
An Embedded CAN Controller for a
Vehicle Networking Course Project

Gabriela Breaban, Martijn Koedam, Jeroen Voeten, and Kees Goossens
Eindhoven University of Technology, The Netherlands

{g.breaban,m.l.p.j.koedam,j.p.m.voeten,k.g.w.goossens}@tue.nl

ABSTRACT
The automotive industry advances quickly, with new func-
tionalities continuously being introducted. The Eindhoven
University of Technology’s Bachelor Automotive Programme
prepares students for the subsequent Master education, for
industry, and research. In this paper we present the in-
frastructure and the organisation of the third-year Vehicle
Networking course that introduces the current and future
automotive networks to students. In the practical part of
the course the students use a multiprocessor platform to im-
plement and test an embedded CAN controller. We present
requirements and how we address them in the platform ar-
chitecture, the server-based FPGA infrastructure, and how
students design, debug, and analyse their CAN controller.
We conclude with lessons learnt and future improvements.

1. INTRODUCTION
Automotive is an important application domain with high

innovation. New technologies are added at a high rate to
modern vehicles. Automotive engineers must be skilled in
many state-of-the-art technologies. This motivated the Eind-
hoven University of Technology (TUE) to create specialised
automotive programs at Bachelor (BSc), Master (MSc), and
Professional Doctorate (PDEng) levels. The students follow-
ing the automotive specialisations will be educated in the
latest and emerging concepts and technologies. For Elec-
trical Engineering two technology domains stand out: com-
putation, implemented on Electronic Control Units (ECU),
and communication between sensors, actuators, and ECUs.

Typical communication protocols include LIN, CAN, Flex-
Ray, TTEthernet, etc. Of these, CAN is the most widely
used network [7], with automotive Ethernet variants poised
to take over. In addition, dependable wireless intra- and
inter-vehicle networks are emerging. Regarding computa-
tion on the ECUs, a shift from the single-processor platforms
to multi-processor platforms in underway [10]. This is ev-
idenced by the AUTOSAR standard supporting the multi-
core paradigm by extending the basic software architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESWEEK ’16 Pittsburgh, PA USA
© 2016 ACM. ISBN X-XXXXX-XX-X/XX/XX. . . $15.00

to include the multi-core concepts as of release 4.1.1 [1].
In this paper we present the Bachelor Vehicle Networking

course (5AIC0) from the Electrical Engineering department
of the Eindhoven University of Technology (TUE). The 5-
ECTS course has been given for two years to the third-year
Bachelor students.

1.1 Course Goals
The vehicle-networking course aims to teach general net-

working concepts (protocol stacks, performance, routing,
congestion, etc.) and techniques (framing, pipelining, mul-
tiplexing) to implement communication services with a cer-
tain quality. Students must understand how these concepts
are used in traditional networks such as ATM, Internet, and
wireless networks. Next, the automotive domain is intro-
duced with its particular characteristics, such as harsh elec-
tronic environments, real-time, robustness, reliability, and
safety. Students must understand how networking tech-
niques are applied in automotive networks such as LIN,
CAN, time-triggered CAN, FlexRay, time-triggered Ether-
net, and wireless IEEE 802.15.4, and so on. Next to un-
derstanding concepts, students must be able to apply their
knowledge in making mathematical models of networks to
compute and/or optimise service parameters. For automo-
tive networks this includes CAN and TTEthernet perfor-
mance analysis and scheduling techniques. Finally, students
must be able to apply their knowledge by implementing part
of a network protocol stack, and reporting on it.

1.2 Course Structure
Traditional lectures are used to teach general and auto-

motive networking concepts and techniques. Application of
knowledge is encouraged with analytical exercises and home-
work. A group project ensures practical hands-on applica-
tion of theory. In terms of organisation, the course takes
eight weeks, with two four-hour slots per week. Figure 1
illustrates the dove-tailing of the teaching of general and au-
tomotive networking with the project, to practically apply
new knowledge as soon as possible.

This paper focuses on the project and the innovation in
how it is technically organised. In the project students work
in pairs to implement the Medium Access Control (MAC)
layer of a CAN driver in C. Students must deliver C code and
a report describing their design, implementation, and veri-
fication/experiments. CAN was chosen because it is widely
used. Its MAC layer illustrates CAN’s unique carrier-sense
multiple access with conflict resolution (CSMA/CR) tech-
nique, and is not too difficult to implement.

general
networking

concepts and
techniques

(40%)

automotive
networking

concepts and
techniques

(25%)

project
(35%)

6 2 8 4 5 1 7 3

 8
 h

ou
rs

 p
er

 w
ee

k

weeks

Figure 1: Distribution of topics over the course du-
ration of eight weeks with eight hours per week.

1.3 Project Goals & Innovation
We aim to achieve the following goals with the project:
1. Students understand the PHY and MAC layers of the

CAN protocol, as evidenced by implementing the MAC
layer. It also refreshes the C programming skills of
students, taught earlier in the curriculum.

