
NoC-Based Multiprocessor Architecture for
Mixed-Time-Criticality Applications

Kees Goossens, Martijn Koedam, Andrew Nelson,
Shubhendu Sinha, Sven Goossens, Yonghui Li, Gabriela Breaban,
Reinier van Kampenhout, Rasool Tavakoli, Juan Valencia,
Hadi Ahmadi Balef, Benny Akesson, Sander Stuijk, Marc Geilen,
Dip Goswami, and Majid Nabi

Abstract

In this chapter we define what a mixed-time-criticality system is and what its
requirements are. After defining the concepts that such systems should follow,
we described CompSOC, which is one example of a mixed-time-criticality
platform. We describe, in detail, how multiple resources, such as processors,
memories, and interconnect, are combined into a larger hardware platform, and
especially how they are shared between applications using different arbitration
schemes. Following this, the software architecture that transforms the single
hardware platform into multiple virtual execution platforms, one per application,
is described.

Contents

1 Introduction and Requirements . 3
2 Concepts for a Mixed-Time-Criticality Platform. 4
3 Hardware Architecture . 7

3.1 Generic Master IP Block . 8
3.2 Generic Slave IP Block and Memory Tile . 8
3.3 Processor Tile . 11
3.4 Network-On-Chip . 13
3.5 Peripherals . 14
3.6 Memory Map . 14

K. Goossens (�) • M. Koedam • A. Nelson • S. Sinha • S. Goossens • Y. Li • G. Breaban •
R. van Kampenhout • R. Tavakoli • J. Valencia • H.A. Balef • B. Akesson • S. Stuijk • M. Geilen •
D. Goswami • M. Nabi
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: k.g.w.goossens@tue.nl; m.l.p.j.koedam@tue.nl; a.t.nelson@tue.nl; s.sinha@tue.nl;
s.l.m.goossens@tue.nl; yonghui.li@tue.nl; g.breaban@tue.nl; j.r.v.kampenhout@tue.nl;
r.tavakoli@tue.nl; j.valencia@tue.nl; h.ahmadi.balef@tue.nl; k.b.akesson@tue.nl; s.stuijk@tue.nl;
m.c.w.geilen@tue.nl; d.goswami@tue.nl; m.nabi@tue.nl

© Springer Science+Business Media Dordrecht 2016
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7358-4_17-1

1

mailto:k.g.w.goossens@tue.nl
mailto:m.l.p.j.koedam@tue.nl
mailto:a.t.nelson@tue.nl
mailto:s.sinha@tue.nl
mailto:s.l.m.goossens@tue.nl
mailto:yonghui.li@tue.nl
mailto:g.breaban@tue.nl
mailto:j.r.v.kampenhout@tue.nl
mailto:r.tavakoli@tue.nl
mailto:j.valencia@tue.nl
mailto:h.ahmadi.balef@tue.nl
mailto:k.b.akesson@tue.nl
mailto:s.stuijk@tue.nl
mailto:m.c.w.geilen@tue.nl
mailto:d.goswami@tue.nl
mailto:m.nabi@tue.nl

2 K. Goossens et al.

3.7 Atomicity . 15
3.8 No Synchronization Hardware . 16
3.9 Conclusions . 17

4 Software Architecture . 17
4.1 Microkernel and RTOS. 20
4.2 Drivers . 22
4.3 Virtual Resources and Their Management . 24
4.4 Synchronization Libraries and Programming Models . 26
4.5 System Application and Application Loading . 32
4.6 Conclusions . 33

5 Example CompSOC Platform Instance . 34
6 Related Work . 36
7 Conclusions . 37
References . 37

Acronyms

AHB Advanced High-performance Bus
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface
BD Budget Descriptor
CCSP Credit-Controlled Static Priority
CDC Clock Domain Crossing
CM Communication Memory
DLMB Data Local Memory Bus
DMA Direct Memory Access
DMAMEM DMA Memory
DMEM Data Memory
DRAM Dynamic Random-Access Memory
ELF Executable and Linkable Format
ET Execution Time
ETSCH Extended TSCH
FBSP Frame-Based Static Priority
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
GALS Globally Asynchronous Locally Synchronous
ILMB Instruction Local Memory Bus
IMEM Instruction Memory
I/O Input/Output
IP Intellectual Property
IPB Intellectual Property Block
KPN Kahn Process Network
MAC Media Access Control
MMIO Memory-Mapped I/O
MPSoC Multi-Processor System-on-Chip
NI Network Interface

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 3

NoC Network-on-Chip
PLB Processor Local Bus
RR Round Robin
RT Response Time
RTOS Real-Time Operating System
SI Scheduling Interval
SoC System-on-Chip
SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
TDM Time-Division Multiplexing
TFT Thin-Film Transistor
TIFU Timer, Interrupt, and Frequency Unit
TSCH Time-Synchronised Channel Hopping
TTA Transport-Triggered Architecture
UART Universal Asynchronous Receiver/Transmitter
VEP Virtual Execution Platform
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

1 Introduction and Requirements

Electronics is pervasive: it enables applications and functions that we have come to
expect from appliances as diverse as cars, planes, mobile phones, fridges, and light
switches. At the heart of these appliances are Systems-on-Chips (SoCs) that execute
the applications. Traditionally, each SoC executed one application, but to reduce
cost, multiple applications are increasingly executed on the same SoC. Different
applications have different requirements, such as high performance, varying degrees
of real time, and safety. In this chapter, we focus on mixed-time-criticality systems,
i.e., those featuring a combination of applications with and without real-time
requirements, respectively. We do not consider other, equally important, criticality
aspects, such as safety or resilience. Applications with real-time requirements can
be as diverse as motor management, braking, or vehicle stability in a car or wired
and wireless communication stacks in mobile phones or computers. This type of
applications should always finish computations before given deadlines to ensure
correctness and/or safety. In contrast, applications such as a graphical user interface
or file management should be responsive to the user but do not have real-time
requirements. Audio and video analysis, e.g., for night vision in a car, and media
playback are an intermediate category where deadlines should generally be met but
may occasionally be missed.

In this chapter, we will define a mixed-criticality platform, i.e., a general tem-
plate, for systems that execute multiple applications with different time criticalities.
Given the examples of (non)-real-time applications, we can state the requirements
for such platforms.

4 K. Goossens et al.

1. Guaranteed worst-case performance for real-time applications. We call this
predictability, by which we mean that the Worst-Case Response Time (WCRT)
of an application can be computed at design time. The Worst-Case Response
Time is what has to be guaranteed, but it is usually advantageous to additionally
minimize the actual Response Time (RT).

2. As good as possible, actual-case performance for non-real-time applications.
Unlike real-time applications, the worst-case response time is not relevant and
may not even exist. The average or actual response time should therefore be
minimized instead.

3. The absence of interference between applications. The guaranteed or best-
possible performance has to be guaranteed for each real-time and non-real-time
application, even though they share the same platform (resources). To be able
to do this independently per application, we additionally require that the actual
execution time of an application is independent of other applications. It then
follows that worst-case execution and response times are independent too. We
call this composability. It helps to isolate (software) faults of applications,
increasing robustness. Perhaps more importantly, it allows each application
to be developed, tested, and deployed independently, which is required for
certification. It also eases upgrading part of a system, without having to retest
or recertify the system as a whole.

In this chapter, we describe the CompSOC platform, which is an example of
a mixed-criticality platform that meets all the requirements. First, we define the
concepts that underpin the CompSOC platform but which are common to many
of mixed-criticality platforms (discussed in Sect. 6). We describe the hardware
architecture of CompSOC in Sect. 3 and the software architecture in Sect. 4. An
example usage of the CompSOC platform is given in Sect. 5. We conclude in Sect. 7.

2 Concepts for a Mixed-Time-Criticality Platform

First we need to introduce some terminology. An application is an independent
(possibly cyclic) graph of communicating tasks. Tasks use platform resources,
such as processors, memories, Direct Memory Accesss (DMAs), and interconnect.
We model this with the notion of a requestor, e.g., a software task requesting
computation from a processor, communication from the Network-on-Chip (NoC),
or storage from a memory. Each requestor uses only one resource. A requestor
generates requests, such as computing a function or a memory transaction. As
illustrated in Fig. 1a, resources serve requestors in discrete uninterrupted units called
service units, and a request consists of one or more service units (possibly infinitely
many). The execution of a service unit by a resource takes an actual Execution
Time (ET), which is less than or equal to its Worst-Case Execution Time (WCET) if
it exists (i.e., it is finite). The WCET of a requestor is equal to the largest WCET of
its requests. A resource is predictable if all service units have a WCET. A resource is
composable if the response and the execution time of every request of an application

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 5

resource

RT

ET

requests

atom.

atom.

finite-size
request
(atom)

responses

delay

delay

responses
A

execution

execution

execution

wait

wait

wait

SI

RT
ET

Time View on Execution and Response TimesArchitecture View on Execution and Response Times

a b arrive start finish

atom.

atom.

WCRT
re

qu
es

to
rs

service
unit

Fig. 1 Terminology. (a) Request, response, service unit, execution and response time, arbitration
(A in the figure), and resource. The atom and atomizer will be discussed in Sect. 3.2. (b) Arrival,
start, finish, and scheduling interval

do not change when also executing any number of requests of different applications
on the resource.

A resource is shared if it executes requests of multiple requestors, which may
belong to different applications. The execution time of a service unit does not
take into account waiting time for other service units from the same or different
requestors. Instead, this is captured by its actual response time and its Worst-Case
Response Time (WCRT). (As before, we say the WCRT exists if it is finite. The
WCRT of a requestor is equal to the largest WCRT of its requests.) The waiting
time depends on the arbitration employed to determine the order of execution of the
service units of the different requestors, shown by A in Fig. 1a. Possible arbitration
policies include Round Robin (RR) , Time-Division Multiplexing (TDM) , Credit-
Controlled Static Priority (CCSP) [5], Frame-Based Static Priority (FBSP) [2], etc.,
each with their own characteristics and (dis)advantages which we will discuss later.
An arbiter is predictable if all requests have a WCRT (i.e., it is finite), assuming
that their ETs are finite. (Thus, even with a predictable arbiter, a request may have
no (i.e., infinite) WCRT if the resource is unpredictable.) Similarly, an arbiter is
composable if the response and the response time of every request of an application
do not change when also executing any number of requests of different applications
on the resource.

The resource requirements of a requestor are specified using a budget. A
requestor can use a resource only after its budget has been reserved. A resource
may be idle, i.e., no service unit is executed. This may occur if not all of its capacity
has been reserved or if a requestor does not use all of its reservation. Arbitration is
work conserving if the resource is not idle whenever a service unit is waiting to be
executed.

Figure 1b illustrates the Scheduling Interval (SI) of a resource as the time
between accepting successive service units, and its reciprocal (service units per
second) defines the throughput. Resources are often pipelined, and then the recip-
rocal of the scheduling interval defines a higher throughput than the reciprocal of
the execution time. From the response times of individual requests (executing on

6 K. Goossens et al.

processors, interconnect, or accessing memories), it must be possible to compute the
performance (worst-case response time, throughput, etc.) of a real-time application
as a whole. As an example, [37] illustrates how to do this using the dataflow model
of computation.

Given the terminology, these are the seven concepts on which we base our mixed-
time-criticality platform:

1. Budgets. Reserving part of a resource for a requestor belonging to an application
according to its budget results in a virtual resource. Only then can a requestor use
the resource.

2. Predictability. Arbitration between requestors of a real-time application must
be predictable. Predictable arbitration ensures that a virtual resource offered by
a single resource has a minimum guaranteed performance as specified in the
budget. Arbitration is preferably work conserving such that requestors of an
application can use each other’s unused capacity.

3. Composability. Arbitration between requestors of different applications must be
composable: the behavior of one application must not be affected by the behavior
of other applications. Composable arbitration ensures that (the performance
of) a virtual resource is independent of other virtual resources on the same
resource. This implies that the arbitration cannot be work conserving because
then (variable) execution times of one application could affect the response time
of other applications.

