
Virtualization and Emulation of a CAN Device on a

Multi-Processor System on Chip

Gabriela Breaban, Martijn Koedam, Sander Stuijk, Kees Goossens

Eindhoven University of Technology

Email:{g.breaban, m.l.p.j.koedam, s.stuijk, k.g.w.goossens}@tue.nl

Abstract—The increasing number of applications implemented
on modern vehicles leads to the use of multi-core platforms in
the automotive field. As the number of I/O interfaces offered by
these platforms is typically lower than the number of integrated
applications, a solution is needed to provide access to the
peripherals, such as the Controller Area Network (CAN), to
all applications. Emulation and virtualization can be used to
implement and share a CAN bus among multiple applications.
In this article we present how multiple applications can share
a CAN port, which can be on the local processor tile or on a
remote tile. We evaluate our approach with four emulation and
virtualization examples, trading the number of applications per
core with the speed of the software emulated CAN bus.

I. INTRODUCTION

The limited scalability of single-core ECU’s in conjunction

with the increasing number of functionalities being integrated

in modern vehicles leads to a shift towards a domain controlled

architecture in the automotive field. This consists of consoli-

dating multiple software functionalities on the same hardware

platform based on their domain [1] and it leads to increased

computational requirements. To cope with this demand, the

use of multi-core platforms has been proposed in literature [1].

Multi-core platforms can come as either Commercial-Off-The-

Shelf (COTS) platforms or as Systems on Chip (SoCs).

A COTS platform features a given number of cores and

I/O interfaces. Since the number of I/O interfaces is typically

lower than the number of applications requiring them, when

integrating multiple software applications on such a platform,

the given resources have to be shared between applications

such that each one meets its requirements in terms of real-

time capabilities, safety, and security.

The implementation of the protocol governing an I/O in-

terface is usually done in hardware and therefore, sharing the

I/O interface translates into sharing the hardware controller

that drives the interface. When sharing a resource among

applications with strict and diverse requirements, as in automo-

tive, an important property of the sharing method is isolation.

Isolated resource sharing is equivalent to virtualization and it

means dividing the physical resource into multiple separate

virtual resources that don’t interfere and allocating each one

to an application. On the other hand, when deciding the I/O

interfaces for a Multi-Processor System on Chip (MPSoC),

one can choose to include a hardware controller and search

for virtualization solutions, or, as an alternative, a given

communication service can be obtained by implementing it

in software on top of an existing interface. We call the latter

solution software emulation. The emulated interface can then

be further shared through virtualization.

Since the automotive industry currently only uses COTS

hardware platforms that typically include CAN controllers,

a considerable amount of research focuses on virtualization

solutions for such systems. To the best of our knowledge, the

possibility of designing a CAN interface on a MPSoC platform

that scales depending on the number of applications and cores

has not been addressed in literature.

In terms of virtualization, the latest proposed methods in

automotive systems are inspired by server environments where

Virtual Machines (VMs) define an isolated set of resources

[2]. Consequently, since the mostly used network in server

environments is Ethernet, the virtualization methods for the

CAN interface are derived from state-of-the-art techniques

used for the Ethernet interface [3].

In terms of software emulation, the CAN interface has been

build on top of specific hardware architectures such as the

Time Triggered Architecture (TTA) [4]. However, this solution

targets non-critical non-real-time CAN applications and it does

not address the problem of providing isolated CAN interfaces

to multiple applications integrated on the same platform.

In this paper we evaluate four different emulation and

virtualization solutions as examples of a general method that

provide a trade-off between the number of applications sharing

a CAN port, which can be on the local or a remote processor

tile, with the speed of the software emulated CAN bus. This

offers to the user the possibility of choosing a different im-

plementation depending on the number of applications being

integrated on the platform and also the desired CAN bit rate.

Our prototype enforces full temporal isolation and offers spa-

tial isolation that is yet to be enforced in hardware. Hence, this

impacts the degree of safety criticality that can be supported

on our prototype. Our software CAN controller achieves bit

rates between 1 and 100 kbit/s in the experiments done on our

Field-Programmable Gate Array (FPGA) platform.

