
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 1

Power/Performance Trade-offs in
Real-Time SDRAM Command Scheduling

Sven Goossens, Karthik Chandrasekar, Benny Akesson, and Kees Goossens

Abstract—Real-time safety-critical systems should provide hard bounds on an applications’ performance. SDRAM controllers used in
this domain should therefore have a bounded worst-case bandwidth, response time, and power consumption. Existing works on
real-time SDRAM controllers only consider a narrow range of memory devices, and do not evaluate how their schedulers’ performance
varies across memory generations, nor how the scheduling algorithm influences power usage. The extent to which the number of
banks used in parallel to serve a request impacts performance is also unexplored, and hence there are gaps in the tool set of a
memory subsystem designer, in terms of both performance analysis, and configuration options.
This article introduces a generalized close-page memory command scheduling algorithm that uses a variable number of banks in
parallel to serve a request. To reduce the schedule length for DDR4 memories, we exploit bank grouping through a pairwise
bank-group interleaving scheme. The algorithm is evaluated using an ILP formulation, and provides schedules of optimal length for
most of the considered LPDDR, DDR2, DDR3, LPDDR2, LPDDR3 and DDR4 devices. We derive the worst-case bandwidth, power
and execution time for the same set of devices, and discuss the observed trade-offs and trends in the scheduler-configuration design
space based on these metrics, across memory generations.

Index Terms—dynamic random access memory (DRAM), Memory control and access, Real-time and embedded systems

�

1 INTRODUCTION

THE past decade has seen the introduction of many new
SDRAM generations, in an effort to ward off the mem-

ory wall problem [1]. New generations bring advances in
peak performance, increasing the memory clock frequency
to improve maximum bandwidth, while exploiting the im-
provements of CMOS technology to reduce the operating
voltage and limit the energy usage. Specialized low-power
architectures with a strong focus on energy efficiency also
emerged to cater to use-cases involving battery-powered ap-
plications, leading to the introduction of wider, low-power
memory devices [2]. The drive behind these developments
is improvement of the typical or average-case performance
of applications using the memory.

The hard real-time application domain is less focused
on the average case. Instead, the worst-case behavior of the
memory determines the guaranteeable bandwidth, which
could be just a small fraction of the peak bandwidth ex-
pected by multiplying the transfer rate by the data bus
width. Memory controllers used for hard real-time or safety-
critical applications, like in automotive or avionics, have to
use the SDRAM in such a way that application requirements
are always satisfied in the worst case, i.e. guarantee enough
bandwidth and a sufficiently low response time, possibly
within a fixed energy or power budget. Here, we focus

• Sven Goossens and Kees Goossens are with the Eindhoven University of
Technology, Eindhoven, The Netherlands.
Email: {s.l.m.goossens, k.g.w.goossens}@tue.nl

• Karthik Chandrasekar is with Delft University of Technology, Delft, The
Netherlands.

• Benny Akesson is with Czech Technical University in Prague, Prague,
Czech Republic.

Manuscript received April 19, 1970; revised September 17, 1970.

on the worst-case performance impact of the command
scheduler and the low-level memory map that distributes
data across the banks in the SDRAM.

Existing works focus on a single memory device or
on one or two memory generations, and hence a multi-
generation overview of the power/performance trade offs
for real-time SDRAM controllers is not available. The goal of
this article is therefore threefold. Firstly, we compactly sum-
marize the command scheduling rules for LPDDR1/2/3,
and DDR2/3/4 memories and provide an abstraction
from the differences between them. Secondly, we define a
common command scheduling algorithm for these mem-
ory generations to enable quantification of the worst-case
power/performance of a memory device. Thirdly, we apply
this scheduling algorithm to 12 devices and evaluate the
worst-case power/performance trade-offs across 6 memory
generations for different scheduler and memory map con-
figurations.

This article contains the following contributions: 1)
A generalized, multi-generation close-page memory command
scheduling algorithm. High-level command-to-command con-
straints are defined (Section 3.1), abstracting from the
generation-specific timings and allowing a generic solution
for the scheduling problem. Two parameters, the number
of banks interleaved (BI) and bursts per bank (BC), charac-
terize the memory map that the scheduler uses. We show
that each (BI,BC) combination has a different trade-off
between bandwidth, power (energy efficiency) and request
execution time (Section 3.2). DDR4, which introduces bank
groups [3] as a new architectural feature with a correspond-
ing set of new scheduling constraints, is identified as a
generation that benefits from new scheduling algorithms
and memory maps. We propose 2) a pairwise bank-group
interleaving scheme for DDR4 that exploits bank grouping

0000–0000/00/$00.00 c© 2014 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 2

for improved performance (Section 3.3). To evaluate the
quality of the scheduling algorithm, we create 3) a parameter-
ized Integer Linear Programming (ILP) formulation of the com-
mand scheduling problem. It uses the same abstraction as the
scheduling algorithms, and generates optimal close-page
schedules for all considered memory types and (BI,BC)
combinations. With it, we show that our scheduler obtains
optimal schedule lengths for the majority of the considered
memory devices and configurations (Section 4.1). Finally, we
give 4) an overview of worst-case SDRAM performance trends in
terms of bandwidth, power, and execution time of a request,
based on the proposed scheduling algorithms. We evaluate
the performance differences across speed bins within gener-
ations and across memory generations (Section 4.2).

The rest of this article is organized as follows: Section 2
supplies background information on SDRAM and real-time
memory controllers. Section 3 explains the contributions in
detail, Section 4 evaluates the results, followed by related
work in Section 5 and conclusions in Section 6.

2 BACKGROUND

This section briefly introduces SDRAM in Section 2.1 and
real-time memory controllers in Section 2.2. Section 2.3 and
Section 2.4 then introduce the concept of memory patterns,
and burst grouping, respectively.

2.1 SDRAM

SDRAM devices contain a hierarchically structured storage
array [4]. Each device consists of typically 8 or 16 banks that
can work in parallel, but share a command and data bus.
The execution of commands on different banks can therefore
be pipelined. A bank consists of a memory array, divided
into rows, each row containing a certain number of columns.
A column is as wide as the number of pins on the memory
device’s data bus, and hence only one bank can drive the
data pins at a time.

There are six main SDRAM commands. An activate
(ACT) command opens a row in a bank, and makes it avail-
able for subsequent read (RD) and write (WR) operations.
Each RD or WR command results in a burst of data. The
number of words per RD or WR is determined by the burst
length (BL) setting. Across memory generations the com-
monly supported value is 8. It takes BL/2 (command) clock
cycles to transfer a burst, since we consider Double Data
Rate SDRAMs. We abbreviate BL/2 by B in equations and
figures in this article. Clock frequencies in this article refer
to the command clock of the memory. Only one row per
bank can be open at a time. The precharge (PRE) command
closes a row, i.e. it stores it in the memory array, allowing
for another row to be subsequently opened. An optional
auto-precharge flag can be added to RD and WR commands,
such that the associated row is closed as soon as the read
or write is completed. A RD or WR with auto-precharge
can be regarded as a RD or WR, followed by a regular
PRE command from a timing perspective. The difference
is that the precharge does not require an explicit slot in the
schedule, i.e. it may overlap other commands. SDRAM is
volatile, so it needs to be refreshed periodically by issuing a
refresh (REF) command to retain its data. Finally, the NOP

command does nothing. The figures in this article abbreviate
ACT, RD and WR by A, R, and W, respectively, and encode
NOPs as empty boxes.

Vendors characterize their memory chips by specifying
their timings. The standards [3], [5], [6], [7], [8], [9] explain in
detail what each timing represents within the SDRAM. For
the purpose of this article, these details are less important,
since we consider the memory as a black box, that we
merely have to use according to its interface specification,
and therefore we simply use the timings as a label for a
specific amount of time. In this article, we typeset timings
in SMALL CAPS. Timing constraints are built as mathemat-
ical expressions from these timings, and they define the
minimum time between pairs of commands based on the
state of the memory, which in turn is a consequence of
earlier executed commands. Some constraints only restrict
commands for a single bank, like RC and RCD for example,
while others like Four Activate Window (FAW) and RRD, act
at the device level. An SDRAM controller has to satisfy the
timing constraints to operate correctly. To see all timings in
context within their constraints, you may refer to Table 1
and Table 2.

DDR4 introduces bank groups: banks are clustered into
(at least two) bank groups per device. Banks in a bank
group share power-supply lines. To limit the peak-power
per group, sending successive command to the same group
is discouraged by making certain timings larger in this
case. These timings are post-fixed with _L (long) or _S
(short) for commands for the same or a different bank
group, respectively. Successive RD or WR commands to the
same group need to be separated by at least CCD_L cycles.
Because CCD_L is larger than the number of cycles per data
burst (B), performance is impacted by CCD_L unless bursts
are interleaved across bank groups.

SDRAM devices can be used as standalone chips, as gen-
erally done in embedded Systems-on-Chips [10], [11], [12]
for example. The memory is then used at its native Interface
Width (IW), typically ranging from 4 up to 32 bits. Bigger
and wider memories can be built by having multiple chips
work in lock-step in a rank, executing the same commands,
producing or consuming data in parallel. The combined
data bus width can then be seen as the IW of the memory.
Multi-device setups are typically used in general-purpose
and high-performance computer systems. Ranks can share
a command and data bus, as long as they do not drive the
data bus simultaneously. A memory hierarchy may contain
multiple independent groups of ranks called channels, each
with an individual memory controller. Here, we focus on
the memory performance per channel. For multi-channel
considerations in real-time memory controllers you may
refer to [13].