4. Scalability. Decouple resources as much as possible. Logically, this means that
each resource arbitrates locally, with a suitable service unit and arbiter to enforce
the reserved budgets. This disallows synchronization hardware, such as mutexes,
locks, and semaphores, as we will discuss in Sect. 3.8. Physically, decoupling
requires that all hardware Intellectual Property Blocks (IPBs) use independent
clocks because in modern Multi-Processor Systems-on-Chips (MPSoCs), it is no
longer possible to use a single clock. This is called the Globally Asynchronous
Locally Synchronous (GALS) design style. Logical and physical decoupling im-
prove scalability by avoiding centralized and tightly synchronized architectures.

5. Finite scheduling interval. As a consequence of Bullet 3, resources that are
shared by multiple applications must ensure that no (service unit of a) requestor
can indefinitely block others from using the resource. This is achieved with a
finite scheduling interval, implemented either by chopping (possibly infinitely
large) requests into service units with a finite WCET or else by preempting the
resource within a finite time.

6. Efficient arbitration. If possible, avoid arbitration on a resource; e.g., a DMA
is cheap enough to just replicate. Otherwise, at least one level of composable
arbitration is required to arbitrate between requests belonging to different
applications as well as between requests of the same application. (If a resource
is used by only one application, then only one level of arbitration is needed,
which must be predictable at most.) Preferably, two levels of arbitration are used:
the first level to separate different applications and the second level to separate
requests of the same application. The former must be composable, and the latter

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 7

predictable. For each resource, we will discuss in depth what kind of arbitration
it can efficiently support.

7. Efficient resource sharing. As an optimization, the scheduling interval should
be as small as possible. This allows interleaving the service of requestors as
finely as possible and reduces response times [57]. How small the scheduling
interval (and service units) can be depends strongly on the resource.

The above ingredients can be combined in the concept of a Virtual Execution
Platform (VEP) per application. This means that an application’s budget is reserved
on all of the platform resources it requires, creating a smaller virtual platform
on which it executes. A VEP is composable, i.e., independent of other VEPs
and applications running therein. Within a VEP, an application may use its own
programming model, arbitration, and so on, as long as it complies with the
requirements outlined above. The CompSOC platform is an operational prototype
implementing the concepts just described. It is our running example, as we go
through the details in the remainder of this chapter. In the next section, we describe
the hardware components of the CompSOC platform, followed by the software stack
in Sect. 4. We discuss related work in Sect. 6 before concluding in Sect. 7.

3 Hardware Architecture

MPSoCs contain multiple processors with local and shared memories. The proces-
sor’s local memories are always on-chip Static Random-Access Memory (SRAM),
close to the processor. Nonlocal memories shared between processors may be
on-chip SRAM but often include off-chip Dynamic Random-Access Memory
(DRAM). The latter has a much larger capacity (number of bits) than the on-
chip memory, but at the cost of a longer execution time. Processors reach shared
memories using a communication infrastructure, which is increasingly a NoC. A
NoC is a miniature version of the Internet in the sense that communication is
concurrent, is distributed, and is either packet based or circuit switched. In this
section, we introduce the CompSOC hardware platform. It not only fits the generic
MPSoC description, it also addresses all the requirements listed in Sect. 1. As a
result, it can run multiple applications of different criticalities at the same time.

The CompSOC platform consists of multiple tiles interconnect by a NoC. Tile
types are master tiles, slave tiles, or a mix and include processor tiles, memory
tiles, peripheral tiles, etc. In the following sections, we discuss each component
in turn. Regarding terminology, an IPB, such as a memory, processor, or DMA,
may have zero or more master and slave ports. Master ports initiate requests, i.e.,
read and write transactions, using a standard communication protocol, such as
Processor Local Bus (PLB), Advanced High-performance Bus (AHB), or Advanced
eXtensible Interface (AXI). Slave ports accept requests, and the slave executes them,
possibly returning a response. In the following, we will shorten “master (slave) port
on an IPB” to just “master (slave) IPB.”

8 K. Goossens et al.

In the following sections, we will introduce master and slave IPBs , followed
by processor tile that is a hybrid master-slave IPB. Described next is how all IPBs
use distributed shared memory to communicate and how this is implemented by
the NoC and the memory map. Finally, we will discuss atomic and synchronized
communication.

3.1 Generic Master IP Block

A master IPB initiates read or write transactions that are to be transported by the
NoC to a slave IPB for execution. The generic architecture of a master IPB is
shown in the middle of Fig. 2. As will be explained in more detail in Sect. 3.6,
ports on the NoC are connected pair-wise: only one slave IPB can be reached from
a master single port. For this reason, a master IPB requires a NoC port for each
slave it communicates with. The multiplexer labeled M3 determines to which slave
a transaction is bound, depending on the transaction address. Any responses are
interleaved in the order of the requests by the (de)multiplexer M3, before being
returned to the master IPB [21]. The multiplexer and the master IPB may be
programmed using the rightmost slave port on the tile.

3.2 Generic Slave IP Block and Memory Tile

Memory tiles only contain one slave resource that accepts requests from multiple
requestors. Although we describe the architecture of the memory tile, it is essentially
the same as that of any generic shared slave IPB. Each requestor has a dedicated
NoC port on the tile, as illustrated by the general slave tile on the left in Fig. 2.
Requests take the form of transactions, using, e.g., the PLB or AXI protocol. It is
possible to read or write one or more words of 4 bytes, with a byte mask applied
to each word in the transaction. Note, however, that in theory transactions can be
infinitely long and that they can take a long (or even infinite) time to arrive. It may
thus not be possible to buffer an entire transaction (request). For this reason, an
atomizer chops incoming requests into complete fixed-size aligned requests (also
called atoms). Note that even though these requests have a finite size, their execution
time may be infinite; consider, for example, a while(1); request.

3.2.1 Arbitration
When a service unit is complete, it is ready to be scheduled by the arbiter, according
to some policy. If the slave is only used by a single non-real-time application, then
any arbitration policy may be used; if it is a real-time application, then the policy
must be predictable for a WCRT, such as RR, TDM, or CCSP. However, it is likely
that slaves such as SRAM are used by multiple applications. In this case, the actual
execution times of service units of different applications must be independent. TDM
is a simple arbiter that achieves this [18], but it is also possible to use any predictable
arbiter (RR, CCSP, etc.) in combination with delay blocks [3]. A delay block, shown

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 9

sl
av

e

at
om

.

de
la

y

at
om

.

de
la

y

m
as

te
r

pr
oc

.

IM
E

M

D
M

E
M

D
M

A
-

M
E

M

C
M

E
M

TI
FU

D
M

A

V

sh
el

l
sh

el
l

C
D

C
C

D
C

ro
ut

er

A sh
el

l

C
D

C

sh
el

l

C
D

C

sh
el

l

C
D

C

sh
el

l

C
D

C

sh
el

l
sh

el
l

C
D

C

sh
el

l

C
D

C

ro
ut

er

ro
ut

er
ro

ut
er

C
P

M

M
3

A

M1

ne
tw

or
k

in
te

rfa
ce

ne

tw
or

k
in

te
rfa

ce

ne
tw

or
k

in
te

rfa
ce

ne
tw

or
k

in
te

rfa
ce

ne

tw
or

k
in

te
rfa

ce
N

I

C
D

C
C

D
C

C
D

C

M
2

M

V

M
3

sh
el

l

C
N

C
N

C

N

Fi
g

.
2

E
xa

m
pl

e
C

om
pS

O
C

ha
rd

w
ar

e
pl

at
fo

rm
in

st
an

ce
.

A
rr

ow
s

po
in

t
fr

om
a

m
as

te
r

(i
ni

tia
to

r)
po

rt
to

a
sl

av
e

(t
ar

ge
t)

po
rt

.
D

as
he

d
ar

ro
w

s
in

di
ca

te
co

nt
ro

l
co

nn
ec

tio
ns

to
pr

og
ra

m
ar

bi
te

rs
,m

em
or

y
m

ap
s,

an
d

IP
B

s.
A

is
an

ar
bi

te
r,

C
is

a
co

nt
ro

lc
on

ne
ct

io
n,

an
d

M
ar

e
m

em
or

y
m

ap
s

10 K. Goossens et al.

in the slave tile of Fig. 2, only releases a response from the slave at the WCRT, cf.
Fig. 1. Since the WCRT takes into account the worst-case interference from other
applications, the delay block enforces a response time that is independent from other
applications.

When arbitration has to be composable, predictable arbiters (RR, CCSP, etc.)
with a delay block may offer more flexibility than a composable arbiter (TDM).
In particular, since TDM inversely couples throughput and response time, a small
WCRT is only possible with large budget, which the requestor may not need.
Especially for memories that are loaded heavily, such as DRAM (see below), over-
reservation may not be acceptable. On the other hand, TDM has the advantage
that it is easier to reprogram the budget of a single application without affecting
other running applications [18]. Resources that have small service units, such as
memories, require arbitration to be implemented in hardware. It is then not practical
to use a two-level arbiter that is composable between applications and predictable
within an application, because it requires fixing the number of requestors per
application in the hardware, which is expensive and inflexible.

The arbiter in the tile, the delay block, and the IPB may all be programmable,
which is done by write transactions on the tile’s slave port, which is then demulti-
plexed with a fixed memory map (M in Fig. 2) to the appropriate block.

3.2.2 SRAM
SRAM is the prototypical slave IPB. The service unit is usually as small as one
word, which necessitates a fast (and thus simple) hardware arbiter. SRAMs are often
shared within a single application, e.g., Communication Memory (CM), and round
robin arbitration is then used. To share between applications, atomizers are required,
and usually service units of a single word and a RR arbiter are used.

Chapter � “Memory Architectures” gives more information about general SoC
memory hierarchies.

3.2.3 DRAM
A DRAM tile has the same structure as an SRAM tile, but the DRAM itself
has quite different characteristics. In particular, its service units are more com-
plex [1, 4, 9, 17, 30]. Reading and writing in a DRAM require sending a number
of commands (activate, read/write, precharge, refresh). For a reasonable efficiency,
it is required to use bursts of data, typically with a length of eight words for most
contemporary DDR memories, and then pipeline the DRAM commands to a single
DRAM bank and/or across multiple DRAM banks. A traditional (non-real-time)
DRAM controller schedules commands dynamically as service units arrive, using
an open-page policy [4]. It is hard to analyze the execution time of each service
unit because the time between successive DRAM commands varies a lot, depending
whether the data that is accessed is in a bank that is open (activated) or not.

For this reason, CompSOC’s real-time Raptor memory controller uses a close-
page policy that ensures that the ET of a service unit is predictable [13] or even
constant [18]. The memory commands for the service units have to be programmed
into the memory controller, using the rightmost dotted line in the slave tile of Fig. 2.

http://link.springer.com/``Memory Architectures''

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 11

With a predicable ET of a service unit, the execution time of a service unit can
still depend on the preceding service unit, e.g., depending on whether it was a read
or a write. This can be prevented by scheduling memory commands differently,
resulting in composable service units that have a constant execution time. It
has been shown in [18] that composable service units can be used with several
generations of DRAM memories with a negligible impact on performance.

The DRAM is usually a heavily loaded resource and used by multiple appli-
cations. It is possible to use predictable service units with a predictable arbiter
(e.g., RR, CCSP) and delay blocks (recall that the constant WCRT eliminates
all interference) [3]. Alternatively, composable service units may be used, with a
composable arbiter (TDM) [18], with the advantages and disadvantages discussed
in the previous section.

3.3 Processor Tile

Having introduced basic master and slave tiles, we now discuss the processor tile,
which is a mix of both. As shown on the right of Fig. 2, it contains a processor (in our
prototype, a Microblaze or ARM Cortex M0) with an Instruction Memory (IMEM)
and a Data Memory (DMEM). The memories are usually tightly coupled (i.e., have
a single-cycle access time) using Instruction Local Memory Bus (ILMB) and Data
Local Memory Bus (DLMB) busses.