2. Students can analyse CAN performance, evidenced by
allocating CAN priorities to achieve real-time require-
ments of a set of communicating sensors and actuators.

3. Students are aware of real-time processor performance
constraints, as evidenced by implementing the CAN
MAC layer in the limited time budget available to pro-
cess each CAN PHY symbol. They must also take into
account the TDM microkernel on each processor.

4. Students are aware of inter-process communication,
which is achieved by a communication API between
sensor/actuator and CAN driver.

5. Students can work on their projects from any location
over the Internet.

6. There is no need to buy CAN hardware and software
tooling. This and the previous bullet are required to
scale the course with increasing student numbers.

These goals are achieved by a predictable and composable
CompSOC platform [4] containing multiple processors ex-
tended with an embedded CAN bus and associated APIs.
The platform is shown in Figure 2.

debug interconnect

Daelite network on chip

processor
tile 1

processor
tile 2

processor
tile 3

video
tile

PC
(host)

DRAM
memory

tile

Embedded CAN bus

VGA frame
grabber

internet
stream

trace
files

processor
tile 5

(debug)

processor
tile 4
(CAN

observer) UART

Figure 2: The CompSOC Platform with an Embed-
ded CAN bus.

1. Each processor can host one or more sensors and/or
actuators, and each sensor/actuator has an accompa-
nying CAN driver on the same processor.

2. The CoMik microkernel on each processor ensures com-
posability: students can develop their CAN driver in-
dependently from other applications (sensors, actua-
tors) running on the same platform and/or processor.

3. The CoMik microkernel is predictable, and students
achieve real-time performance for their CAN drivers.

4. A novel embedded CAN bus interconnects the memory-
mapped CAN interfaces on all processor tiles in the
platform. The speed of the CAN bus can be scaled to
make the real-time performance requirements on the

CAN driver easier or harder [2].
5. Students are given simple APIs for inter-process com-

munication (between sensor/actuator and CAN driver)
and to access the CAN PHY (from driver to the CAN
hardware interface).

6. The edit, compile, and debug cycle takes place on a
linux server, to which students connect over the Inter-
net (using ssh). Students use only the standard C tool
chain and a simple “make fpga-run” command. Tra-
ditional ECUs require a more complex flashing and
debugging tool chain.

7. Multiple CompSOC platforms, each implemented on
an Xilinx ML605 board, are permanently available to
students over the Internet through servers. The board
server load balances, loads student programs in the
CompSOC platform, executes programs, and returns
the results of execution either via video output (avail-
able over the Internet) or a log file with the TTY out-
put. This server set-up has been used for a number
of years in several other courses (Embedded Systems
Lab, Embedded Control) [6, 9]. A classical automotive
set-up with discrete ECUs and CAN bus would require
scheduled access to labs, which is less flexible.

The following sections first give background information
on the CompSOC platform (Section 2). Following that we
describe the hardware and software additions made to the
platform for the course in Section 3. Section 4 describes
the server infrastructure, and Section 5 the test cases given
to students. Section 6 gives the pedagogical lessons learnt
from the course, and Section 8 draws conclusions.

2. THE COMPSOC PLATFORM
The CompSOC is a multi-processor platform prototyped

on the Xilinx ML605 FPGA. We give the minimum back-
ground, details are in, e.g., [4]. A CompSOC platform con-
sists of multiple tiles, interconnected by a Network on Chip
(NoC) [11]. Memory tiles contain SRAM or DRAM to offer
a distributed shared memory programming model. Proces-
sor tiles contain a Microblaze processor with a instruction,
data, and communication memories, as well as one or more
DMAs. The video tile reads video frames from the DRAM
and sends them to a VGA interface that can be connected to
a monitor or screen grabber. The debug tile is a processor
tile with access to a UART interface that is connected to a
PC, allowing bidirectional communication. Using the debug
interconnect, each tile can send (limited) information to the
debug tile, which is then forwarded to the PC.

A platform can run multiple applications concurrently.
Each application can use a NOC, multiple processors, mem-
ory tiles, etc. All resources, except the DMAs are shared
between applications. Sharing between applications is com-
posable, which eliminates any interference between applica-
tions, and predictable for real-time performance.

Figure 2 illustrates the platform used in the course, which
runs at 100 MHz. Components newly created and added for
the course are coloured, and described in the next Section.

Each processor runs the CoMik [8] microkernel, which cre-
ates non-interfering partitions, i.e. cycle-accurate temporal
isolation. This is achieved by using TDM and allocating a
number of slots to each partition. In addition, each partition
has its own stack and heap for spatial isolation of partitions.

Communication between tasks of an application on the
same or different processor tiles is performed with a specially

developed sampling channel, described in Section 3.4.
A debug library allows applications to send information

to the PC via the debug tile and UART, albeit at a low
bandwidth. The debug API automatically time-stamps the
debug data, to ease debugging of real-time performance of
distributed (multi-core) applications.

