-bit precision
for the configuration registers (Numerator, Denominator,
and Current Credits). Table 3 shows the area, power and
maximum clock frequency of the GAMT and the centralized
implementations of TDM, FBSP and CCSP. In general, it
can be seen that the maximum clock frequency, fmax, of
centralized arbiters do not scale with the number of clients.
With 64 clients, GAMT can be run up to a clock frequency
of 1.2 GHz, whereas the centralized implementations are
limited to around 0.3 GHz.

In general, the area and power consumption of all dif-
ferent designs increase linearly with the number of clients
due to the additional logic added. The area and power
of centralized TDM increases and the fmax scales down
with increasing number of clients due to large look-up-
table size and complexity in the priority resolution in work-
conserving mode. For CCSP, the area and power consump-
tion increases significantly with the number of clients due to
its complex accounting logic. Also, the fmax of CCSP scales
down with increasing number of clients due to the critical
path in the priority resolution. Although centralized FBSP
has similar priority resolution as CCSP, it has lower area
and power because of simpler accounting logic. However,
the fmax of FBSP with 64 clients is lower than that of CCSP
due to a longer critical path in priority resolution. On the
other hand, GAMT has better scalability in fmax with the
number of clients, since its critical path in the APA logic
remains constant irrespectively of the number of clients as it
is simply duplicated. However, it is worthwhile to note that
GAMT consumes more power compared to the centralized
implementations in most cases. This is primarily due to the
addition of extra priority lines on the bus and the dedicated
APA logic for each client. One limitation of GAMT is that
it can support only TDM with continuous slot allocation
strategy, whereas the centralized implementation of TDM
using a Look-up-Table (LUT) can support distributed allo-
cations [8].

To efficiently compare the centralized designs and
GAMT in terms of frequency, area and power consump-
tion, we define two cost-efficiency metrics, bandwidth/area
and bandwidth/power (bits/Watts). Bandwidth is computed by
multiplying data-path width (in Bytes) with the clock fre-
quency (fmax). Figures 10 & 11 show the ratio of bandwidth
(Bytes/s) to area usage (mm2) and bandwidth (Bytes/s)
to power consumption (mW ), respectively, of centralized
implementations of TDM, FBSP and CCSP normalized to
GAMT. It can be seen that for all configurations of clients,
GAMT has over 51% and 37% performance gain in terms
of area and power consumption, respectively, compared
to traditional centralized implementations. Hence, we can
conclude that GAMT is suitable when there are a large number of
memory clients in the system that requires the arbiter to be clocked
at higher speed or when the platform requires different arbiters for
different sets of applications.
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Fig. 10. Bandwidth/Area performance of centralized TDM, FBSP and
CCSP arbiter implementations normalized to GAMT.
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Fig. 11. Bandwidth/Power performance of centralized TDM, FBSP and
CCSP arbiter implementations normalized to GAMT.

7 CONCLUSIONS

The increasing number of memory clients in mixed-time-
criticality systems requires a scalable memory interconnect
supporting multiple arbitration policies. However, existing
centralized architectures are not scalable in terms of clock
frequency with the increasing number of clients and locally
arbitrated distributed implementations suffer from long la-
tencies and large area and power usage due to the buffers
in the local arbitration stages. On the other hand, existing
distributed memory interconnects using global arbitration
are limited to TDM, which is not suitable for clients with
diverse bandwidth and latency requirements.

This article addresses this problem by proposing Glob-
ally Arbitrated Memory Tree, GAMT, with a distributed
architecture that can be configured with five well-known
arbitration policies (two of which are special cases of the
other). We introduce the novel concept of mixed arbitration
policies, where the choice of arbiter is done per client
instead of jointly for all clients, to further increase arbi-
tration flexibility without impacting cost. A novel mixed
arbitration policy targeting mixed-time-criticality systems
that combines non-work-conserving Time-Division Multi-
plexing to achieve temporal isolation with work-conserving
Frame-Based Static-Priority to address diversity and reduce
average latency was then proposed. A worst-case analysis
was then performed of the mixed policy in the context of the
latency-rate framework. Experimental results suggest that
GAMT behaves identically to the arbiters it is configured
to emulate and that bounds for the novel mixed policy
are conservative. Moreover, a reduction of over 32% in
average latency was achieved for all FBSP clients due to the
efficient utilization of slack in the mixed arbitration mode
TDM+FBSP. Synthesis results using a 40 nm process shows
that GAMT runs four times faster with 64 clients than the
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TABLE 3
Area usage and power consumption at maximum clock frequency (fmax) of GAMT and centralized implementations of TDM, FBSP and CCSP.

Area (mm2) Power (mW ) fmax (MHz )
# Clients TDM FBSP CCSP GAMT TDM FBSP CCSP GAMT TDM FBSP CCSP GAMT

4 0.02 0.02 0.02 0.02 5.19 4.47 5.35 4.55 588 588 526 1250
8 0.03 0.03 0.04 0.03 7.88 6.32 8.07 9.77 500 500 435 1250

16 0.06 0.06 0.08 0.07 16.13 11.56 14.94 20.20 435 357 357 1250
32 0.11 0.14 0.17 0.14 17.46 18.75 25.36 41.07 333 333 333 1250
64 0.20 0.37 0.42 0.28 35.60 49.98 63.18 82.81 333 278 303 1250

corresponding centralized architectures and have over 51%
and 37% savings in terms of area and power consumption
for a given bandwidth, respectively.