There are no caches in the tile, because it must be possible to compute the WCET
of a task on the processor if predictability is required. We do not use caches because
the WCET would then not only depend on the processor but also on the time for
cache misses. It is possible to take into account the WCET of the interconnect and
remote (off-tile) memories to compute remote memory accesses [23]. However,
we decided to keep the architecture and performance analysis simple and not
use caches. A second, more important reason to omit caches is to adhere to
Concept 1 of budgets: the WCRT of a task on a processor then only depends on
the budget of the processor on which it runs. This allows the WCRT of all tasks
to be computed independently of other tasks and of how their communication and
storage are mapped on the platform. Performance analysis is thus compositional,
i.e., consisting of independent smaller analyses. This simplifies the design and
verification flow [14].

A processor cannot access remote memories directly. Otherwise, similarly to
caches, the WCET of a task would depend on read and write transactions to a
remote memory, i.e., the arbitration in the NoC and remote memory. Additionally,
since sharing a processor between applications must be composable, its service units
are enforced by preemption through interrupts, as explained in Sect. 4.1. However,
since simpler processors, such as Microblaze and ARM Cortex M0/3/4, do not allow
read and write transactions to be interrupted, the interrupt service latency could be
very long. By using a DMA to access remote memories, the data transfer between
local and remote memories is executed independently and concurrently with the
processor. The task that programmed the DMA can be interrupted in a few cycles

12 K. Goossens et al.

and swapped out, for an efficient implementation of composable sharing of the
processor.

The execution time of a task on the processor may depend on tasks that executed
before it, due to the processor’s internal state. For example, when the processor
implements branch prediction, the predictor state is not automatically reset between
task switches. Cache pollution is another example, although we already eliminated
it by excluding the use of caches. Since composability requires that the execution
time of an application is independent of other applications (running earlier or
concurrently), we ensure that the processor is reset to a neutral state [14] between
application switches by resetting the branch predictor state. For caches, it would
be enough to flush them between task switches. In general, an instruction to reset
the processor’s entire internal state would make it easier to make it predictable and
composable.

As already mentioned, and shown in Fig. 2, a processor uses DMAs to read
or write data in a remote memory. Each DMA connects to a port of a DMA
Memory (DMAMEM). The DMAMEM connects with another port to the processor
DLMB (other options are discussed in [34]). Using two ports on the memory avoids
arbitration between the processor and the DMA, which would necessitate changing
the single-cycle turn around DLMB bus to a slower PLB bus. (When using an ARM
processor, these would be AHB or AXI busses.) The DMA has a Memory-Mapped
I/O (MMIO) port on the PLB, through which it is programmed to either copy data
from the DMAMEM to a remote memory accessed over the NoC or vice versa. The
DMA has a NoC connection to each remote memory. Since it is cheap, a DMA
is not shared between applications to avoid interference. Although it may be used
(sequentially) by different tasks of the same application, avoiding this simplifies the
computation of the WCET of a task by eliminating interference from other tasks.

A remote memory can be the shared DRAM, a shared SRAM on the NoC, or
an SRAM in another (remote) tile. The latter is a CM: the DMA can copy from the
local DMAMEM into a CM of another processor tile, or vice versa. The CM has
two ports, for the same reason the DMAMEM does. If multiple remote DMAs can
access the same CM, a multiplexer with an arbiter is required (labeled A in Fig. 2,
cf. Sect. 3.2).

Execution on the processor can be preempted with interrupts. This is required
as soon as multiple applications run on the processor because applications should
run in an interleaved fashion, not consecutively. The service unit of a processor is
a TDM slot (or time slice), generally lasting 20,000 cycles or more. To achieve
composability, tasks must be preempted at the end of each TDM slot, after exactly
the same number of clock cycles. For this, a Timer, Interrupt, and Frequency Unit
(TIFU) is attached to the processor. It can generate interrupts at precise moments in
time and halt (clock gate) the processor until precise moments in time. The interrupt
and clock lines from the TIFU to the processor are shown in Fig. 2 to and from the
TIFU. The TIFU can also change the frequency at which the processor can run for
power management [38], shown by the clock domain in white. Section 4.1 describes
how the TIFU is used to preempt and arbitrate the applications and tasks within an
application on a processor.

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 13

The processor tile is the most complex because the composable service units
require preemption and decoupling the processor from other IPBs (in particular,
remote memories). This requires the TIFU, multiple local memories, some with
their own arbitration, and DMAs.

3.4 Network-On-Chip

The NoC allows all IPBs to communicate. Chapter � “Network-on-Chip Design”
contains a thorough introduction to NoC technology. From a real-time perspective,
the NoC is problematic because it is a resource that is made of smaller components,
namely, routers and Network Interface (NI), that are distributed spatially. A single
centralized arbiter is thus not feasible, and each router and NI has an independent
local arbiter. As a result, a service unit that enters the network may be delayed at
each router that takes local decisions based on its local state only. This makes it very
hard to compute the end-to-end response time and throughput due to contention and
congestion. The CompSOC platform uses the synchronous daelite NoC [49], which
is derived from the mesochronous Aethereal NoC [22]. The asynchronous Argo
NoC [27] is based on the latter. The common underlying concept is to use a single
global TDM arbiter for the entire NoC but to implement it in a distributed way.
The routers are synchronized such that service units (flits) never arrive at the same
link at the same time, thus eliminating all contention. Without contention, routers
require no arbiters and no buffers (except for pipelining), making them very fast and
cheap [15]. Service units only wait at the edge of the NoC, in the NIs [45]. To offer
real-time timing guarantees, the global TDM schedule is programmed at run time,
to offer connections, i.e., resource budgets, from a master IPB initiating transactions
to a slave IPB executing transactions.

As illustrated in Fig. 2, the slave, master, and processor tiles, and the NoC operate
in independent clock domains, which are straddled by the Clock Domain Crossing
(CDC) blocks. The CDCs are functionally transparent, and we will not discuss
them further. The NoC thus implements the GALS paradigm, which is essential
for scalability (Concept 4).

The four components [21] of the NoC are illustrated in Fig. 2, and we described
them following the bold arrows from a master IPB to a slave IPB and back. First,
transactions from a master IPB may go to multiple slaves according to its memory
map, discussed in more detail in the next section. To implement the memory
map, a programmable demultiplexer sends each request to the connection to the
right memory and interleaves responses in the right order. Second, the protocol
shell serializes each transaction to a stream of data words, without any particular
structure. This allows multiple IPB protocols, such as AHB and AXI, to be sent
over the same NoC. Third, NIs preempt the data stream into service units (flits)
that are injected in the NoC according to the TDM schedule. Finally, routers just
move flits around, without contention and hence without arbitration. When a flit
arrives at its destination NI, the constituent words are given to the protocol shell
that reconstitutes the transaction in the right protocol.

http://link.springer.com/``Network-on-Chip Design''

14 K. Goossens et al.

Intuitively, the real-time performance of the NoC, in particular the WCRT and
throughput of a connection are easily computed by looking at the number of slots
reserved for the connection and the total number of slots in the TDM table. However,
an additional complication is that NI buffers are finite and slave IPBs do not
necessarily accept incoming transactions immediately. To avoid dropping data, NIs
use end-to-end flow control, which must be modeled in the WCRT calculation [24].

The service unit of the NoC is a flit, and the protocol shells together with the NIs
preempt larger transactions into flits. The NoC uses single-level TDM arbitration
between flits of the same as well as different applications to eliminate costly per-
application or per-connection buffers in the router. Although two-level arbitration is
possible, it makes routers larger and slower [15].

3.5 Peripherals

Many peripheral tiles are simple non-shared slave tiles. For example, a Universal
Asynchronous Receiver/Transmitter (UART), Serial Peripheral Interface (SPI), or
audio peripheral is usually not shared between multiple requestors. As a result, they
can be hooked up directly to the NoC, with only a slave port, and delay blocks
and arbitration are not required. A processor usually accesses the peripheral directly
(using its DMA), usually polling for data or writing data into the peripheral’s local
buffer.

As an example of a complex peripheral, the inter-NoC bridge [33] links the NoC
on the Field-Programmable Gate Array (FPGA)/Application-Specific Integrated
Circuit (ASIC) to a NoC on another FPGA/ASIC or even to another computer. It
acts as both slave and master. As a slave, it receives data from the local NoC over
multiple connections to be sent to the remote NoC. As a master, it produces data
on multiple connections that came from the remote NoC. Given TDM arbitration in
the NoCs, the bridge uses TDM arbitration too. However, its service unit depends
on the medium over which the NoCs are connected. We used an Ethernet Media
Access Control (MAC) with Xilinx RocketIO with large Ethernet packets for high
data efficiency, but at the cost of a large scheduling interval and WCRT. The inter-
NoC bridge is programmable and thus also has MMIO slave ports.

3.6 Memory Map

All the components that we have described until now communicate with each other
using transactions. A transaction can read or write in a memory at a given address or
address range. Additionally, IPBs and their tiles can often be programmed by writing
into memory-mapped register. Similarly, data input or output is often performed
through memory-mapped buffers.

The CompSOC platform implements distributed shared memory. It is distributed
in the sense that there are multiple memories in the same 32-bit memory map,
and shared because multiple IPBs can access a given memory. The memory map

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 15

defines in which memory each of the 32-bit addresses is located. It is implemented
in several places. First, hardwired demultiplexers. The demultiplexer (labeled M1
in Fig. 2) is the local DLMB bus in the processor tile. It is hardwired with the
address ranges of the IMEM, DMEM, CM, and DMAMEM memories in the local
tile. The demultiplexer labeled M2 is similarly hardwired and decodes the local PLB
peripheral bus. Finally, the demultiplexers labeled M decode the MMIO transactions
to program a slave and its arbiter and delay blocks.

Second, the programmable demultiplexers M3 and NoC connections define
the remainder of the memory map. Given an address, the former first selects a
NoC connection, and the latter then delivers the transaction to the memory (more
generally, IPB), as illustrated by the thicker lines from the master IPB to the slave
IPB. Note that the routers and NIs implement part of the memory map, but they have
no knowledge of transactions or memory addresses: they just implement point-to-
point connections to transport data (requests, as it happens) from master IPBs to
slave IPBs and vice versa (responses). This simplifies the NoC, making it faster. It
also enables multiple memory maps to coexist in the same platform. For example,
multiple processors may boot from (their) address 0, which is mapped in different
memories for different processors. This is useful when processors run different Real-
Time Operating Systems (RTOSs) or are heterogeneous.

There are no NoC connections after a reset, and IPBs cannot communicate with
each other at all. The memory map (multiplexers M3 and NoC connections) is
programmed using the NoC itself at run time, using a bootstrap procedure [20, 49].
A privileged processor sets up NoC connections one by one and programs the
memory map(s), offering a secure boot procedure. It directly programs the NoC
using the dotted control line CP in Fig. 2. Some memory-map multiplexers may be
hardwired, e.g., M. All others (M3), including those of the DMAs of all processors,
are programmed over the NoC using control lines CN [21]. Programming a memory
map is predictable and composable.

3.7 Atomicity

The NoC allows master IPBs to communicate using distributed shared mem-
ory. When (a task on) an IPB sends data to a shared memory, it is important
that it has been written completely before it is read by another IPB. However,
high-performance communication protocols, such as AXI, limit the atomicity of
transactions to a single byte. It is hence not possible to send more than a single byte
atomically without further precautions.

The CompSOC platform addresses atomicity at several levels. First, the hardware
reads and writes 32-bit words atomically to all data memories and memory-mapped
IPBs. Second, recall that each resource has a minimum service unit that is executed
atomically, i.e., without interruption or preemption by other service units (they may
be pipelined though). Transactions that read or write more than a service unit, or
are not aligned, are chopped into multiple service units that may be arbitrarily
interleaved with service units of other requestors. The minimum service unit of

16 K. Goossens et al.

SRAM is a single 32-bit word, and that of a DDR3 DRAM typically eight words.
Thus, an IPB can atomically access data in a memory, as long as it is no larger than
one service unit.

