
Programming and Analysing Scenario-Aware
Dataflow on a Multi-Processor Platform

Reinier van Kampenhout∗, Sander Stuijk∗ and Kees Goossens∗†
∗Eindhoven University of Technology, The Netherlands

{j.r.v.kampenhout,s.stuijk,k.g.w.goossens}@tue.nl
†Topic Embedded Products, The Netherlands

so

cf

t1 t3t2

df
2 2

dft dis
4 4

bf

t4

2
2

Fig. 1. Scenario graph for decoding a full video frame, Sfull.

Abstract—The FSM-SADF model of computation is espe-
cially suitable for analysing real-time applications with input-
dependent behaviour such as different modes, variable execution
times and scalable parallelism. Although FSM-SADF specifies
which scenario transitions are possible, it does not specify
how and when they are decided at runtime. Multiple actors
of a scenario, e.g. video stream header parsing, may have to
fire before it is known which scenario the application is in.
We solve this causality dilemma with a concept for executing
a sequence of scenarios, and demonstrate an implementation
on multiple processors with rolling static-order scheduling. We
furthermore present a platform-aware analysis model that covers
concept and implementation, and integrate the contributions in
a toolflow. A proof-of-concept confirms the low overhead of the
implementation and the exact timing analysis of our model.

I. INTRODUCTION

Many contemporary real-time (RT) applications are stream-
ing, meaning that data is processed when it is received rather
than read on demand from local storage. The control flow of
such applications often depends on the received data and can
vary per iteration. Upon receiving a video frame for example,
a decoder detects if it is a full frame or delta frame and calls
the appropriate decoding function. In a sequential language,
a programmer may solve such a dependency with a simple
if-else construct as shown in Listing 1.

The dataflow model of computation (MoC) is a natural
way to describe data-dependent behaviour [1]. In particular,
finite-state machine scenario-aware dataflow (FSM-SADF) can
capture different input-dependent control flows in scenarios
[2]. Each control flow is captured in a scenario graph by
the programmer, possibly based on existing sequential code.
The scenario graph for decoding a full video frame (Sfull) is
depicted in Figure 1. When a delta frame is detected, the
application behaviour and thus the scenario graph is different,
see Sdelta in Figure 2. Actor names are abbreviations of the
functions in Listing 1. All allowed scenario sequences are

cf

t1 t5t2

dddft dis
4 2

2

bf

t4

2

Fig. 2. Scenario graph for decoding a delta video frame, Sdelta.

Sfull Sdelta

Fig. 3. The FSM of the video decoder with scenarios Sfull and Sdelta.

specified by the FSM in Figure 3. The graphs will be further
explained in Subsection III-B.

Listing 1 Pseudo-code of an abstract video decoder.
1: frame = buffer_frame()
2: if detect_frame_type(frame) = full then
3: x = decode_full(frame)
4: sub = subtitle_overlay(x)
5: else
6: x = decode_delta(frame)
7: end if
8: output = construct_frame(x)
9: display(output, sub)

While FSM-SADF allows tight analysis of applications
whose control flow is input-data dependent (see Subsection
III-A), it does not include an execution model. Consider the
video decoder, where bf and dft are always executed first.
Only after executing detect_frame_type() the next
scenario is known. At runtime it is impossible to decide which
of the scenario graphs to start with because the frame type is
not yet known. Thus a causality dilemma is encountered during
execution because the next scenario is detected only after the
next scenario graph is partially executed. Another difference
between analysis and execution concerns the consistency of
state (persistent tokens ti) between scenario graphs. Consider
token t2, which stores motion vectors required by both de-
coding functions. During temporal analysis the actual value
of t2 is irrelevant but at runtime it represents state that must



tSw

S
w

d
et

t1

4 4
bf

tctrl

t4

dft

S
e
l d

et

Fig. 4. Analysis graph of the detector scenario Sdet.

so

cf

t3t2

df

2

2

2

2

dis
4

tSw

4

S
e
l f

u
ll

t4

S
w

fu
ll

Fig. 5. Analysis graph of the full frame scenario Sfull.

be consistent between scenarios, especially after a scenario
switch.