The paper is structured as follows: Section II presents the

related work, Section III gives an overview of the proposed

method, Section IV describes its implementation, and finally

Section VI concludes the paper.

II. RELATED WORK

Herber et al. propose software CAN controller virtualization

methods inspired from server environments [3]. The software

method consists of paravirtualization. However, the presented



results show the performance of the method only in an

interference-free scenario. Moreover, to avoid an increase of

the performance overhead involved by scheduling, only one

VM was mapped to each core, leading to a limited scalability.

As a comparison, in one of our four solutions we also use a

dedicated core as a CAN gateway. The main differences are

that we use the CoMik microkernel [5] to schedule multiple

applications on the CAN client cores and communicate the

CAN message to the CAN gateway using C-HEAP FIFOs [6]

via a contention-free Network on Chip (NoC). The C-HEAP

protocol ensures a safe synchronous communication. On the

CAN gateway core, the arbitration between the incoming

messages is done using a round-robin schedule.

To reduce the performance overhead, Sander et al. offer

the solution of hardware controller virtualization [7], based

on Single Root I/O virtualization (SR-IOV). SR-IOV is an

extension of the Peripheral Component Interconnect Express

(PCIe) protocol and it is the state-of-the-art hardware I/O

virtualization method for Ethernet. The implementation is

done by extending a CAN controller to add virtualization

support and connecting it to a multi-core processor via a PCIe

interface. Unlike the software method, the hardware one has

the downside that the PCIe interconnect affects the temporal

isolation between the serviced VMs leading to a performance

degradation. This is caused by the fact that all VMs share

the same interconnect and the contention on the bus cannot

be avoided. In comparison, our solution does not target the

enhancement of existing COTS platforms. It rather proposes a

combined software and hardware design method for a platform

based on a template hardware architecture, whose instance

could afterwards be taped out for a specific automotive system.

An orthogonal approach from Herber et al. introduces CAN

network virtualization [8]. The method is implemented in hard-

ware and it divides a physical network into multiple virtually

isolated networks of different priorities. CAN nodes are then

allocated to a certain network based on their criticality. Our

method does not target the virtualization of a CAN network,

but the emulation and virtualization of a CAN controller.

In terms of emulation, the CAN interface has been inte-

grated in the TTA architecture by implementing it on top of the

TTP/C interface [9]. Apart from providing the functionality of

the CAN protocol, the emulated CAN adds new services such

as membership information, global time, temporal composabil-

ity and increased dependability. The reported implementation

uses the embedded real-time Linux operating system to inte-

grate CAN applications and real-time applications. However,

the CAN applications are allocated to the non-real-time part of

the kernel and are competing with standard Linux applications

for resources. In our case, we do not implement the CAN

protocol on top of another protocol, but we simply lift the

implementation of the CAN Media Access Control (MAC)

layer from the hardware to the software on top of a hardware

module that realizes the CAN physical layer and use the

CoMik microkernel to schedule real-time CAN applications.

III. DESIGN ALTERNATIVES FOR CAN EMULATION AND

VIRTUALIZATION

A. Overview

In the context of automotive applications, we propose a

method to design a CAN interface on a MPSoC that consists

of defining different platform configurations that trade-off the

number of supported applications and CAN ports with the bit

rate of the CAN bus. The MPSoC platform consists of a set

of processor tiles, each one embedding a processor, the local

memories and the CAN modules. Each CAN module provides

a CAN port. The main design parameters that we vary are:

1) the number of applications sharing each processor

2) the number of CAN ports per processor tile

3) the number of applications sharing a CAN port

4) the bit rate of the CAN bus

The CAN parameters (bit rate and number of ports) are

used for hardware synthesis, while the others are part of the

software design. Table I gives an overview of the exact values

of the parameters for each of the four example configurations.

Each configuration ensures a complete temporal isolation

between applications. Spatial isolation is logically ensured in

the sense that each application gets assigned its own stack,

heap and data memory, but the proposed configurations do not

include a memory protection unit to enforce this separation.