Regarding atomicity of computation, the service unit of a processor that runs
multiple tasks is a time slice (Sect. 4.1). The task that runs is interrupted and pre-
empted (swapped out) for another task at the end of each slice. Since interrupts can
occur after each instruction, only a single instruction is atomically executed from
a software perspective. Traditionally, atomicity is extended to multiple instructions
(called a critical region) by disabling the interrupt before the critical region and
reenabling it at the end. However, critical regions increase the . In the worst case,
a non-real-time application enters but never exits a critical region, so claiming a
shared resource forever. To avoid this, we do not allow critical regions in application
code. We will return to this topic in Sect. 4.1.

Although atomic transactions are essential, they are not enough to safely
communicate data. Data may be (atomically) overwritten before it has been read,
for example. This will be addressed in the synchronization Sect. 4.4.

3.8 No Synchronization Hardware

According to the scalability Concept 4, most MPSoCs are based on the GALS
paradigm. Each IPB or tile operates synchronously on its own clock but is
asynchronous with other IPB or tiles, as discussed in the NoC Sect. 3.4. The TIFU
in each processor tile provides local timers, but they are not synchronized with each
other and may drift arbitrarily. Since there is no global clock or notion of time, pure
time-triggered synchronization (whereby the parties wait until a specific time) is
not possible. All synchronization strategies used in CompSOC, later described in
Sect. 4.4, are therefore based on data synchronization.

We implement data synchronization based only on atomicity of read and write
transactions. We do not use processor instructions, such as a test-and-set, or load-
linked and store-conditional, or dedicated hardware for locks or mutexes. Test-and-
set (and similar) instructions work by locking the path from the processor to the
memory from the read (test) to the write (set) instruction. This is not scalable and
infeasible when the processor and memory are connected by a distributed and shared
interconnect, such as a NoC. Load-linked and store-conditional instructions work
without locking the interconnect but require a processor with support for them, as
well as a memory that keeps track of changes to its memory locations, which is not
standard.

Locks and mutexes also require dedicated hardware, which we do not (wish to)
have. They have an additional problem, namely, that when a resource is shared
between multiple applications, it should never be locked by a single application,
because that violates composability. At best a lock per application can be used,
making sure that the resource is aware which requestor belongs to which application.
However, in our platform, the NoC, SRAM, and DRAM have simple and fast single-
level arbiters that do not distinguish between different applications.

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 17

The NoC and memory maps allow only atomic communication of memory
service units. In Sect. 4.4, we describe how CompSOC offers safe communication
and synchronization in software.

3.9 Conclusions

CompSOC is an example of a platform that supports running multiple applications
with different time criticalities. In this section, we described the basic components
comprising the CompSOC platform and justified the design choices for those
components in accordance with the high-level concepts of the previous section.

In particular, each shared resource (i.e., processor, NoC, SRAM, DRAM, some
of the peripherals) offers a service unit that is atomically executed with a known
WCET. Requests are chopped into, or rounded up to, one or more service units.

Next, the arbitration policy is essential. To share a resource between (requestors
of) non-real-time applications only, any arbitration policy may be used. However,
to share a resource with requestors of multiple real-time applications, the resource
arbitration must be predictable. This makes it possible to compute the WCRT
from the individual WCETs and the predictable arbitration policy. If a resource
is shared between real-time and non-real-time applications, which may not have
a finite WCET, then arbitration must at least be composable between applications,
and be predictable for requestors of the same real-time application. This can be
implemented with a single-level composable arbiter (e.g., NoC, DRAM) or with
a two-level arbiter (composable between applications, predictable or not within
each application) as done on the processor (explained in Sect. 4.1). Composable
arbitration can be implemented with TDM (e.g., NoC, processor, DRAM) or with
any predictable arbiter plus delay blocks (e.g., SRAM, DRAM). Many predictable
arbiters are available, such as RR, TDM, CCSP, or FBSP. Which one is used
depends on the characteristics of the resource, such as cost of preemption and
buffering, and the real-time requirements of the requestors.

4 Software Architecture

The CompSOC hardware platform contains computation, communication, and
storage resources. Almost all can be shared between multiple requestors, and almost
all can be (re)programmed at run time. The CompSOC software extends the single
hardware platform to offer multiple Virtual Execution Platforms (VEPs). A VEP
is an execution platform that is a subset of the CompSOC hardware platform, in
terms of time (e.g., time multiplexing a processor) or space (e.g., non-shared DMA
or a region in a memory). Each application runs in its own VEP, which is created,
loaded, started, and possibly stopped and deleted, at run time. A CompSOC platform
can run multiple VEPs concurrently, without any interference between them, i.e.,
composably.

18 K. Goossens et al.

To implement VEPs, the CompSOC software is constructed in a number of
layers, as shown in Fig. 3. From the lower to higher layers, we have:

1. A microkernel or RTOS to share a resource with a software arbiter. Software
arbitration is only used for the processor, since the service unit of all other
resources is too small to be managed in software.

2. A driver library is used to program, load, start, use, and stop a virtual resource.
3. The resource requirements of requestor are specified using a budget. Reserving

part of a resource for a requestor according to its budget results in a virtual
resource. Most resources may be programmed to be shared in time and/or
space. A VEP is a hierarchical virtual resource, made up of, for example, a
region of DRAM, some NoC connections, and several virtual processor tiles. A
virtual processor tile is again a hierarchical virtual resource, consisting of several
memory regions, DMAs, and a virtual processor. The budget management (BM)
library is used to reserve and release virtual resources, and thus keeps track of
who has been reserved what part of the resource (TDM slots, memory regions,
etc.).

4. The resource driver and budget management libraries comprise the resource
management library.

5. When an application runs within its VEP, its tasks will need to synchronize
and communicate, according to some model of computation. We offer several
programming models or models of computation (threads, dataflow, Kahn Process
Network (KPN), time-triggered) that are implemented using more primitive
communication (barriers, FIFOs, sampling).

6. A bundle contains the code and data of an application together with the
specification of the VEP it requires to run.

7. The system application manages a CompSOC platform. It uses the resource
management library to create and remove VEPs and uses the bootloader library
to start and stop applications.

8. Finally, an application programmer creates applications using one of the sup-
ported programming models or model of computation. He or she develops
and validates the application in a VEP, which is either given up front or
codefined with the application. The application is deployed as a bundle, i.e., the
application’s code (ELFs) together with the definition of the VEP. Composability
guarantees that executing an application (bundle) before and after integration
with other applications (bundles) gives exactly the same results.

Since the system software extends the hardware, it has the same requirements, and
it must adhere to the same requirements and concepts. We now discuss each of the
software components.

N
o

C
-B

ased
M

u
ltip

ro
cesso

rA
rch

itectu
re

fo
rM

ixed
-Tim

e-C
riticality

A
p

p
licatio

n
s

19

libraries
ha

rd
w

ar
e

so
ftw

ar
e

Comik µkernel

TIFU processor DMA & NOC S/DRAM

virtual execution platform
(multiple heterogeneous

virtual resources)

applications

IMEM &
DMEM CMEM

application code, including
boot code, arbiter, power management, etc.

exception
handler

applications

CAN

resource
management
library

DRAM

BM

driver

NOC

BM

driver

SRAM

BM

driver

UART

BM

driver

tile

BM

proc.

BM

driver

VEP

BM

physical platform
(multiple heterogeneous

physical resources)

CAN

BM

driver

DMA

BM

driver

arbiter interrupt
handler

UART

connections S/DRAM CAN UART virtual processor, including IMEM, DMEM, CMEMs DMA &
DMAMEM

DMAMEM

DMAMEM

exc. int. main

tile proc.

DSM MMIO

exc. int. main DSM periph

libBarrier libFIFO libSampling

libKPN libDataflow libTT

libIO

resource management

libLoader

Fig. 3 Software architecture. DSM is distributed shared memory

20 K. Goossens et al.

4.1 Microkernel and RTOS

Processors are the only resources that are shared with software arbitration; all
other resources use a (programmable) hardware arbiter. This is possible because the
service unit of a processor, called a time slice, is in the order of tens of thousands of
clock cycles and the cost of saving the state of the running application and arbitration
is a few thousand clock cycles.

Recall that the concepts for a mixed-time-criticality platform include composable
arbitration between applications (inter-application), predictable arbitration within an
application (intra-application), or no arbitration for non-shared resources. Inter- and
intra-application arbitration may be either separate (two-level) or combined (single-
level). In the latter case, it must be both predictable and composable.

Task arbitration can be classified along several axes. First, it may be absent when
there is only one task on a resource. Otherwise it is required. Second, it may be
preemptive or not. Third, arbitration may be static and follow a static-order schedule
or be dynamic where the order of tasks is determined at run time. Figure 4 and
Table 1 illustrate how a processor can be (a.A) not shared or shared between tasks of
one application only, either (a.B) with a static-order schedule, or (a.C) cooperatively
scheduled (i.e., non-preemptive dynamic). Alternatively, multiple applications can
share the processor using a microkernel such as CoMik, which arbitrates only
between applications (b and c). Each application can use the techniques from (a) or
even a virtualized RTOS, such as �C-OS III (c), to independently arbitrate between
application tasks. The two levels of arbitration can also be combined in a single
software arbitration layer (d), as done by the CompOSe RTOS [6,19]. Finally (e), a
traditional RTOS can be used with a single-level arbitration, e.g., TDM. However,
if, as is often the case, priority-based arbitration without delay blocks is used, only
a single application can use the processor.

As Fig. 4 shows, a physical processor can run software (“main”) but also
optionally has an interrupt handler (“int.”) and exception handler (“exc.”). When
running the application directly on the processor (a), at least the main software
must be defined by the programmer. A microkernel virtualizes the main, interrupt
and exception handling and passes them on to the application (b) or RTOS (c). An
RTOS that runs directly on the processor typically hides the interrupt and exception
handling from the applications. In almost all cases, the programming model or
model of computation used in an application hides interrupt and exception handling
(see Sect. 4.4).

Because the execution of an application should not depend on another applica-
tion, inter-application arbitration must be preemptive with service units (time slices)
that are of constant length (down to the level of a clock cycle). As mentioned
in Sect. 3.3, the TIFU allows the microkernel or RTOS to interrupt the running
application at a precise point in the future. After saving the application context,
the next application is scheduled, and its context restored. The time from the
interrupt to the restored context may vary, e.g., due to critical regions, multi-
cycle instructions, or variable execution time. Critical for composability CoMik and

N
o

C
-B

ased
M

u
ltip

ro
cesso

rA
rch

itectu
re

fo
rM

ixed
-Tim

e-C
riticality

A
p

p
licatio

n
s

21

virtual processor
(CompOSe RTOS) virtual processor (CoMik microkernel)

exc. int. main

preemptive (RTOS)

application 3

tasks, threads, ...

exc. int. main

application 1

a b c d e

A. single task
B. statically-ordered tasks
C. cooperatively arbitrated
tasks

exc. int. main

application 2

A. single task
B. statically-ordered tasks
C. cooperatively arbitrated
tasks

app 4a

preemptive inter-app &
(non)-preempt. intra-app.

arbitration

tasks

processor

tasks

app 4b

exc. int. main

processor

exc. int. main

processor

two-level arbitrationpreemptive inter-app. and
non-preemptive intra-app. arbitration

only non-preemptive
intra-app. arbitration

preemptive inter- and
intra-app. arbitration

virtual processor
(traditional RTOS)

app 4a

preemptive arbitration

tasks

exc. int. main

processor

one-level preemptive
arbitration

app 4b

tasks

Fig. 4 Processor virtualization

22 K. Goossens et al.

Table 1 Inter- and intra-application arbitration on processors and other resources

Figure 4 Inter-app. Intra-application Scenario

Preemptive Preemptive Non-preempt

(a.A) – – – Single task

(a.B) – – Static order Dataflow actors of 1 app.