In this work we propose a concept for executing scenarios
after one another (sequencing). Because scenarios graphs
capture different behaviours of the same application, we argue
that a given number of actors at the start of each scenario is
identical. After executing this longest prefix graph ({bf ,dft}
and {t1, t4} in our example) the next scenario should be
known. The prefix graph must be tagged by the programmer
after which it is automatically split off in a detector scenario
Sdet, see Figure 4. After execution of Sdet the next scenario
is known and can be executed, e.g. Sfull depicted in Figure
5. This solves the causality dilemma and is explained in
detail in Subsection III-C. We extend the existing analysis
model to capture the exact timing impact of this solution on
the CompSOC platform. This results in a tight throughput
guarantee on the execution of a sequence of scenarios.

We present the following contributions:

• a scenario sequencing concept for FSM-SADF that is
both executable and analysable in Section III;

• a corresponding implementation for scenario execution in
the libDataflow library in Section IV;

• a platform-aware analysis model in Section V.

Related work is discussed in Section II, the contributions
are demonstrated in Section VI. Conclusions are presented in
Section VII.

II. RELATED WORK

Several models of computation are suitable for program-
ming real-time applications, but many of those enforce conser-
vative assumptions when encoding input-dependent behaviour.
The Synchronous Dataflow (SDF) MoC for example captures
all application behaviours in one multi-rate graph [1]. There
are several more flavours of dataflow [3]. For analysis the
SDF3 tool is available, which was extended in the context of
this work [4]. The CAL actor language provides an implemen-
tation [5].

cf

t5t2

dd

2

2

dis
2

tSw

4

S
e
l d

el
ta

t4

S
w

d
el

ta

Fig. 6. Analysis graph of the delta frame scenario Sdelta.

SdetSfull Sdelta

Fig. 7. The extended FSM with detector scenario Sdet.

To capture different behaviours or “modes” a (partially)
different graph can be selected every iteration (full execution)
of the application. Two dataflow models support this: FSM-
SADF and mode-controlled dataflow (MCDF). In the latter,
the programmer captures all modes in one graph using a set of
rules and special actors, namely a mode controller and switch
and select actors [6]. The same graph is used both for temporal
analysis and execution on the platform. Mode transitions
are implicitly encoded in the mode controller. Partial graph
execution is achieved by selecting a different schedule for each
mode, dubbed quasi-static order scheduling (QSOS). FSM-
SADF has similar expressiveness, but here the programmer
creates scenario graphs with SDF semantics for each behaviour
[2]. The FSM describes allowed scenario transitions. A key
difference with MCDF is that no execution model is specified.

Our contribution is to execute scenario graphs directly,
with minimal effort for the programmer. The analysis and
execution graphs described in Sections III and V are generated
automatically. During analysis our switch and select actors
behave as normal SDF actors, allowing full re-use of existing
analysis techniques. During execution these actors behave as
their MCDF counterparts. The execution graph is reminiscent
of MCDF, but the mode controller is replaced by the detector
scenario [6]. Unlike QSOS, our SO schedule is extended
immediately after detection of the next scenario (mode).

An existing FSM-SADF programming model splits off one-
actor detector scenarios in a similar way [7]. There all actors
fire but execute the encapsulated functions conditionally based
on a scenario identifier token. This causes a considerable
overhead in large graphs, which we avoid here. Also, it does
not present an analysis model such as presented in Section
V. Another programming model named disciplined dataflow
networks allows to extract FSM-SADF graphs for analysis [8].
While it also leverages existing tools, it cannot execute FSM-
SADF directly.

We mapped an application onto the CompSOC platform to
demonstrate our concept and implementation [9]. The avail-
able libDataflow and libFIFO libraries implement dataflow
execution and first-in first-out (FIFO) channels. A homoge-
neous synchronous dataflow (HSDF) timing analysis model is
available for the platform [10].



