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Abstract—In modern multi-core systems with multiple real-
time (RT) applications, memory traffic accessing the shared
SDRAM is increasingly diverse, e.g., transactions have variable
sizes. RT memory controllers with dynamic command scheduling
can efficiently address the diversity by issuing appropriate com-
mands subject to the SDRAM timing constraints. However, the
scheduling dependencies between commands make it challenging
to derive tight bounds for the worst-case response time (WCRT)
and the worst-case bandwidth (WCBW) of a memory controller.
Existing modeling and analysis techniques either do not provide
tight WCRT and WCBW bounds for diverse memory traffic with
variable transaction sizes or are difficult to adapt to different RT
memory controllers.

This paper models a memory controller using Timed Au-
tomata (TA), where model checking is applied for analysis. Our
TA model is modular and accurately captures the behavior of
a RT memory controller with dynamic command scheduling.
We obtain WCRT and WCBW bounds, which are validated
by simulating the worst-case transaction traces obtained by
model checking with a cycle-accurate model of the memory
controller. Our method outperforms three state-of-the-art analysis
techniques. We reduce WCRT bound by up to 20%, while the
average improvement is 7.7%, and increase the WCBW bound by
up to 25% with an average improvement of 13.6%. In addition,
our modeling is generic enough to extend to memory controllers
with different mechanisms.

I. INTRODUCTION

Heterogeneous multi-core platforms executing real-
time (RT) applications use different hardware resources, such
as processor cores, hardware accelerators, DMA controllers,
and the off-chip SDRAM memory [4], [17]. To meet the RT
requirements of applications, each resource has to guarantee its
performance [2], [26]. It is challenging to provide guaranteed
performance for the SDRAM, because 1) memory clients
generate diverse traffic with arbitrarily mixes of read/write
transactions with variable sizes, 2) SDRAM locations are
randomly accessed by different transactions, and 3) the
execution time of a transaction depends on the SDRAM state,
which relies on earlier transactions.

To ease the complexities and to provide guaranteed per-
formance, semi-static RT memory controllers [1], [8], [11],
[28] use pre-computed static command schedules for a fixed
transaction size. This results in low data efficiency for traffic
with variable transaction sizes. Dynamic RT memory con-
trollers [12], [13], [18], [23] efficiently address the diversity
by scheduling appropriate commands as soon as timing con-
straints are satisfied. However, the scheduling together with
timing dependencies between commands is hard to analyze.
Therefore, existing manual timing analyses only provide pes-
simistic bounds on worst-case response time (WCRT) and

worst-case bandwidth (WCBW), because they have to assume
worst-case initial SDRAM state for a new transaction and also
assume conflicts on the command bus. In addition, any change
to the command scheduling or timing constraints (e.g. for a
different memory device) may require these manual timing
analyses to be adapted.

This paper proposes an accurate Timed Automata (TA)
model of a memory controller with dynamic command
scheduling [23], and the worst-case bounds are derived by
model checking. Our TA model does not employ any simpli-
fying abstractions, resulting in tighter worst-case bounds than
the state-of-the-art analyses. The four main contributions are:

1) A modular TA model consisting of the DDR3 SDRAM
device and the memory controller. The former captures all
SDRAM timing constraints, while the latter models the
timing behavior of the memory controller architecture.
The TA model can be easily extended or reused for
different memory controllers or different DDR3 SDRAM
devices. Our TA model is publicly available [21].

2) We validate our TA model with the open-source RT-
MemController tool [20], which has been shown to be
equivalent to a cycle-accurate SystemC simulator of the
dynamic command scheduling algorithm under consid-
eration [22]. We execute random transaction traces with
around 1200 commands using both the TA model and
RTMemController, resulting in identical scheduling times
of each command. This gives evidence that our TA model
accurately captures the command timings of the memory
controller with dynamic command scheduling.

3) Worst-case response time and worst-case bandwidth are
derived by verifying properties of the TA model with the
Uppaal model checker [3]. Uppaal provides diagnostic
traces that lead to the worst-case bounds. Executing these
traces with the cycle-accurate simulator provides identical
WCRT and WCBW results as Uppaal, which speaks for
the accuracy of our model.

4) Finally, the proposed TA analysis reduce the WCRT
bound by up to 20% and improve the WCBW bound by
up to 25% compared to the state-of-the-art [23], [24].
The average improvements of the bounds on WCRT and
WCBW are 7.7% and 13.6%, respectively.

In the remainder of this paper, the background of SDRAM,
RT memory controllers, and TA is given in Section II. Sec-
tion III presents our TA model of the memory controller with
dynamic command scheduling. Section IV shows how the
WCRT and WCBW can be derived by verifying properties
of the TA model. We then review related work in Section V
before the experiments in Section VI. Finally, we conclude in
Section VII.
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II. BACKGROUND

This section introduces SDRAM, the architecture and com-
mand scheduling of real-time memory controllers, and Timed
Automata (TA). In the remainder of this paper, we use the
Uppaal toolbox [3] to implement and analyze our TA.

A. SDRAM and Real-Time Memory Controllers

1) SDRAM and Timing Constraints: A DDR3 SDRAM
chip is typically composed of 8 banks, each of which contains
a memory array arranged in rows and columns, as shown in
Fig. 1. The SDRAM interface consists of command, address,
and data buses. To read/write data from/into the SDRAM,
memory commands must be scheduled on the command bus
every clock cycle while data is transferred on a separate data
bus. An activate (ACT) command opens a row and copies the
contents into the row buffer. Next, a read (RD) or write (WR)
command is issued to read/write a burst of data from/into
the row buffer. The burst length (BL) is 8 words for DDR3
SDRAMs [14]. Before activating a new row, the contents of
the row buffer must be closed and copied back into the row
in the memory array. This is achieved by explicitly issuing a
precharge (PRE) command or attaching an auto-precharge flag
to a RD or WR command to trigger the internal precharging of
the SDRAM. We employ auto-precharge in this paper, since
it reduces the contention on the command bus. Finally, the
SDRAM must be periodically refreshed every tREFI cycles to
retain the data.

The scheduling of the memory commands has to satisfy the
JEDEC-specified timing constraints [14], which are the mini-
mum time between commands. The relevant timing constraints
are summarized in Table I, where a 16-bit DDR3-1600G
SDRAM with the capacity of 2Gb is taken as an example.
Intra-bank timing constraints restrict commands executed by
the same bank, such as tRCD that specifies a minimum
time between ACT and RD or WR commands to the same
bank. Other examples are tRAS and tRP. Inter-bank timing
constraints restrict commands executed by different banks. For
example, tRRD is the minimum time between two successive
ACT commands to two different banks. Other examples are
tFAW and the read/write switching constraints tWTR and tRTW.

SDRAM

Memory array

Row Buffer

B
A

N
K

 0

B
A

N
K

 1

B
A

N
K

 7

Precharge 
(PRE)

Activate 
(ACT)

WriteRead

MC Back-End

Scheduler

Memory 
Map

Command 
Generator

Timing 
Counters

Data

Physical address

cmd

T
ra

n
s

MC
Front-End

R
e
so

u
rce

 b
u
s

Requestor 
0

Requestor 
N-1

Requestor 
1

TDM 
Arbiter

Req & Resp

Req & Resp

Req & Resp

PARQueue

Fig. 1. Memory controller and DDR3 SDRAM architectures.

2) Memory Controller Architecture: We use the memory
controller of [22], consisting of a front-end and back-end, as
shown in Fig. 1. The front-end receives memory transactions
from different memory requestors, e.g., processing cores, and
places them in per-requestor request buffers. The response
buffers, also for each requestor, receive the data that is read
from the memory. A typical requestor generates transactions
with fixed size, such as CPU cache misses [30], but transaction
sizes vary between requestors. Transactions from different

TABLE I. TIMING CONSTRAINTS FOR DDR3-1600G SDRAM [14].

TC Description Cycles
tRCD Minimum time between ACT and RD or

WR command to the same bank
8

tRRD Minimum time between ACT commands
to different banks

6

tRAS Minimum time between ACT and PRE
commands to the same bank

28

tFAW Time window in which at most four
banks may be activated

32

tCCD Minimum time between two RD or two
WR commands

4

tWL Write latency. Time from a WR
command until first data is available
on the bus

8

tRL Read latency. Time from a RD
command until first data is available
on the bus

8

tRTP Minimum time between a RD and a
PRE command to the same bank

6

tRP Precharge period 8
tWTR Minimum time between WR and RD

commands
6

tWR Write recovery time. Minimum time
from the last data has been written to a
bank until a precharge may be issued

12

tRFC Refresh period time 128
tREFI Refresh interval 6240

requestors are forwarded to the back-end using a time-division
multiplexing (TDM) arbiter. When the back-end is ready, the
selected transaction is sent.

In the back-end, a transaction’s logical address is translated
into the physical address (bank, row, and column) according to
the memory-map configuration. This configuration determines
how a transaction interleaves over the banks and hence how
much bank parallelism is exploited. It specifies the number of
interleaved banks (BI) over which the transaction is interleaved
and the burst count (BC) per bank. BI determines the number
of consecutive banks to be accessed. BC specifies the number
of data bursts per bank, which corresponds to the number of
RD or WR commands. BI and BC determine the transaction
size, i.e., size = BI × BC × BL, where BL is the burst length
(e.g., 8 words for DDR3 SDRAMs). BI and BC are limited
to powers of two for efficient address decoding. Thus, the BI
consecutive banks of a transaction must start on a bank aligned
with BI [8], and a transaction has 8/BI possible different
starting banks. This impacts the scalability of model checking,
as we will see in Section VI.