(a.C) – – Cooperative Tasks & FIFO, KPN processes of 1 app.

(b.A) TDM – – CoMik microkernel, multiple apps.

(b.B) TDM – Static order CoMik microkernel, multiple apps.

(b.C) TDM – Cooperative CoMik microkernel, multiple apps.

(c) TDM RTOS – CoMik microkernel, multi-app. incl. RTOS

(d) TDM – Any/pred. CompOSe RTOS with 2-level arb.

(d) TDM Any/pred. – CompOSe RTOS with 2-level arb.

(e) – Priority – Traditional RTOS with 1-level arb.

(e) TDM – CoMik or traditional RTOS with 1-level arb.

– – – Any/pred. CM, 1-level arb.

– TDM & composable – NoC, DRAM, SRAM, 1-level arb.

– Atomiser & composable – DRAM, SRAM, 1-level arb.

CompOSe uniquely achieve application slots of constant length (at the level of an
individual cycle) by halting (clock gating) the processor until the WCET of the
CoMik slot [19, 35].

4.2 Drivers

Drivers are software libraries that shield programmers from hardware-specific
details. More specifically, we use drivers to:

1. Program the (virtual) resource before use (e.g., set up a NoC connection).
2. Use the virtual resource (e.g., program a DMA transfer, change the frequency of

a processor).
3. Reset the virtual resource after use (e.g., remove reserved TDM slots).

We discuss each of these briefly below.
Hardware resources often require that they are programmed before they can

be used. For example, an arbiter in front of a shared resource (e.g., SRAM or
DRAM) needs to be aware of the budget of each requestor. For TDM, this means
programming the slots reserved for each requestor, and for priority-based arbiters
like CCSP or FBSP, a static priority is required. Delay blocks must be programmed
with parameters to dynamically compute the WCRT, if they are used. If a resource is
reprogrammed while it is active, e.g., to add or remove a requestor, then often extra
care must be taken to not invalidate predictability or composability of requestors
that are running [18]. To release a requestor’s budget is usually harder than to add

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 23

it, because we must ensure that no service units are still in the resource pipeline.
We will return to this issue in Sect. 4.3. It is the task of a driver to ensure that a
requestor’s budget is programmed and reset correctly.

Furthermore, hardware resources often require that they are programmed in a
certain way for use. For example, to send a block of data using a DMA, it must be
programmed with the start address of where the data resides in the source memory,
the block size, and the start address in the target memory. How to use the DMA also
depends on whether it is used in a blocking or non-blocking manner. A driver takes
care of these details and ensures that a DMA is used correctly.

The driver of the TIFU allows applications to access (virtualized) timers,
schedule application interrupts, place the processor in sleep mode, and set the
processor frequency. The driver ensures that these actions are done composably,
i.e., without affecting other applications.

Two of the three types of driver functions (program, reset) are privileged in the
sense that they manipulate the requestor budget on the resource. For this reason,
their use is limited to the system application. The remaining driver function to use
the resource is available to both the system and user applications.

4.2.1 Example Resource Drivers
The SRAM controller does not require programming, but its arbiter may do. It
depends on the arbiter what has to be programmed, as discussed above. In fact, since
the same arbiters can be used in front of the SRAM, DRAM, and similar resources,
we use a general “shared resource” arbiter for all of these. Unlike the SRAM, the
DRAM controller must be programmed with the DRAM commands that define the
service unit [13], as well as parameters for logical to physical address translation,
and this is done by the DRAM driver.

The NoC driver is complex because the source and destination NIs of a NoC
connection must be programmed from the NI to which the driver is connected. The
driver programs a path, TDM slots, flow-control credits, and enable/disable registers
for each connection [22,45,49]. However, the NoC connection can be used without
a driver after it has been programmed.

Before a requestor (application) can run on the processor, the microkernel
must be programmed. This is straightforward since it uses a TDM arbiter that is
predictable and composable. The processor is the only resource with frequency-
scaling and clock-gating capabilities, for which the TIFU is used. Applications
are allowed to change the frequency of the processor, while they run. However, as
soon as their time slot ends, the frequency is first reset to the maximum frequency
for the microkernel, and when it finishes, the frequency is reset to that of the
next application [36]. This procedure is required to enable applications to manage
the frequency at which they run without affecting the timing behavior of other
applications, i.e., in a composable manner. Similarly, each application can use
virtualized TIFU timers to measure time, to sleep for a certain time, to wake up
at a certain deadline, and so on.

24 K. Goossens et al.

4.3 Virtual Resources and Their Management

Recall that each application runs inside its own composable VEP. A VEP is a
hierarchical virtual resource that includes virtual DRAM, NoC connections, and
virtual tiles further subdivided in virtual processors, DMAs and DMAMEMs, CMs,
etc. Each virtual resource is the result of the driver programming a budget in a
resource. The (hierarchical) budget is therefore the specification of the capacity that
a requestor receives on a (hierarchical) resource.

Budgets are used to keep track of the reservations on the resource, such that the
resource is not overloaded and such that multiple requestors do not use the same
memory locations, time slots, etc. Without budgets, it is not possible to guarantee a
minimum service to each requestor; in other words, using the resource would not be
predictable.

The budget manager [16] is a library that offers several functions that are
illustrated in Fig. 5. First, given a budget, the reserve function checks if the requested
capacity (slots, memory range, energy, etc.) is available on the resource. If not,
then the reservation fails. Therefore, loading a bundle, i.e., the application code
plus its hierarchical budget, fails when not all of its requested virtual resources are

budget descriptor (BD)

virtual resource reserved

virtual resource ready

virtual resource running

release reserve

program reset

start stop

load

use

bundle ELF
a b

VEP BD

tile BD

NOC BD

processor (IMEM, DMEM) BD

DRAM BD

SRA BD

CMEM BD

DMA BD

VEP state

tile state

CMEM state

processor (IMEM, DMEM) state

resource state

DRAM state

Bundle Structure Resource Management FSM

Fig. 5 (a) Bundle structure with Budget Descriptor (BD). (b) Resource management state diagram

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 25

available. This is desired, since it is not allowed to modify the VEPs of other running
applications, as that would not be composable.

A successful budget reservation results in a budget identifier (cf. file handle), with
which the budget can be programmed in the resource by the driver. Resources often
have to be loaded with an initial state before they are started. For example, a virtual
processor’s IMEM requires a main function, interrupt and exception handlers, and
its DMEM may need to be loaded with initial data. A DMA (driver) has to be loaded
with a memory map to be able to perform range checking for memory protection.
Programming defines the virtual resource, while loading defines the state of the
virtual resource.

It is important to decouple reserving, programming, and loading. Since program-
ming and loading a resource can be slow, and applications always require a set of
virtual resources, it is better to first try to reserve all of them, before programming
and loading them. Otherwise, the programmed resources have to reset. When all
virtual resources specified by a hierarchical budget have been programmed, i.e., the
VEP is ready to run, it can be started. As resources are programmed sequentially,
and even from different processors, all virtual resources should be created before the
application starts running. Otherwise, problems may occur, such as a DMA sending
data before its NoC connection has been created. At this point in time, whatever
software has been loaded in the VEP will run with the resource performance that
was specified in the budget.

Applications use a running resource, either using a driver (e.g., for the DMA) or
without (e.g., for the NoC and S/DRAM). Some resources, such as the processor
and its TIFU, may be programmed (in a safe way) by the application. For example,
the processor frequency may be changed by an application, and it is possible to read
timers and program interrupts at deadlines.

To stop an application in its VEP and release its (hierarchical) budget, the reverse
process is followed. First, all virtual resources must be stopped. This may be
intricate because resources may be pipelined, requests may be waiting in buffers
before the resource, and requests may flow through several resources. For example,
a software task may write to DRAM using DMA and NoC. In general, software
tasks on the processors are stopped first. For the mentioned example, the pipeline of
DMA, NoC, and DRAM will be empty after some time. (For a real-time application,
this time is known). It is important that quiescence of resources (i.e., being in the
ready state) can be observed to avoid leaving a resource in an inconsistent state or
to lose data. Then the DMA, NoC, and DRAM virtual resources can be stopped.

When all virtual resources are in the ready state, the virtual resource can be reset,
and the budgets released.

The budget management library can only be used by the system application
to ensure that applications cannot change their own VEPs, which is crucial for
composability and predictability. Together, the resource driver and budget manager
comprise the resource management library. Usually all resources of the same type
are controlled from one location, the exception being the processor tiles that are
managed locally. Resource management may thus be distributed in the platform
(see Sect. 4.5 and [48]).

26 K. Goossens et al.

4.4 Synchronization Libraries and Programming Models

Tasks in the same application synchronize and communicate data. As described in
Sect. 3.7, the CompSOC platform offers atomicity of data transfers up to a certain
size, which is the minimum requirement to safely communicate. However, it is
not enough, because atomically written data may be overwritten before it has been
read. Fundamentally, there are two ways to synchronize, either based on data or on
time. First, we describe the data synchronization styles offered by the CompSOC
platform: barriers and First-In First-Out (FIFO) queues. After that, we describe
how we offer timed synchronization in a synchronous platform or on top of barrier
synchronization when GALS is used.

4.4.1 Barrier Synchronization
Barrier synchronization is implemented as a library. When using a barrier to
synchronize, each task increments its own dedicated counter (starting at zero) and
then waits until all other tasks have done so by repeatedly reading (polling) all
counters. This is shown in Fig. 6a. Starting at barrier b, task 1 updates its counter
to b C 1 and then polls task 2’s counter. As soon as task 2 has updated its counter,
barrier b C 1 is reached, which is observed by the next polls of both tasks. Each
counter is a single word in a memory, and is written atomically and independently
of all other counters. It does not matter if all counters together are read atomically or
not because counters are only incremented, and it is therefore not possible to miss
a barrier. However, the assumption that all counters start at zero is problematic. At

producer
task

producer
CMEM

token

DRAM
producer

DMAMEM
consumer

CMEM
consumer
DMAMEM

consumer
task

token
read

w+1
w+1

w

w+1

token

r+1
r+1

r

r+1

memory task 1
a b

task 2

b+1

b

b+1

b+1

b+1

b

b+1

Fig. 6 (a) Barrier synchronization and (b) FIFO synchronization using DRAM. Each arrow points
from master to slave (for the read/write request), possibly continued back to the master (for the read
response). Labels indicate (b)arrier, (w)rite, and (r)ead data

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 27

reset, SRAM and DRAM contain random values, and one task has to initialize the
barrier counters before the others start, which is what the barrier intended to solve.
For this reason all processors except the boot processor are kept in reset until their
boot programs have been loaded and the barrier initialized.

4.4.2 FIFO Queues
In a streaming or data-driven system, tasks usually communicate using First-In
First-Out (FIFO) queues that ensure no data is lost. Tasks block on a full or empty
FIFO and wait until there is space to write or data to read. (In a cooperatively
arbitrated system, a task could yield upon blocking.) Optionally, a task can poll for
space or data, and continue with processing if it is not available. Although barriers
work well to synchronize the flows of control of concurrent tasks or updates to
global shared state, they are cumbersome for FIFO communication. For this reason,
we offer a FIFO library that also forms the basis of KPN and dataflow libraries.

The C-HEAP protocol [41] implements FIFO in distributed shared memory
without hardware support, such as locks, mutexes, or processor instructions (other
than read and write). A FIFO has a single producer and consumer. Data is produced
and consumed as constant-size tokens, and the FIFO has a fixed token capacity.
We must ensure that tokens are only written by the producer in memory locations
that are guaranteed to have been freed by the consumer (i.e., it has read the token).
Similarly, the consumer must only read memory locations when the producer has
finished writing the token, i.e., the data is valid. The basic concept is that the start
location of valid tokens is indicated by a write pointer that is only written by the
producer and that the start of space for new tokens is indicated by a read pointer
that is only written by the consumer. The pointers are only updated after tokens have
been written to or read from the destination memory. Because each pointer is only
written (atomically) by one task, consistency of the FIFO is guaranteed. No token
is overwritten before it is read or accidentally read multiple times. The difference
between the pointers indicates the FIFO filling, and the FIFO is full or empty when
the read and write pointer are equal. We use a circular buffer, which means that
wrapping of pointers must be taken into account.