III. SCENARIO SEQUENCING CONCEPT

A. Motivation

Static MoCs such as SDF cannot respond to input-dependent
behaviour, resulting in a conservative throughput bound. Con-
sider the code in Listing 1, where decode_full() or df
has a longer WCET than decode_delta(). Yet due to
data dependencies invisible at this level of control flow, the
WCET of construct_frame() or cf might be longer for
a delta frame. SDF analysis will consider the WCET of df and
longest WCET of cf at the same time, although this situation
can never occur. This results in an overly negative throughput
bound [11]. FSM-SADF analysis considers a unique WCET
for each actor in each scenario. Thus combinations that can
never occur are excluded, resulting in a tight throughput bound
on an applications worst-case throughput by considering the
worst possible scenario sequence in the FSM [3].

Multiple application behaviours can be encoded in sce-
narios. For example, different control flows can be captured
by varying the graph topology, thereby also changing the
mapping. Thus the degree of parallelism in an application can
be varied to deal e.g. with varying resource availability or
quality-of-service requirements. Different rates can be applied
to maintain throughput when dynamic voltage and frequency
scaling is used. Modelling different WCETs is useful for
functions such as variable length decoding for different frame
types. Executing multiple scenarios after each other, including
Sdet, is the topic of this section.

B. Semantics

The full frame scenario depicted in Figure 1 is a graph with
predefined topology and rates. The nodes represent the actors
named {bf ,dft, ...}, each with a known WCET. The edges
represent channels, the rates at their start and end indicate
how many tokens are produced and consumed each time the
actors fire (execute). Persistent tokens indicated with ti appear
on some channels and are present at the start and end of each
iteration of the graph.

The delta frame scenario is depicted in Figure 2, and
the scenario sequences that are allowed in Figure 3. Some
actors occur in both scenarios, possibly with different rates:
{bf ,dft, cf ,dis}. Different rates may result in a different
repetition vector, which is the number of times an actor fires
each iteration. Other actors occur only in one scenario but
might consume a persistent token that occurs in multiple
scenarios: {df ,dd, so}).

In short, channels and actors can be connected at will in
different scenarios, allowing programmers to express coarse-
grained changes in the control flow. We pose a constraint in the
context of this work, which is that there must be an identical
subgraph that is the longest prefix graph of each scenario. This
subgraph must consist of at least one actor, and the repetition
vectors of the actor(s) must be identical in each scenario. After
execution of the subgraph the next scenario must be known.

C. Sequence Analysis

Section I introduced a solution to the causality dilemma
by splitting off the detector scenario Sdet from the original
scenarios, see Figure 4. Identification of the detector subgraph
is a task of the programmer for now, all the steps described
next are automated. First the FSM is transformed, Sdet is now
executed before each transformed original scenario. See Figure
7, the starting state is indicated with an incoming edge.

To model the transport of tokens from and to the detector
scenario, we leverage switch and select actors borrowed from
boolean dataflow. These are instantiated on the outgoing
channels (switch) and incoming channels (select) at which
the scenario graphs are split, and assigned a WCET of zero.
See Figures 5 and 6. Each Sw and Sel receives a self-
edge with a synchronisation token that has the same label in
every scenario. This ensures that each synchronisation token
is modeled as one physical token during analysis, as proposed
in [12]. Token t4 is a special case. To synchronize execution
of Sel we need Seldet to fire before bf . Therefore t4 is
moved onto a self-edge and fact replaces the synchronisation
token. Additionally we need one initial control token tctrl.
The analysis graphs thus generated are shown in Figures 4,
5 and 6. The Sw and Sel actors as well as newly inserted
channels and tokens actors are indicated in grey.