2.2 Real-Time Memory Controllers

A memory controller is the interface between one or more
memory clients and the SDRAM. Clients interact with the
memory controller through read or write requests. A re-
quest accesses a certain amount of data, depending on
the properties of the client. The request size divided by
IW and BL determines how many data bursts, and thus
RD or WR commands should be generated for a request,

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 3

with a minimum of one burst. The access granularities we
consider in this article vary from a single SDRAM burst,
up to multiple grouped bursts to a size of 256 bytes. This
range thus includes typical cache-miss requests sizes (8 to
64 bytes), up to larger DMA [14] or accelerator-based [15]
requests.

Requests are queued in the controller, selected by a
(predictable) inter-client arbiter, and then translated into
SDRAM commands that are executed by the SDRAM de-
vice. Memory controllers that leave a row open after a
request is completed use an open-page policy, while those that
close it as soon as possible use a close-page policy [16].

A memory controller has to schedule the commands it
generates to the SDRAM. The scheduling process is com-
plex, since all timing constraints need to be satisfied for
each individual command, while each scheduling decision
changes the memory state and thus the constraints that need
to be taken into account for future decisions. Additionally, a
scheduler may have to choose between multiple schedulable
commands without a clear indication of the impact on
performance and future scheduling options. This leads to
a type of emergent behavior that is hard to predict, and thus
memory performance is hard to bound in the general case;
for many commercial controllers no analytical bounds can
be provided. However, real-time memory controllers should
provide hard bounds on the time to serve all requests to
assure application-level deadlines are always satisfied.

2.3 Memory Patterns
This article reasons about real-time memory controller per-
formance in terms of memory patterns, as defined in [17]. A
memory pattern is a small series of scheduled SDRAM com-
mands with known length and function. Memory patterns
implement a close-page policy. Six basic patterns exist: 1)
read and 2) write patterns activate, issue read or write com-
mands respectively, and then precharge. An underlying as-
sumption is that subsequent requests may use these patterns
to access a different row in the same bank(s) in the worst-
case, and are hence necessarily serviced sequentially. Read
and write patterns are constructed based on that notion, i.e.
they should be repeatable after themselves without violating
timing constraints, even when they target the same banks.
Two switching patterns, 3) read-to-write switch and 4) write-
to-read switch, made up of only NOPs, are inserted between
read and write patterns when the data bus direction has to
change. The 5) refresh pattern consists of a refresh command
surrounded by the appropriate number of NOPs to satisfy
the timing constraints related to it. It can be scheduled
after a read or write pattern. Finally, the idle time of the
controller can be discretized explicitly into 6) idle or power-
down patterns [18]. A collection of these six patterns is called
a pattern set.

Some close-page real-time controllers use variations of
memory patterns in their architecture [19], [20], scheduling
patterns from such a set instead of individual commands.
Others define patterns only in their worst-case analysis [21],
[22], knowing the behavior of their architecture is bounded
by them. In both cases, the analysis complexity is greatly
reduced.

The worst-case data bus utilization on the SDRAM inter-
face can be determined for a given pattern set, as shown

Fig. 1. Simplified controller architecture, showing two of the performance
metrics we use in this article to characterize SDRAM performance.

in [17]. We refer to this metric as memory efficiency (see
Figure 1). The basic idea is to find the sequence of patterns,
like continuously writing or alternating reads and writes for
example, that transports the least amount of data in a unit of
time. No assumptions on the inter-client arbiter, nor on the
types of requests (read/write) are made when determining
this efficiency, which makes this metric independent of
the arbiter type. The memory efficiency is the guaranteed
fraction of the peak bandwidth, and hence multiplying
those two numbers yields the worst-case bandwidth that the
controller can distribute amongst its clients.

2.4 Burst Grouping

Accessing an SDRAM with single-burst requests is highly
inefficient in the worst case. Assuming a close-page policy is
used, the memory has to spend at least RC cycles per burst,
or around 50 ns for the memories considered in this article,
due to overhead of activating and precharging. This is
significantly more than the actual data transfer time (4 cycles
assuming a burst length of 8), which is 5 ns for a DDR3-
1600 for example, a factor 10 difference (see Figure 2a). The
worst-case bandwidth is thus a lot smaller than the peak
bandwidth obtained by only considering the data rate, and
this efficiency gap grows as the memory clock frequency
increases.

To increase worst-case efficiency, real-time controllers
typically use a (minimum) access granularity that is larger
than single bursts. Instead, multiple bursts are grouped
together to form a single atomic access. Each request is
mapped to an integer multiple of these atoms. The relative
order of bursts within one such access or atom is fixed.
This gives each memory access (guaranteed) properties that
improve the worst-case. Grouping bursts creates:
1. Bank parallelism: The atom is interleaved over multiple

banks that work in parallel to produce or consume data.
The time between accesses to the same bank is increased,
giving it more time to precharge and activate while other
banks are accessed, leading to improved efficiency.

2. Consecutive bursts access the same row: Multiple bursts are
fetched from the same row in the same bank within an
atom, in essence generating guaranteed locality across
those bursts.

Some real-time memory controllers interleave requests over
all available banks [19], [20], [21], [22]. [20] also considers
the number of bursts per bank as configuration parameter,
but not the number of banks. This article generalizes these
concepts, and shows the configuration trade-offs when both
degrees of freedom are used.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 4

Fig. 2. The effects of burst grouping for a DDR3L-1600 device [23]. Each box is a command and has an optional bank id, shading indicates data
bus activity, empty boxes are NOPs. a) shows a single burst access, b) demonstrates bank interleaving, d) combines bank interleaving with an
increased burst count per bank. Efficiencies are derived based on the algorithm in [17], which also takes read/write switches and refresh overhead
into account.

3 PATTERN-BASED COMMAND SCHEDULING

This section shows how memory patterns are generated for
hard real-time memory controllers. Section 3.1 abstracts the
different timing constraints from the scheduling algorithm
for the considered memory generations. Section 3.2 and
Section 3.3 discuss pattern generation in general and for
DDR4, respectively, and Section 3.4 explains the connection
between the pattern configuration and memory map. Sec-
tion 3.5 introduces an ILP formulation of the scheduling
problem we later use to evaluate the pattern generation
heuristics. The produced schedules are the basis for the
worst-case performance evaluation in Section 4.

3.1 Generalized Command Scheduling Rules

The command scheduling rules have not changed much
across the different generations of SDRAM that were in-
troduced over the years [3], [5], [6], [7], [8], [9]. The exact
timings that govern the memory behavior vary, but these
details can be hidden from scheduling algorithms, since they
only have to know about the minimum delay between sets
of commands. We introduce a function d, which serves as
the interface for these algorithms to obtain the minimum
relative delay between two commands, cmda and cmdb.
Based on 5 properties of these command and the memory
type, it indexes a lookup table to determine the delay. The
first two properties describe the types of the commands,
typea, typeb ∈ {ACT, RD, WR, PRE, REF}, while the re-
maining boolean properties specify the relative physical
location of the bank at which the commands are targeted,
i.e. if they go to the same or a different rank, bank group
(DDR4) or bank, respectively:

d(cmda, cmdb) = LUT (typea, typeb,

sameRank, sameBankGroup,

sameBank,memoryType) (1)

By using this function, scheduling algorithms can be written
in a compact, memory-type-agnostic manner, as demon-
strated in Algorithm 1.

Based on the JEDEC specifications [3], [5], [6], [7], [8], [9],
we collected the delays that this function should produce for
6 SDRAM generations in Table 1 and Table 2, effectively con-
densing hundreds of pages of documentation into the bare
minimum required to create memory command scheduling
algorithms. If a combination of inputs is not mentioned in
the tables, then it is either unconstrained, or not allowed
by the bank state-machine. For DDR4, the timings that
are post-fixed with _x depend on the sameBankGroup
argument, selecting the _L or _S versions of the timing if
sameBankGroup is true or false, respectively, as required
by the specification [3]. For other memory types, the non-
postfixed version of the timing is used. The FAW timing is
not mentioned in the table, because it is a window-based
constraint, and not a simple delay. It has to be taken into
account separately on a per-rank basis for all memory types
except LPDDR, which has no FAW constraint.

The remainder of this article evaluates the worst-case
performance under a close-page policy. The impact of multi-
rank effects on this metric is minimal, as quantified in our
discussion of [24] in Section 5. For brevity, and because
multi-rank operation is not standardized, the tables only
show constraints for the cases where the command pair is
sent to the same rank. Commands across ranks are generally
not constrained, unless they use the (shared) data bus, i.e.
RD and WR commands. An additional delay has to be taken
into account in those cases to assert only one rank at a time
drives the bus.

3.2 Pattern Generation
Memory patterns for all devices in the previously men-
tioned SDRAM generations can be created by respecting
the constraints from Section 3.1, but the distribution of the
bursts in the pattern across banks and the relative order
of commands for different banks remain to be decided.
Instead of interleaving each request over all banks in the
memory [19], [20], [21], [22], or exploiting no inter-request
bank parallelism at all [24], [25], we treat the number of banks
involved in executing a request as a free parameter. With this
extra degree of freedom, both the number of banks that

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 5

TABLE 1
Common constraints across SDRAM

types.

typea typeb sameBank Constraint

ACT ACT True RC
ACT ACT False RRD_x
ACT PRE True RAS
ACT RD/WR True RCD - AL
PRE ACT True RP
PRE REF don’t care RP
REF ACT don’t care RFC

TABLE 2
SDRAM-type specific constraints1.