3. THE CAN MAC DRIVER PROJECT
Students have to design and implement a CAN MAC

driver, and test it on a number of test cases, and document
their work in a report. To allow the students to focus only
on the CAN driver, we extended the standard CompSOC
platform and design flow with the following:

1. An embedded CAN bus. Processor tiles 1-3 have two
embedded CAN bus interfaces each. The CAN ob-
server tile has one CAN bus interface. They are illus-
trated in red in Figure 2.

2. A CAN PHY library allows applications to sense/read
the current symbol on the CAN bus and to send a
symbol on the CAN bus, using the memory-mapped
access to the CAN interface. This is the vertical API
“V” in Figure 3 (which only shows one CAN interface,
sensor, actuator, and driver, for space reasons).

3. Processor tiles 1, 2, and 3 each run four independent
applications: two sensor/actuator applications and two
CAN driver applications. The behaviour of sensor and
actuator applications, i.e. priority, period and offset
of sending and receiving messages, can be configured
easily by students in a C header file per sensor/actu-
ator (s.h and a.h in the figure). Each sensor/actuator
has a dedicated CAN driver.

4. An inter-task communication library, allowing sensors
to send messages to the MAC driver, and allowing ac-
tuators to receive messages from the MAC driver. This
is the horizontal API “H” in Figure 3.

5. A simple software tool to present debug information
received by the PC from the debug processor in an
easy-to-read format.

6. A simple directory structure and makefile; students
need only write one C function for the CAN MAC
driver, and configure the sensor and actuator header
files. The driver function (dr.c) in the figure 3 is au-
tomatically inserted in all CAN applications.

7. A server-based infrastructure to program applications
and to execute them on FPGAs.

8. A series of progressively more advanced tests, allowing
students to incrementally build and test their drivers.

We will describe all components in the following sections.

3.1 Embedded CAN Bus Hardware Interface
The CompSOC platform was extended to include an on-

chip CAN bus with an associated CAN observer tile. Each
processor tile can have zero or more CAN hardware inter-
faces (two in the platform used in the course). A processor
uses memory-mapped I/O on the local peripheral AXI bus
(as shown in the figure 3) to access the CAN hardware in-
terface. Three registers are exposed to the CAN PHY API
(described below): time, read, and write. Processor trans-
actions to these registers result in writing a dominant or
recessive symbol on the CAN bus, or read the symbol status
of the bus. As shown in Figure 3, the CAN bus consists of a
wired-AND with a single bit input from all CAN hardware
interfaces. The AND’s output is computed by sampling its

processor local
memories

DMAs

CAN PHY

FSL

debug
interconnect NOC

DTL

sensor
app.

driver
app.

actuator
app.

driver
app.

H H

V
 V

dr.c dr.c s.h a.h

wired
AND

... ... CAN bus

CoMiK

set out in

AXI

Figure 3: Tile Hardware & Software Architecture.

input every CAN symbol (4000000 cycles at 100 MHz), and
then distributed to the CAN hardware interface of the pro-
cessor tiles. The CAN bus clock is subsampled from the
system clock. For the course, the CAN bit rate is only 25
bits per second, to make sure that the students’s driver does
not have to be very fast. We have shown in [2] that speeds
up to 100 kbits per second are possible.

The CAN hardware interface also has a “set” output that
indicates whether the processor tile has updated the current
symbol or not. These bits are routed to the CAN hardware
interface on the CAN observer tile, which forwards this in-
formation to the debug processor. This feature greatly helps
in debugging, as we describe below.

The CAN bus and the CAN hardware interface in the tile
are automatically generated by our design flow together with
the rest of the platform [5].

3.2 Embedded CAN Bus Software API
We offer a simple software API, shown as the vertical in-

terface “V” in Figure 3, to facilitate software access to the
CAN hardware interface. can_phy_tx_symbol (over)writes
a dominant or recessive value on the bus in the current
symbol duration. The default output of the CAN hard-
ware interface is recessive, even when no symbol is written.
can_phy_rx_symbol_blocking waits until the end of current
symbol and then returns the result of the bus arbitration.
Both functions operate on a (pointer to) a CAN hardware
interface structure, to allow multiple interfaces on a single
processor tile. The time field (register) is used by the soft-
ware API to block until the end of the current symbol when
reading. At the start of each CAN symbol the hardware
resets the “set” bit used for debugging. Since the CAN bus
operates on a subsampled system clock, the CAN bus’s sym-
bol length can be expressed in clock cycles.