Throughput analysis with SDF3 uses the timestamps at
which tokens are consumed and produced, the actual data
value of tokens is not relevant. Temporal analysis of decoding
a full video frame with SDF3 visits the scenarios as indicated
by the FSM, starting with Sdet:

1) Seldet fires and produces a token on the channel to bf
as well as the new t4 at time τ1;1

2) bf fires, followed by dft which detects scenario Sfull;
3) dft produces its data tokens on the black channel to

Swdet and a control token onto each grey channel;
4) Swdet fires and produces the new tSw at time τ2;

This concludes Sdet. Note that the Sw and Sel actors did
not consume time, i.e. they produce tokens immediately after
consumption. Persistent tokens become available in the next
scenario from the moment they are produced. We will see that
this achieves synchronisation in Sfull:

5) Swfull is blocked until τ2, then it fires and produces tSw
and the data tokens towards df ;

6) df fires also at τ2, i.e. immediately after dft;
7) Sfull continues to execute as normal until dis fires;
8) Selfull fires as soon as the token from dis is available,

producing t4 at τ3.

This concludes analysis of Sfull. Note that Sdet can start again
while Sfull is underway, but Seldet is blocked until τ3. We
see that the switch and select are synchronisation portals that
model the transport of tokens between scenarios. The analysis
of a delta frame is similar.

1No time has elapsed and the token distribution is now as in Figure 1,
therefore the two starting states are equivalent regardless the location of t4.



t1

4 4
bf

so

cff

t3t2

df

2

2

2

2

disf
4

4

cfd

t5t2

dd disd

4

2
2

t4

S
w

2

dft S
e
l

Fig. 8. The merged execution graph, the switch and select actors are indicated
in grey.

IV. SCENARIO EXECUTION

The scenario sequencing concept presented in Section III
adheres to FSM-SADF and is analysable with existing tools.
The throughput analysis result of the original graphs and
of the split scenarios is identical. From the implementation
perspective, the split solves the causality dilemma because the
next scenario graph is only started after it is detected. In this
section we present an implementation for executing a sequence
of scenarios that solves the following practical aspects:

A. switch and select implementation;
B. extending static-order actor schedules on-the-fly;
C. sharing persistent tokens (state) between scenarios.

A. Switch and Select Implementation

During analysis the switch and select actors ensure synchro-
nisation but function as regular SDF actors. While scenarios
are analysed separately, our implementation glues Sdet to the
other scenarios. In practice they act as multiplexer (switch)
and de-multiplexer (select). For execution there is one detector
subgraph serving both Sfull and Sdelta with tokens, see Figure
8. Actors Sw and Sel are indicated in grey. Synchronisation
token tSw is not relevant for execution.

Such (de-)multiplexers are not available in the current
libDataflow library. Consider a switch, whose data tokens on
the input port are forwarded to one of the output ports. The
rate on the other output is effectively zero. Both changing
rates within a scenario and rates with value zero are currently
not supported. Note however that the models from Subsection
III-C fully adhere to the FSM-SADF MoC.

We propose a solution that exploits the fact that libFIFO
buffers can be disconnected and reconnected without invali-
dating data. A switch actor will have a just a single output
port, to which the proper channel is connected depending on
the detected scenario. See Figure 9. This swapping of FIFO
channels is indicated with the symbol for an electrical switch,
which connects the single output port either to the channel to
df or that to dd. The other channel is left unconnected on one
end, effectively giving it rate zero. The FIFO swap must take
place before the firing rules of Sw are checked, i.e. before
it fires. The behaviour during runtime can be matched to the
analysis steps listed in Subsection III-C as follows:

t1

4 4
bf

so

cff

t3t2

df

2

2

2

2

disf

cfd

t5t2

dd disd

2
t4

S
w

2

4

2

4

S
e
l

ls

dft

Fig. 9. The merged execution graph with implementation details, the
switch/select and load schedule (ls) actors for a one-processor mapping are
indicated in grey. The swapping of FIFO channels is indicated with the
electrical symbol for a switch, also in grey. Note that this is not a valid
dataflow graph.