Figure 7a illustrates the simplest FIFO (L), where the tokens and the read and
write pointers all reside in DMEM. Only tasks on this processor can communicate
using this FIFO, as shown in Fig. 7b. When a FIFO is too large to fit in the local
memories of a processor tile, it can be stored in an SRAM or DRAM that is
connected to the NoC, as shown by FIFO F in Fig. 7a. The protocol is unchanged,
but multiple memories and DMAs are now used, as shown in Fig. 6b.

The producer of a token first checks for space for a new token (blocking
claim_space or non-blocking poll_space). The token is then written into its local
DMAMEM and copied (write_token) to the remote memory when it is ready. To
ensure that the token has been written in the remote memory, the processor issues a
(dummy) read of the last data word of the token, again using the DMA. Since the
NoC connections do not reorder read and write transactions, the data is guaranteed
to be written when the read data is returned. When the dummy read data has been
received and discarded, the write counter (CW) is updated (wC1) in the local

28 K. Goossens et al.

NOC

proc.

DMA

W
F

D CR

D
D
D
D

F

proc.

DMA

WRDD
L

consumer of remote FIFO F

R

D

F

storage of
FIFO F

1

2, 32

4

35, 665

producer & consumer of local FIFO L
producer of remote FIFO F

a

b producer
task DMEM consumer

task

token

w+1

w

r+1

w+1

tokenr

r+1

Using local FIFO L

Mapping of local (L) and remote (F) FIFOs

CW

Fig. 7 (a) FIFO F with data in remote DRAM and FIFO L with data in local DMEM. (b) Using
local FIFO L. D are tokens, R and W are read and write pointers, respectively

DMAMEM, and the DMA is programmed to copy it to the CM (W) of the consumer
(release_token).

Assume that the FIFO was empty until the write counter update. The consumer
would have known this because the read CR and write W pointers in its DMAMEM
and CM would have been equal: w D r in Fig. 6b. The consumer would have
been waiting until the write counter update (blocking claim_token or non-blocking
poll_token). When the write counter update is detected, the consumer instructs
its DMA to copy the token from the remote memory to its local DMAMEM
(read_token). When the consumer no longer requires the token, it is released
(release_space) by increasing the local read counter CR and writing it to the
producer’s CM (R).

The tokens and counters may be placed in any memory but preferably as close
as possible to the task that requires reading most often. The highest performance

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 29

is obtained by maximizing the use of posted (non-blocking) write transactions and
minimizing the number of read transactions over the NoC. This is achieved when
placing the write counter W in the consumer’s CM and the read counter R in the
producer’s CM, as well as keeping local copies of the counters (CW, CR). The data
is best placed in the consumer’s CM, assuming it fits. The claim_space, write_token,
and release_token are often combined in a simpler send_token. receive_token is
defined conversely. Although simpler, they require space for one more token and
copy action.

4.4.3 Timed Communication
In a time-triggered system, jobs communicate through shared locations (memory
regions) with space for one token. The token may be written multiple times before it
is read, and read multiple times before it is written again. If under- and oversampling
are not desired, then the usual way to synchronize the producer and consumer is
by (statically) scheduling access to the shared location in time. For example, with
token production with a period of 1 ms starting at time 0, we can schedule token
consumption with the same period of 1 ms but with a starting time of 1 ms. As long
as the producer ensures that the token has been written completely in the shared
location before the period deadline, the consumer can safely read the token. This
approach works as long as a sufficiently accurate common notion of time is available
to the producer and the consumer, and the production and transport of the token is
predictable and guaranteed to fit within the production and consumption periods.

In a fully synchronous CompSOC platform, i.e., where the NoC and all processor
and memory tiles operate on the same clock, time-triggered communication works
without surprises. The simplest scenario is that the producer computes the token
and writes it to the shared location. Using the TIFU, it then sleeps until the periodic
deadline and then restarts. The consumer(s) sleep until the periodic deadline and
then copy the token [55]. Care must be taken to not write tokens too late (i.e.,
arriving after the deadline) and not too early (i.e., when consumers are still reading
the previous token). Even without a global clock or notion of time, we can use
barriers to safely implement time-triggered communication in a GALS MPSoC. We
show a basic implementation in Fig. 8. A producer writes its token and increments
and waits on the producer barrier. The producer barrier is released periodically by
a clock task, after which consumers indicate in a consumer barrier when they have
consumed the token. The producer waits for the consumer barrier before it updates
the token and the producer barrier. Producers and consumers follow both barriers to
detect any late consumption or production, which could result in transfer of corrupt
data.

4.4.4 Programming Models
Different applications of different time criticalities will be developed with different
requirements on timing. Real-time applications must be analyzable, which imply
a more restrictive programming model (e.g., dataflow or time triggered) than
a programming model that non-real-time applications can use, such as Kahn
Process Network (KPN) or even arbitrary C. CompSOC therefore offers multiple

30 K. Goossens et al.

memory
producer

task
consumer

task
clock
task

p p

c
c

token t released

token t written

producer:
while true do
write_token
increment_and_wait(producer_barrier)
increment_and_wait(consumer_barrier)

end while

consumer:
while true do
increment_and_wait(producer_barrier)
read_token
increment_and_wait(consumer_barrier)

end while

clock:
while true do
 wait until next periodic deadline
increment_and_wait(producer_barrier)

end while

p+1

p+1

p+1

c+1
c+1

token t+1 released

token t+1 written

period

token t read

token t+1 read

Fig. 8 Timed communication using barriers

programming models, such that each application can be designed as easily and
efficiently as possible.

Although we do not encourage it, an application programmer can use multiple
tasks and communicate using DMAs, without using CompSOC’s synchronization
libraries. All the programming models are implemented using tasks (or threads),
using the templates shown in Fig. 9. We describe them from least restrictive, and
thus least analyzable, to most restrictive [32]. In all cases, the task graph is static.

1. Non-blocking and blocking FIFO communication. The first arrow illustrates that
claim_space and its corresponding write_token and release_token may have
arbitrary code between them. The second arrow illustrates that this task uses
polling, which could result in nondeterministic behavior. This is because it
depends on the scheduling of other tasks, which may be non-deterministic due
to GALS. This is not recommended unless the task uses some kind of sampling
algorithm.

2. Kahn Process Network (KPN) with finite FIFOs use only blocking send_token
and receive_token. Processes may use arbitrary control flow, which may result in
a data-dependent number of tokens being consumed or produced (indicated by
the arrow). It is, in general, not possible to compute the WCET of a process, and
KPN is suitable for non-real-time or perhaps soft-real-time applications.

3. (Not shown in the figure.) Programmers can use barriers, as described earlier in
this section, to synchronize multiple tasks using patterns such as fork-join.

4. Dataflow applications contain actors that consume all input tokens before
computing the output tokens, which are released at the end. Note that an actor
is a stateless function, unlike a KPN process. State can be implemented with
a self-edge, i.e., a channel from the actor to itself. A programmer only writes
the actor functions; the dataflow_actor wrapper is automatically generated.
If the code in the actor function has a WCET, and all resources are shared

N
o

C
-B

ased
M

u
ltip

ro
cesso

rA
rch

itectu
re

fo
rM

ixed
-Tim

e-C
riticality

A
p

p
licatio

n
s

31

task kpn_process
 n := receive_token(f1);
 s := 0;
 while true do
 for i := 1 to n do
 s := s + receive_token(f2)
 end for;
send_token(f3,s)

 end while
end task

function actor (a,b) c
 if a < b then c := a+b
 else c := b*(b-a)
 end if;
 return c
end function
task dataflow_actor
 while true do
 a := receive_token(f1);
 b := receive_token(f2);
 c := claim_space(f3);
 *c := actor(a,b);
release_token(f3)

 end while
end task

task task_with_fifos
 while true do
 n: = receive_token(f1);

st := claim_space(f2);
 s := 0;
 for i := 1 to n do
 s := s + receive_token(f3)
 end for;
 e := poll_token(f3);
 if e != null then s := s + *e
 end if;
write_token(st,s);
release_token(f2)

 end while
end task

FIFO-based task (non real time)
static or dynamic order schedule
non-deterministic output
no WCRT

KPN process (soft real time)
static or dynamic order schedule
deterministic output
no WCRT

dataflow actor (real time)
static & dynamic order schedule
deterministic output
WCRT for actor and graph

time-triggered job (real time)
static time schedule
deterministic output
WCRT for job and program

function job (a,b) c
 if a < b then c := a+b
 else c := b*(b-a)
 end if;
 return c
end function
task time_triggerred_job
 c := initial_value;
 while true do
write_token(l_out,c);

 wait until next activation;
 a := read_token(l_in1);
 b := read_token(l_in2);
 c := job(a,b)
 end while
end task

Fig. 9 Programming models

32 K. Goossens et al.

predictably, then the throughput and WCRT of the dataflow application as a
whole can be computed [37]. As a result the dataflow model of computation
is suitable for real-time applications. Chapter � “SysteMoC: A Data-Flow
Programming Language for Codesign” contains more information about the
dataflow model of computation, and chapter � “ForSyDe: System Design Using
a Functional Language and Models of Computation” contains more information
about dataflow and other models of computation.

5. Time-triggered communication. A job (non-blocking) reads tokens from its input
locations (except for the first execution), computes outputs, and then (non-
blocking) writes tokens in its output locations. Jobs communicate using the
time-triggered synchronization library. Time-triggered applications are executed
periodically according to a global static schedule, for example, using a global
clock or barriers. The code of each job (computation on processor, as well as
communication on NoC, and access to shared memories) must have a WCRT
smaller than the period, which determines the real-time performance of the
application. As a result, the time-triggered model of computation is suitable for
real-time applications. Chapter � “Networked Real-Time Embedded Systems”
contains more information about the time-triggered model of computation.

4.5 System Application and Application Loading

The system application is like a normal application with the exception that it has
access to privileged resource management library functions. The system application
creates and removes VEPs, and starts and stops applications in running VEPs. The
system application has a task on each processor tile, with one being the master. The
tasks synchronize and communicate using the barrier and FIFO libraries.

Figure 10 illustrates the six (simplified) steps to start an application [48]:

1. The system application detects a bundle.
2. It hierarchically creates a VEP in a distributed manner.
3. It loads the bootloader in the VEP, and starts the VEP and bootloader.
4. In the VEP, the bootloader loads the application code and data.
5. For multitask applications, the bootloader creates tasks and communication

channels.
6. The bootloader finishes and the application runs.

These steps are now explained in more detail. The master task detects in bundles
at a predefined location in shared memory and loads them based on some strategy
(e.g., as soon as they have been uploaded from outside the ASIC/FPGA or based on
certain triggers [26]). The bundle contains the budget description of the VEP that
the application requires to run.

The master task analyzes the hierarchical budget descriptor and sends the budget
descriptors of the processor tiles to the slave tasks on those tiles. The slave tasks
locally reserve and program the required resources and notify the master task. Other

http://link.springer.com/``SysteMoC: A Data-Flow Programming Language for Codesign''
http://link.springer.com/``ForSyDe: System Design Using a Functional Language and Models of Computation''
http://link.springer.com/``Networked Real-Time Embedded Systems''

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 33

create VEP

system application

reserve &
pgm VR

reserve &
program VR

load
bootloader start VEP run

bootloader
set up channels of

programming model run application

application

privileged unprivileged

app. boot code app. task code

master proc. tile 1

run application

run application

barrier barriersynchronise

slave proc. tile 2

slave proc. tile 3

predictable

set up channels

set up channels

load app.
code

load app.
code

Fig. 10 Loading and starting an application

resources, such as the NoC and shared memories, are similarly reserved by the
master or a slave task. If any budget reservation fails, the entire VEP creation fails,
and all its resources are released. After the VEP has been created, it is loaded with a
standard small bootloader application. After starting all the virtual resources, the
bootloader loads and starts the application code that is specified in the bundle.
In this way, loading an application, which may take some time, is performed in
the VEP of the application instead of that of the system application. Multiple
applications may be loading and/or running simultaneously because each VEP is
independent.