With the chosen BI and BC, the Command Generator in
Fig. 1 generates commands for the transaction. For each bank,
an ACT command is generated followed by BC RD or WR
commands, where the last one has an auto-precharge flag to
implement a close-page policy. These commands are buffered
in the FIFO queue of the bank. Moreover, these parameters (BI,
BC, bank id) of the transaction is inserted into the PARQueue
as an element, and they are useful for command scheduling.

3) Dynamic Command Scheduling: The commands in the
command queues are dynamically scheduled to the SDRAM
according to the algorithm in [23]. The basic idea is that
the command scheduler in Fig. 1 only makes arbitration
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among the head queue commands, whose timing constraints
are satisfied. The arbitration rules are that 1) RD and WR
commands are scheduled in a first-come first-serve (FCFS)
manner of transactions to ensure coherent memory. 2) RD
and WR have higher priority than ACT in case the timing
constraints are satisfied for both. ACT commands to different
banks are issued in a pipelined manner with the prioritized RD
or WR commands to enhance the scheduling efficiency. When
an ACT and a RD/WR command contend on the command bus,
i.e., implying a collision, the ACT command is postponed to
the next clock cycle, since it has lower priority specified by the
command scheduling algorithm [23]. Note that all constraints
are tracked by timing counters shown in Fig. 1. When a
command is scheduled, the relevant counters are reset. The
command scheduling algorithm is reproduced in full details in
Appendix A for convenience.

The timing constraints and the scheduling algorithm create
dependencies between commands. Fig. 2 illustrates the depen-
dencies between commands to any two sequentially accessed
banks bj and bj+1. For ∀j ≥ 0, the jth bank access has an ACTj

followed by BCj RD or WR (RWk
j , k ∈ [0,BCj − 1]), where

BCj is the burst count for bank bj. The dependencies caused
by inter- and intra-bank timing constraints are represented by
the dashed and solid arrows, respectively. An ACT may be
blocked by a higher-priority RD or WR command because of
a collision on the command bus, which is depicted by the
solid circle in Fig. 2. When the command is scheduled, all the
relevant timing counters are updated. The back-end is ready
to accept a new transaction from the front-end when all the
ACT commands of the current transaction are scheduled. This
enables pipelining between successive transactions [23]. Note
that the timing constraints shown in Fig. 2 are included in
Table I except the tRWTP, which is calculated based on other
timing constraints and is included in [23].
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Fig. 2. The command dependencies for two successive bank accesses [23].

B. Timed Automata (TA)

The Uppaal toolbox [3] implements TA as finite state
machines extended with clocks and variables. All the clocks
progress synchronously. Uppaal models a system as a network
of several TA in parallel. A state of a TA is a set of active
locations and a value for each clock and variable. Fig. 3(a)
shows a TA that periodically produces memory transactions.
It consists of an initial location (Init), and two other locations
labeled Timer and Prod that are used to guard a minimal time
between any two successive memory transactions of 10 cycles.

An edge connecting two locations can be traversed only
if its guard evaluates to true. For example, the edge from

location Timer to location Prod in Fig. 3(a) is traversed when
the guard clk == 10 becomes true. Similarly, locations have
invariants that have to be true while the location is marked
active. Otherwise, the TA cannot reside in this location. As
shown in Fig. 3(a), the invariant clk ≤ 10 of location Timer
guarantees that the clock variable clk does not exceed 10 when
location Timer is marked active. All clocks in the TA are real-
valued and increase their value at the same rate. Clocks and
variables can only be inspected and reset upon the traversal of
an edge. In our model clocks are only reset to 0 or 1.

In this paper, we heavily exploit the concepts of urgent and
committed locations offered by Uppaal. Urgent locations are
marked with U and committed locations are marked with C. For
example, location Prod in Fig. 3(a) is a committed location.
Urgent and committed locations need to be left without time
progress, i.e, clocks do not progress when urgent or committed
locations are marked active. Contrary to urgent locations, any
of the active committed location has to be left immediately on
the next transition. This gives their outgoing edges a higher
priority and thereby reduces the non-determinism in the model.
As a result, using committed locations greatly reduces the state
space for model checking.

(a) Producer (b) Consumer

Fig. 3. A Timed Automata model of producing and consuming transactions.

In networks of TA, the component TA interact via shared
variables and synchronization labels. The communication
through synchronization labels is realized as a synchronized
edge traversal of a sending edge (label with !) and receiving
edge (label with ?). This atomic step includes the manipulation
of associated variables and reset of associated clocks. Updates
on sending edges are performed before the receiving edges.
Since pairs of sending and receiving edges that synchronize
are selected non-deterministically, all synchronization pairs
emanating from active locations need to be generated when
analyzing a TA. Besides binary synchronization, Uppaal also
features 1:n synchronization for modeling broadcasts. Please
refer to the Uppaal manual [3] for more details.

The originally infinite transition system generated from a
network of TA can be reduced to a finite quotient system.
Instead of tracking individual values of clocks, the domain of
each clock is partitioned into finitely many intervals, denoted
as clock regions or their conjunction denoted as clock zones.
Therefore, timed reachability queries formulated in a temporal
logic, e.g., Timed CTL can be verified with a TA in a finite
number of steps as only finitely many combinations of clock
regions need to be traversed. However, this number can be
huge in practice.

III. MODULAR MODELING OF DYNAMIC COMMAND
SCHEDULING WITH TA

This section presents the TA model of the real-time
memory controller with dynamic command scheduling [23].
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A high-level overview of the model is shown, followed by
discussing each component TA in detail. The TA model is
available as open-source software on-line [21].

A. Overview of the TA Model

A memory controller arbitrates between requestors. The
selected transaction from a requestor is executed by dynam-
ically scheduling its commands to consecutive banks of the
SDRAM. To capture the behavior of the memory controller, we
model the components shown in Fig. 1, including the source
of memory traffic, the TDM arbiter in the front-end, and the
back-end including the memory mapping, command scheduler,
and timing-constraint counters.

Fig. 4 presents the components in our TA model of the RT
memory controller together with their communication depen-
dencies. Each of the components in Fig. 4 is implemented by
its own template TA. Communication between them is realized
by synchronization labels. Our TA model: 1) Accurately de-
scribes the functionality of the memory controller, without any
simplifying over-approximations, cf. Section V. This is a key
to derive tight WCRT and WCBW bounds. 2) Scalably models
transactions with different sizes and starting banks, in the sense
that the size of the model is independent of the number of
sizes and starting banks. 3) Is modular, i.e., each memory-
controller component is modeled by a corresponding TA. Since
memory controllers have common components, e.g., the timing
constraint counters and command bus, the corresponding TA
can be reused when modeling other memory controllers. 4) Is
easily adapted to different memory generations (e.g., DDR3
and LPDDR3) by replacing the timing constraint values for
the specific memory device [8].
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Fig. 4. Abstracted overview of TA model for the RT memory controller.

The Source in Fig. 4 generates read and write transactions
for the requestors sharing a bus with a TDM arbiter (i.e.,
TDM Bus). TDM Bus also specifies the transaction size
corresponding to the requestor and sends it to the back-
end via the TDMArb synchronization label. As stated in
Section II-A3, to capture the pipelining between successive
transactions, the back-end accepts the next transaction when all
ACT commands of the current transaction are scheduled [22].
This is accurately captured by the Source that generates a new
transaction when it is notified by the ACT Scheduler in the
back-end via the NextTrans synchronization label. Note that
this Source component makes the memory controller busy,
i.e., there is always a transaction ready when the back-end
can accept a new transaction. This ensures that each requestor
has pending transactions to be executed within its allocated
slots [23]. This results in maximum interferences between

requestors, leading to the worst-case scenario. Note that the
work-conserving TDM arbitration [23] skips idle slots rather
than reallocates them. As a result, a transaction experiences
the worst-case response time when all other requestors have
pending transactions.

The Memory Mapping in Fig. 4 specifies the BI, BC
and the starting bank address (BS) for a transaction sent by
the TDM Bus through the TDMArb synchronization label.
These parameters are required by the ACT Scheduler and RW
Scheduler, which accurately capture the dynamic command
scheduling algorithm [22] for ACT and RD/WR commands,
respectively. In particular, the ACT Scheduler issues an ACT
command for the BI consecutive banks on the command bus
(Cmd Bus), subject to the timing constraints of the memory.
Timing counters (TCC) are used to track these constraints.
Since the scheduling of an ACT command has to satisfy
the tRRD, tFAW, and tRP constraints shown in Fig. 2, the
ACT Scheduler is notified via the ValidRRD, ValidFAW, and
ValidRP synchronization labels when the timing constraints are
satisfied, allowing for a new ACT command to be scheduled.
Then, the ACT Scheduler synchronizes with the Cmd Bus
using the ACTBus label. In the same way, RD and WR
commands are scheduled by RW Scheduler according to the
relevant timing constraints, e.g., tCCD, tRCD, and the read
and write switching constraint captured by RW Counter. It
also synchronizes with the Cmd Bus using the RWCmd label
when all these timing constraints are satisfied. Note that the
RW Scheduler starts when NrTrans > 0, indicating there is
at least one transaction in the back-end. The ACT Scheduler
is triggered by Memory Mapping through synchronization
via the AddrMap label. Since the RW Scheduler and the
ACT Scheduler work in parallel, the TA model captures the
pipelining between scheduling ACT commands for the next
transaction and scheduling RD or WR commands for the
current transaction.