Memory typea typeb = PRE typeb = RD typeb = WR
type sameBank = True sameBank = don’t care sameBank = don’t care

LPDDR RD B B B + CL
LPDDR WR B + DQSS + WR B + DQSS + WTR B
DDR2 RD B + AL - 2 + max(RTP, 2) B B + RTW
DDR2 WR B + WL + WR B + CL - 1 + WTR B
DDR3 RD AL + max(RTP, 4) B B + RL - CWL - AL + 2
DDR3 WR B + CWL + AL + WR B + max(0, CWL + WTR) B
DDR4 RD AL + RTP CCD_x B + RL - CWL - AL + PA
DDR4 WR B + CWL + AL + WR B + max(0, CWL + WTR_x) CCD_x
LPDDR2/3 RD B + max(0, RTP - D) B B + RL - WL + DQSCKmax + 1
LPDDR2/3 WR B + WL + WR + 1 B + WL + WTR + 1 B

1. B represents the burst transfer time, equal to the burst length (BL) divided by 2 (double data rate). For DDR2, RTW = 2 if BL = 4, and 6 if BL =
8. For DDR4, PA depends on the selected read/write preamble. If a read- or write preamble of 1 cycle is used, PA = 2. With a preamble of 2 cycles,
PA = 3. For LPDDR2/3, D = 1, 2, or 4 for LPDDR2-S2, LPDDR2-S4, or LPDDR3 devices, respectively.

are accessed by a pattern (Bank Interleaving (BI)) and the
number of bursts per bank (Burst Count (BC)) are config-
urable, generating a range of possible pattern configurations
characterized by a (BI,BC) combination. BI can be equal
to or smaller than the number of banks in the memory. In
the worst-case, successive requests access a different row in
the same set of (BI) banks. BI and BC effectively define the
low-level memory map for bursts (see Section 3.4).

Figure 2 illustrates how the schedules change for dif-
ferent (BI,BC) combinations using examples. Figure 2b
demonstrates the benefit of bank interleaving. Two bursts
are interleaved, i.e. BI= 2. The ACT-to-RD/WR delay (RCD)
of bank 1 is (partially) hidden by the data access to bank 0.

Increasing BC enables hiding the ACT-to-ACT constraint
between banks (RRD_X). This is relevant for all memory
devices for which the maximum activate command rate is
lower than the read/write command rate (RRD_X > B), as is
the case in Figure 2b, where it causes the two cycle gap in
the data transfer between the burst to bank 0 and bank 1.
Figure 2c and Figure 2d show how this issue is resolved
when BC is increased.

For memories that have more than 4 banks, configu-
rations with BI ≤ 4 are of particular interest, since they
deal better with the FAW constraint. With at most 4 activate
commands within a pattern, the FAW can only play a role
if multiple consecutive patterns are considered. This allows
NOPs inserted at pattern edges to satisfy the FAW constraint
to overlap with NOPs that resolve other constraints, like
RC and RP for example, and hence these configurations are
more efficient. Figure 2e and f illustrate this: the schedules
contain the same number of bursts, but Figure 2e avoids
the FAW penalty, increasing the efficiency from 38.5% to
61.6%. Efficiency generally increases with the number of
bursts per pattern, because the activate/precharge over-
head, expressed by the idle-times at the start and end of
the pattern, is amortized over more and more data. In
practice, the access granularity and by extension the product
of BI and BC, is limited by the size of the requests the
memory clients generate, since there is no point in fetching
data when it has to be discarded later because the client
is not interested in it. Therefore, configurations are only

straightforwardly interchangeable and comparable if they
implement an access granularity that is equal to or smaller
than the size of the requests.

We use the bank-scheduling heuristic described in [26] as a
starting point for the order and placement of the commands,
because it has been shown to perform well for DDR2/3
memories. In this heuristic, read and write patterns are
created independently. Within these patterns, read or write
commands are scheduled as soon as possible, accessing
banks in ascending order. Activate commands are scheduled
as late as possible, but just in time to not delay the read
or write commands. Typically this is RCD cycles before the
first read or write to the associated bank, or earlier if this
cycle is already taken by another command. Patterns start
with bank activation, and the final access to a bank has an
auto-precharge flag. This heuristic is extended to include
the new BI parameter, and we refer to bank scheduling with
variable bank interleaving as BS BI. Algorithm 1 shows the
most relevant read and write pattern generation functions, a
complete executable version can be found in [27]. For BS BI,
‘useBsPbgi’ should be set to false.

Algorithm 1 builds up the pattern in the set P, of which
each element is a 3-tuple representing the type, bank, and
clock cycle (cc) of a command. Record/struct-like semantics
are used to access the elements in the tuple, i.e. x.cc accesses
the clock cycle element of the tuple. Most functionality is
based on the EARLIEST function, which returns the earliest
cycle at which a command cmdb may be scheduled, given
the location of the commands in (partial) pattern P. It uses
the ‘d’ function (Equation (1)), which symbolizes the lookup
action in Table 1 and Table 2.

The nested loops (lines 4-8) generate 1 activate and BC
read or write commands per bank. The ADDACTANDRW
function schedules an activate command using ADDACT
before the first burst to a bank (lines 17-18). Additionally,
it schedules the read/write commands as soon as possi-
ble (lines 16, 19). ADDACT first finds a range of possible
locations for an ACT command. A lower bound (lb) for
the location is based on the ACT-to-ACT constraints (lines
22-23). An upper bound (ub) is determined by the mini-
mum distance between the planned location of the RD/WR

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 6

Algorithm 1 Bank scheduling heuristic for BS BI and BS PBGI

1: function PATTERNGEN(BI, BC, rdOrWr, useBsPbgi)
2: BGi := 2 if BI > 1 and useBsPbgi == true else 1
3: P := {} // The pattern
4: for all bankPair ∈ {0...BI/BGi − 1} do
5: for all burst ∈ {0...BC − 1} do
6: for all offset ∈ {0...BGi − 1} do
7: bnk := bankPair ·BGi + offset
8: P := ADDACTANDRW(bnk, rdOrWr, burst, P)
9: P’ :=P // A copy with explicit precharges.

10: for all bnk ∈ {0...BI − 1} do
11: preCc := EARLIEST((PRE, bnk, 0), P)
12: P’ :=P’∪{(type: PRE, bank: bnk, cc: preCc)}
13: return MAKEREPEATABLE(P, P’)

14: function ADDACTANDRW(bnk, rdOrWr, burst, P)
15: rw := (type: rdOrWr, bank: bnk, cc: 0)
16: rwCc := EARLIEST(rw, P)
17: if burst == 0 then
18: P, rwCc := ADDACT(rw, rwCc, P)
19: return P∪{(type: rdOrWr, bank: bnk, cc: rwCc)}

20: function ADDACT(rw, rwCc, P)
21: act := (type: ACT, bank: rw.bank, cc: 0)
22: lb := EARLIEST(act, P)
23: lb := lb + REMAININGFAWCYCLESAT(lb, P)
24: while true do
25: ub := rwCc − d(act, rw)
26: S := {i ∈ {lb...ub - 1} | cmd.cc �= i ∀ cmd ∈ P}
27: if |S| �= 0 then
28: P :=P∪{(type: ACT, bank: rw.bank, cc: max(S))}
29: return P, rwCc
30: rwCc := rwCc + 1
31: function MAKEREPEATABLE(P, P’)
32: len := max({cmd.cc ∀ cmd ∈ P}) + 1
33: for all cmdb ∈ P do
34: len := max(len, EARLIEST(cmdb, P’) - cmdb.cc)

35: while not FAWSATISFIEDACROSS(len, P) do
36: len := len + 1
37: return P, len

38: function EARLIEST(cmdb, P)
39: // d() is a lookup in Table 1-2 (it returns -inf if
40: // the command combination is not mentioned).
41: return max({cmda.cc + d(cmda, cmdb) ∀ cmda ∈ P}

∪{0})

command (rwCc) and the ACT command (line 25). Set S
contains the cycles within this range which are not occupied
by other commands (line 26). If this set is not empty, then
the largest option is chosen, scheduling the ACT as late as
possible (lines 27-28). Otherwise the RD/WR command is
postponed by a cycle, and by extension the upper bound
for the ACT shifts forward, until a suitable location is found
(lines 24, 30).

What remains is to determine the location of the
precharge commands (lines 9-12), which are stored in a
separate copy of the pattern (P’) since they are imple-
mented using auto-precharge flags and hence are not ex-
plicitly scheduled. Their location is still relevant, because
the precharges can constrain commands that follow them.
Given the commands in P’, MAKEREPEATABLE finds the
minimum length the pattern should have to be repeatable
after itself without violating regular constraints (lines 32-
34) and the FAW constraint (lines 35-36) spanning across

Fig. 3. (Partial) DDR4-1866 read pattern. Odd and even banks are in
a different bank group. Schedule a does not use (BS PBGI), while b
does. c shows how the distance to the next activate in a following pattern
reduces as more bank groups are interleaved, resulting in longer (less
efficient) patterns.

pattern incarnations. Each time the length is increased, one
NOP is implicitly added to the end of the pattern. Finally,
the scheduled commands and the length of the pattern are
returned and the algorithm ends.