(a) the output port of Sw is connected to the FIFO towards
df ;

(b) Sw fires and consumes all of its tokens (4 in III-C);
(c) Sw produces tokens into the connected FIFO (5);
(d) execution of Sfull continues as usual (6, 7, 8, 1).

Select actors are similar but demultiplex two channels to one.

B. Extending Static-Order Schedules

The libDataflow library executes dataflow graphs by iterat-
ing over the static-order (SO) schedule that is given by SDF3

for each processor. It blocks if an actor is not ready to fire.
However, the SO schedule of our proposed solution changes
depending on the detected scenario. Therefore we introduce a
new scheduling concept that we dub the rolling static-order
(RSO) scheduler.

Execution starts with Sdet, so if we were to map the
decoder to a single processor the SO schedule starts with
[bf ,dft,Sw]. After firing dft the next scenario is known and
the SO schedule can be extended. Should Sfull be detected,
the sequence [df , cff , cff , so,disf ,Sel,bf ,dft,Sw] must be
concatenated to the “rolling” schedule. Note that Sel comes
at the end of Sfull, and we immediately concatenate the next
detector scenario. In this way it is ensured that the scheduler
will never run out of actors to schedule. A multi-processor
mapping works similarly, the only constraint we impose is
that a switch must be mapped onto the same processor as the
actor preceding it.

The RSO scheduler was implemented in libDataflow for
the CompSOC platform. We initialize it with a unique SO
schedule for each scenario, the start is set to Sdet. An additional
load schedule (ls) actor is inserted right after dft on every pro-
cessor. See Figure 9 for the single-processor example. These
ls actors receive a scenario token from dft and extend the
schedule accordingly. The example schedule of Sdet changes
to [bf ,dft, ls,Sw]. We furthermore exploit the ls actor to
connect all FIFOs correctly before the firing rules of Sw or
Sel are checked. This dependency is visualized with a grey
channel in Figure 9.



p
a

ti

b
q

Fig. 10. Graph with two actors a and b, connected by a FIFO with production
rate p, consumption rate q and persistent token ti.

C. Shared Persistent Tokens

Lastly, persistent tokens that appear in multiple scenarios
must be consistent during execution. We solve this by instan-
tiating the FIFO that contains such a token only once, and
map the appropriate port from the source and destination actor
in every scenario in which the token appears to that FIFO.
Connecting multiple ports to a single FIFO is another useful
property of libFIFO that avoids synchronisation issues. It leads
to the requirement that all source actors of the same FIFO
must be mapped onto the same processor in each scenario,
and all destination actors as well. Also, multiple persistent
tokens mapped onto one channel should appear in the same
combination in each scenario.

V. PLATFORM-AWARE ANALYSIS MODEL

Section III introduced a scenario sequencing concept, Sec-
tion IV described the implementation. To ensure correct timing
analysis we re-visit the MoC and extend the existing platform-
aware analysis model so that the exact timing impact of our
solution is analysed. SDF3 generates different mappings from
a set of storage distributions. The throughput of each mapping
is analysed after expanding the mapped scenario graph to a
binding-aware graph (BAG) [13]. This means the graph is
annotated with timed models of the hardware and software
platform components such as the Network-on-Chip (NoC) and
the SO schedule. We will now discuss how each of the three
changes from Section IV is modelled in the BAG.

The timing impact of Sw and Sel actors is modelled as
follows. Firstly, the time required by the Sw and Sel actors for
simply forwarding the data tokens is added to their execution
time in Sdet. Secondly, the time it takes to connect the correct
FIFOs to these actors is added to the ls actor on that processor.
The time for extending the rolling SO schedule is also added
to ls. Thirdly, connecting multiple actors to one FIFO that
holds a persistent token requires no changes but reduces the
memory footprint.