3.3 Sensor and Actuator Specification
Sensors and actuators essentially produce, resp. consume,

CAN messages periodically. Their behaviours are specified
with a simple C header file (s.h and a.h in Figure 3) contain-
ing message priority, period, offset, and size (for sensors), or
period, offset, and priorities (for actuators). Sensors produce
messages with one identifier (priority) only, where actuators

typedef enum {RECESSIVE=1, DOMINANT =0} CAN_SYMBOL;
/* CAN symbol length in processor clock cycles */
#define CAN_PHY_SYMBOL_LENGTH 1000
/* memory -mapped CAN hw interface registers */
typedef struct {

uint32_t time , read , write;
} CAN_PORT;
void can_phy_tx_symbol(

volatile CAN_PORT *pPort ,
CAN_SYMBOL state);

void can_phy_rx_symbol_blocking(
volatile CAN_PORT *pPort ,
CAN_SYMBOL *pSymbol);

Figure 4: CAN PHY software API (can phy.h).

can receive messages with different priorities. Students de-
termine these parameters as part of their project (Section 5).

/* Sensor (CAN bus master) schedule */
#define CAN_MSG_PRIO_1 0
#define CAN_MSG_TX_PERIOD_1 6750000000
#define CAN_MSG_TX_OFFSET_1 0
#define CAN_MSG_TX_DLC_1 3
/* Actuator (CAN bus slave) schedule */
#define CAN_MSG_RX_PERIOD_1 6750000000
/* 2x worst -case CAN frame = 2x137 symbols */
#define CAN_MSG_RX_OFFSET_1 3500000000
#define CAN_MSG_RX_PRIOS_1 4
int rxPrioFilt_1[CAN_MSG_RX_PRIOS_1] = {0,1,3};
/* actuator 1 receives message IDs 0,1,3 */

Figure 5: Specifications of Sensor 1 and Actuator 1.

3.4 Inter-Task Communication API
As mentioned before, each processor runs four applica-

tions, in composable partitions. Each sensor and actuator
must have its own driver. In the course, (rather arbitrarily)
processor tile 1 has two sensors, tile 2 and 4 have a sen-
sor and actuator, and tile 3 has two actuators. The CAN
MAC driver must accept messages (CAN frames) from sen-
sors, and convert them to a series of symbols to be placed on
the bus. Conversely, the driver must reconstitute symbols
on the bus to CAN frames, and send them to the actua-
tor if they have the required message identifier. The inter-
task communication between sensors/actuators and driver
is sampling, and thus potentially lossy. If the driver does
not consume messages quickly enough from the sensor, they
are overwritten and lost. Similarly, if the driver would send
messages faster than the actuator’s sampling rate, then mes-
sages would be overwritten and lost.

Figure 6 describes the API on the driver’s side (“H” in
Figure 3), which students use. The driver has a pointer to
a lossy communication channel (ppSensor and ppActuator)
over which messages (CAN frames) are received from sen-
sors or sent to actuators. can_mac_rx_next_frame is non-
blocking.

When implementing the MAC driver, the students need
to use the CAN PHY API to create the frame bit by bit and
the communication API to access the transmit and receive
message buffers. Furthermore, they receive the template
code shown in 8 inside of which they need to place the
driver code. The template includes a short example showing
how the CAN PHY and MAC interfaces can be used to get
a CAN message from the sensor and transmit it bit by bit.

typedef struct {
uint32_t ID;
uint32_t DLC;
uint64_t Data;
uint32_t CRC;

} CAN_FRAME;
/* API used by the CAN MAC driver */
bool can_mac_rx_next_frame(

CAN_FRAME * volatile * ppSensor ,
CAN_FRAME * pTxFrame);

void can_mac_tx_next_frame(
CAN_FRAME * volatile * ppActuator ,
CAN_FRAME * pRxFrame);

/* API used by sensors (not for students) */
bool CAN_write(uint32_t sensorId ,

const CAN_FRAME * txFrame);
/* API used by actuators (not for students) */
bool CAN_read(const CAN_FRAME * rxFrame);

Figure 6: Inter-Task software API (can mac.h).

Each CAN MAC driver is associated with either a sensor or
an actuator. Since the sensor only transmits frames and the
actuator only receives frames, the MAC driver can be either
in transmission or in reception mode. To determine this,
the students can check the content of the receive ID filter:
if it contains a negative value, then the driver belongs to a
sensor, otherwise it belongs to an actuator.

3.5 CAN MAC Driver Template
The CAN MAC driver uses the inter-task software API to

receive messages from sensors to convert them to a sequence
of CAN symbols that must be sent over the embedded CAN
bus. At the same time, it must recognise any CAN mes-
sages arriving over the bus that are addressed to the actua-
tors. For simplicity, in the course each driver communicates
with either a single sensor or actuator. ([2] shows how a sin-
gle driver can implement a CAN gateway for multiple CAN
clients.) Figure 8 illustrates the basic CAN MAC driver tem-
plate given to students. It is automatically inserted in the
larger software stack (application partition, etc.), as illus-
trated by the dr.h in Figure 3. They only need to fill in the
while(1) loop, making use of the inter-task API (Figure 6)
and CAN PHY API (Figure 4).