The bootloader finishes and hands over to the application code. A non-
preemptive application on a single processor (Fig. 4a, b) now runs. Otherwise, the
application contains tasks (actors, processes, etc.) that synchronize or communicate
using barriers, FIFOs, etc., and then these are set up using the relevant programming
model library (see Fig. 3). When all tiles on which the application runs have finished
this set-up phase, they synchronize using a barrier, and the distributed application
starts.

The time from observing arrival of a bundle and starting the application is
predictable and can also be made composable. In other words, the time from
detecting a bundle until it is running is independent of other applications [48].

4.6 Conclusions

The software architecture of the CompSOC platform is quite complex, but this is
mostly due to its versatility. The processor is the only software-arbitrated resource,
and virtualization of multiple applications is inherently quite involved. The essential
concept of the software architecture is the bundle which contains application
code together with the requirements for its VEP structuring. Building on this, the
resource management library provides a uniform way to reserve, program, and
start heterogeneous resources in a hierarchical and distributed manner. After the
system application creates a VEP, the bootloader library is used to load and start

34 K. Goossens et al.

applications, of any kind. Various communication and programming model libraries
are provided for both system application and user applications.

5 Example CompSOC Platform Instance

The CompSOC platform is a template that can be instantiated [14] and used in
many different ways and applications. In this section, we describe a demonstrator
showing:

1. Mixed-time-criticality: several concurrently executing applications with and
without real-time requirements.

2. Predictability: guaranteed performance for real-time applications.
3. Composability: multiple applications loading and executing composably.
4. Multiple models of computation.

The demonstrator, shown in Fig. 11, contains five applications:

1. A high-performance real-time motion controller for a two-mass spring motion
system written as a time-triggered application, shown in Fig. 12. The controller is

daelite NOC

Comik on
processor tile

Comik on
processor tile

Comik on
processor tile

H263 decoder
real-timereal-time

motion control motion control
system

app
flappy
bird

DRAM
controller

UARTI/OTFT
controller UART

graphics
display

motion ctrl
set points

Comik on
processor tile

Comik on
processor tile

system
app

graphics
displayETSCH button

I/O

DRAM
controllerUART TFT

controller
UART UART

daelite NOC

ATmega ATmegaWPAN

ETSCH

FPGA 1 FPGA 2

soft real-time
H263 output

real-time reference and measured
positions of the spring-mass shaft

non real-time
Flappy Bird output

real-time angle of
the spring-mass shaft

real-time signal noise on the
16 wireless TSCH channels

energy usage
of Flappy Bird

energy usage
of H263 decoder

real-time
motion control

Fig. 11 Mapping of the applications on the two FPGA boards (bottom) and the display output of
the two boards (top)

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 35

Fig. 12 Demonstration CompSOC hardware setup, showing two Xilinx ML605 FPGA boards
with ATmega 256RFR2 boards for WPAN, interconnecting daughter boards, a two-mass spring
motion system, and a video game controller

a software task that regulates the current to a DC motor that drives and controls
the rotational position of a flexible shaft [8]. The positions of the shaft are
measured by optical encoders and read out by the software controller.

2. A CompSOC implementation of the non-real-time popular video game Flappy
Bird. The user controls it with a simple hardware button. For demonstration
purposes, the game can be played in composable mode, without interference
from other applications, or in non-composable mode where the height of the
bird’s jumps depends on the processor load.

3. A (soft) real-time H263 video decoder [39], written as a dataflow application of
six actors.

4. A non-real-time graphics application displays information on a Thin-Film
Transistor (TFT) screen by updating a (triple) video buffer, which is read out by a
hardware TFT controller. The graphics application has a (composable) sampling
interface with the motion controller, Flappy Bird, and H263 video decoder to
draw graphs and compose the image of several sub-images (video and game
outputs).

5. The system application that manages the virtual execution platforms, including
the starting and stopping of applications at run time.

The applications are mapped on two Xilinx ML605 FPGA boards, shown
in Fig. 12. The first board contains a CompSOC platform with three processor
tiles each running the CoMik microkernel, NoC, DRAM, and several peripherals
(TFT, UART) connected to the NoC. The sensing and actuation of the spring
motion system is memory mapped on the NoC using an intermediate hardware
I/O block. The second FPGA board has only two processor tiles and has the
hardware controller for the Flappy Bird game instead of the motion-control
hardware. Each ML605 board contains an Extended TSCH (ETSCH) application
that connects to an ATmega 256RFR2 board using a UART. In this way, tasks
of an application mapped on both FPGA boards can communicate wirelessly
using the Extended TSCH (ETSCH) [51] extension of the IEEE 802.15.4e Time-
Synchronised Channel Hopping (TSCH) standard. (E)TSCH uses frequency
hopping and TDM for robust real-time performance. The architecture is GALS
both within and between FPGAs.

36 K. Goossens et al.

Figure 11 illustrates the mapping of applications on (multiple) boards and
(multiple) processors, as well as the display output of the boards. Of particular
note are the following. Flappy Bird runs and displays on FPGA 1, but the game
controller hardware (buttons) is connected to FPGA 2. The latency from the button
I/O application on FPGA 2 to the Flappy Bird application on FPGA 1 is mostly
due to the wireless connection and is just within the limits for a playable game.
Using other buttons connected to FPGA 2, the system application on FPGA 1 can
be instructed to start and stop Flappy Bird in different modes, without affecting other
running applications. The graphics application on FPGA 2 displays the performance
of the real-time motion controller with real-time graphs of the reference, measured
angles of the spring-mass shaft and the calculated error. It also displays the real-
time signal noise on the 16 wireless TSCH channels that it obtains from the ATmega
board.

All the concepts of Sect. 2 are proven in the demonstrator. The system application
dynamically loads application bundles by creating virtual execution platforms that
are predictable and composable. Although the platform contains only five processor
tiles in total, they are interconnected globally asynchronously using two TDM NoCs
and a robust wireless TDM connection. The finite scheduling interval and efficient
arbitration are optimizations and proven on the various resources, as described in
previous sections.

6 Related Work

A vast literature is available on predictability, ranging from single resources to
multiple shared resources, using a variety of analytical approaches, such as real-
time calculus [52], dataflow [50], and response-time analysis for priority-based
scheduling [10].

In the literature, composability is especially addressed for safety-critical applica-
tions, such as those found in the automotive [43] and aeronautical [46,56] industries.
Temporal and spatial partitioning [46, 56] are addressed most often, increasingly
using microkernels and RTOS, such as LynxOS-178, VxWorks 653, INTEGRITY,
and PikeOS.

Our focus is on complete platforms that are predictable, are composable, or
offer mixed-time-criticality. Note however, that in the literature, definitions of
predictability and composability vary. Apart from CompSOC, notable mature
platforms include the Transport-Triggered Architecture (TTA) [29], Giotto [25]
and LET [28], and PRET [11]. A number of collaborative projects have developed
platforms of varying degrees of maturity, including Flextiles [26], T-CREST [47],
PARMERASA [54], MULTIPARTES [53], P-SOCRATES [44], DREAMS [42],
and CERTAINTY [12]. The resource-management frameworks of [7, 31, 40] are
noteworthy because their approaches consider the entire system, with different
resources.

These platforms focus on different aspects, and they are often updated, which
means that comparisons change over time. At a high level, all platforms offer

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 37

real-time performance to at least one application and sometimes to multiple
applications. Dynamic loading, starting, and stopping of applications are sometimes
supported. Mixed-time-criticality, where non-real-time and real-time applications
coexist, is also often claimed. However, the levels of predictability, the formalisms
used, and the level of automation vary considerably. Increasingly platforms claim to
be composable, especially in the sense of temporal and space partitioning, but not
to the extreme extent of CompSOC, i.e., no interference at the level of individual
clock cycles.

In general, points on which platforms may be compared include the for-
malism for predictability, model(s) of computation offered, single or multiple
applications, global or distributed arbitration, single-level or multi-level arbitration,
work-conserving arbitration or not, use of budgets or virtual resources or not, time-
triggered or data-driven execution, and distributed-shared-memory or message-
passing architecture.

7 Conclusions

In this chapter, we first defined what a mixed-time-criticality system is and what its
requirements are. After defining the concepts that such systems should follow, we
described CompSOC, which is one example of a mixed-time-criticality platform.
We described, in detail, how multiple resources, such as processors, memories, and
interconnect, are combined into a larger hardware platform, and especially how they
are shared between applications using different arbitration schemes. Following this,
the software architecture that transforms the single hardware platform into multiple
virtual execution platforms, one per application, was described.

Acknowledgments The development of CompSOC has been partially funded by European
grants, including CATRENE CT217 RESIST; ARTEMIS 621429 EMC2, 621353 DEWI, 621439
ALMARVI, and ECSEL 692455 ENABLE-S3.

References

1. Akesson B, Goossens K (2011) Architectures and modeling of predictable memory controllers
for improved system integration. In: Proceedings of design, automation and test in Europe
conference and exhibition (DATE), Grenoble. IEEE, pp 1–6

2. Akesson B, Goossens K (2011) Memory controllers for real-time embedded systems. Embed-
ded systems series, 1st edn. Springer, New York

3. Akesson B, Hansson A, Goossens K (2009) Composable resource sharing based on latency-
rate servers. In: Proceedings of Euromicro symposium on digital system design (DSD), Patras,
pp 547–555

4. Akesson B, Molnos A, Hansson A, Ambrose Angelo J, Goossens K (2010) Composability and
predictability for independent application development, verification, and execution. In: Hübner
M, Becker J (eds) Multiprocessor system-on-chip – hardware design and tool integration,
circuits and systems, chap. 2. Springer, Heidelberg, pp 25–56

38 K. Goossens et al.

5. Akesson B, Steffens L, Strooisma E, Goossens K (2008) Real-time scheduling using credit-
controlled static-priority arbitration. In: Proceedings of international conference on embedded
and real-time computing systems and applications (RTCSA). IEEE Computer Society, Wash-
ington, DC, pp 3–14

6. Beyranvand Nejad A, Molnos A, Goossens K (2013) A software-based technique enabling
composable hierarchical preemptive scheduling for time-triggered applications. In: Pro-
ceedings of international conference on embedded and real-time computing systems and
applications (RTCSA), Taipei

7. Bini E, Buttazzo G, Eker J, Schorr S, Guerra R, Fohler G, Arzen KE, Romero Segovia V,
Scordino C (2011) Resource management on multicore systems: the ACTORS approach. Proc
Microarch (MICRO) 31(1):72–81

8. Bolder J, Oomen T (2014) Rational basis functions in iterative learning control – with
experimental verification on a motion system. IEEE Trans Control Syst Technol 23(2):
722–729

9. Chandrasekar K, Akesson B, Goossens K (2012) Run-time power-down strategies for real-time
SDRAM memory controllers. In: Proceedings of design automation conference (DAC). ACM,
New York, pp 988–993

10. Davis RI, Burns A (2011) A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput Surv (CSUR) 43(4):35

11. Edwards SA, Lee EA (2007) The case for the precision timed (pret) machine. In: Proceedings
of the 44th annual design automation conference, New York. ACM, pp 264–265

12. Giannopoulou G, Stoimenov N, Huang P, Thiele L, de Dinechin BD (2015) Mixed-criticality
scheduling on cluster-based manycores with shared communication and storage resources. J
Real-Time Syst 52(4):399–449