SDF3 can analyse and map SDF and cyclo-static dataflow
(CSDF) applications onto a CompSOC platform using an
HSDF platform model [9], [10]. In the context of this work we
extended the HSDF platform model for FSM-SADF analysis.
The key difference is that HSDF is mono-rate, meaning that all
rates on all channels have a value of one, but scenario graphs
are multi-rate. Let us consider the example shown in Figure
10. If actors a and b are mapped to different processors, the
channel is replaced by a combined model of the DMA, NoC
and CoMik microkernel as explained in [10]. We extended
that work and annotated the original HSDF model with rates as
shown in Figure 11, which also shows the location of persistent
token ti in the model.

Tile 1

na,b

nb,a

a

La

da,b

db,a

Lb

b

Tile 2

Proc. DMA Proc. DMA
p p p p p q

q
q

p
p

NoC

ti

q qq qq

p
p

p ba,b

bpa,b

Fig. 11. CompSOC binding-aware model of the graph in Figure 10 with both
actors mapped to different processors, based on [10]. Proc denotes processor,
bpa,b and ba,b model the source buffer and the FIFO buffer.

A consequence of multi-rate graphs is that actors can have a
repetition vector larger than one. This complicates the schedule
encoding in the BAG because multiple actors might be enabled
(ready to fire) at the same time. The encoding must ensure that
only the scheduled actor fires. The original HSDF schedule
encoding cannot do this, so we integrated an existing technique
in the FSM-SADF toolflow that can [14]. The actors modelling
the DMA units ({da,b,db,a} in Figure 11) follow the schedule
of the actors whose FIFO they model, and must therefore be
encoded using the same method. This introduces additional
complexity because there can be multiple DMA actors per
regular actor. We add simple dependency edges between these
that follow the order in which the tokens are consumed
or produced. This limits the number of enabled actors for
the schedule encoding, simplifying the BAG. However, as
DMA actors belonging to different regular actors on the same
processor have no such implicit dependencies, the schedule
encoding still considers all of those enabled at the same time.
To enforce ordering, extra persistent tokens are inserted in the
BAG which can slow down analysis for graphs with high rates.

Once a mapping is selected, the scenario graphs are merged
together automatically which results in the graph shown in
Figure 8.

VI. EXPERIMENTAL EVALUATION

A. Setup

To demonstrate the concept, model and implementation we
mapped a dataflow version of the SUSAN edge detection algo-
rithm onto a two-processor CompSOC platform [15]. Scenario
Sseq is a sequential graph that represents the original algorithm,
see Figure 12. Scenario Spar is a parallelized version, see
Figure 13. The algorithm reads an image block by block, one
of the graphs must be executed for each block. Scenarios are
switched based on the image resolution, the FSM is similar to
the one shown in Figure 7.

If mapped to two or more processors, scenario Spar can
achieve a higher throughput because the computationally
intensive actors usan and dir (direction) can be executed
in parallel ([us1,dir1] and [us2,dir2]). To provide both
these chains with a block, split should have a consumption
rate of two. This means the get (get image) actor has to
execute twice. To not violate the constraint concerning the
identical repetition vectors of actors in the detector scenario,
the production rate on the channel from get to usan in



t1

putget usan dir thin
2

Fig. 12. Scenario graph of the sequential SUSAN scenario, Sseq.

t1

put

us1

tm

us2

get split

2

2

2 2
dir1

dir2

Fig. 13. Scenario graph of the parallelized SUSAN scenario, Spar.

Sseq must also be two. This implies each image must contain
an even number of blocks, and is an example effect of the
constraints that we impose.

We instantiated a CompSOC platform with two processors,
both clocked with a frequency of 100 MHz. Each processor
features instruction and data memories of 256 kB each as well
as one DMA with two communication memories of 16kB each.
The processors are connected to each other and to an external
DDR memory via a NoC [9].

B. Results

The SDF3 tool takes the scenario graphs annotated with
execution times and memory requirements as an input, plus
an architecture file. The throughput is defined as the inverse
of the number of cycles required to complete one iteration of
the application. The analysis gives a maximum throughput of
2.7 · 10−7 for SUSAN. We measured a throughput of 3.1 ·
10−7 when executing the application on the platform using
the implementation described in Section IV. The fact that the
actual throughput is a little higher than the throughput given by
the analysis shows that the model is conservative. The graphic
output of the SUSAN edge detection algorithm is shown in
Figure 14.