The assignment involves polling for an incoming sensor
message, and converting it to a sequence of CAN symbols.
Or, listening for messages that must be sent to the actuator.
Several CAN techniques must be implemented:

1. determining the start of transmissions by other drivers;
2. recognising and decoding sequences of CAN symbols

into CAN frames, including variable message lengths;
3. aligning the sending of CAN frames with other trans-

missions and implementing CAN’s unique symbol-wise
priority resolution;

4. bit stuffing;
5. cyclic redundancy check (CRC);
6. acknowledgement;
7. inter-frame spacing and error handling.

3.6 Embedded CAN Bus Tracing
The data that is received by the PC over the UART is

post-processed and two kinds of reports are generated. The
first, shown in Figure 9 (left) is a trace of all CAN symbols
sent to the CAN bus by the processors, and the resulting
CAN symbol after dominant/recessive resolution. This al-

lows for low-level debugging, which is useful at the start of
the project. The first time value represents the system time
in clock cycles, the second value is the CAN symbol (bit)
count; ‘out’ is the output of the CAN bus (output of the
wired AND). The remaining fields show the CAN port val-
ues received on each CAN interface from the drivers running
on the tile (displayed as “tile.interface=value”). “R” stands
for recessive and “D” for dominant. ‘U’ stands for unset,
meaning that that CAN interface did not update its default
“R” value. To be able to display this, the embedded CAN
bus has a single “set” bit for each CAN interface (cf. Fig-
ure 3). This feature greatly helps in debugging, for example
to determine when a driver is too late producing a symbol,
or accidently not sending a symbol.

The second output is per frame, shown in Figure 9(right),
and is more useful for longer traces and when debugging
frame-level priority resolution, etc. This report is produced
for each sensor and actuator independently.

The CompSOC platform also has a video output con-
nected to a frame grabber, as shown in Figure 2. The CAN
observer can send a real-time wave-form trace of the CAN
bus to the video output. However, for this real-time wave-
form trace to be useful, the bit rate of the CAN bus has to
be very low (seconds per symbol). Since live debugging is
only useful at the very beginning of the project we decided
to only offer debugging using the log files.

4. THE SERVER INFRASTRUCTURE
Six ML-605 FPGA boards are available in total for stu-

dents and researchers via a board server. The board server
implements access control, load balancing, and priority queue-
ing. Jobs are submitted to the board server from a linux
server that can be accessed on the TUE (virtual private)
network (VPN) using ssh. Student(groups) are given an ac-
count on the linux server. Students are expected to collab-
orate using git version management, and also submit their
final code by tagging their code in git.

Users of the FPGA farm can upload either a complete
CompSOC platform (a bitstream containing hardware, sys-
tem software, user applications) or they can upload (ELFs
of) user applications that are dynamically loaded in a Comp-
SOC platform that persists on the FPGA boards. The for-
mer is typically used by researchers and allows modification
to both hardware, system software, and user applications.
The latter is typically used by students, because they do
not (and should not) modify the CompSOC platform but
only change the user applications.

The second option is also much faster, since platform gen-
eration, RTL synthesis, and compilation of platform soft-
ware is not required. With 6 boards, we sustain 480 jobs
per hour.

In the vehicle networking course students only modify the
user applications i.e. the sensors, actuators, and drivers
(s.h, a.h, and dr.h files in a given directory structure) as
described before. These are then dynamically loaded on
a preloaded CompSOC platform instance that includes the
embedded CAN bus. A Makefile is provided with targets
for compiling, linking, running on the FPGA, and convert-
ing the logging output (cf. previous section).

The CompSOC platform with the embedded CAN bus has
a UART output (921600 bits/sec) to connect to the linux
host to upload user applications, and for debugging output.
A few FPGA boards also have video output that is captured

by a frame grabber and offered as a live video stream on the
Internet.

This FPGA farm and server setup is used in several other
MSc courses in the faculty, including the Embedded Systems
Lab [6] and the Embedded Control Systems course. Stu-
dents can collaborate (using git) and work from anywhere
by logging in (using VPN) on the linux server.

5. TESTING & REAL-TIME PERFORMANCE
After implementing the MAC driver, the students have

to test the implementation by running 11 test schedules,
of which 6 are basic and 5 are advanced. The basic tests
check basic protocol features, such as the arbitration be-
tween messages with different priorities or that the reception
of the messages happens according to the reception filter.
The advanced tests check different relations between mes-
sage periods (e.g. periods that are not a multiple of each
other), different message offsets, and also messages with dif-
ferent payload sizes. Every given test case comprises a set
of CAN senders (sensors) with their own priorities and pe-
riods. To implement these test cases, the students need to
understand and apply the notion of priority-based schedule.
They are also exposed to the notion of worst-case execution
time (WCET). The WCET depends on different components
such as bit stuffing, (variable) message length, CDMA/CR
arbitration, and the sender priorities. The students need to
have a good understanding of how the CAN protocol works
as well as the priority-based arbitration as used in CAN (pe-
riods, priorities, offsets, deadlines).