Each CAN port is connected to an individual hardware

module that implements the physical layer of the CAN pro-

tocol. The MAC layer is implemented in software. We refer

to this implementation as a software emulated CAN device

since it achieves the functionality of a hardware CAN device

in software. Further, if the CAN port is to be used by multiple

applications such that the integrity of the data sent and received

on CAN by each one of them is not affected, we say that the

CAN device is virtualized.

Given the design parameters presented above, we defined

four platform configurations: two configurations for which the

CAN device is emulated but not virtualized, denoted E1 and

E2 and two others for which the CAN device is emulated and

virtualized, denoted V1 and V2. E1 and E2 differ on whether

the processor is shared between multiple applications or not.

V1 and V2 differ on whether the emulated CAN device shares

the processor with other applications or not. As the CAN

device is implemented in software, the maximum achievable

bit rate in each case depends on whether the processor on

which it runs is shared with other applications or not.

In the remainder of this section we will describe and

evaluate each of the four configurations.

B. Platform Configuration E1

This configuration is the simplest one, in the sense that the

value of each of the design parameters mentioned above is

equal to 1. We have one application on each processor using

a local CAN port. The bit rate of the CAN bus is 4 kbit/s.

We will refer to Figure 1 to describe the system architecture

of E1 and E2, as they have a similar structure. This config-

uration as well as the other ones, comprises four processor



TABLE I
VIRTUALIZATION AND EMULATION PLATFORM CONFIGURATIONS

Configuration V1 V2 E1 E2

CAN Bus Baud Rate [kbit/s] 2 100 4 2

Number of (applications + controllers) per core
Core 1 Core 2 Core 3 Core 4 Core 1 Core 2 Core 3 Core 4 Core 1 Core 2 Core 3 Core 4 Core 1 Core 2 Core 3 Core 4

2+1 2+1 2+1 2+1 2+0 2+0 2+0 0+1 1+1 1+1 1+1 1+1 2+2 2+2 2+2 2+2

Number of CAN ports per tile
Tile 1 Tile 2 Tile 3 Tile 4 Tile 1 Tile 2 Tile 3 Tile 4 Tile 1 Tile 2 Tile 3 Tile 4 Tile 1 Tile 2 Tile 3 Tile 4

1 1 1 1 0 0 0 1 1 1 1 1 2 2 2 2

Number of applications per CAN port 2 6 1 1

������

����	�
����

������		
��

�
��
�� �������

������

����

������		
��

�
��
�� �������

������� �������

�����

��������

�����������

��������

�����������

Fig. 1. CAN Configuration E2 - System Architecture of a tile

������

����	�
����������		
��

�
��
�� �������

������

�
��
��

�������

�����

��������

�����������

��������

�����������

�������

Fig. 2. CAN Configuration V1 - System Architecture of a tile

tiles. The figure shows the tile architecture for the case in

which we have two applications and two controllers running

on a processor. For E1, the structure is the same, only that

it has one application and one controller. On the software

side, we can see that the sequence of function calls starts

from the application layer, where the message is created. Then

the AUTOSAR driver API [10] is called, that further calls a

version of the C-Heap library to safely transfer the message

into the controller’s buffer. Finally the controller accesses

the CAN hardware module to transmit the message. On the

bottom software layer, the CoMik microkernel creates the

TDM partitions in which the tasks (application and controller)

can run without interference. Further details about the software

implementation are given in Section IV.

The main advantages of this configuration are the spatial

isolation between applications, as they are mapped one-to-one

to the processor cores and the use of the local data memory

on the tile for the communication between the application

and the CAN device, which implies a low timing overhead.

The disadvantage is the low scalability in terms of number of

supported applications.

C. Platform Configuration E2

In this configuration, we increase both the number of

applications and CAN ports per core to two, such that each

application accesses its own emulated CAN device. Since the

number of software entities running on the same processor is

higher, the CAN bit rate decreases to 2 kbit/s.

The advantages of this configuration are the increased

number of applications running on each core, the physical

isolation between the CAN ports used by each application

and, as in the previous case, the use of the local memory for

the application to CAN device communication. The number

of increased applications and CAN ports come at the expense

of the reduced CAN bit rate, and, implicitly, extra area for the

second CAN module.