3.3 DDR4 Pattern Generation

To generate more efficient DDR4 patterns and avoid the
CCD_L constraints (see Section 2 and [3]), read or write com-
mands should be interleaved across bank groups. To this
end, we propose a pairwise bank-group interleaving heuristic,
as demonstrated in Figure 3. Two banks from different
bank groups are paired together. In contrast to regular bank
scheduling, which finishes all BC bursts to a bank before
switching to the next bank, the read or write commands of
such a pair are interleaved per burst. The remaining rules
of the heuristic are the same as described in Section 3.2. We
refer to bank scheduling with pairwise bank group inter-
leaving as BS PBGI. Setting ‘useBsPbgi’ to true in Algorithm 1
generates the proposed interleaving.

If BI ≥ 2,BC ≥ 2, then this heuristic behaves differently
from BS BI. Pairwise interleaving reduces the length of the
data transferring portion of the pattern by (CCD_L−CCD_S)·
BI · (BC − 1) cycles. The advantage of interleaving only
two instead of for example four bank groups, is that the
last access to the first bank pair happens relatively early in
the pattern. This allows the RD/WR-to-PRE-to-ACT delay
to happen (partially) in parallel with accesses to other
bank pairs. Interleaving more than two banks reduces the
overlap, and could hence lead to patterns that require more
NOPs at the end of the pattern to satisfy the constraints
required to repeat the pattern, without any benefits.

3.4 Memory Maps

The order of the data bursts within a memory pattern is
fixed, which means they are mapped to consecutive physical
memory addresses by definition. The pattern configuration
(BI,BC) thus has a direct influence on the decoding of the
(least significant) portion of the physical address, as it par-
tially determines which bits should be selected for the bank,
row and column address. This is illustrated in Figure 4,
which shows how the lower log2(BI ·BC ·BL · IW/8) bits
are mapped to the column and bank address Least Signifi-
cant Bits (LSB), respectively. The connection to the memory

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 7

Fig. 4. Memory map from physical address to the SDRAM-specific
address components. For example, log2(BI/BGI) bits from the cor-
responding position in the address are used in the similarly marked
position in the bank address.

map practically limits the possible values for BI and BC to
powers of two. The remaining portion of the address can
be mapped freely such that separate memory regions are
generated for different clients (spatial partitioning).

Figure 5 shows three data layout examples in an ex-
tremely small 4-bank memory, resulting from different
(BI,BC) and ‘useBsPbgi’ settings (written as BGI in the
figure). We map the bits that are not bound to the pattern
configuration (the white part in Figure 4) such that for con-
secutive physical addresses the bank changes first, followed
by the column, and finally the row.

3.5 ILP-Based Command Scheduling Problem

Section 3.2 and Section 3.3 describe two heuristics, BS BI and
BS PBGI, which generate close-page memory patterns. The
length of these patterns can be used as a measure for their
quality, since it determines the worst-case memory perfor-
mance, as later shown in Section 4.2. The commands in a
pattern are chosen and fixed once a (BI,BC) combination
is selected, so we can define a pattern as optimal in terms
of length if there is no other permutation of this set of
commands satisfying pattern scheduling rules and timing
constraints resulting in a shorter pattern.

To generate these optimal patterns, we use a parameter-
ized ILP formulation of the command scheduling problem.
Based on a (BI,BC) combination and an implementa-
tion of Equation (1), we create an ILP problem that when
solved, finds the optimal pattern size and the location of the
commands within the pattern. Any memory controller that
uses a close-page policy and relies on patterns in analysis
or implementation, like [19], [20], [21], [22] can use this
formulation to improve the schedules it uses, or to extend
its scope to different memory devices or generations.

We use the ILP formulation as a means to evaluate the
heuristics, and the translation to a formal problem definition
itself is not particularly interesting given the scope of this
article. Therefore, we only describe the formulation in nat-
ural language. The parameterized ILP problem is available
in [27], as well as the exact instantiation we used in the
evaluation. Figure 6 illustrates a subset of the properties of
the formulation.
1. Create a set of variables representing the locations of

the commands in the pattern that should be generated
as a function of the selected (BI,BC) combination: BI
ACT commands, BI · BC RD/WR commands, and BI PRE
commands (as auto-precharge flags).

2. Add variables representing the location of an extra ac-
tivate command for each bank in this set. These activate

Fig. 5. Three memory map examples, showing where the bursts of
requests to consecutive physical addresses (separated by the access
granularity) are written. The third configuration, using (2, 1) behaves the
same regardless of the BGI setting.

commands represent the start of a second instance of
the pattern, which should be schedulable immediately
after the first instance (read/write patterns should be
repeatable after themselves (Section 2.3)).

3. Given this set of memory commands, assign a single
location in the schedule to each command such that:
a. An ACT to bank 0 is scheduled in cycle 0.
b. No two commands are scheduled in the same cycle.

Auto-precharges are exempted from this rule, since
they do not require a slot in the schedule.

c. The relative delays between any pair of commands
is at least as large as prescribed by Equation (1), and
there are at most four ACTs in each FAW window.

d. The command sequence for each bank start with an
activate, followed by BC read or write commands,
followed by a precharge. This still allows different
banks to be used in parallel, i.e. one can be activating
while another is used for reading or writing. The extra
activate commands added in step 2 should happen
after the precharge to the associated bank.

e. Commands for the second instance of the pattern can-
not be scheduled before the extra activate to bank 0,
and commands for the first instance need to be sched-
uled before the extra activate to bank 0. This ac-
tivate command itself and all precharge commands
are exempt from this rule. Precharges may be (au-
tomatically) pipelined across patterns, because auto-
precharge flags are used and they are hence scheduled
automatically.

f. Both instances of the pattern are the same. A set of
constraints enforces that the distance between the ex-
tra activate command to a bank and the extra activate
to bank 0 is equal to the distance between the first
activate command to that bank and cycle 0.

4. To limit the search space and eliminate equivalent sym-
metric solutions, we add the following constraints (see
Figure 6):
a. The order of read or write commands to the same

bank is fixed, because we do not want to distinguish
different bursts to the same bank.

b. Banks are activated and precharged in ascending or-

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 8

Fig. 6. ILP precedence constraints. An edge between two commands
means that the source command must be scheduled before the destina-
tion command. Round brackets refer to rules in the ILP description.

der. For DDR4, we map consecutive bank ids to dif-
ferent bank groups (and wrap around once the bank
groups run out).

c. An upper bound on the length of the patterns in cycles
can be found based on the BS BI or BS PBGI (DDR4)
heuristics. Both provide a valid bound, so we use
whichever is the smallest.

d. A lower bound for the pattern length is the size
of a schedule where the commands for bank 0 are
scheduled as soon as possible. A lower bound for the
location of the extra activate commands of other banks
is derived from this bound.

5. The optimization goal is to minimize the pattern length.
Therefore, we minimize the location of the second ac-
tivate in to bank 0, which marks the start of the next
incarnation of the pattern.

The ILP formulation might create shorter patterns than BS BI
and BS PBGI, because it does not restrict the relative ordering
of bursts across banks nor the placement of bursts within
the pattern, and it has no preferred location for activate
commands (i.e. it could postpone them).

4 EVALUATION

Two novel pattern generation heuristics have been pre-
sented. This section compares the schedules lengths they
produce to those generated by the ILP instance for the
same scheduling problem in Section 4.1. The worst-case
performance of the selected memory devices as a function
of the different (BI,BC) configurations is evaluated in Sec-
tion 4.2.

The evaluation is limited to two devices per memory
type for the purpose of this article. Each device is part
of a speed bin defined by the associated JEDEC standard
for the memory type. Speed bins are selected based on
the commercial availability of the device and data sheets
at the time of writing, the range of clock frequencies they
cover (we select a device from the slowest and fastest bin
if available), and comparability with speed bins of other
memory types (select common speeds and data bus widths
as much as possible). Table 3 shows the specifications of the
selected devices. All devices are made by the same vendor,
since this makes it more likely that consistent safety (σ)
margins have been applied to the specifications in the data
sheet to compensate for variation [28]. This is especially
important for the IDD current measures we supply to the
power model in Section 4.2, as it makes the evaluation across
devices fairer. Furthermore, it is important to note which

TABLE 3
Memory specifications.

Name Clock Data bus Capacity Part Die
frequency width number revision

LPDDR-266 133 MHz x16 1 Gb MT46H64M16LF -75 B
LPDDR-400 200 MHz x16 1 Gb MT46H64M16LF -5 B
DDR2-800 400 MHz x16 1 Gb MT47H64M16 -25E H
DDR2-1066 533 MHz x16 1 Gb MT47H64M16 -178E H
DDR3-1066 533 MHz x16 1 Gb MT41J64M16 -178E G
DDR3L-1600 800 MHz x16 4 Gb MT41K256M16 -125 E
LPDDR2-667 333 MHz x32 2 Gb MT42L64M32D1 -3 A
LPDDR2-1066 533 MHz x32 2 Gb MT42L64M32D1 -18 A
LPDDR3-1333 667 MHz x32 4 Gb EDF8132A1MC -15 1
LPDDR3-1600 800 MHz x32 4 Gb EDF8132A1MC -125 1
DDR4-1866 933 MHz x8 4 Gb MT40A512M8 -107E A
DDR4-2400 1200 MHz x8 4 Gb MT40A512M8 -083E A

data sheet revision and die revision is used in the compar-
ison, since DRAM manufacturers frequently update both
documentation and the design of their chips. ([27] contains
the detailed specifications used for the experiments).

4.1 Pattern Length Evaluation Using ILP

The length of a pattern determines the efficiency of a pattern
set; a shorter pattern is preferred over a longer pattern
if it transports the same amount of data. To evaluate the
quality of the BS BI and BS PBGI heuristics, we use the ILP
formulation from Section 3.5.