The Cmd Bus accurately models collisions between ACT
and RD or WR commands by prioritizing the latter. As a
result, the ACT command is delayed by 1 cycle when a
collision occurs. After scheduling an ACT command, the
relevant timing constraint counters are reset through broadcast
synchronization using the ACTCmd label. Similarly, the timing
constraint counters related to RD and WR commands are reset
via broadcast synchronization labeled as RWCmd. Finally, the
Auto-PRE describes the behavior of auto-precharging, which
is triggered by RWCmd. These timing constraints are explicitly
shown in Table I except tRTW and tWTP, which can be
indirectly derived from [22]. When the precharging of a bank
is finished, the ACT Scheduler is notified by synchronizing
with the ValidRP label. Note that all the synchronizations of
our TA model are urgent, since commands are scheduled as
soon as timing constraints are met.

Our TA model does not include the scheduling of refresh,
which is required periodically with a relatively large time
interval tREFI. The reason is that the WCRT bound of each
transaction is too pessimistic if the refresh period is included.
Alternatively, the refresh penalty can be taken into the analysis
of the application rather than individual transactions [29].
Moreover, the elimination of refresh also simplifies the TA
model and reduces the state space for model checking. How-
ever, it is not difficult to model the refresh mechanism. Our
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model only needs to use an extra TA template to trigger the
refresh every tREFI cycles.

B. TA Modeling of Command Scheduling

We proceed by introducing the TA model for the dynamic
command scheduling shown in Fig. 5.

1) Automata Templates of the Requestors and Front-End:
Requestors are modeled by the Source TA, shown in Fig. 5(a).
It non-deterministically generates an infinite sequence of read
and write transactions. The type of each transaction is defined
by the global variable TransType. The Source TA synchronizes
with the TDM Bus TA using the Trans label. The TDM Bus
TA, shown in Fig. 5(e), models a TDM bus instance with,
as an example, five requestors, each of which has one TDM
slot. Note that this TDM behaves the same as the round-
robin (RR) scheme, since they have the same worst-case
behavior when each requestor has only one slot. The guard
on each edge specifies the slot and the requestor, and the
corresponding transaction size TransSize is specified upon the
edge traversal. The TDM Bus TA then synchronizes with the
Memory Mapping TA using the TDMArb label.

2) Automata Template of the Memory Mapping: The Mem-
ory Mapping TA in Fig. 5(j) determines the BI and BC based
on the TransSize, while the starting bank (BS) is given by
non-deterministically selecting one outgoing edge. For each
transaction size, BI and BC are configured to achieve the
lowest execution time [23]. BS is aligned with BI to simplify
the physical address decoding [8]. When the memory mapping
is finished, the number (i.e., NrTrans) of transactions in the
back-end is increased and command scheduling is triggered.
PARQueue contains the information (i.e., TransType, BI, BC,
BS) of the active transactions, cf. Fig. 1 and Appendix A.

3) Automata Template of the ACT Scheduler: The ACT
Scheduler TA, shown in Fig. 5(f), starts scheduling ACT com-
mands of a transaction after synchronizing with the Memory
Mapping TA through the AddrMap label. An ACT command
is scheduled to each of the BI consecutive banks, starting
at bank BS. This is achieved by repeatedly scheduling each
ACT command subject to the timing constraints tRRD, tFAW,
and tRP, as given in Table I. These constraints are tracked
by TA, as shown in Fig. 5(d) for the tRRD constraint. The
ACT Scheduler TA waits for each timing constraint to be met.
It advances through locations RRD, FAW, and RP when the
relevant TA indicates that timing constraint is met through the
ValidRRD, ValidFAW, and ValidRP labels, respectively. The
ACT Scheduler TA and Cmd Bus TA synchronize using the
ACTBus and ACTCmd label. The former notifies the Cmd Bus
TA to schedule the ACT command, while the latter triggers the
ACT Scheduler TA to schedule the next ACT command once
the previous one has been scheduled by the Cmd Bus TA.

4) Automata Template of the RW Scheduler: The RW
Scheduler TA, shown in Fig. 5(h), works similarly to the ACT
Scheduler. It repeatedly schedules BC RD or WR commands in
a sequence to each of the BI consecutive banks subject to the
timing constraints. The relevant timing constraints are tRCD
and tCCD. Note that the first RD/WR command of a transaction
additionally has to satisfy the switching timing constraint when
the previous transaction is write/read. The tCCD, tRCD, tRTW

and tWTR timing constraints are captured by TA shown in
Fig. 5(b), 5(c), and 5(l), respectively.

Recall that a RD or WR command has a higher priority
than an ACT command that may have its timing constraints
satisfied at the same time. Therefore, when a RD/WR command
is scheduled, the RW Scheduler TA synchronizes with the Cmd
Bus TA using the RWCmd label. As explained below, the Cmd
Bus TA then ensures that the ACT command is scheduled one
cycle later, thus solving the command collision. Finally, the
broadcast synchronization using the RWCmd label tells the
relevant timing constraint TA to reset their counters.

5) Automata Templates of the Command Bus: The com-
mand bus is modeled by the TA shown in Fig. 5(i), which
detects and solves command bus collisions. The Cmd Bus TA
synchronizes with the ACT Scheduler and RW Scheduler TA
using the ACTBus and RWCmd labels, respectively. Although
these two TA run in parallel, the synchronizations labeled
RWCmd and ACTBus are received sequentially. The ACTRW
and RWACT locations in Fig. 5(i) ensure that these actions can
be received in either order. After synchronizing through either
a RWCmd label or an ACTBus label, the Cmd Bus TA waits
until the end of the cycle to see if the other synchronization
arrives within this time. If so, a command collision has to be
resolved by postponing the ACT to the next cycle.

A collision is identified by the Boolean variables C1RW,
C1ACT, and C2ACT that indicate the presence of a RD/WR
or an ACT command within the same cycle (i.e., C1) or in
the second cycle (C2). If there is a collision, i.e., both C1RW
and C1ACT are true, the ACT has to be delayed by one cycle.
When there is no collision, the ACT command can be sched-
uled immediately. This includes two cases where 1) the ACT
command arrives in the second cycle (i.e., both C1RW and
C2ACT are true) or 2) it arrives in the first cycle when there
is no RD/WR command in the same cycle, i.e., C1ACT is true
while C1RW is false. For the former, the ACT command has to
be scheduled immediately by broadcast synchronization using
the ACTCmd label, and the corresponding timing constraint
counters are reset. For the latter, it has already waited for
one cycle when broadcasting the ACTCmd label. So, the ACT
related counters are reset to start counting from 1 instead of
0 as normal. This is achieved by setting the global variable
InitCount to be 1, which is the initial value for all the relevant
timing constraint counters.

6) Automata Templates of Timing Constraint Counters:
Timing constraints are tracked by counters, each counting
to the JEDEC-specified value [14]. For example, the timing
constraint tRAS (see Table I) is modeled by the TA shown in
Fig. 5(g). It uses a clock variable tClk, which is initialized to
InitCount (0 or 1, see the previous paragraph) after an ACT
command was scheduled, as indicated by the ACTCmd label.
This counter counts to the constant V RAS of tRAS provided
by JEDEC DDR3 standard [14]. When the timing constraint
is satisfied, i.e., tClk == V RAS, it immediately synchronizes
using the ValidRAS label. The timing constraints, such as
tCCD, tRCD, tRRD are modeled in the same way, and their TA
are shown in Figs. 5(b), Fig. 5(c), and Fig. 5(d), respectively.
Note that different memory devices can be supported by using
their timing constraint values in these counters [8].

As mentioned in Section II-A1, the SDRAM timing con-

5



(a) Source of memory traffic (b) Counter of tCCD (c) Counter of tRCD (d) Counter of tRRD

(e) TDM Bus (f) ACT Scheduler (g) Counter of tFAW/tRAS

(h) RW Scheduler (i) Cmd Bus

(j) Memory Mapping (k) Precharging (l) RW Switch

Fig. 5. The TA templates of dynamic command scheduling within the Uppaal toolbox.

straints are classified into inter- and intra-bank. Intuitively, an
inter-bank constraint can be tracked by a single counter, e.g.,
tRRD, while an intra-bank constraint, such as tRAS, should be
tracked by a counter per bank. This encoding uses 8 counters
per intra-bank constraint. Each counter increases the state
space, resulting in longer time and higher memory usage when
verifying properties of the TA model. To reduce the number of
states, clocks, variables, and edges, we introduce two optimiza-
tions. Whenever possible, (i) we model multiple constraints
with a single TA instead of modeling them with separate TA.
(ii) We reuse counters for different timing constraints.

The above optimizations are used by our TA model.
i) The TA shown in Fig. 5(g) tracks both the tRAS and
tFAW constraints. The JEDEC [14] standard guarantees that
tFAW ≥ tRAS, and thus the tClk in Fig. 5(g) counts first

until tRAS, and then until tFAW. The inter-bank four activate
window constraint tFAW can be tracked by using four counters
for four ACT commands. The intra-bank tRAS constraint can
be implemented with 8 counters, one for each bank of DDR3
SDRAM. However, using the aforementioned inequality, four
counters suffice to track tRAS for all 8 banks. The fifth ACT
has to wait until tFAW before it can be scheduled. By then,
it is guaranteed that at least one counter has passed tRAS
because tFAW ≥ tRAS. Therefore, the counter for the fifth
ACT command can be eliminated. It is also the same case for
the next three ACT commands.
ii) The TA shown in Fig. 5(k) captures both the constraints
from a RD/WR command to an auto-precharge, and the
precharge period tRP.
iii) Fig. 5(l) tracks the two timing constraints of the switching
between read and write transactions.
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iv) Finally, we can observe from JEDEC-specified DDR3
timing constraints that tRCD ≤ 2 × tRRD. tRRD is the min-
imum time between two successive ACT commands. Within
2 × 𝑡𝑅𝑅𝐷 cycles, at most three ACT commands can be
scheduled. When the third ACT command is scheduled, the
counter triggered by the first ACT command is guaranteed
to be larger than tRCD and hence can be reused. Therefore,
only two counters are needed to track the intra-bank timing
constraint tRCD, shown in Fig. 5(c). These optimizations rely
on particular relations between timing constraints, e.g., they
hold for all DDR3 and LPDDR3.