������

����	�

��
�

����
����
�
�������

������

��
����

�����	�

�������

������

������

�������

������

�������

�������

������

������

�������

������

�������

�������

�������

�����
����


���

��

�

Fig. 3. CAN Configuration V2 - Using one tile as a CAN gateway

D. Platform Configuration V1

Configuration V1 is similar to E1, the main difference being

that the number of applications running on each core is equal

to two. This means that the emulated CAN device and the

port that it drives is shared between the two applications.

Each application has its own transmit and receive buffer and

the arbitration between them is done in software based on

the message ID. The bit rate of the CAN bus is 2 kbit/s.

Figure 2 illustrates the system architecture for this case. The

multiplexer inside the CAN Controller symbolizes the ID-

based arbitration.

Compared to E1, the main advantage of this configuration

is the improved scalability of the CAN device, which comes

at the price of using the same physical CAN port for all

applications on the core.

E. Platform Configuration V2

Configuration V2 differs more from the previous ones. In

this case, we use a dedicated core to implement a CAN device,

which operates as a CAN gateway at 100 kbit/s bit rate. As this

core is not shared with other applications, the CAN controller

runs bare-metal. Each of the other cores runs two applications.

To send and receive CAN messages, the cores use the NoC

for the communication with the dedicated CAN core. Each

CAN application has a separate transmit and receive FIFO.

Moreover, the Daelite NoC [11] provides contention-free

communication; therefore the message communication time



��

�

�

�

��

������ ���� ������ ���� ������ ����

���� ������ ���� ������ ���� ������

��	
���

��	
���

�
���

�������� �����������

����������

����������

�������

�������� �����������

�
���

��

�

�

�

��

��

�

�

�

��

��

�

�

�

��

��

�

�

�

��

��

�

�

�

��

��

�

�

�

��

��

�

�

�

��

��

�

�

�

��

��

�

�

�

�

��

�

�

�

��

��

�

�

�

��

Fig. 4. Timing Diagram for configuration E1 - Emulated CAN on top of
CoMik

is predictable and bounded and it can be used to offer timing

guarantees for the end-to-end transmission and reception of

the messages to be sent over the CAN bus.

Figure 3 illustrates the system architecture for this config-

uration. For simplicity, the arrows illustrate the sequence of

function calls only for the transmission of messages from the

applications to the gateway through the NoC.

IV. IMPLEMENTATION

We have implemented the physical layer of the CAN

interface as a hardware module that functions as a bidirectional

bridge, receiving on one side the data to be transmitted on

CAN from the Microblaze processor and on the other side

putting it on the CAN port. The module can be instantiated

multiple times on each processor tile and the resulting CAN

line is a wired AND between all the CAN ports present on

the platform. The CAN bit rate is obtained by dividing the

processor clock frequency. All the tiles run synchronously on

the same clock domain.

A. Software Emulation of the CAN Controller

The CAN MAC layer was implemented in software in

the C programming language and it consists of creating the

CAN frame in the 2.0A format, as defined by the ISO

11898 standard [12], including bit stuffing, CRC computation

and filtering of the received messages. We call the software

implementation of the CAN MAC layer emulation since it acts

as a CAN controller, which transmits the CAN frames sent

by the application and returns back to it the received frames

according to the configuration of the reception filter. To ensure

a safe transfer of the data between the application and the

controller, a simplified version of C-Heap is used. Further,

we have implemented the driver Application Programming

Interface (API) according to the AUTOSAR standard.

B. Implementing a CAN Controller on the Virtual Processor

To be able to run the software CAN controller together

with other applications on the same processor, we use the

CoMik microkernel. CoMik divides the physical processor into

multiple virtual processors scheduled in TDM fashion. Each

virtual processor gets a fraction of the processor capacity based

on the number of allocated TDM slots and it is fully temporally

isolated from the other virtual processors. The TDM table

duration determines the maximum sustainable CAN bit rate,

as the software controller has to be fast enough to write or

read every CAN bit in its allocated slot.

Each software controller accesses a unique physical CAN

port. In order to provide CAN access to multiple applications,

we need to either instantiate in hardware the same number of

CAN ports as the number of applications, or share a lower

number of CAN ports. Both options imply creating a TDM

table that accommodates all the applications and their software

CAN controllers and defining the maximum CAN bit rate

based on the maximum delay between two successive TDM

slots allocated to the same controller, among all controllers.