13. Goossens S, Akesson B, Goossens K (2013) Conservative open-page policy for mixed time-
criticality memory controllers. In: Proceedings of design, automation and test in Europe
conference and exhibition (DATE), Grenoble, pp 525–530

14. Goossens K, Azevedo A, Chandrasekar K, Gomony MD, Goossens S, Koedam M, Li Y,
Mirzoyan D, Molnos A, Beyranvand Nejad A, Nelson A, Sinha S (2013) Virtual execution
platforms for mixed-time-criticality systems: the CompSOC architecture and design flow.
ACM Spec Interest Group Embed Syst (SIGBED) Rev 10(3):23–34

15. Goossens K, Hansson A (2010) The Aethereal network on chip after ten years: goals, evolution,
lessons, and future. In: Proceedings of design automation conference (DAC), Anaheim,
pp 306–311

16. Goossens K, Koedam M, Sinha S, Nelson A, Geilen M (2015) Run-time middleware to support
real-time system scenarios. In: Proceedings of European conference on circuit theory and
design (ECCTD), Trondheim

17. Goossens S, Kouters T, Akesson B, Goossens K (2012) Memory-map selection for firm real-
time SDRAM controllers. In: Proceedings of design, automation and test in Europe conference
and exhibition (DATE). IEEE, Dresden, pp 828–831

18. Goossens S, Kuijsten J, Akesson B, Goossens K (2013) A reconfigurable real-time SDRAM
controller for mixed time-criticality systems. In: International conference on hardware/soft-
ware codesign and system synthesis (CODES+ISSS), Montreal, pp 1–10

19. Hansson A, Ekerhult M, Molnos A, Milutinovic A, Nelson A, Ambrose J, Goossens K
(2011) Design and implementation of an operating system for composable processor sharing.
J Micromech Microeng (MICPRO) 35(2):246–260. Elsevier. Special issue on network-on-chip
architectures and design methodologies

20. Hansson A, Goossens K (2007) Trade-offs in the configuration of a network on chip for
multiple use-cases. In: Proceedings of international symposium on networks on chip (NOCS).
IEEE Computer Society, Washington, DC, pp 233–242

21. Hansson A, Goossens K (2009) An on-chip interconnect and protocol stack for multiple
communication paradigms and programming models. In: International conference on hard-
ware/software codesign and system synthesis (CODES+ISSS). ACM, New York, pp 99–108

NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 39

22. Hansson A, Goossens K (2010) On-Chip interconnect with aelite: composable and predictable
systems. Embedded systems series. Springer, New York

23. Hansson A, Goossens K, Bekooij M, Huisken J (2009) CoMPSoC: a template for composable
and predictable multi-processor system on chips. ACM Trans Des Autom Electron Syst
14(1):1–24

24. Hansson A, Wiggers M, Moonen A, Goossens K, Bekooij M (2009) Enabling application-level
performance guarantees in network-based systems on chip by applying dataflow analysis. IET
Comput Digit Tech 3(5):398–412

25. Henzinger TA, Horowitz B, Kirsch CM (2003) Giotto: a time-triggered language for embedded
programming. Proc IEEE 91(1):84–99

26. Jansen B, Schwiegelshohn F, Koedam M, Duhem F, Masing L, Werner S, Huriaux C, Courtay
A, Wheatley E, Goossens K, Lemonnier F, Millet P, Becker J, Sentieys O, Hübner M (2015)
Designing applications for heterogeneous many-core architectures with the FlexTiles platform.
In: Proceedings of International Conference on Embedded Computer Systems: Architectures,
MOdeling and Simulation (SAMOS), Samos

27. Kasapaki E, Sorensen RB, Müller C, Goossens K, Schoeberl M, Sparso J (2015) Argo: a real-
time network-on-chip architecture with an efficient GALS implementation. IEEE Trans Very
Large Scale Integr Syst (TVLSI) 99(2):479–492

28. Kirsch C, Sokolova A (2012) The logical execution time paradigm. In: Chakraborty S,
Eberspächer J (eds) Advances in real-time systems (ARTS). Springer, Berlin/Heidelberg,
pp 103–120

29. Kopetz H (2011) Real-time systems: design principles for distributed embedded applications.
Springer, Heidelberg

30. Li Y, Salunkhe H, Bastos J, Moreira O, Akesson B, Goossens K (2015) Mode-controlled data-
flow modeling of real-time memory controllers. In: Proceedings of embedded systems for real-
time multimedia (ESTIMedia), Amsterdam

31. Moreira O, Corporaal H (2014) Scheduling real-time streaming applications onto an embedded
multiprocessor. Embedded systems series, vol 24. Springer, Cham

32. Nejad AB, Molnos A, Goossens K (2013) A unified execution model for multiple computation
models of streaming applications on a composable MPSoC. J Syst Archit (JSA) 59(10, part C),
1032–1046. Elsevier

33. Nejad AB, Molnos A, Martinez ME, Goossens K (2013) A hardware/software platform for
QoS bridging over multi-chip NoC-based systems. J Parallel Comput (PARCO)39(9):424–441.
Elsevier

34. Nelson A (2014) Composable and predictable power management. Ph.D. thesis, Delft Univer-
sity of Technology

35. Nelson A, Beyranvand Nejad A, Molnos A, Koedam M, Goossens K (2014) CoMik: a
predictable and cycle-accurately composable real-time microkernel. In: Proceedings of design,
automation and test in Europe conference and exhibition (DATE), Dresden

36. Nelson A, Goossens K (2015) Distributed power management of real-time applications on a
GALS multiprocessor SOC. In: Proceedings of ACM international conference on embedded
software (EMSOFT), Amsterdam

37. Nelson A, Goossens K, Akesson B (2015) Dataflow formalisation of real-time streaming
applications on a composable and predictable multi-processor SOC. J Syst Archit (JSA)
61(9):435–448

38. Nelson A, Molnos A, Goossens K (2011) Composable power management with energy and
power budgets per application. In: Proceedings of international conference on embedded
computer systems: architectures, modeling and simulation (SAMOS), Samos, pp 396–403

39. Nelson A, Molnos A, Goossens K (2012) Power versus quality trade-offs for adaptive real-time
applications. In: Proceedings of embedded systems for real-time multimedia (ESTIMedia),
Tampere, pp 75–84

40. Nesbit KJ, Smith JE, Moreto M, Cazorla FJ, Ramirez A, Valero M (2008) Multicore resource
management. Proc Microarch (MICRO) 28(3):6–16

40 K. Goossens et al.

41. Nieuwland A, Kang J, Gangwal OP, Sethuraman R, Busá N, Goossens K, Peset Llopis R,
Lippens P (2002) C-HEAP: a heterogeneous multi-processor architecture template and scalable
and flexible protocol for the design of embedded signal processing systems. ACM Trans Des
Autom Embed Syst 7(3):233–270

42. Obermaisser R, Weber D (2014) Architectures for mixed-criticality systems based on net-
worked multi-core chips. In: Proceedings of Conference on Emerging Technology and Factory
Automation (ETFA), Barcelona, pp 1–10

43. Pelz G et al (2005) Automotive system design and autosar. In: Advances in design and
specification languages for SoCs. Springer, New York, pp 293–305

44. Pinho LM, Nelis V, Yomsi PM, Quinones E, Bertogna M, Burgio P, Marongiu A, Scordino
C, Gai P, Ramponi M, Mardiak M (2015) P-socrates: a parallel software framework for time-
critical many-core systems. J Microprocess Microsyst 39(8):1190–1203. Elsevier

45. Rădulescu A, Dielissen J, González Pestana S, Gangwal OP, Rijpkema E, Wielage P, Goossens
K (2005) An efficient on-chip network interface offering guaranteed services, shared-memory
abstraction, and flexible network programming. IEEE Trans CAD Integr Circuits Syst 24(1):4–
17

46. Rushby J (1999) Partitioning in avionics architectures: requirements, mechanisms, and assur-
ance. Technical report, NASA

47. Schoeberl M, Abbaspour S, Akesson B, Audsley N, Capasso R, Garside J, Goossens K,
Goossens S, Hansen S, Heckmann R, Hepp S, Huber B, Jordan A, Kasapaki E, Knoop J,
Li Y, Prokesch D, Puffitsch W, Puschner P, Rocha A, Silva C, Sparsø J, Tocchi A (2015) T-
CREST: time-predictable multi-core architecture for embedded systems. J Syst Archit (JSA)
61(9):449–471. Elsevier

48. Sinha S, Koedam M, Breaban G, Nelson A, Nejad A, Geilen M, Goossens K (2015) Compos-
able and predictable dynamic loading for time-critical partitioned systems on multiprocessor
architectures. J Microprocess Microsyst (MICPRO) 39(8):1087–1107

49. Stefan R, Molnos A, Goossens K (2014) dAElite: a TDM NoC supporting QoS, multicast, and
fast connection set-up. IEEE Trans Comput 63(3):583–594

50. Stuijk S, Basten T, Geilen M, Corporaal H (2007) Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In: Proceedings of design automation
conference (DAC), San Diego, pp 777–782

51. Tavakoli R, Nabi M, Basten T, Goossens K (2015) Enhanced time-slotted channel hopping
in wsns using non-intrusive channel-quality estimation. In: Proceedings of international
conference on mobile ad hoc and sensor systems (MASS), Dallas

52. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-
time systems. In: The 2000 IEEE international symposium on circuits and systems, 2000.
Proceedings. ISCAS 2000, Geneva, vol 4. IEEE, pp 101–104

53. Trujillo S, Crespo A, Alonso A, Perez J (2014) Multipartes: multi-core partitioning and vir-
tualization for easing the certification of mixed-criticality systems. J Microprocess Microsyst
38(8, part B):921–932. Elsevier

54. Ungerer T, Bradatsch C, Gerdes M, Kluge F, Jahr R, Mische J, Fernandes J, Zaykov PG, Petrov
Z, Boddeker B, Kehr S, Regler H, Hugl A, Rochange C, Ozaktas H, Casse H, Bonenfant A,
Sainrat P, Broster I, Lay N, George D, Quinones E, Panic M, Abella J, Cazorla F, Uhrig S,
Rohde M, Pyka A (2013) parmerasa – multi-core execution of parallelised hard real-time
applications supporting analysability. In: Proceedings of Euromicro symposium on digital
system design (DSD), Los Alamitos

55. Valencia J, van Horsen E, Goswami D, Heemels M, Goossens K (2016) Resource utilization
and quality-of-control trade-off for a composable platform. In: Proceedings of design, automa-
tion and test in Europe conference and exhibition (DATE), Lausanne

56. Windsor J et al (2009) Time and space partitioning in spacecraft avionics. In: SMC-IT,
Pasadena

57. Zhang H (1995) Service disciplines for guaranteed performance service in packet-switching
networks. Proc IEEE 83(10):1374–1396

	NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications
	Contents
	Acronyms
	1 Introduction and Requirements
	2 Concepts for a Mixed-Time-Criticality Platform
	3 Hardware Architecture
	3.1 Generic Master IP Block
	3.2 Generic Slave IP Block and Memory Tile
	3.2.1 Arbitration
	3.2.2 SRAM
	3.2.3 DRAM

	3.3 Processor Tile
	3.4 Network-On-Chip
	3.5 Peripherals
	3.6 Memory Map
	3.7 Atomicity
	3.8 No Synchronization Hardware
	3.9 Conclusions

	4 Software Architecture
	4.1 Microkernel and RTOS
	4.2 Drivers
	4.2.1 Example Resource Drivers

	4.3 Virtual Resources and Their Management
	4.4 Synchronization Libraries and Programming Models
	4.4.1 Barrier Synchronization
	4.4.2 FIFO Queues
	4.4.3 Timed Communication
	4.4.4 Programming Models

	4.5 System Application and Application Loading
	4.6 Conclusions

	5 Example CompSOC Platform Instance
	6 Related Work
	7 Conclusions
	References