Figure 7 shows an example of a basic test case. The pa-
rameters are the message priorities, the message periods and
offsets, and the worst-case payload sizes. It also shows the
expected schedule output and the expected delay per mes-
sage. The period is measured in terms of worst-case number
of clock cycles for one frame with a payload of one byte, in-
cluding bit stuffing. With this specification, the students are
supposed to configure the periods, priorities, and offsets of
sensor and actuator applications accordingly (s.h and a.h

in Figure 3). They then run the test case and explain the
obtained results (in particular, whether the test gives the
expected output or not and why).

While in the majority of cases, the students do receive the
results as specified, it was also possible that their output did
not match the expected output. The test case of Figure 7 is
such an example. The message periods of sensors A, B, C are
based on the worst-case frame length, but the actual length
of the messages can be shorter than that due to less data or
less bit stuffing. As a result, the actual bus schedule may
be not aligned with the message period, yielding a different
schedule than in the worst case. For example, if sensors A,
B, and C start sending at the same time, the messages are
transmitted in the expected order (A B C). However, in the
next round, when B and C start sending, C loses the arbi-
tration and waits until B completes. If the message sent by
B is shorter than the worst case, it finishes the transmission
before A restarts. Then C can start transmitting before A,
resulting in the trace B C A rather than B A C. Students are
supposed to analyse and understand the actual behaviour of
the system versus the worst case and correctly explain what
they observed.

6. LESSONS LEARNT

The CAN driver project has been given once to third-
year Bachelor students of the Automotive Programme. We
observed a number of points. First, students learnt C at the
start of the first year, and many had not programmed in C
since then, especially bit-level operations (shifting, masking,
OR, AND, etc.). This year, we will help student to refresh
the C skills before the project starts (concurrently with the
general networking, see Figure 1).

Second, students had not done any embedded and multi-
threaded programming earlier in the curriculum. As a re-
sult, students had little or no experience with, for exam-
ple, volatile pointers to hardware registers and shared data
structures. Although we abstracted the memory-mapped
interface with the CAN driver to a simple CAN PHY API,
and the inter-task communication to the simple CAN MAC
API, this part of the project required longer than expected.

Third, offering a set of tests of increasing complexity al-
lowed students to test and deliver drivers with a subset of
all required features, rather than an all-or-nothing approach.
Together with the written report, this allowed students to
be fine graded, with grades ranging from 3.2 to 8.8 on a scale
from 1-10. 70% of 29 students passed.

Fourth, although the server-based infrastructure has great
operational advantages, most students had not used linux
before. In particular concepts such as servers, remote login,
(secure) shell, and RSA key generation were new to them,
as were basic linux commands (ls, cd, etc.). We will give
more instructions to students in future editions of the course.
Next to that, in the first-year C course we will switch to
a linux-based programming environment (virtual machine
with Ubuntu) to ensure that all Electrical Engineering and
Automotive students have basic linux skills.

Finally, to close the learning cycle, students peer-reviewed
the reports that they had to deliver. To stimulate autonomy
and creativity students received quite high-level instructions
on the scoring criteria, such as: does the code compile &
run, which test cases are correct; does the report have a
good structure, can you understand the code by reading the
report, are features & limitations defined; does the code have
interesting features/tricks. The quality of the peer reviews
was high, and students gave good differentiated grades that
were close to the grades of the lecturers.

7. RELATED WORK
Related courses can be found at several other universi-

ties. Michigan Technological University offers an automo-
tive communications network course for EE and ME stu-
dents that covers the theory for the CAN, LIN, FlexRay
and MOST buses [12]. The lab consists of several assign-
ments for CAN where use Arduino boards to configure and
program a network of 2 to 3 CAN nodes. The CAN nodes
connect to sensors and actuators such as push bottons, ob-
stacle detectors and DC motors to emulate parts of the car.
Keterring University partners with Vector CANtech, a com-
pany that provides software tools for CAN and dSPACE,
a company that offers complete ECU solutions, for the lab
for its Distributed Embedded Systems course in the Com-
puter Engineering department. The assignments introduce
the students to distributed systems, starting with the sim-
ulation environment (Vector’s CANoe tool) followed by real
ECUs. The concepts of network scheduling are taught both
within simulation and also within a mixed environment in-
cluding simulated and real ECUs. The Computer Science

department at TUE teaches automotive real-time concepts,
including CAN, in the Real-Time Architectures course [3].
In the lab, the students use Freescale microcontrollers to-
gether with the Code Warrior IDE and develop the CAN
driver under the µC-OS operating system.

Our course covers the same basic concepts, such as net-
work scheduling and interfacing with sensors and actuators.
The main difference is that we use a research platform for
the laboratory, as opposed to commercial tools and empha-
sise the development of the CAN driver rather than its use.