7) Reflection: Although the TA model of the RT memory
controller is involved, its structure mirrors that of the memory
controller hardware architecture and algorithm (Appendix A).
We accurately model all timing constraints, without having
to resort to conservative, but pessimistic assumptions such
as a worst-case initial state. Moreover, the collision on the
command bus is resolved only when needed, rather than
conservatively assumed to happen for each ACT command. So,
the TA model is able to provide better worst-case results than
existing analyses, which employ these pessimistic assumptions.
Finally, to speed up verification of the model, timing counters
were eliminated, although at the cost of model simplicity.

C. TA Model Extension

The proposed TA model captures the timing behavior of
a dynamically-scheduled memory controller [23] for DDR3
SDRAMs. This model can be easily extended to support
either memory controllers using different mechanisms and/or
new generations of DDR memories, such as DDR4 [15].
For example, the open-page policy used by existing memory
controllers [12], [13], [18], [33] can be modeled by employing
a TA template to detect the page-hit or page-miss, which
determines the scheduling of different commands. To support
new DDR memories, we only need to model their timing con-
straints in the same way as our TA model. For example, DDR4
employs bank groups, where different timing constraints apply
to the banks within a group or across groups, respectively.
These timing constraints are captured by counters, which can
be modeled similarly as, for example, Fig. 5(d) for tRRD. It
is worth to emphasize our claim that the extension of the TA
model for a different memory controller and/or DDR SDRAM
is much easier than carrying out manual worst-case analysis
of the complex command scheduling dependencies, since the
analysis of a TA model is automatically supported by model
checking with existing tools, e.g., Uppaal [3].

IV. VERIFICATION WITH MODEL CHECKING

In this section, we define worst-case response time (WCRT)
and worst-case bandwidth (WCBW), and show how to com-
pute them by checking properties of our TA model. Note that
this paper focuses on deriving the WCRT and WCBW for the
SDRAM rather than analyzing the worst-case execution time
of a task or an application running on processor(s). However,
our WCRT and WCBW can be used by existing tools [32] to
provide better WCET of tasks/applications, since our worst-
case results are tight. Moreover, the proposed TA model of the
memory controller can be integrated with other TA models of
processor and caches [5], leading to better worst-case bounds.
However, this is beyond the scope of this paper.

A. Definitions

A transaction 𝑇 arrives at the memory controller of a
requestor and is stored in the request buffer in the front-end
at time t𝑎(𝑇 ), see Fig. 1. The arrival of a write transaction
is defined as the time when its last data word is queued
in the buffer. A write transaction finishes when the last WR
command is scheduled at time tlastWR(𝑇 ). A read transaction
finishes when the last required data word is returned from
the SDRAM to the response buffer at time tlastRD(𝑇 ). The
response time tRT(𝑇 ) of a transaction is defined by Eq. (1)
as the time between the arrival time and the finishing time of
the transaction. It is determined by the interference from other
requestors and the transaction’s own execution time spent on
scheduling its commands. The WCRT is the largest possible
𝑡RT(𝑇 ) for any 𝑇 , in any execution. A smaller WCRT is better.

tRT(𝑇 ) =

{
tlastRD(𝑇 )− t𝑎(𝑇 ), Read transaction
tlastWR(𝑇 )− t𝑎(𝑇 ), Write transaction (1)

The memory bandwidth is the long-term rate of data
transmission from/into the SDRAM. It is mainly determined
by the execution of transactions, i.e., the scheduling of mem-
ory commands. In addition, the SDRAM requires refreshing,
during which no transactions can be executed. A refresh is
required every tREFI cycles (7.8 𝜇s for DDR3 SDRAMs [14]),
and then takes tref cycles to precharge all banks and finish the
refresh itself [23]. Refresh efficiency eref (Eq. (2)) defines the
reduction in bandwidth due to refreshes.

eref = 1− 𝑡ref

tREFI
(2)

The bandwidth for a given trace 𝑇 of transactions is defined
in Eq. (3). S(T) denotes the size of transaction T, and fmem is
the SDRAM clock frequency. tET(T) is the execution time of
T, which is spent on scheduling its command by the back-
end of the memory controller. Due to the pipelining between
transactions, tET(T) is the time from either the arrival of T
at the back-end or the last WR/RD command of the previous
transaction, whichever is larger, to its last WR/RD command.
The precise definition is given in [23].

bw(𝑇 ) =

∑
∀𝑇∈𝑇 𝑆(𝑇 )∑

∀𝑇∈𝑇 𝑡𝐸𝑇 (𝑇 )
× fmem × eref (3)

B. Worst-Case Analysis with Model Checking

When requestors are served by a TDM arbiter in the
front-end of the memory controller (see Fig. 1), a transaction
experiences the worst-case response time (WCRT) when the
maximum number of interfering transactions must be executed
before the execution of this new transaction. Moreover, the
execution of all these transactions needs the maximum time
to schedule their commands. We assume each requestor has at
most one outstanding transaction to avoid arbitrarily high self-
interference in the WCRT [2]. Therefore, the total number of
interfering transactions and the transaction from the requestor
is denoted by NMax, which can be computed based on the
TDM slot configuration.

An observer TA is designed to track the response time
of each transaction from a particular requestor, see Fig. 6(a).
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(a) The observer of WCRT (b) The observer of WCBW

Fig. 6. The TA to verify the WCRT and WCBW bounds.

This observer counts the number of executed transactions (to-
talTrans), and the end of a transaction is signaled by the
TransEnd synchronization label when its last RD or WR
command is scheduled. Meanwhile, the clock variable WCRT
in Fig. 6(a) tracks the total time of executing transactions. By
specifying the maximum number (i.e., NMax) of transactions
to be observed, we use standard reachability queries to verify
the clock WCRT with the verifier module of the Uppaal tool
suite. By manually executing a binary search on the bound of
the clock WCRT, it directly translates into the maximum time
of executing these NMax transactions. The observer records
this maximum time when the last RD or WR command of a
transaction is scheduled. For read transactions we need to add
the constant data offset, which is tRL+BL/dataRate as given
by the JEDEC timing constraints [14]. It is worth noting that
the Uppaal model checker explores the full state space for
all the possible NMax successive transactions and derives the
WCRT bound. As a consequence, our observer only needs to
cycle through every NMax successive transactions rather than
uses a sliding window for any NMax transactions.

The worst-case bandwidth (WCBW) is defined in Eq. (4)
as the minimum bandwidth of all infinitely-long transaction
traces, i.e., ∀𝑇 , ∣𝑇 ∣ = ∞. However, practically, we can only
compute the time to transfer a finite number of bytes (Eq. (5)).
We therefore use an observer TA (see Fig. 6(b)) to verify the
maximum time to transfer DataSize data for any possible traces
in the system, which can generate DataSize bytes. Intuitively,
the minimum rate observed in a long time period of repeatedly
transferring a fixed amount of data cannot be larger than the
average rate of transferring the total amount of data in the
whole time period. Lemma 1 captures this intuition, and states
that any WCBW(DataSize) is a conservative lower bound for
the WCBW. The former is the minimum rate of transferring
DataSize data, while the latter is the long-term (minimum)
average rate of transferring data from/into the SDRAM for
infinitely-long traces. The proof is given in the Appendix.

WCBW = Min
∀𝑇 ,∣𝑇 ∣=∞

bw(𝑇 ) (4)

WCBW(DataSize) =
DataSize

Max∀𝑇
∑

∀T∈𝑇 𝑡𝐸𝑇 (𝑇 )
× fmem × eref,

where DataSize =
∑
∀T∈𝑇

𝑆(𝑇 )

(5)

Lemma 1:

∀DataSize > 0,WCBW(DataSize) ≤ WCBW

Fig. 6(b) shows the observer TA that tracks the total time
for transferring DataSize data. Time is tracked by reusing
the clock variable WCRT, while dataSize accumulates the
transferred data when a transaction is finished, as notified by
the TransEnd synchronization label. We manually execute a
binary search on the bound of the clock WCRT with Uppaal.
This bound is the maximum time of transferring DataSize data.
Multiplying the result by 𝑓mem × 𝑒ref returns a conservative
lower bound for the WCBW, as described above.

V. RELATED WORK

Existing analyses of semi-static RT memory controllers [1],
[8], [11], [28] provide WCRT and/or WCBW by dynamically
using a set of pre-computed static command schedules for
transactions. The command schedules cannot exploit dynamic
information about the SDRAM state caused by timing con-
straints and the exact SDRAM banks required by individual
transactions. Moreover, these command schedules transfer a
fixed amount of data. When the transaction size varies, un-
wanted data is discarded, resulting in low data efficiency.