4.1.1 Evaluation for Non-DDR4 Memories

The ILP formulation and the BS BI heuristics are used to
generate read and write patterns for the selected memories
(Table 3), for all (BI,BC) combinations with access gran-
ularities up to 256 bytes, and we compared the resulting
pattern lengths. For the non-DDR4 memories, we conclude
that the bank scheduling heuristic generates patterns of the same
length as the ILP formulation for all considered devices except
LPDDR3-1333, and is hence optimal for most devices given
the scheduling constraints.

For two LPDDR3-1333 configurations ((4, 2) and (2, 4))
is BS BI non-optimal; the write patterns are 1 cycle too long
in these cases. The optimal pattern has an idle cycle on
the data bus the middle of the pattern, which the heuristic
always tried to avoid. Given how exceptional this effect is
(2 out of 120 non-DDR4 configurations are affected), and its
relatively low cost (<2% length increase), we do not explore
this further.

4.1.2 Evaluation for DDR4 Memories

For the DDR4 memories, we generate patterns using the
BS BI and BS PBGI heuristics and the ILP formulation. Fig-
ure 7 displays the resulting write pattern lengths for a
DDR4-1866 memory (the trends for the read patterns and
the DDR4-2400 look the same). For access granularities
where BI and BC are both larger than 1 (and could hence
use bank-group interleaving), BS BI generates patterns that
are on average 8% larger than the optimal length. If we
consider both BS BI and BS PBGI then there are only two con-
figurations left where neither BS BI or BS PBGI are optimal
(the trends look similar for DDR4-2400).

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 9

1,1 1,2 1,4 1,8 1,16 2,1 2,2 2,4 2,8 2,16 4,1 4,2 4,4 4,8 8,1 8,2 8,4 16,1 16,2

(BI, BC) configurations (write patterns)

0

20

40

60

80

100

120

140

160

180
cy
cl
es

[c
c]

BS BI BS PBGI ILP

Fig. 7. Comparison of write pattern lengths for DDR4-1866, using bank
scheduling (BS BI), bank scheduling with pairwise bank-group interleav-
ing (BS PBGI) and the ILP formulation (ILP). Lower is better.

(4, 2) suffers from the same effect as the LPDDR3-1333
that was discussed earlier. The remaining configuration,
(2, 16), use a complex bank interleaving order in the ILP’s
solution, of which the properties are dependent on the
particular numerical values of the timing constraints for the
memory device under consideration.

Since the run-time of both heuristics is negligible for
all practical (BI,BC) combinations (it takes less than two
seconds to generate the 196 pattern sets in Figure 8 on a
2.9GHz i5 processor), it is feasible to execute both heuristics
for configurations where BI and BC are both larger than one,
and then select the best result. Cases may exist where the
read pattern is smaller in BS PBGI, while the write pattern is
smaller in BS BI or vice versa. We propose to select the pattern
set that delivers most worst-case bandwidth in those cases. Note
that the read and the write pattern have to use the same
bank interleaving order, to avoid permuting the data when
sequentially reading and writing the same address.

For access granularities where BI and BC are both larger
than 1, the average pattern generated by this procedure
is 1.1% larger than optimal. Since the potential gains of
creating a more refined heuristic that mimics the ILP so-
lutions more closely are quite small, and because it is not
straightforward to define it generically, we propose to use
a combination of BS BI and BS PBGI as a fast way to generate
patterns.

As one might expect, generating a solution through the
ILP formulation is significantly more time consuming than
using the heuristics; it takes about an hour (on a 3GHz i7
processor) for the biggest patterns with 32 bursts, the solv-
ing time growing roughly exponentially with the number of
bursts. Using the ILP solution is therefore feasible as long
as the access granularity and thus number of bursts is small
enough, and the required number of iterations over different
configurations and memory types is limited.

4.2 Worst-Case Performance Evaluation

The pattern generation algorithm that was introduced in
Section 3.2 is used to evaluate the worst-case performance
of the SDRAM devices we selected in Section 4, for different
values of BI and BC. Section 4.2.1 explains the origin of the
metrics displayed in the resulting plots, while Section 4.2.2

until Section 4.2.4 discuss the trade-off offered by the differ-
ent configurations in detail.

4.2.1 Worst-Case Bandwidth, Energy, and Power Metrics
Each pattern configuration is identified by two numbers,
BI and BC. The data point in Figure 8 are annotated with
these two numbers. Note that the LPDDR memories have no
BI=8 results because they only have 4 banks. Configurations
are grouped by access granularity (using the marker shape),
ranging from 8 to 256 bytes per pattern. Two performance
metrics are shown in Figure 8:
1) The worst-case bandwidth and associated efficiency for a pat-
tern configuration is determined using the analysis in [29].
The vertical axis displays this bandwidth, expressed in
GB/s, with each vertical tick representing a 20% increase
in efficiency, such that the graph covers a range from 0% to
100% efficiency.
2) To estimate the power associated with each pattern con-
figuration we use the open-source DRAMPower tool [30],
[31]. As input it takes a trace of SDRAM commands. From
this trace, it determines the energy state of the memory
in each cycle, based on the executed commands, and then
it uses the IDD currents from the data sheet to derive
the energy usage of the memory module. This model was
verified using real hardware measurements and found to
be more accurate than the (conventional) Micron’s System
Power Calculator [32]. For each pattern set, we generate a
write and a read trace, by concatenating 1000 read or write
patterns, respectively, interleaved with a periodic refresh
pattern according to the refresh interval requirement (REFI)
of the memory device. DRAMPower uses these traces to
determine the average power consumed when continuously
serving read or write requests, and hence this is an upper-
bound for the average power. The larger of the read and
write power is drawn on the horizontal axis in the graph,
expressed in mW. In general, the worst case for bandwidth
is not the same as for power.

Dividing the worst-case power by the bandwidth the
yields a measure for the energy efficiency of a pattern con-
figuration. The diagonal isolines in Figure 8 connect points
with equal energy efficiencies. Labels at the top and right of
the graphs are associated to the closest isoline, showing the
energy cost in pJ/bit. Note that this is the only metric that
can be fairly compared across all graphs, since it removes
the dependence on the clock frequency and the data bus
width.

There are many ways to read this graph. Ideally, a
configuration should be as close to the upper-left corner
as possible, i.e. have high bandwidth and energy efficiency,
and low power. Within one graph, comparing configura-
tions with the same access granularity (marker) shows the
effect of trading BI for BC. In the DDR3-1066 graph for
example, (4, 2) is objectively better than the (8, 1), since they
are transparently interchangeable from the client’s point of
view, but (4, 2) is better in the three plotted performance
metrics.

Pairs of graphs that belong to the same memory type
have their data points in approximately the same relative
position, but both the power axis and bandwidth axis
are scaled up with frequency. Comparing DDR2-1066 with
DDR3-1066 shows a significant drop in power usage on a

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 10

50 100 150 200 250 300 350 400 450
0.00

0.11

0.21

0.32

0.43

1,1

1,2

2,11,4

2,2 4,1
1,8

2,4 4,2
1,16

2,8 4,4

613

299

191

134

97715032

20 %

40 %

60 %

80 %

LPDDR-266 x16, 1 Gb (B)

100 200 300 400 500 600
0.00

0.16

0.32

0.48

0.64

1,1

1,2

2,1
1,4

2,2 4,1
1,8

2,4 4,2
1,16

2,8 4,4

611

298

190

133

97704931

20 %

40 %

60 %

80 %

LPDDR-400 x16, 1 Gb (B)

100 200 300 400 500 600 700
0.00

0.32

0.64

0.96

1.28

1,1

1,2
2,1

1,4

2,2

4,1
1,8

2,4 4,2
8,1

1,16

2,8 4,4 8,2

331

161

103

72

52382717

20 %

40 %

60 %

80 %

DDR2-800 x16, 1 Gb (H)

100 200 300 400 500 600 700
0.00

0.43

0.85

1.28

1.71

1,1

1,2 2,1

1,4
2,2

4,1
1,8

2,4

4,2

8,1

1,16

2,8 4,4 8,2

248

121

77

54

39292013

20 %

40 %

60 %

80 %

DDR2-1066 x16, 1 Gb (H)

50 100 150 200 250 300 350 400
0.00

0.43

0.85

1.28

1.71

1,1

1,2 2,1

1,4
2,2

4,1
1,8

2,4

4,2

8,1

1,16

2,8 4,4 8,2

134

65

42

29

2115117

20 %

40 %

60 %

80 %

DDR3-1066 x16, 1 Gb (G)

50 100 150 200 250 300 350 400
0.00

0.64

1.28

1.92

2.56

1,1
1,2 2,1

1,4
2,2 4,1

1,8

2,4

4,2

8,1

1,16

2,8 4,4
8,2

89

44

28

19

141075

20 %

40 %

60 %

80 %

DDR3L-1600 x16, 4 Gb (E)

100 200 300 400 500
0.00

0.53

1.07

1.60

2.13

1,1

1,2
2,1

1,4

2,2

4,1
1,8

2,4 4,2 8,1

153

75

48

33

2418128

20 %

40 %

60 %

80 %

LPDDR2-667 x32, 2 Gb (A)

100 200 300 400 500 600
0.00

0.85

1.71

2.56

3.41

1,1

1,2 2,1

1,4
2,2

4,1
1,8

2,4

4,2

8,1

105

51

33

23

171285

20 %

40 %

60 %

80 %

LPDDR2-1066 x32, 2 Gb (A)