ACKNOWLEDGMENTS

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology), co-financed by ERDF (European Regional De-
velopment Fund) under PT2020 Partnership, within project
UID/CEC/04234/2013 (CISTER Research Centre); also by
FCT/MEC and the EU ARTEMIS JU within project(s)
ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2) and
621353 (DEWI) and EU FP7 288008 T-CREST, 318763 JU-
NIPER, 288248 Flextiles, CA505 BENEFIC, CA703 OpenES.

REFERENCES

[1] “International Technology Roadmap for Semiconductors (ITRS),”
2013, http://www.itrs.net.

[2] P. Kollig, C. Osborne, and T. Henriksson, “Heterogeneous multi-
core platform for consumer multimedia applications,” in Proceed-
ings of the Conference on Design, Automation and Test in Europe, ser.
DATE ’09. European Design and Automation Association, 2009,
pp. 1254–1259.

[3] C. H. K. van Berkel, “Multi-core for mobile phones,” in Proceedings
of the Conference on Design, Automation and Test in Europe, ser. DATE
’09. European Design and Automation Association, 2009, pp.
1260–1265.

[4] P. van der Wolf and J. Geuzebroek, “SoC infrastructures for pre-
dictable system integration,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, 2011, pp. 1–6.

[5] L. Steffens, M. Agarwal, and P. Wolf, “Real-Time Analysis for
Memory Access in Media Processing SoCs: A Practical Approach,”
in Real-Time Systems, 2008. ECRTS ’08. Euromicro Conference on,
2008, pp. 255–265.

[6] B. Akesson, A. Molnos, A. Hansson, J. A. Angelo, and K. Goossens,
“Composability and predictability for independent application de-
velopment, verification, and execution,” in Multiprocessor System-
on-Chip — Hardware Design and Tool Integration. Springer, 2010,
ch. 2.

[7] “JEDEC Solid State Technology Association,”
http://www.jedec.com, JEDEC Solid State Technology
Association, 2015.

[8] B. Akesson and K. Goossens, Memory Controllers for Real-Time
Embedded Systems, first edition ed., ser. Embedded Systems Series.
Springer, 2011.

[9] A. Burns and R. Davis, “Mixed criticality systems-a review,”
Department of Computer Science, University of York, Tech. Rep, 2013.

[10] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case
latency improvements in mixed-criticality wormhole networks-
on-chip,” in Real-Time Systems (ECRTS), 2015 27th Euromicro Con-
ference on. IEEE, 2015, pp. 47–56.

[11] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, J. Oh
et al., “A predictable and command-level priority-based DRAM
controller for mixed-criticality systems,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2015 IEEE. IEEE,
2015, pp. 317–326.

[12] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst, “A mixed critical
memory controller using bank privatization and fixed priority
scheduling,” in Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2014 IEEE 20th International Conference on.
IEEE, 2014, pp. 1–10.

[13] E. S. Shin, I. V. J. Mooney, and G. F. Riley, “Round-robin arbiter
design and generation,” in Proceedings of the 15th International
Symposium on System Synthesis, ser. ISSS ’02. ACM, 2002, pp.
243–248.

[14] G. Dimitrakopoulos, C. Kachris, and E. Kalligeros, “Scalable Ar-
biters and Multiplexers for On-FGPA Interconnection Networks,”
in Field Programmable Logic and Applications (FPL), 2011 International
Conference on, Sept 2011, pp. 90–96.

[15] M. Weber, “Arbiters: design ideas and coding styles,” in Synopsys
Users Group (SNUG), 2001.

[16] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-Time
Scheduling Using Credit-Controlled Static-Priority Arbitration,”
in Embedded and Real-Time Computing Systems and Applications,
2008. RTCSA ’08. 14th IEEE International Conference on, Aug 2008,
pp. 3–14.

[17] J. Garside and N. Audsley, “Prefetching across a shared memory
tree within a Network-on-Chip architecture,” in System on Chip
(SoC), 2013 International Symposium on, Oct 2013, pp. 1–4.

[18] J. H. Rutgers, M. J. G. Bekooij, and G. J. M. Smit, “Evaluation of a
Connectionless NoC for a Real-Time Distributed Shared Memory
Many-Core System,” in Proceedings of the 2012 15th Euromicro
Conference on Digital System Design, ser. DSD ’12, 2012, pp. 727–
730.

[19] A. Hansson, M. Coenen, and K. Goossens, “Channel trees: Re-
ducing latency by sharing time slots in time-multiplexed net-
works on chip,” in Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2007 5th IEEE/ACM/IFIP International Conference
on, Sept 2007, pp. 149–154.

[20] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A
Time-Predictable Memory Network-on-Chip,” in 14th International
Workshop on Worst-Case Execution Time Analysis (WCET), 2014, pp.
53–62.