To overcome the inefficiency of semi-static command
schedules, dynamic command scheduling can be used, where
commands are scheduled by some dynamic algorithms when
the SDRAM timing constraints are satisfied. However, analysis
of dynamic scheduling constrained by timing dependencies is
difficult. The analytical approach of [23] abstracts the state
of previous transactions to a worst-case initial state, by pes-
simistically assuming that their commands were scheduled as
late as possible (ALAP). This results in conservative command
scheduling times for the current transaction. In addition, it as-
sumes that every ACT command collides on the command bus.
The dataflow model of [24] provides the WCBW of dynamic
command scheduling. It also assumes that the ACT commands
always have command-bus collisions, but does not require the
ALAP assumption. Conversely, the scheduled approach [23]
accurately models command-bus conflicts, but assumes ALAP
schedules. The analyses in [16], [18], [12] assume that the RW
to RD switching timing constraint and the four-activate window
constraint are always incurred, even though these constraints
do not always dominate in the command schedule. These
analysis approaches may not be easy to manually adapt to
memory controllers with different mechanisms or memories.
Similarly to [24], we shift the manual effort to derive per-
formance bounds from analysis to modeling. In other words,
rather than providing a specialized WCRT/WCBW analysis
of a memory controller, a specialized model of a memory
controller is defined, which is analyzed automatically using
state-of-the-art tools. [24] uses dataflow, while this paper uses
TA, which is more expressive and results in better bounds.

TA have been used extensively to address the complexity
of sharing resources. Yi et al. [27] were the first to use TA to
represent a system resource (CPU or communication element)
as a scheduler model together with a notion of discrete events
that trigger the execution of RT tasks on this scheduler.
In [25], the basic idea has been extended to analyze multi-core
architectures and different memory access policies. A similar
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approach is also presented by Gustavsson et al. [9]. Lampka
et al. [19] present an approach that abstracts from individual
core-local workloads by modeling access requests to a shared
resource with an aggregated access request curve fed into a
network of TA. These works intend to bound the worst-case
execution time of applications rather than individual memory
accesses/transactions. We focus on the effect of sharing on the
timing of individual memory transactions in order to find a
tight bound. Our WCRT and WCBW bounds can be used by
the cited works for more accurate modeling and analysis.

VI. EXPERIMENTAL RESULTS

This section experimentally validates the proposed TA
model of dynamic command scheduling, and then analyzes the
WCRT and WCBW results for fixed and variable transaction
sizes, respectively. First, the results obtained with Uppaal are
validated with the open-source RTMemController tool [20],
which has been proven to be equivalent to a cycle-accurate
SystemC simulator [22] for capturing the timing behavior of
the memory controller. Next, the results are compared to the
analysis results of the same memory controller design using (a)
the analytical and scheduled approaches presented in [23], and
(b) the mode-controlled dataflow (MCDF) model introduced
in [24].These techniques were discussed in Section V.

A. Experimental Setup

The proposed TA model is simulated and verified with
Uppaal v4.1.19 on a 64-bit CentOS 6.6 system with 24 Intel
Xeon(R) CPUs running at 2.10 GHz and with 125 GB RAM.
Experiments have been done with a JEDEC-compliant DDR3-
1600G SDRAM memory with interface width of 16 bits and a
capacity of 2 Gb [14]. The memory controller front-end uses
a TDM arbiter with one slot per memory requestor, which
is assumed to have one outstanding transaction to avoid self-
interference. The transaction sizes used by the experiments
are 16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes.
The memory map configuration (i.e., BI and BC) of each
transaction size is chosen to achieve the lowest execution time
and the highest memory bandwidth, where more banks are
interleaved when possible to exploit bank parallelism. The
configured (BI, BC) for these sizes are hence (1, 1), (2, 1), (4,
1), (4, 2), and (4, 4) [8], respectively. Note that transactions
with 128 bytes and 256 bytes use (4, 2) and (4, 4) instead of
(8, 1) and (8, 2) because of the tFAW constraint that leads to
larger execution time with BI = 8.

B. Validation of TA Model and WCRT/WCBW

The first experiment shows that the proposed TA model
can accurately capture the timing behavior of the memory
controller with dynamic command scheduling. We compare
the scheduling time of each command in every trace obtained
with Uppaal to that of the RTMemController tool [20], which
is equivalent to a cycle-accurate SystemC simulator of the
memory controller under consideration [22]. We simulate the
TA model for 1200 commands corresponding to random read
and write transactions with different physical addresses (i.e.,
the starting bank is different). The transactions are generated
by the Source and TDM Bus TA shown in Fig. 5(a). We
execute RTMemController with the same transactions to obtain
the scheduling time of each command. The same experiment

is repeated for the 5 transaction sizes and for a random mix
of them. From the experimental results, we observe that the
scheduling time is always identical for each command. This
suggests that our TA model correctly and accurately captures
the timing behavior of the dynamic command scheduling. For
the given traces, the TA model is equivalent to the cycle-
accurate implementation of the dynamic command scheduling.

For all experiments in the following sections, Uppaal
generates a witness that leads to the WCRT/WCBW, i.e.,
the diagnostic trace of transactions. Again, we have fed all
diagnostic traces to the RTMemController tool, and it always
shows exactly the same results as Uppaal. This validates the
correctness of the TA model, and gives strong reason to believe
that the analysis results derived from our TA model are tight.

C. Fixed Transaction Size

This experiment uses Uppaal to test the TA model and to
obtain the WCRT and WCBW for fixed transaction sizes. Four
memory requestors are employed, corresponding to, e.g., four
cores that have the same cache-line size. This experiment tests
an arbitrary read/write mix, for the five different transaction
sizes. The model checker explores the full state space for each
size, except for 16 bytes that uses BI=1. For the purpose
of worst-case analysis, it is not necessary to explore all 8
banks. Transactions with 16 bytes only access a single bank.
It hence only matters if transactions access the same bank or a
different bank. As a result, we arbitrarily select 2 banks (e.g.,
Bank 0, Bank 1) to be tested by Uppaal. The trace is an
arbitrary read/write mix, but we show the WCRT for read (RD)
and write (WR) transactions separately in Fig. 7. They are
also compared to those given by the existing analytical and
scheduled approaches of [23]. Note that we do not compare
with the MCDF model of [24] as it does not analyze the
WCRT. Moreover, each result is validated by executing the
diagnostic trace from Uppaal with RTMemController.
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Fig. 7. The WCRT for 4 requestors with fixed transaction sizes.

We observe that the WCRT results from the TA model are
better than or equal to those given by either the scheduled or
analytical approaches. The maximum improvement is 20% for
write transactions with 64 bytes, while the average improve-
ment over all these experiments is 7.7%. The improvement
is achieved for the following two reasons. 1) The TA model
accurately models scheduling collisions on the command bus,
just like the scheduled approach. Conversely, the analytical
approach always conservatively assumes a collision for each
ACT command. 2) The TA model accurately captures the
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worst-case initial values of the timing counters for an arbitrary
transaction. In contrast, both the analytical and scheduled
approaches conservatively assume as-late-as-possible (ALAP)
scheduling of the previous commands to provide the worst-
case initial values of timing counters, which is pessimistic.

The WCBW for different fixed transaction sizes is shown
in Fig. 8. With a trace 𝑇 of 8 transactions, the WCBW
obtained with the TA model is already better than that of
the analytical and scheduled approaches, as well as of the
MCDF model [24]. Compared to the analytical approach, the
improvement reaches up to 25% for 64-byte transactions. The
average improvement on the WCBW bounds is 13.6% for all
these experiments. The reasons for obtaining better WCBW
than analytical and scheduled approaches are the same as those
for WCRT. Our TA model is better than or performs equally
well as the MCDF model [24] because the latter conservatively
assumes a collision per ACT command. Larger improvements
are obtained for small transactions, while the same WCBW
is obtained for large transaction sizes, e.g., 256 bytes. This is
because larger transactions have more RD or WR commands,
which dominate the command scheduling. As a result, the
collisions with ACT commands have no influence on the
WCBW, and the MCDF can perform equally well as our TA
model for large transaction sizes.
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Fig. 8. The WCBW for fixed transaction sizes.

We evaluate the run time and memory usage of Uppaal
in our experiments. Uppaal takes at most 1221 seconds and
consumes up to 7 GB to successfully verify properties for
fixed transaction sizes. This occurs when verifying a property
to derive the WCRT of 16-bytes write transactions. Note that
this experiment explores two different starting banks for 16-
byte transactions. If more starting banks (e.g., 4 banks) are
explored, it takes around 30 hours before running out of the
125 GB RAM memory. Due to the limited RAM memory, we
alternatively carry out this experiment on a server with 1 TB
RAM and an Intel(R) Xeon(R) CPU E7-4850 running at 2.0
GHz. Note that this server is remotely provided by SURF-
sara [31], a Dutch Cooperative providing high-performance
computing and data infrastructure for science and industry.
The model checking finally takes around 241.1 hours and
consumes 557.9 GB RAM memory to provide the same results
as when only exploring 2 banks. We have observed that larger
transaction sizes need less time and RAM to verify a property.
The reasons include: 1) Larger transactions use larger BI that
have a fewer possible starting banks, resulting in a smaller state
space. 2) The scheduling algorithm schedules more commands
sequentially (i.e., deterministically) for larger transactions. In

contrast, smaller transactions have fewer commands and trans-
actions arrive randomly. As a result, the TA model performs
more deterministic state transitions. Recall that the scheduling
of commands is modeled by state transitions.

D. Variable Transaction Sizes

Ideally, the TA model is used to analyze the WCRT and
WCBW of any mix of transactions, e.g., resulting from differ-
ent requestors, with different sizes and starting banks. Due to
the state space explosion, it is not possible to obtain general
WCRT and WCBW for all combinations of transactions by
model checking, because Uppaal fails to verify a property
after consuming all the RAM (e.g., 125GB) of the host
server. However, system designers are usually less interested
in general WCRT and WCBW bounds than in response-time
and bandwidth bounds for a particular system under design.
By taking into account system-specific information, “design-
specific bounds” can be expected to be closer to the true worst
case that can occur in the design than “general bounds” that
necessarily include traces that cannot occur in the particular
system. System-specific information includes transaction se-
quences and sizes per requestor, TDM allocations, etc. With
this information, the design is less pessimistic, allowing for
tighter bounds or lower cost.