Thus, in this case, the minimum CAN bit duration, Tbitmin
is:

Tbitmin
= max

0<i≤N
{ max
0<j<2·Mi

(tij+1
− tij )} (1)

where N refers to the total number of CAN controllers

running on the platform, Mi represents the number of TDM

slots allocated to the controller i and tij ,tij+1
denote the start

time of slots j and j+1 of controller i. To detect the maximum

delay between any two successive slots of controller i, we

need to consider two successive TDM frames, which is why

the upper bound for the second max operator is 2 ·Mi. Hence,

the maximum CAN bit rate, Rmax for this case is:

Rmax = Tbitmin

−1 (2)

Figure 4 shows the TDM schedule for configuration E1 and

the CAN signals. A TDM frame consists of two slots, one al-

located to the application and one to the CAN controller. Each

TDM slot contains a CoMik sub-slot and an application/CAN

sub-slot. In the CoMik sub-slot the context switch operations

are performed. In the figure, the maximum delay between any

two consecutive CAN slots is two slots and the chosen CAN

bit period, Tbit is higher than the minimum and it is equal to

three slots. We can see that each application writes a transmit

message in its corresponding buffer at times twrMsg1 and twrMsg2

respectively. The C-Heap library is not shown in the figure

for the sake of simplicity. Each CAN controller detects the

message in the following slot, at times tstartMsg1 and tstartMsg2

respectively and it starts to drive the allocated CAN output port

immediately. The resulting CAN line, CAN IN changes and

the start of every CAN bit period and it reflects the result of

all the CAN output lines on the platform. The CAN controller

synchronizes with the CAN bus at the beginning of each bit

period, Tbit. When the controller is shared, as in configuration

V1, separate buffers are allocated to each client application

and the incoming messages are arbitrated based on their IDs.

C. Bare-metal Implementation of the CAN Controller

Configuration V2 illustrates the possibility of allocating the

entire processor to the CAN controller. Figure 5 shows the



��

�

�

�

���

������ ������ ������ ������ ������ ������
��	
���

�
���

��������

��������

�������

����������
��

�������� �	�

������!��	��

����

�
���
	�
�

�"��

����

�
���
	�
�

�"��

����

#�����$�

�
���

��
�����

������%
&
'��

%�(������ %�(����)� %�(����*� %�(����+�

%�(������ %�(����)� %�(����*� %�(����+�

��

�

�

�

���

��

�

�

�

���

��

�

�

�

���

��

�

�

�

���

��

�

�

�

���

Fig. 5. Timing Diagram for configuration V2 - Bare-metal implementation
of the CAN Controller and the Communication of CAN messages via NoC

stages of sending a CAN message from the moment the

application creates it, twrMsg1 until its transmission starts on

the CAN output line, CAN OUT. As mentioned before, we

use the C-HEAP library to send the CAN messages across

the NoC. Each sending application has its own FIFO transmit

buffer in the local memory of the CAN gateway tile. A FIFO

contains a number of predefined data tokens. In our case, a

token is a CAN message. When writing a token into a remote

FIFO, the sender first sends the token and then the value of the

updated write counter via the NoC. A NoC path between 2 tiles

includes a number of routers. In the figure, the tokens traveling

from the sender tile to the CAN gateway go through four

routers. The NoC is scheduled using a pipelined TDM table.

This means that across the path, each router forwards the data

from one of its inputs to one of its outputs in a given TDM slot,

such that for a TDM frame having n slots, router i forwards

the data during slot j and router i+1 forwards the same data in

the following slot, (j+1) mod n. In the figure, the NoC TDM

table has 3 slots and the connection between the sender tile and

the gateway tile uses slot 3 in the first router and it increases

with 1 in every upcoming router. After the write counter has

left the last router, it reaches the gateway tile. Here, when the

CAN bus is idle, at the start of every CAN bit period, Tbit, the

transmit FIFO of each CAN client is polled. If a new token

is found, it is read during TCheapRdFifo and the transmission of

the message starts right away on the CAN OUT line. Since

in this case the processor is not virtualized, the performance

bottleneck determining the CAN bit rate is no longer given by

the TDM table, but by worst case execution time needed to

send one CAN bit, which can be determined by accessing the

communication FIFOs or computing the CRC.