[21] A. Rahimi, I. Loi, M. Kakoee, and L. Benini, “A fully-synthesizable
single-cycle interconnection network for Shared-L1 processor clus-
ters,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, March 2011, pp. 1–6.

[22] K. Goossens, O. P. Gangwal, J. Roever, and A. P. Niranjan, “Inter-
connect and memory organization in SOCs for advanced set-top
boxes and TV — Evolution, analysis, and trends,” in Interconnect-
Centric Design for Advanced SoC and NoC. Kluwer, 2004, ch. 15.

[23] Z. Shi and A. Burns, “Real-Time Communication Analysis for On-
Chip Networks with Wormhole Switching,” in Networks-on-Chip,
2008. NoCS 2008. Second ACM/IEEE International Symposium on,
April 2008, pp. 161–170.

[24] M. D. Gomony, B. Akesson, and K. Goossens, “Coupling TDM
NoC and DRAM Controller for Cost and Performance Optimiza-
tion of Real-Time Systems,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2014, pp. 1–6.

[25] A. Kostrzewa, S. Saidi, and R. Ernst, “Dynamic control for mixed-
critical networks-on-chip,” pp. 317–326, Dec 2015.

[26] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and
K. Goossens, “A Generic, Scalable and Globally Arbitrated Mem-
ory Tree for Shared DRAM Access in Real-time Systems,” in
Design, Automation Test in Europe Conference Exhibition (DATE),
2015, pp. 193–198.

[27] D. Stiliadis and A. Varma, “Latency-rate servers: A general model
for analysis of traffic scheduling algorithms,” IEEE Trans. Netw,
vol. 6, no. 5, 1998.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YEAR 14

[28] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of
embedded software from synchronous dataflow specifications,”
Journal of VLSI signal processing systems for signal, image and video
technology, vol. 21, no. 2, pp. 151–166, 1999.

[29] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-
off exploration for cyclo-static and synchronous dataflow graphs,”
Computers, IEEE Transactions on, vol. 57, no. 10, pp. 1331–1345,
2008.

[30] J. P. Vink, K. Van Berkel, and P. Van Der Wolf, “Performance
analysis of soc architectures based on latency-rate servers,” in
Design, Automation and Test in Europe, 2008. DATE’08. IEEE, 2008,
pp. 200–205.

[31] R. Cruz, “A calculus for network delay. I. Network elements in
isolation,” IEEE Trans. Inf. Theory, vol. 37, no. 1, 1991.

[32] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors:
Scheduling and synchronization. CRC press, 2009.

[33] V. Rodrigues, B. Akesson, M. Florido, S. M. de Sousa, J. P. Pedroso,
and P. Vasconcelos, “Certifying execution time in multicores,”
Science of Computer Programming, vol. 111, pp. 505–534, 2015.

[34] A. Nelson, K. Goossens, and B. Akesson, “Dataflow formalisa-
tion of real-time streaming applications on a Composable and
Predictable Multi-Processor SOC ,” Journal of Systems Architecture,
2015.

[35] M. H. Wiggers, M. J. Bekooij, and G. J. Smit, “Modelling run-
time arbitration by latency-rate servers in dataflow graphs,” in
Proceedingsof the 10th international workshop on Software & compilers
for embedded systems. ACM, 2007, pp. 11–22.

[36] H. Shah, A. Knoll, and B. Akesson, “Bounding sdram interference:
detailed analysis vs. latency-rate analysis,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2013. IEEE, 2013,
pp. 308–313.

[37] M. Steine, M. Bekooij, and M. Wiggers, “A Priority-Based Budget
Scheduler with Conservative Dataflow Model,” in Digital System
Design, Architectures, Methods and Tools, 2009. DSD ’09. 12th Eu-
romicro Conference on, 2009, pp. 37–44.

[38] J. Staschulat and M. Bekooij, “Dataflow models for shared memory
access latency analysis,” in Proceedings of the seventh ACM interna-
tional conference on Embedded software. ACM, 2009, pp. 275–284.

[39] B. Akesson, A. Minaeva, P. Sucha, A. Nelson, and Z. Hanzalek,
“An Efficient Configuration Methodology for Time-Division Mul-
tiplexed Single Resources,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2015.

[40] A. Minaeva, P. Sucha, B. Akesson, and Z. Hanzalek, “Scalable and
efficient configuration of time-division multiplexed resources,”
Journal of Systems and Software, vol. 113, pp. 44–58, 2016.

[41] B. Akesson, L. Steffens, and K. Goossens, “Efficient service allo-
cation in hardware using credit-controlled static-priority arbitra-
tion,” in Embedded and Real-Time Computing Systems and Applica-
tions, 2009. RTCSA’09. 15th IEEE International Conference on. IEEE,
2009, pp. 59–68.

[42] B. Akesson and K. Goossens, “Architectures and modeling of
predictable memory controllers for improved system integration,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2011, 2011, pp. 1–6.

[43] Y. Li, B. Akesson, and K. Goossens, “Architecture and analysis of
a dynamically-scheduled real-time memory controller,” Real-Time
Systems, pp. 1–55, 2015.
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