50 100 150 200 250 300 350 400
0.00

1.07

2.13

3.20

4.27

1,1
1,2 2,1

1,4
2,2 4,1

1,8

2,4

4,2

8,1

54

26

17

12

8643

20 %

40 %

60 %

80 %

LPDDR3-1333 x32, 4 Gb (1)

50 100 150 200 250 300 350 400
0.00

1.28

2.56

3.84

5.12

1,1
1,2 2,1

1,4
2,2 4,1

1,8

2,4
4,2

8,1

45

22

14

10

7542

20 %

40 %

60 %

80 %

LPDDR3-1600 x32, 4 Gb (1)

50 100 150 200 250
0.00

0.37

0.75

1.12

1.49

1,1
1,2 2,1

1,4
2,2 4,1

1,8

2,4
4,2 8,1

1,16

2,8

4,4 8,2

16,1

2,16

4,8 8,4
16,2

92

45

29

20
151175

20 %

40 %

60 %

80 %

DDR4-1866 x8, 4 Gb (A)

50 100 150 200 250 300
0.00

0.48

0.96

1.44

1.92

1,1
1,2 2,1

1,4 2,2 4,1
1,8

2,4
4,2

8,1
1,16

2,8

4,4

8,2

16,1

2,16

4,8 8,4
16,2

85

42

26

19

131074

20 %

40 %

60 %

80 %

DDR4-2400 x8, 4 Gb (A)

8 B 16 B 32 B 64 B 128 B 256 B Worst-case power [mW]

W
o
rs
t-
ca
se

b
a
n
d
w
id
th

[G
B
/s
]

Fig. 8. Worst-case bandwidth vs. worst-case power. The diagonal isolines connect points of equal energy efficiency, labeled with [pJ/bit] (125 divided
by these labels yields [GB/J]). %-labels relate to the peak bandwidth.

configuration-by-configuration basis, while the bandwidth
remains almost constant, indicating that their timing con-
straints are very similar.

Another insightful way to look at Figure 8 is found by
considering what a pattern consists of at the burst level:
BI is a measure for the amount of bank-parallelism that is
exploited, while BC is a measure for the page hit/miss ratio:
there are (BC− 1) hits per BC bursts even in the worst case.
In terms of general memory scheduling, each configuration
can thus be interpreted as an operating point of the memory
as a function of the burst-level bank-parallelism and page
hit/miss ratio.

4.2.2 Comparing Pattern Configurations in a Speed Bin
In this initial evaluation, we compare the relative perfor-
mance of the configurations in Figure 8 on a per-memory
basis. Four trends are identified:
1. For all memory types except DDR4: configurations interleav-

ing over more than 4 banks (BI > 4) are always worse than an-
other configuration with a similar access granularity in terms
of bandwidth and energy efficiency, and hence BI > 4 should
not be used. The inefficiency is caused by the relatively

large FAW constraint having to be resolved within the
pattern instead of across patterns where it overlaps with
other constraints. If BI ≥ 8, then a pattern contains 8
or more ACT commands. Consequently it needs to be
at least 2 · FAW long to be valid, which is always larger
than RC for all defined speed bins, and thus prohibitively
expensive compared to using smaller BI with a larger BC
instead.

2. For DDR4, a similar effect is visible if BI > 8. This can
be explained using similar reasoning, considering that a
pattern with 16 ACT commands is at least 4 · FAW long,
which is at least twice as large as RC for the currently
defined speed bins. The FAW timing (in nanoseconds)
is slowly reducing as the clock frequency increases [33],
allowing more banks to be interleaved in the (relatively
fast) DDR4 memories.

3. For a constant access granularity, interleaving over more
banks improves the worst-case bandwidth, but reduces the
energy efficiency. The reuse distance per bank increases as
bank parallelism is exploited, improving efficiency (see
Section 3.2). Energy efficiency reduces, since the relative

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 11

number of ACT and PRE commands increases, and they
consume energy. This trend is overruled by trend 1 and 2.

4. For a constant BI, increasing the access granularity (by
increasing BC) improves the worst-case bandwidth and the
energy efficiency, since the cycles and energy spent on
opening and closing a page is amortized over a larger
number of bytes. Note that the efficiencies eventually
saturate, leading to diminishing returns. The maximum
access granularity is furthermore limited by the size
of the requests the memory clients generate. Doubling
the access granularity never doubles the efficiency, so
throwing away excess data is never profitable.

A consequence of trends 3 and 4 is that for a given access
granularity, BI can be traded for BC, which corresponds to trading
off worst-case bandwidth for energy efficiency.

4.2.3 Comparing Multiple Speed Bins

By comparing configurations across speed bins, we can
see that for the same memory type and access granularity, the
faster bins tend2 to have a higher energy efficiency, because
the proportional growth of the worst-case bandwidth when
switching to a higher speed bin is generally bigger than
the proportional growth of the worst-case power within
the observed frequency ranges. The (2, 4) configurations for
LPDDR2-667 and 1066 demonstrate this (with data points
that conveniently sit on the isolines), for example, where
the slower device requires 18 pJ/bit and the faster device
uses 17 pJ/bit.

There are 3 reasons the worst-case bandwidth tends2 to
grow when the frequency increases. The first reason is the
most obvious: at a higher frequency, each data burst requires
less time, thus potentially reducing the pattern length if the
data bursts are on the critical path through the pattern. The
second reason is that manufacturers design the devices in
the higher speed bins to run at the higher clock frequency
of that bin, and as a result their timings in nanoseconds are
also smaller. The third reason arises from the conservative
discretization of memory timings into clock cycles. Even
though the maximum error in the cycle-level approxima-
tion of the actual timing monotonically decreases with an
increasing clock frequency, the actual error does not, such
that a higher frequency might occasionally result in a bigger
approximation error compared to a smaller frequency that
just happens to fit better. The net effect rarely impacts the
worst-case bandwidth negatively2, but in those exceptional
cases it makes no sense to run at these higher frequencies
from a worst-case performance point of view.

The worst-case power generally increases as well when
a higher clock frequency is used, but because a significant
fraction of it is static and unaffected by the clock frequency,
the energy efficiency generally improves.

Increasing the clock frequency has diminishing returns in
terms of memory efficiency. The clock period shrinks faster
than the pattern lengths, which implies a smaller fraction
of the time is spent actually transporting data, assuming
the number of bursts (BI · BC) in the pattern remains

2. In the set of experiments presented in Figure 8, only the pair of
DDR2 memories shows a bandwidth reduction in a higher speed bin,
when BC = 1 and BI ∈ {1, 2, 4, 8}. The maximum reduction is less
than 4 percent.

constant. The fraction of time spent waiting for nanosecond-
based constraints, for example related to activating and
precharging, increases. This means that the required (BI,BC)
product to reach a certain memory efficiency grows; this effect
is visible in Figure 8, where the same configuration per
memory type has a higher efficiency in the slower speed
bin than in the fast speed bin.

The effects of increasing the width of the data bus on
efficiency mirror those of increasing the clock frequency,
since it also reduces fraction of time spent transporting data.
Increasing the data bus width thus also has diminishing returns
in terms of efficiency. If the pin and wiring costs are of key
importance in a particular design, then it may make sense
to prefer devices with a smaller data bus width if they can
sustain the required bandwidth and are sufficiently energy
efficient.

4.2.4 Worst-case Execution Time of a Request

The worst-case execution time of a request, i.e. how long
it occupies the memory resource, is solely dependent on
the length of the patterns (assuming the size of the request
matches the access granularity of the pattern). The worst-
case response time (WCRT) is the difference between the
arrival of a request in the controller and the departure
of the response. It includes the time a request is delayed
by its own previous requests, requests from other clients,
interference from refreshes, and any additional time delay
between the execution commands and the return of data
resulting from pipelining in the memory and data response
path through the controller. Quantifying each of these com-
ponents is only possible for concrete architecture instances,
with a known arbiter type, a specific number of clients, and
assumptions on the temporal arrival behavior of requests.
A spectrum of parameterized approaches to WCRT analysis
is available [25], [29], [34]. Since this section focuses on the
general trends across memory configurations and types, we
do not commit to a specific architecture and WCRT analysis
method. Instead, we focus on the parameters produced
by the pattern-generation process, i.e. the duration of the
individual patterns and the worst-case bandwidth, that are
generally used within a WCRT analysis, based on related
work.

Figure 9 shows the execution time of the memory pat-
terns for various memory types and configurations (ordered
by access granularity and BI). The first two groups of bars
represent the entire configuration space for access granular-
ities of 32, 64 and 128 bytes for the two LPDDR2 memories.
The other groups show the 64 byte configurations of the
fastest memories in our set for the remaining memory types.
The offset bar shows the time it takes from the start of a
read pattern until the final data word is put on the data bus
by the memory. This may happen after the end of the read
pattern, because commands are pipelined in the memory,
and thus the offset bar is sometimes larger than the read
bar. Offset represents the minimum time any read request
has to wait for its data. The total stacked length of the bars
per configuration can be interpreted as the WCRT of a read
request that has to wait for a refresh, an interfering read
and write pattern and the associated switching patterns, and
finally its own data offset.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 12

0

100

200

300

400

500
P
at
te
rn

ex
ec
u
ti
o
n
ti
m
e
[n
s]

1
1

1
2

2
1

1
4

2
2

4
1

1
1

1
2

2
1

1
4

2
2

4
1

1
4

2
2

4
1

1
4

2
2

4
1

1
4

2
2

4
1

1
2

2
1

1
8

2
4

4
2

8
1

LPDDR2
667

LPDDR2
1066

LPDDR
400

DDR2
1066

DDR3L
1600

LPDDR3
1600

DDR4
2400

BI
BC

refresh read read-to-write write write-to-read offset

Fig. 9. Pattern execution times and data offset.