To illustrate this effect, we perform a case study of the HD
video and graphics processing system of [6]. It consists of 5
requestors representing CPU, GPU, input processor (IP), video
engine (VE), and HDLCD DMA controller. [6] focuses on a
multi-channel memory controller with 256-byte transactions
that are interleaved over multiple channels. Since our memory
controller has a single channel, we use smaller transaction
sizes, which are also current practice in today’s systems [7],
[10]. CPU and IP have cache-lines of 64 bytes, while those of
the GPU are 128 bytes. The VE and the HDLCD DMA use
transactions of 128 bytes. All produce an arbitrary read/write
mix of transactions. The five requestors have one TDM slot
each, and are serving in descending order of their transaction
sizes. This ordering increases the bank parallelism between
successive transactions [23], improving performance. Fig. 9
separately shows the WCRT of read/write transactions, for
each requestor.
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Fig. 9. The WCRT for the requestors in a HD video and graphics processing
system [6] with variable transaction sizes.

Our TA model outperforms the analytical and scheduled
approaches for WCRT, for the same reasons as discussed
in Section VI-C. For example, our TA model improves the
WCRT of 128-byte transactions of analytical and scheduled
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approaches by 10.4% and 8.5%, respectively. As before, all
bounds have been validated to be identical to the cycle-accurate
timings of the RTMemController tool.

The WCBW results obtained from different approaches are
shown in Fig. 10. Using the WCBW bound obtained with
8 successive transactions (cf. Section VI-C), our TA model
outperforms the analytical and scheduled approaches by 9.3%
and 7.1%, respectively. We cannot compare to the MCDF
model [24], as its analysis tool does not support our use-case.
Instead, we compare all approaches for a system with five
requestors, with arbitrary read/write transactions of 64 or 128
bytes. The arbitration is unknown (not specified). The WCBW
results are shown in Fig. 10. The TA model outperforms
the analytical, scheduled, and MCDF approaches by 24.6%,
14.6%, and 12.1%, respectively.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Analytical Scheduled TA MCDF

W
C

BW
 (M

Bp
s)

 

Unknown Arbitration TDM Arbitration

Fig. 10. The WCBW for variable transaction sizes.

VII. CONCLUSION

This paper proposes a modular Timed Automata (TA)
model of an SDRAM memory controller with dynamic com-
mand scheduling. It accurately captures both the architecture
and command scheduling algorithm. When modeling other
memory controllers with different mechanisms, the TA of the
common components can be reused, while it only requires to
extend other TA to capture their timing behavior, as opposed
to repeat a time-consuming manual analytical effort. The
worst-case response time (WCRT) and worst-case bandwidth
(WCBW) of the memory controller can be automatically
derived using Uppaal. The command schedules of diagnostic
traces provided by Uppaal for the WCRT and WCBW are
identical to those given by cycle-accurate simulation of those
traces, providing strong validation of our results. Moreover, the
experimental results demonstrate that the proposed TA model
outperforms three state-of-the-art analysis approaches of dy-
namic command scheduling for real-time memory controllers,
by up to 25%. The reason is that the TA model accurately
captures both the scheduling collisions on the command bus
and the initial timing states of SDRAM for each transaction.
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APPENDIX

A. Command scheduling algorithm reproduced from [23]

The command scheduling algorithm in [23] uses three
rules: 1) transactions are executed in first-come-first-serve
(FCFS) order to avoid reorder buffers for the responses, 2) to
simplify logical-to-physical address translation [8], successive
banks of a single transaction have to be accessed in ascending
order, and 3) RD or WR commands have higher priority than
ACT commands to avoid collisions on the command bus when
timing constraints are satisfied for both of them.

We reproduce the algorithm in [23] in Algorithm 1 to
adapt to the notation of this paper. It has three inputs. The
FIFO queue PARQueue contains the information (type, BI,
BC, and BS) of each transaction arrived in the back-end of
the memory controller. Recall that a new transaction arrives
only if all the ACT commands have been scheduled for the
current transaction. As a result, only the tail element of the
PARQueue corresponds to the latest transaction that has ACT
commands. For the rest, there are only RD or WR commands
to be scheduled. Secondly, the constraint satisfied indicates
whether the timing constraints are satisfied for commands
at the head of each command queue. If timing constraints
are satisfied, the head command becomes valid. Finally, the
cmd type shows whether a head command is a RD, a WR or
an ACT. The output of Algorithm 1 is bank id indicating the
command queue whose head command can be scheduled to
bank bank id.

Algorithm 1 uses two internal states ACTBank and RW-
Bank, which indicate the number of the bank to which an
ACT or a RD/WR command can be scheduled, respectively.
When scheduling commands for a transaction, ACTBank and
RWBank are initialized with the starting bank 𝑏𝑠 of the trans-
actions associated with the tail and head of the PARQueue,
respectively (line 4, 5). This guarantees the FCFS order of
transactions. In Algorithm 1, line 6 checks whether there is a
valid (i.e., timing constraints are satisfied) RD/WR command
for the current bank (RWBank). Otherwise, line 13 checks
whether there is a valid ACT command. This guarantees that
a valid RD or WR command has higher priority than a valid
ACT command. ACTBank is increased by one after an ACT
command has been selected (line 17), while RWBank increases
by one when BC number of RD/WR commands of the current
transaction have been scheduled to bank bank id (line 11).
This update scheme ensures that the banks are accessed in
ascending order for each transaction. Hence, transactions are
served in FCFS order, the banks of each transaction are served
in ascending order, and command priorities ensure that only a
single command is scheduled per cycle.

Algorithm 1 Dynamic command scheduling

1: Inputs: PARQueue, constraint satisfied, cmd type
2: Internal state: ACTBank, RWBank
3: Initialization: bank id ← null; ACTBank ← null; RWBank ←

null;
4: if ACTBank = null then ACTBank ← PARQueue tail.𝑏s;
5: if RWBank = null then RWBank ← PARQueue head.𝑏s;
6: if cmd type[RWBank] = RD/WR and con-

straint satisfied[RWBank] = true then
7: bank id ← RWBank;
8: if last RD/WR of PARQueue head transaction then
9: RWBank ← null;

10: else if last RD/WR of PARQueue head transaction to bank
bank id

11: then RWBank ← RWBank+1;
12: else if ACTBank != null and then
13: if cmd type[ACTBank] = ACT and con-

straint satisfied[ACTBank] = true then
14: bank id ← ACTBank;
15: if last ACT of PARQueue tail transaction then
16: ACTBank ← null;
17: else ACTBank ← ACTBank+1;
18: Outputs: bank id

B. Proof of Lemma 1

Proof: For a given DataSize, there is DataSize =∑
∀T∈𝑇 𝑆(𝑇 ) and its maximum execution time is

Max∀𝑇
∑

∀T∈𝑇 𝑡𝐸𝑇 (𝑇 ), which can be obtained by
verifying the bound of the clock WCRT with the
observer TA shown in Fig. 6(b). For ∀N > 1, the larger
data size DataSize′ = N × DataSize =

∑
∀T∈𝑇 ′ 𝑆(𝑇 )

corresponding to trace 𝑇 ′, and its maximum execution time is
Max∀𝑇 ′

∑
∀T∈𝑇 ′ 𝑡𝐸𝑇 (𝑇 ). Conservatively, we obtain Eq. (6),

since the transaction trace 𝑇 ′ generates N times more data
than the trace 𝑇 . Therefore, Eq. (7) is derived, which shows
that better WCBW can be obtained when verifying with
larger data size. Intuitively, larger amount of data is generated
by more transactions, where more pipelining between
transactions can be exploited to achieve better WCBW. When
N approaches +∞, we get the long-term WCBW, which is
given by Eq. (8). According to Eq. (7), we can conclude that
the WCBW(DataSize) of any given DataSize is a conservative
lower bound for the long-term WCBW.

Max
∀𝑇 ′

∑
∀T∈𝑇 ′

𝑡𝐸𝑇 (𝑇 ) ≤ N ×Max
∀𝑇

∑
∀T∈𝑇

𝑡𝐸𝑇 (𝑇 ) (6)

WCBW(𝑁 × DataSize) =
𝑁 × DataSize

Max∀𝑇 ′
∑

∀T∈𝑇 ′ 𝑡𝐸𝑇 (𝑇 )

≥ 𝑁 × DataSize
N ×Max∀𝑇

∑
∀T∈𝑇 𝑡𝐸𝑇 (𝑇 )

≥ WCBW(DataSize)

(7)

WCBW = lim
N→+∞

WCBW(𝑁 × DataSize)

≥ WCBW(DataSize)
(8)