8. CONCLUSIONS
In this paper we presented the third-year vehicle-networking

course of the Eindhoven University of Technology’s Bache-
lor Automotive Programme. We defined the goals, course
structure, and the innovation in the course. In particu-
lar, we embedded a CAN bus in a multi-processor platform,
and required students to develop a CAN MAC driver. Our
server-based FPGA infrastructure allows students to access
course hardware and develop and debug their driver over
the Internet at any time. By offering a set of test cases, stu-
dents were encouraged to develop their driver one feature at
a time, resulting in a range of grades, and 70% pass rate.

This work was partially funded by projects CATRENE
ARTEMIS 621429 EMC2, 621353 DEWI, 621439 ALMARVI.

9. REFERENCES
[1] AUTOSAR Release 4.1 - Guide to Multi-Core

Systems. Technical report.

[2] G. Breaban, M. Koedam, S. Stuijk, and K. Goossens.
Virtualization and emulation of a CAN device on a
multi-processor system on chip. In MECO, 2016.

[3] R. J. Bril and M. J. Holenderski. 2IN60 Real-Time
Architectures in the Automotive Technology Master at
the Eindhoven University of Technology, 2008-2014.

[4] K. Goossens, et al. Virtual execution platforms for
mixed-time-criticality systems: The CompSOC
architecture and design flow. SIGBED Review, 2013.

[5] S. Goossens, et al. The CompSOC design flow for
virtual execution platforms. In FPGA World, 2013.

[6] A. Hansson, B. Akesson, and J. van Meerbergen.
Multi-processor programming in the embedded system
curriculum. SIGBED Review, 6(1):9:1–9:9, 2009.

[7] ISO11989-1:2015 road vehicles – Controller area
network (CAN) – Part 1: Data link layer and physical
signalling. Technical report.

[8] A. Nelson, et al. CoMik: A predictable and
cycle-accurately composable real-time microkernel. In
DATE, 2014.

[9] A. Nelson, et al. Embedded computer architecture
laboratory: A hands-on experience programming
embedded systems with resource and energy
constraints. In WESE, 2012.

[10] D. Reinhardt and M. Kucera. Domain Controlled
Architecture - A new approach for large scale software
integrated automotive systems. In PECCS, 2013.

[11] R. Stefan, et al. dAElite: A TDM NoC supporting
QoS, multicast, and fast connection set-up. IEEE
Trans. on Computers, 63(3):583–594, May 2014.

[12] A. Oliveira. Development of a Low-cost Automotive
Communications Network Course for EE and ME
Students. In ASEE, 2016.

priority	 period dlc/size offset 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 4 1 0 A A A A A A A A
1 3 1 0 B B B B B B B B B B
2 3 1 0 C C C C C C C C C C

schedule A B C B A C B C A B C A B C B A C B C A B C A B C B A
delay 1 2 2 1 1 1 2 2 1 1 1 2

Figure 7: A basic CAN Test Schedule.

static void hw_can_mac_driver(
volatile CAN_PORT *pPortID ,
CAN_FRAME * volatile *pSensor ,
CAN_FRAME * volatile *pActuator ,
int *rxPrioFilters , uint32_t rxPrioFiltersLen)

{
CAN_FRAME TxFrame , RxFrame;
bool gotFrame;
CAN_SYMBOL TxSymbol , RxSymbol;
while (1) {

/* if rxPrioFilter < 0 then we’re master else slave
* as a master , to get the next frame to send on the bus from the sensor use:
* gotFrame = can_mac_rx_next_frame(pSensor , &TxFrame);
* as a slave , to send a frame received on the bus with priority rxPrioFilter to the actuator use:
* can_mac_tx_next_frame(pActuator ,& RxFrame);
*/

/* to send a CAN symbol on the CAN bus use: can_phy_tx_symbol(pPortID , TxSymbol)
* to receive a CAN symbol from the CAN bus use: can_phy_rx_symbol_blocking(pPortID ,& RxSymbol)
* this function blocks until a new symbol is available on the bus
*/

gotFrame = can_mac_rx_next_frame(pSensor , &TxFrame);
if (gotFrame == true) {

/* if you wish to send different test sequences from different sensors ,
* then this is how you can do this. Note that this should not be used in the final driver ,
* since there all sensors use the same driver code.
*/

if (TxFrame.ID == 0) {
/* sensor 1 with priority/ID 0 */
can_phy_tx_symbol(pPortID , DOMINANT);
can_phy_rx_symbol_blocking(can_port_id ,& RxSymbol);
can_phy_tx_symbol(pPortID , DOMINANT);
can_phy_rx_symbol_blocking(can_port_id ,& RxSymbol);
can_phy_tx_symbol(pPortID , RECESSIVE);
can_phy_rx_symbol_blocking(can_port_id ,& RxSymbol);

} else {
/* the other active sensors */
can_phy_tx_symbol(pPortID , RECESSIVE);
can_phy_rx_symbol_blocking(pPortID ,& RxSymbol);

}
}

}
Figure 8: CAN MAC driver template, given to students.