A load schedule actor takes 365 cycles to execute including
the wrapper, the switch actor takes 1635 cycles. This brings the
timing cost of our libDataflow modifications to 2000 cycles,
which are accounted for in the analysis model. We argue that
the impact of scenario sequencing on the applications timing is
minimal, as the total WCET of SUSAN is 3.3 million cycles.
The size of the library is increased by 3 kB.

VII. CONCLUSION

A causality dilemma is encountered when attempting to
execute a sequence of FSM-SADF scenario graphs. In this
work we propose a concept and implementation for executing
a sequence of scenarios that solves this dilemma with minimal
effort for the programmer. A detector prefix graph must be
tagged, after which the scenarios are automatically split and
annotated for analysis. The resulting platform-aware model
captures the exact timing impact of the implementation, and
fully adheres to FSM-SADF.

Fig. 14. Original test image (left) and the output of SUSAN. The outer band
of the image is skipped.

We implemented the concept in the libDataflow library.
The rolling static-order scheduling method extends the SO
schedule each time a scenario is detected. Mapping the
SUSAN edge detection algorithm onto a two-processor plat-
form resulted in a throughput that is slightly higher than the
bound given by the analysis. This shows the analysis model
is both conservative and precise, while the cost in terms of
timing and memory footprint is marginal. The overall approach
allows to capture input-dependent applications in FSM-SADF
and execute them on multi-processor hardware in an automated
manner.

ACKNOWLEDGMENTS

This work was partially funded by projects CATRENE
ARTEMIS 621429 EMC2, 621353 DEWI, 621439 ALMARVI.

REFERENCES

[1] E. Lee and D. Messerschmitt, “Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing,” IEEE Transactions, 1987.

[2] B. D. Theelen et al., “A scenario-aware data flow model for com-
bined long-run average and worst-case performance analysis,” in
MEMOCODE, 2006.

[3] S. Stuijk et al., “Scenario-aware dataflow: Modeling, analysis and
implementation of dynamic applications,” in SAMOS, 2011.

[4] ——, “SDF3: SDF For Free,” in ACSD, 2006.
[5] J. Eker and J. W. Janneck, “CAL Language Report: Specification of the

CAL actor language,” UC Berkeley, Tech. Rep., 2003.
[6] O. Moreira and H. Corporaal, Scheduling Real-Time Streaming Appli-

cations onto an Embedded Multiprocessor. Springer, 2014.
[7] R. van Kampenhout et al., “A Scenario-Aware Dataflow Programming

Model,” in DSD, 2015.
[8] F. Siyoum et al., “Automated extraction of scenario sequences from

disciplined dataflow networks,” in MEMOCODE, 2013.
[9] K. Goossens et al., “Virtual Execution Platforms for Mixed-time-

criticality Systems: The CompSOC Architecture and Design Flow,”
SIGBED Rev., 2013.

[10] A. Nelson et al., “Dataflow Formalisation of Real-time Streaming
Applications on a Composable and Predictable Multi-Processor SOC,”
JSA, 2015.

[11] S. V. Gheorghita et al., “Automatic Scenario Detection for Improved
WCET Estimation,” in DAC, 2005.

[12] F. Siyoum et al., “Worst-case Throughput Analysis of Real-time Dy-
namic Streaming Applications,” in CODES+ISSS, 2012.

[13] S. Stuijk et al., “Multiprocessor Resource Allocation for Throughput-
constrained Synchronous Dataflow Graphs,” in DAC, 2007.

[14] M. Damavandpeyma et al., “Modeling static-order schedules in syn-
chronous dataflow graphs,” in DATE, 2012.

[15] S. Smith and J. Brady, “SUSAN—A New Approach to Low Level Image
Processing,” IJCV, 1997.