12



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AbadiMT-CondensedLight
    /ACaslon-Italic
    /ACaslon-Regular
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AGOldFace-Outline
    /AharoniBold
    /Algerian
    /Americana
    /Americana-ExtraBold
    /AndaleMono
    /AndaleMonoIPA
    /AngsanaNew
    /AngsanaNew-Bold
    /AngsanaNew-BoldItalic
    /AngsanaNew-Italic
    /AngsanaUPC
    /AngsanaUPC-Bold
    /AngsanaUPC-BoldItalic
    /AngsanaUPC-Italic
    /Anna
    /ArialAlternative
    /ArialAlternativeSymbol
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMT-Black
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /BakerSignet
    /BankGothicBT-Medium
    /Barmeno-Bold
    /Barmeno-ExtraBold
    /Barmeno-Medium
    /Barmeno-Regular
    /Baskerville
    /BaskervilleBE-Italic
    /BaskervilleBE-Medium
    /BaskervilleBE-MediumItalic
    /BaskervilleBE-Regular
    /Baskerville-Bold
    /Baskerville-BoldItalic
    /Baskerville-Italic
    /BaskOldFace
    /Batang
    /BatangChe
    /Bauhaus93
    /Bellevue
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlingAntiqua-Bold
    /BerlingAntiqua-BoldItalic
    /BerlingAntiqua-Italic
    /BerlingAntiqua-Roman
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /BiffoMT
    /BinnerD
    /BinnerGothic
    /BlackadderITC-Regular
    /Blackoak
    /blex
    /blsy
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolSeven
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /Botanical
    /Boton-Italic
    /Boton-Medium
    /Boton-MediumItalic
    /Boton-Regular
    /Boulevard
    /BradleyHandITC
    /Braggadocio
    /BritannicBold
    /Broadway
    /BrowalliaNew
    /BrowalliaNew-Bold
    /BrowalliaNew-BoldItalic
    /BrowalliaNew-Italic
    /BrowalliaUPC
    /BrowalliaUPC-Bold
    /BrowalliaUPC-BoldItalic
    /BrowalliaUPC-Italic
    /BrushScript
    /BrushScriptMT
    /CaflischScript-Bold
    /CaflischScript-Regular
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Carta
    /CaslonOpenfaceBT-Regular
    /Castellar
    /CastellarMT
    /Centaur
    /Centaur-Italic
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchL-Bold
    /CenturySchL-BoldItal
    /CenturySchL-Ital
    /CenturySchL-Roma
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /CharterBT-Bold
    /CharterBT-BoldItalic
    /CharterBT-Italic
    /CharterBT-Roman
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /Chiller-Regular
    /Cmb10
    /CMB10
    /Cmbsy10
    /CMBSY10
    /CMBSY5
    /CMBSY6
    /CMBSY7
    /CMBSY8
    /CMBSY9
    /Cmbx10
    /CMBX10
    /Cmbx12
    /CMBX12
    /Cmbx5
    /CMBX5
    /Cmbx6
    /CMBX6
    /Cmbx7
    /CMBX7
    /Cmbx8
    /CMBX8
    /Cmbx9
    /CMBX9
    /Cmbxsl10
    /CMBXSL10
    /Cmbxti10
    /CMBXTI10
    /Cmcsc10
    /CMCSC10
    /Cmcsc8
    /CMCSC8
    /Cmcsc9
    /CMCSC9
    /Cmdunh10
    /CMDUNH10
    /Cmex10
    /CMEX10
    /CMEX7
    /CMEX8
    /CMEX9
    /Cmff10
    /CMFF10
    /Cmfi10
    /CMFI10
    /Cmfib8
    /CMFIB8
    /Cminch
    /CMINCH
    /Cmitt10
    /CMITT10
    /Cmmi10
    /CMMI10
    /Cmmi12
    /CMMI12
    /Cmmi5
    /CMMI5
    /Cmmi6
    /CMMI6
    /Cmmi7
    /CMMI7
    /Cmmi8
    /CMMI8
    /Cmmi9
    /CMMI9
    /Cmmib10
    /CMMIB10
    /CMMIB5
    /CMMIB6
    /CMMIB7
    /CMMIB8
    /CMMIB9
    /Cmr10
    /CMR10
    /Cmr12
    /CMR12
    /Cmr17
    /CMR17
    /Cmr5
    /CMR5
    /Cmr6
    /CMR6
    /Cmr7
    /CMR7
    /Cmr8
    /CMR8
    /Cmr9
    /CMR9
    /Cmsl10
    /CMSL10
    /Cmsl12
    /CMSL12
    /Cmsl8
    /CMSL8
    /Cmsl9
    /CMSL9
    /Cmsltt10
    /CMSLTT10
    /Cmss10
    /CMSS10
    /Cmss12
    /CMSS12
    /Cmss17
    /CMSS17
    /Cmss8
    /CMSS8
    /Cmss9
    /CMSS9
    /Cmssbx10
    /CMSSBX10
    /Cmssdc10
    /CMSSDC10
    /Cmssi10
    /CMSSI10
    /Cmssi12
    /CMSSI12
    /Cmssi17
    /CMSSI17
    /Cmssi8
    /CMSSI8
    /Cmssi9
    /CMSSI9
    /Cmssq8
    /CMSSQ8
    /Cmssqi8
    /CMSSQI8
    /Cmsy10
    /CMSY10
    /Cmsy5
    /CMSY5
    /Cmsy6
    /CMSY6
    /Cmsy7
    /CMSY7
    /Cmsy8
    /CMSY8
    /Cmsy9
    /CMSY9
    /Cmtcsc10
    /CMTCSC10
    /Cmtex10
    /CMTEX10
    /Cmtex8
    /CMTEX8
    /Cmtex9
    /CMTEX9
    /Cmti10
    /CMTI10
    /Cmti12
    /CMTI12
    /Cmti7
    /CMTI7
    /Cmti8
    /CMTI8
    /Cmti9
    /CMTI9
    /Cmtt10
    /CMTT10
    /Cmtt12
    /CMTT12
    /Cmtt8
    /CMTT8
    /Cmtt9
    /CMTT9
    /Cmu10
    /CMU10
    /Cmvtt10
    /CMVTT10
    /ColonnaMT
    /Colossalis-Bold
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Copperplate-ThirtyThreeBC
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CordiaNew
    /CordiaNew-Bold
    /CordiaNew-BoldItalic
    /CordiaNew-Italic
    /CordiaUPC
    /CordiaUPC-Bold
    /CordiaUPC-BoldItalic
    /CordiaUPC-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /CourierX-Bold
    /CourierX-BoldOblique
    /CourierX-Oblique
    /CourierX-Regular
    /CreepyRegular
    /CurlzMT
    /David-Bold
    /David-Reg
    /DavidTransparent
    /Dcb10
    /Dcbx10
    /Dcbxsl10
    /Dcbxti10
    /Dccsc10
    /Dcitt10
    /Dcr10
    /Desdemona
    /DilleniaUPC
    /DilleniaUPCBold
    /DilleniaUPCBoldItalic
    /DilleniaUPCItalic
    /Dingbats
    /DomCasual
    /Dotum
    /DotumChe
    /DoulosSIL
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversGothicBT-Regular
    /EngraversMT
    /EraserDust
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErieBlackPSMT
    /ErieLightPSMT
    /EriePSMT
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EucrosiaUPC
    /EucrosiaUPCBold
    /EucrosiaUPCBoldItalic
    /EucrosiaUPCItalic
    /EUEX10
    /EUEX7
    /EUEX8
    /EUEX9
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuroMono-Bold
    /EuroMono-BoldItalic
    /EuroMono-Italic
    /EuroMono-Regular
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /FelixTitlingMT
    /Fences
    /FencesPlain
    /FigaroMT
    /FixedMiriamTransparent
    /FootlightMTLight
    /Formata-Italic
    /Formata-Medium
    /Formata-MediumItalic
    /Formata-Regular
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothicITCbyBT-Book
    /FranklinGothicITCbyBT-BookItal
    /FranklinGothicITCbyBT-Demi
    /FranklinGothicITCbyBT-DemiItal
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrankRuehl
    /FreesiaUPC
    /FreesiaUPCBold
    /FreesiaUPCBoldItalic
    /FreesiaUPCItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Frutiger-Black
    /Frutiger-BlackCn
    /Frutiger-BlackItalic
    /Frutiger-Bold
    /Frutiger-BoldCn
    /Frutiger-BoldItalic
    /Frutiger-Cn
    /Frutiger-ExtraBlackCn
    /Frutiger-Italic
    /Frutiger-Light
    /Frutiger-LightCn
    /Frutiger-LightItalic
    /Frutiger-Roman
    /Frutiger-UltraBlack
    /Futura-Bold
    /Futura-BoldOblique
    /Futura-Book
    /Futura-BookOblique
    /FuturaBT-Bold
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-Medium
    /FuturaBT-MediumItalic
    /Futura-Light
    /Futura-LightOblique
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BoldItalic
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-Italic
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Gautami
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GeorgiaRef
    /Giddyup
    /Giddyup-Thangs
    /Gigi-Regular
    /GillSans
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-CondensedBold
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /Gothic-Thirteen
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /GoudyTextMT-LombardicCapitals
    /GSIDefaultSymbols
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Condensed
    /Helvetica-Condensed-Black
    /Helvetica-Condensed-BlackObl
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Light
    /Helvetica-Condensed-LightObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Fraction
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Humanist521BT-BoldCondensed
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-RomanCondensed
    /Imago-ExtraBold
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /IrisUPC
    /IrisUPCBold
    /IrisUPCBoldItalic
    /IrisUPCItalic
    /Ironwood
    /ItcEras-Medium
    /ItcKabel-Bold
    /ItcKabel-Book
    /ItcKabel-Demi
    /ItcKabel-Medium
    /ItcKabel-Ultra
    /JasmineUPC
    /JasmineUPC-Bold
    /JasmineUPC-BoldItalic
    /JasmineUPC-Italic
    /JoannaMT