Comparing the configurations for LPDDR2-667, we can
see that the pattern execution times grow as expected
(Figure 2) when the access granularity grows. The length
of the refresh pattern increases as patterns become more
efficient. This happens because a refresh command can only
be issued once all banks have been precharged, and NOPs
are inserted at the start of the refresh pattern to assert this.
Efficient pattern configurations exploit bank-parallelism and
have their final read or write burst relatively close to the
end of the associated pattern, thus increasing the required
number of NOPs before the refresh command. The switch-
ing patterns grow with efficiency for similar reasons; they
insert NOPs between the bursts close to end of a patterns
and the beginning of patterns of the opposing types. Note
that exchanging read and write pattern duration for longer
refresh and switching patterns is not a zero-sum game,
because refresh patterns have to be issued infrequently
relative to read or write patterns, and the switching patterns
are not always in the worst-case sequence of patterns that
determines the efficiency3.

Comparing similar configurations (same (BI,BC))
across the LPDDR2 memories, reveals that increasing the
clock frequency reduces the execution time of the patterns,
in line with the bandwidth trends. Switching patterns disap-
pear, because the data-bus timings that dictate their length
are specified in clock cycles and thus shrink in comparison
to the analog timings that are based on nanoseconds, which
dominate the read and write pattern length at higher clock
frequencies.

The refresh pattern length for DDR3 and DDR4 is
roughly twice as big as that of the LPDDR3 memory, but
LPDDR2/3 memories need to be refreshed twice as often,
and hence still exhibit approximately the same refresh over-
head.

Finally, it is interesting to look at the global picture,
considering the sensitivity of the worst-case execution time
to the clock frequency. For example, when comparing the
LPDDR2-677 and LPDDR3-1600 (2, 2) configuration, the
frequency grows with 140%, while the duration of a read-

3. 70% of the tested configurations have only write (and refresh)
patterns in its worst-case sequence, 30% alternates between read and
write (and refresh) patterns.

write-offset sequence reduces by only 49 ns or 20%. This
highlights that both new memory technologies and higher
clock frequencies have not given much benefit yet in terms
of worst-case execution time.

5 RELATED WORK

Many SDRAM command schedulers and/or controllers
have been proposed in related work, employing a range
of methods to improve different performance aspects. First,
we discuss some of the works that focus more on average-
case performance, and then discuss the analyzable, real-time
capable techniques in detail.

Methods that improve average-case performance of
SDRAM are abundant, exploiting locality [16], [35], group-
ing requests per thread [36], exchanging more information
with the cache [37] and even using reenforcement learning
to adapt the scheduling policy at run-time [38]. These tech-
niques interact with the command scheduling in complex
ways, relying on unpredictable request reordering schemes
that are effectively impossible to analyze, which means no
useful bounds on the real-time performance can be derived.
This makes it impossible to use them in a real-time context.

Within the group of analyzable controllers, the amount
of a priori information that is assumed to be available /
exploitable by the command scheduler varies. [39] requires
every single request to be known at design time to com-
pute a static command schedule at design time. It is hence
completely analyzable, but has very limited flexibility, since
obtaining this information in a multi-core system is not
possible in the general case.

The PRET controller [19] schedules commands according
to a static periodic schedule. Banks are accessed one burst
at a time (i.e. with a BC of 1), and consecutive bursts are
guaranteed to be interleaved across banks, such that bank
parallelism can be exploited. The degree of bank paral-
lelism (their BI) is equal to the number of banks in the
device. The RTCMC controller [22] dynamically schedules
commands at run-time. Similarly to the PRET controller, it
interleaves bursts over all 4 banks in the device, issuing one
burst per bank (i.e. like a (4, 1) configuration). Both PRET
and RTCMC use a close-page policy, and target relatively
slow DDR2 devices that have small read-write switching
constraints compared to the memories considered in this
article. This allows read-write interleaving at burst granular-
ity without prohibitively large penalties, but does not scale
well to faster memories as the read-to-write and write-to-
read constraints grow and start to dominate the schedule
length. The RRD constraint for these memories is also small
enough, such that even with BC = 1 the efficiency is still
reasonable, but this again changes when faster memories are
considered.

The SMC controller [40] focuses on real-time steaming
traffic, which allows the memory controller to deal with
relatively large requests, up to the size of an entire page
(1 KB for their device). This is equivalent to choosing BC
such that the access granularity is 1 page, with BI 1. Their
target device is a DDR1, which we did not consider in this
article, but their results relating a larger access granularity
to lower power usage are in line with the trends we observe.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 13

The authors of [24] and [41] propose dynamically sched-
uled memory controllers with a corresponding worst-case
analysis method, using an open and close-page policy, re-
spectively. Benefiting from the use of an open-page policy
in terms of lower worst-case bounds is only possible when
bank privatization is used, as far as we are aware. [24] uses
this approach, i.e. it assigns a private bank to each real-
time client, and assumes that a static analysis is available to
determine which loads and stores result in SDRAM accesses,
and are hits or misses. Close-page controllers do not require
such in-depth application knowledge, but are hence also
not able to exploit it, which could lead to more pessimistic
bounds depending on the use case. [22] analyses a similar
privatization-based open-page approach, but concludes that
giving a complete bank to each application (or thread) leads
to scalability issues (the number of banks is limited), and
therefore drops the idea in favor of a close-page (4, 1)
configuration. Rank interleaving is used in [24] to limit
read-write switching overhead. We do not consider rank
interleaving, since the switching overhead is not dominating
the worst-case pattern sequence when a close-page policy
is used in 70% of the configurations shown in Figure 8,
and is hence not relevant for worst-case performance in
those cases. In the remaining configurations, the average
overhead is 5%, with a maximum of 16% for the slowest
LPDDR memory. Taking into account that switching ranks
has a penalty of about 2 cycles, which replaces a switching
pattern with a length of the same order of magnitude,
we estimate the average efficiency improvement obtained
through rank interleaving is only 2 to 3%, within the 30% of
the configurations that would benefit at all.

[25] specifically analyses a FR-FCFS arbiter, i.e. one
that prioritizes row hits over row misses. In the worst-
case, it assumes all requests of the application that is being
analyzed are misses. It has consider that row-hits from other
applications overtake these requests through reordering,
so even though the analysis takes this open-page aspect
into account, it is not beneficial for the derived worst-case
bounds. It assumes each request maps to a single burst.

None of the related papers mentioned above (except
[40]) take power into account, despite it being an important
design constraint [42]. (BI,BC) trade-offs are not consid-
ered, and the analysis in each of the papers is limited to
one or two memory generations, while we show a much
broader range of memories and a suitable abstraction to deal
with their relative differences. The real-time implications of
the introduction of bank groups in DDR4 has also not been
evaluated in related work.

A few other memory generation overview papers exists.
[33] discusses some of the differences in DDR2/3/4 memory
timings, but does not show the effect on worst-case perfor-
mance. The authors in [43] shows the bandwidth/energy
efficiency trade-offs for different memories when applied in
data centers, but it considers a smaller set of SDRAM gener-
ations compared to this article, and does not focus on worst-
case performance. [44] compares several (asynchronous)
DRAM architectures and considers SDRAM as one special
case within this family, but does not zoom in further. In [45],
the focus lies on selecting a suitable memory for a design
rather than giving a general performance overview, and it
only considers LPDDRx memories.

This work is an extension of [46], where band-
width/energy/execution time trade offs as a function of
BI and BC were discussed for a single DDR3 device. It
used techniques from [20], which proposes a memory con-
troller that dynamically schedules precomputed sequences
of SDRAM commands (memory patterns) according to a
fixed set of scheduling rules. [20] did not consider power,
uses a variable BC, but fixes BI to the number of banks in
the memory, while we allow BI to be variable in this work.

6 CONCLUSIONS

This article showed how the memory command scheduling
problem for real-time memory controllers can be gener-
alized such that multiple memory generations can easily
be supported. The proposed BS BI and BS PBGI command
scheduling heuristics are configurable to interleave requests
over a variable number of banks, and/or use multiple
bursts per bank. BS PBGI is tailored for DDR4, and uses
pairwise bank-group interleaving to reduce the schedule
length. Both heuristics’ outputs were compared to that of
an ILP formulation of the same scheduling problem. A com-
bination of both heuristics generates schedules within 2%
of the optimal length for 12 devices from the LPDDR1/2/3,
DDR2/3/4 generations, considering access granularities up
to 256 bytes. We derived the worst-case bandwidth, power
and execution time for the same set of devices and scheduler
configurations, and evaluated the observed differences.

ACKNOWLEDGMENTS

This work was partially funded by projects CATRENE
CA505 BENEFIC, CA703 OpenES, CT217 RESIST; ARTEMIS
621429 EMC2 and 621353 DEWI, and the Ministry of
Education of the Czech Republic under project number
CZ.1.07/2.3.00/30.0034.

REFERENCES

[1] S. McKee, “Reflections on the memory wall,” in Proc. Conf. on
Computing frontiers, 2004, pp. 162–167.

[2] B. Loop and C. Cox, “An analytical study of DRAM power
consumption across memory technologies,” in Proc. Energy Aware
Computing (ICEAC), Int. Conf. on, 2011, pp. 1–3.