CAN PHY MON: time[cc]= 4000241 time[symb]= 1 out=R 1.1=U 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 8000232 time[symb]= 2 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 12000234 time[symb]= 3 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 16000236 time[symb]= 4 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 20000238 time[symb]= 5 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 24000240 time[symb]= 6 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 28000242 time[symb]= 7 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 32000233 time[symb]= 8 out=R 1.1=R 1.2=R 2.1=R 2.2=U 3.1=U 3.2=U 4.1=R 4.2=U

CAN PHY MON: time[cc]= 36000235 time[symb]= 9 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 40000237 time[symb]= 10 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 44000239 time[symb]= 11 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 48000241 time[symb]= 12 out=D 1.1=D 1.2=D 2.1=D 2.2=U 3.1=U 3.2=U 4.1=D 4.2=U

CAN PHY MON: time[cc]= 52000232 time[symb]= 13 out=D 1.1=D 1.2=D 2.1=R 2.2=U 3.1=U 3.2=U 4.1=R 4.2=U

CAN PHY MON: time[cc]= 56000234 time[symb]= 14 out=R 1.1=R 1.2=R 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 60000236 time[symb]= 15 out=D 1.1=D 1.2=R 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 64000238 time[symb]= 16 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 68000240 time[symb]= 17 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 72000242 time[symb]= 18 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 76000233 time[symb]= 19 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 80000235 time[symb]= 20 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 84000237 time[symb]= 21 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 88000239 time[symb]= 22 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 92000241 time[symb]= 23 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 96000232 time[symb]= 24 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 100000234 time[symb]= 25 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 104000236 time[symb]= 26 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 108000238 time[symb]= 27 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 112000240 time[symb]= 28 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 116000242 time[symb]= 29 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 120000233 time[symb]= 30 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 124000235 time[symb]= 31 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 128000237 time[symb]= 32 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 132000239 time[symb]= 33 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 136000241 time[symb]= 34 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 140000232 time[symb]= 35 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 144000234 time[symb]= 36 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 148000236 time[symb]= 37 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 152000238 time[symb]= 38 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 156000240 time[symb]= 39 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 160000242 time[symb]= 40 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 164000233 time[symb]= 41 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 168000235 time[symb]= 42 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 172000237 time[symb]= 43 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 176000239 time[symb]= 44 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 180000241 time[symb]= 45 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 184000232 time[symb]= 46 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 188000234 time[symb]= 47 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 192000236 time[symb]= 48 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 196000238 time[symb]= 49 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 200000240 time[symb]= 50 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 204000242 time[symb]= 51 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 208000233 time[symb]= 52 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 212000235 time[symb]= 53 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 216000237 time[symb]= 54 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 220000239 time[symb]= 55 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 224000241 time[symb]= 56 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 228000232 time[symb]= 57 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 232000234 time[symb]= 58 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 236000236 time[symb]= 59 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 240000238 time[symb]= 60 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 244000240 time[symb]= 61 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 248000242 time[symb]= 62 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 252000233 time[symb]= 63 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 256000235 time[symb]= 64 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 260000237 time[symb]= 65 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 264000239 time[symb]= 66 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 268000241 time[symb]= 67 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 272000232 time[symb]= 68 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 276000234 time[symb]= 69 out=D 1.1=D 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 280000236 time[symb]= 70 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 284000238 time[symb]= 71 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 288000240 time[symb]= 72 out=D 1.1=R 1.2=U 2.1=U 2.2=D 3.1=D 3.2=D 4.1=U 4.2=U

CAN PHY MON: time[cc]= 292000242 time[symb]= 73 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 296000233 time[symb]= 74 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 300000235 time[symb]= 75 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 304000237 time[symb]= 76 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 308000239 time[symb]= 77 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 312000241 time[symb]= 78 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 316000232 time[symb]= 79 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 320000234 time[symb]= 80 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 324000236 time[symb]= 81 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

CAN PHY MON: time[cc]= 328000238 time[symb]= 82 out=R 1.1=R 1.2=U 2.1=U 2.2=U 3.1=U 3.2=U 4.1=U 4.2=U

Sensor 1 Frame 0

ID = 00000000

DLC = 00000003

Data = 00000000

CRC = 00000000

Sensor 2 Frame 0

ID = 00000001

DLC = 00000003

Data = 00000000

CRC = 00000000

Sensor 3 Frame 0

ID = 00000002

DLC = 00000003

Data = 00000000

CRC = 00000000

Sensor 4 Frame 0

ID = 00000003

DLC = 00000003

Data = 00000000

CRC = 00000000

Actuator 1 Frame 0

ID = 00000000

DLC = 00000003

Data = 00000000

CRC = 00000000

Actuator 2 Frame 0

ID = 00000000

DLC = 00000003

Data = 00000000

CRC = 00000000

Actuator 4 Frame 0

ID = 00000000

DLC = 00000003

Data = 00000000

CRC = 00000000

Figure 9: CAN bit-level debug output (left) and frame-level debug output (right).