    /JoannaMT-Italic
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /Kaufmann
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KidTYPEPaint
    /KinoMT
    /KodchiangUPC
    /KodchiangUPC-Bold
    /KodchiangUPC-BoldItalic
    /KodchiangUPC-Italic
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /KrutiDev040Bold
    /KrutiDev040BoldItalic
    /KrutiDev040Condensed
    /KrutiDev040Italic
    /KrutiDev040Thin
    /KrutiDev040Wide
    /KrutiDev060
    /KrutiDev060Bold
    /KrutiDev060BoldItalic
    /KrutiDev060Condensed
    /KrutiDev060Italic
    /KrutiDev060Thin
    /KrutiDev060Wide
    /KrutiDev070
    /KrutiDev070Condensed
    /KrutiDev070Italic
    /KrutiDev070Thin
    /KrutiDev070Wide
    /KrutiDev080
    /KrutiDev080Condensed
    /KrutiDev080Italic
    /KrutiDev080Wide
    /KrutiDev090
    /KrutiDev090Bold
    /KrutiDev090BoldItalic
    /KrutiDev090Condensed
    /KrutiDev090Italic
    /KrutiDev090Thin
    /KrutiDev090Wide
    /KrutiDev100
    /KrutiDev100Bold
    /KrutiDev100BoldItalic
    /KrutiDev100Condensed
    /KrutiDev100Italic
    /KrutiDev100Thin
    /KrutiDev100Wide
    /KrutiDev120
    /KrutiDev120Condensed
    /KrutiDev120Thin
    /KrutiDev120Wide
    /KrutiDev130
    /KrutiDev130Condensed
    /KrutiDev130Thin
    /KrutiDev130Wide
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldOblique
    /LetterGothic-BoldSlanted
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Slanted
    /LevenimMT
    /LevenimMTBold
    /LilyUPC
    /LilyUPCBold
    /LilyUPCBoldItalic
    /LilyUPCItalic
    /Lithos-Black
    /Lithos-Regular
    /LotusWPBox-Roman
    /LotusWPIcon-Roman
    /LotusWPIntA-Roman
    /LotusWPIntB-Roman
    /LotusWPType-Roman
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Lydian
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /Map-Symbols
    /MathA
    /MathB
    /MathC
    /Mathematica1
    /Mathematica1-Bold
    /Mathematica1Mono
    /Mathematica1Mono-Bold
    /Mathematica2
    /Mathematica2-Bold
    /Mathematica2Mono
    /Mathematica2Mono-Bold
    /Mathematica3
    /Mathematica3-Bold
    /Mathematica3Mono
    /Mathematica3Mono-Bold
    /Mathematica4
    /Mathematica4-Bold
    /Mathematica4Mono
    /Mathematica4Mono-Bold
    /Mathematica5
    /Mathematica5-Bold
    /Mathematica5Mono
    /Mathematica5Mono-Bold
    /Mathematica6
    /Mathematica6Bold
    /Mathematica6Mono
    /Mathematica6MonoBold
    /Mathematica7
    /Mathematica7Bold
    /Mathematica7Mono
    /Mathematica7MonoBold
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /Mesquite
    /Mezz-Black
    /Mezz-Regular
    /MICR
    /MicrosoftSansSerif
    /MingLiU
    /Minion-BoldCondensed
    /Minion-BoldCondensedItalic
    /Minion-Condensed
    /Minion-CondensedItalic
    /Minion-Ornaments
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /Miriam
    /MiriamFixed
    /MiriamTransparent
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MonotypeSorts
    /MSAM10
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MS-Gothic
    /MSHei
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReference1
    /MSReference2
    /MSReferenceSansSerif
    /MSReferenceSansSerif-Bold
    /MSReferenceSansSerif-BoldItalic
    /MSReferenceSansSerif-Italic
    /MSReferenceSerif
    /MSReferenceSerif-Bold
    /MSReferenceSerif-BoldItalic
    /MSReferenceSerif-Italic
    /MSReferenceSpecialty
    /MSSong
    /MS-UIGothic
    /MT-Extra
    /MTExtraTiger
    /MT-Symbol
    /MT-Symbol-Italic
    /MVBoli
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-Italic
    /Myriad-Roman
    /Narkisim
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewMilleniumSchlbk-BoldItalicSH
    /NewsGothic
    /NewsGothic-Bold
    /NewsGothicBT-Bold
    /NewsGothicBT-BoldItalic
    /NewsGothicBT-Italic
    /NewsGothicBT-Roman
    /NewsGothic-Condensed
    /NewsGothic-Italic
    /NewsGothicMT
    /NewsGothicMT-Bold
    /NewsGothicMT-Italic
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NimbusMonL-Bold
    /NimbusMonL-BoldObli
    /NimbusMonL-Regu
    /NimbusMonL-ReguObli
    /NimbusRomNo9L-Medi
    /NimbusRomNo9L-MediItal
    /NimbusRomNo9L-Regu
    /NimbusRomNo9L-ReguItal
    /NimbusSanL-Bold
    /NimbusSanL-BoldCond
    /NimbusSanL-BoldCondItal
    /NimbusSanL-BoldItal
    /NimbusSanL-Regu
    /NimbusSanL-ReguCond
    /NimbusSanL-ReguCondItal
    /NimbusSanL-ReguItal
    /Nimrod
    /Nimrod-Bold
    /Nimrod-BoldItalic
    /Nimrod-Italic
    /NSimSun
    /Nueva-BoldExtended
    /Nueva-BoldExtendedItalic
    /Nueva-Italic
    /Nueva-Roman
    /NuptialScript
    /OCRA
    /OCRA-Alternate
    /OCRAExtended
    /OCRB
    /OCRB-Alternate
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OzHandicraftBT-Roman
    /PalaceScriptMT
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Palatino-Roman
    /PapyrusPlain
    /Papyrus-Regular
    /Parchment-Regular
    /Parisian
    /ParkAvenue
    /Penumbra-SemiboldFlare
    /Penumbra-SemiboldSans
    /Penumbra-SemiboldSerif
    /PepitaMT
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /PhotinaCasualBlack
    /Playbill
    /PMingLiU
    /Poetica-SuppOrnaments
    /PoorRichard-Regular
    /PopplLaudatio-Italic
    /PopplLaudatio-Medium
    /PopplLaudatio-MediumItalic
    /PopplLaudatio-Regular
    /PrestigeElite
    /Pristina-Regular
    /PTBarnumBT-Regular
    /Raavi
    /RageItalic
    /Ravie
    /RefSpecialty
    /Ribbon131BT-Bold
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /Rod
    /RodTransparent
    /RunicMT-Condensed
    /Sanvito-Light
    /Sanvito-Roman
    /ScriptC
    /ScriptMTBold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /Serpentine-BoldOblique
    /ShelleyVolanteBT-Regular
    /ShowcardGothic-Reg
    /Shruti
    /SILDoulosIPA
    /SimHei
    /SimSun
    /SimSun-PUA
    /SnapITC-Regular
    /StandardSymL
    /Stencil
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /Stop
    /Swiss721BT-BlackExtended
    /Sylfaen
    /Symbol
    /SymbolMT
    /SymbolTiger
    /SymbolTigerExpert
    /Tahoma
    /Tahoma-Bold
    /Tci1
    /Tci1Bold
    /Tci1BoldItalic
    /Tci1Italic
    /Tci2
    /Tci2Bold
    /Tci2BoldItalic
    /Tci2Italic
    /Tci3
    /Tci3Bold
    /Tci3BoldItalic
    /Tci3Italic
    /Tci4
    /Tci4Bold
    /Tci4BoldItalic
    /Tci4Italic
    /TechnicalItalic
    /TechnicalPlain
    /Tekton
    /Tekton-Bold
    /TektonMM
    /Tempo-HeavyCondensed
    /Tempo-HeavyCondensedItalic
    /TempusSansITC
    /Tiger
    /TigerExpert
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldItalicOsF
    /Times-BoldSC
    /Times-ExtraBold
    /Times-Italic
    /Times-ItalicOsF
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Times-RomanSC
    /Trajan-Bold
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-CondensedMedium
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-Medium
    /Univers-MediumItalic
    /URWBookmanL-DemiBold
    /URWBookmanL-DemiBoldItal
    /URWBookmanL-Ligh
    /URWBookmanL-LighItal
    /URWChanceryL-MediItal
    /URWGothicL-Book
    /URWGothicL-BookObli
    /URWGothicL-Demi
    /URWGothicL-DemiObli
    /URWPalladioL-Bold
    /URWPalladioL-BoldItal
    /URWPalladioL-Ital
    /URWPalladioL-Roma
    /USPSBarCode
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VerdanaRef
    /VinerHandITC
    /Viva-BoldExtraExtended
    /Vivaldii
    /Viva-LightCondensed
    /Viva-Regular
    /VladimirScript
    /Vrinda
    /Webdings
    /Westminster
    /Willow
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /WP-ArabicScriptSihafa
    /WP-ArabicSihafa
    /WP-BoxDrawing
    /WP-CyrillicA
    /WP-CyrillicB
    /WP-GreekCentury
    /WP-GreekCourier
    /WP-GreekHelve
    /WP-HebrewDavid
    /WP-IconicSymbolsA
    /WP-IconicSymbolsB
    /WP-Japanese
    /WP-MathA
    /WP-MathB
    /WP-MathExtendedA
    /WP-MathExtendedB
    /WP-MultinationalAHelve
    /WP-MultinationalARoman
    /WP-MultinationalBCourier
    /WP-MultinationalBHelve
    /WP-MultinationalBRoman
    /WP-MultinationalCourier
    /WP-Phonetic
    /WPTypographicSymbols
    /XYATIP10
    /XYBSQL10
    /XYBTIP10
    /XYCIRC10
    /XYCMAT10
    /XYCMBT10
    /XYDASH10
    /XYEUAT10
    /XYEUBT10
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Demi
    /ZapfHumanist601BT-DemiItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