[3] JEDEC, “DDR4 SDRAM specification JESD79-4.”
[4] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk.

Morgan Kaufmann Pub, 2007.
[5] JEDEC, “DDR2 SDRAM specification JESD79-2F,” 2009.
[6] ——, “DDR3 SDRAM specification JESD79-3E.”
[7] ——, “Low power double data rate specification JESD209B.”
[8] ——, “Low power double data rate 2 specification JESD209-2D.”
[9] ——, “Low power double data rate 3 specification JESD209-3B.”
[10] P. Kollig, C. Osborne, and T. Henriksson, “Heterogeneous multi-

core platform for consumer multimedia applications,” in Design,
Automation & Test in Europe Conf. & Exhibition (DATE), 2009, pp.
1254–1259.

[11] RM57L843 16- and 32-Bit RISC Flash Microcontroller, Texas Instru-
ments Inc., 2014.

[12] P. van der Wolf and J. Geuzebroek, “SoC infrastructures for
predictable system integration,” in Design, Automation & Test in
Europe Conf. & Exhibition (DATE), 2011, pp. 1–6.

[13] M. D. Gomony, B. Akesson, and K. Goossens, “Architecture and
optimal configuration of a real-time multi-channel memory con-
troller,” in Design, Automation & Test in Europe Conf. & Exhibition
(DATE), 2013, pp. 1307–1312.

[14] P4080 QorIQ Multicore Communication Processor Reference Manual,
P4080RM Rev. 2 ed., Freescale.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, JANUARY 2014 14

[15] L. Steffens, M. Agarwal, and P. van der Wolf, “Real-time anal-
ysis for memory access in media processing socs: A practical
approach,” in Euromicro Conf. on Real-Time Syst. (ECRTS), 2008,
pp. 255–265.

[16] S. Rixner et al., “Memory access scheduling,” in Comput. Architec-
ture, Int. Symp. (ISCA), 2000, pp. 128–138.

[17] B. Akesson and K. Goossens, Memory Controllers for Real-Time
Embedded Systems, ser. Embedded Systems Series. Springer, 2011.

[18] K. Chandrasekar, B. Akesson, and K. Goossens, “Run-time power-
down strategies for real-time SDRAM memory controllers,” in
Design Automation Conf. (DAC), 2012, pp. 988 –993.

[19] J. Reineke et al., “PRET DRAM controller: Bank privatization for
predictability and temporal isolation,” in Proc. CODES+ISSS, 2011,
pp. 99–108.

[20] B. Akesson and K. Goossens, “Architectures and modeling of
predictable memory controllers for improved system integration,”
in Design, Automation & Test in Europe Conf. & Exhibition (DATE),
2011, pp. 1–6.

[21] H. Shah, A. Raabe, and A. Knoll, “Bounding WCET of applica-
tions using SDRAM with priority based budget scheduling in
MPSOCs,” in Design, Automation & Test in Europe Conf. & Exhibition
(DATE), 2012, pp. 665–670.

[22] M. Paolieri, E. Quiñones, and F. J. Cazorla, “Timing effects of DDR
memory systems in hard real-time multicore architectures: Issues
and solutions,” ACM Trans. Embedded Comput. Syst., vol. 12, no. 1s,
p. 64, 2013.

[23] DDR3L SDRAM, 4Gb_DDR3L.pdf - Rev. I 9/13 EN ed., Micron.
[24] Y. Krishnapillai, Z. Pei Wu, and R. Pellizzoni, “ROC: A rank-

switching, open-row DRAM controller for time-predictable sys-
tems,” in Euromicro Conf. on Real-Time Syst. (ECRTS), 2014, pp. 27–
38.

[25] H. Kim et al., “Bounding memory interference delay in COTS-
based multi-core systems,” in Real-Time and Embedded Technology
and Applicat. Symp. (RTAS), 2014, pp. 145–154.

[26] B. Akesson, W. Hayes, and K. Goossens, “Automatic generation of
efficient predictable memory patterns,” in Embedded and Real-Time
Computing Syst. and Applicat. (RTCSA), 2011, pp. 177–184.

[27] S. Goossens, “Power/performance trade-offs in real-time SDRAM
controllers - code and datasets,” http://www.es.ele.tue.nl/
~sgoossens/sdram_trade_offs.

[28] K. Chandrasekar et al., “Towards variation-aware system-level
power estimation of DRAMs: an empirical approach,” in Design
Automation Conf. (DAC), 2013, pp. 23:1–23:8.

[29] B. Akesson, W. Hayes Jr., and K. Goossens, “Classification and
analysis of predictable memory patterns,” in Embedded and Real-
Time Computing Syst. and Applicat. (RTCSA), 2010, pp. 367–376.

[30] K. Chandrasekar et al., “Drampower: Open-source DRAM power
& energy estimation tool,” http://www.drampower.info.

[31] K. Chandrasekar, B. Akesson, and K. Goossens, “Improved power
modeling of DDR SDRAMs,” in Digital System Design (DSD), 2011,
pp. 99–108.

[32] K. Chandrasekar, “High-level power estimation and optimization
of DRAMs,” Ph.D. dissertation, Delft University of Technology,
2014.

[33] “DDR4 networking design guide introduction,” Micron Technol-
ogy Inc., Tech. Rep., 2014, tN-40-03.

[34] H. Shah, A. Knoll, and B. Akesson, “Bounding SDRAM inter-
ference: Detailed analysis vs. latency-rate analysis,” in Design,
Automation & Test in Europe Conf. & Exhibition (DATE), 2013, pp.
1–6.

[35] J. Dodd, “Adaptive page management,” 2006, US Patent 7,076,617.
[36] O. Mutlu and T. Moscibroda, “Parallelism-aware batch schedul-

ing: Enhancing both performance and fairness of shared DRAM
systems,” SIGARCH Comput. Archit. News, vol. 36, no. 3, 2008.

[37] J. Stuecheli et al., “The virtual write queue: coordinating DRAM
and last-level cache policies,” SIGARCH Comput. Archit. News,
vol. 38, no. 3, pp. 72–82, 2010.

[38] E. Ipek et al., “Self-optimizing memory controllers: A reinforce-
ment learning approach,” in Comput. Architecture, Int. Symp.
(ISCA), 2008, pp. 39–50.

[39] S. Bayliss and G. Constantinides, “Methodology for designing
statically scheduled application-specific SDRAM controllers using
constrained local search,” in Field-Programmable Technology, Int.
Conf. on, 2009, pp. 304–307.

[40] A. Burchardt, E. Hekstra-Nowacka, and A. Chauhan, “A real-time
streaming memory controller,” in Design, Automation & Test in
Europe Conf. & Exhibition (DATE), 2005, pp. 20–25.

[41] Y. Li, B. Akesson, and K. Goossens, “Dynamic command schedul-
ing for real-time memory controllers,” in Euromicro Conf. on Real-
Time Syst. (ECRTS), 2014, pp. 3–14.

[42] “International technology roadmap for semiconductors (ITRS) -
system drivers,” 2011, http://www.itrs.net/reports.html.

[43] K. Malladi et al., “Towards energy-proportional datacenter mem-
ory with mobile DRAM,” in Comput. Architecture, Int. Symp.
(ISCA), 2012, pp. 37–48.

[44] V. Cuppu et al., “A performance comparison of contemporary
DRAM architectures,” SIGARCH Comput. Archit. News, vol. 27,
no. 2, pp. 222–233, 1999.

[45] M. Gomony et al., “Dram selection and configuration for real-
time mobile systems,” in Design, Automation Test in Europe Conf.
Exhibition (DATE), 2012, pp. 51 –56.

[46] S. Goossens et al., “Memory-map selection for firm real-time
SDRAM controllers,” in Design, Automation Test in Europe Conf.
Exhibition (DATE), 2012, pp. 828 –831.

Sven Goossens Sven Goossens received a
MSc in embedded systems from the Eindhoven
University of Technology in 2010, and is currently
a PhD candidate at the same university. His
research interests include mixed time-criticality
systems, composability and SDRAM controllers.

Karthik Chandrasekar Karthik Chandrasekar
earned his M.Sc. degree in Computer Engineer-
ing from TU Delft in the Netherlands in Novem-
ber 2009. In October 2014, he received his PhD
also from the same university. His research in-
terests include Real-Time Embedded Systems,
Power and Performance Modeling and Optimiza-
tion, DRAM Memories and Memory Controllers.
He is currently employed as a Senior Architect at
Nvidia.

Benny Akesson Benny Akesson earned a
M.Sc. degree in Computer Science and Engi-
neering at Lund Institute of Technology, Swe-
den in 2005. In 2010, Dr. Akesson received his
Ph.D. degree in Electrical Engineering at Eind-
hoven University of Technology, the Netherlands.
He is currently employed as a Postdoctoral Re-
searcher at the Czech Technical University in
Prague. His main research interest is memory
controllers for real-time systems.

Kees Goossens Kees Goossens received his
PhD in Computer Science from the University of
Edinburgh in 1993. He worked for Philips/NXP
Research from 1995 to 2010 on networks on
chip for consumer electronics, where real-time
performance, predictability, and costs are major
constraints. He was part-time professor at Delft
university from 2007 to 2010, and is now pro-
fessor at the Eindhoven university of technology,
where his research focuses on composable (vir-
tualised), predictable (real-time), low-power em-

bedded systems. He published 3 books, 100+ papers, and 24 patents.