V. EXPERIMENTS

We synthesized the four platforms according to the config-

urations described in the previous sections on a ML605 Xilinx

FPGA platform. Each of the four configurations includes five

processor tiles, out of which four are used for running CAN

applications and the fifth tile is used as a CAN monitor, which

prints the value of every CAN bit.

The applications within all configurations are synthetic,

meaning that their only purpose is to send and receive CAN

messages periodically.

Figure 6 shows the message latencies and software cost

for each of the proposed configurations using a logarithmic

scale. In configuration E1 three applications send messages

periodically with a dynamic offset and a fourth application is

receiving them. The sending period is 0.1 s and it was chosen

to fit three worst-case CAN messages coming from the three

applications. The offset is varying between 0 and 40.9µs (the

TDM slot duration) with a step of 0.1µs. The message offset

was set in the same manner in all four configurations and

the messages are created simultaneously in all applications.

The plots show the global minimum, maximum and average

software cost and the maximum message latency among all

sending applications for all possible CAN message payloads.

The software cost is the sum of the sending cost on the

sending tile and the receiving cost on the receiving tile. The

sending cost comprises the duration between the moment the

sending application has created the CAN message and the

moment when the controller sends the first message bit on the

bus. Analogously, the receiving cost comprises the duration

between the moment the last message bit was received on

the other side by the controller and the moment when the

receiving application gets the message. The sending cost is

illustrated in Figure 4 as the time between twrMsg1 and tstartMsg1

for Tile 1. The maximum message latency is determined by

the software cost plus the transmission time on the bus. The

large values obtained for Payload = 2,3,6,7 bytes come from

sporadic cases in which one application creates a message just

after the controller enters the reception mode. The minimum

overhead is given by the added duration of the CoMik slots on

the sending and receiving side that run between the application

and controller slots. Thus, the software cost reflects the execu-

tion time of the controller, the communication time between

the application and the controller and the TDM schedule in

CoMik, but it can occasionally include the blocking time

caused by the reception of CAN messages.

In configuration E2, the number of sending applications and

CAN controllers are doubled on each core. The minimum cost

scales consequently from 100 to 200µs. The maximum cost, on

the other hand, is given by the alignment between the CAN bit

period, the start time of each CAN controller slot and the CAN

message offset. In the worst case, the controllers running in the

earlier TDM slots detect the new messages and start sending

them and the ones running in the later slots enter directly into

reception mode before detecting the new messages.

For configuration V1, the obtained results are almost the

same as for E2, the only difference is in the average cost.

In this case it is much higher due to the fact that there is

only one controller on each core that arbitrates between two

senders. Therefore, the sender with the lower priority will

always experience the worst case delay, while in the previous



0 1 2 3 4 5 6 7 8

50

100

200

500

1,000

20,000

50,000
100,000

400,000

Payload [B]

L
at

en
cy

-
co

n
fi

g
u
ra

ti
o
n
E

1
[µ

s]

0 1 2 3 4 5 6 7 8

100

200

6,000

14,000

70,000

150,000

400,000

Payload [B]

L
at

en
cy

-
co

n
fi

g
u
ra

ti
o
n
E

2
[µ

s]

0 1 2 3 4 5 6 7 8

100

200

40,000
70,000

150,000

400,000

Payload [B]

L
at

en
cy

-
co

n
fi

g
u
ra

ti
o
n
V
1

[µ
s]

0 1 2 3 4 5 6 7 8

10

50
100

1,000

3,000

8,000

400,000

Payload [B]

L
at

en
cy

-
co

n
fi

g
u
ra

ti
o
n
V
2

[µ
s]

min Tx Cost

avg Tx Cost

max Tx Cost

max message latency

min (Tx+Rx) Cost

avg (Tx+Rx) Cost

max (Tx+Rx) Cost

max message latency

Fig. 6. CAN message and software overhead latency for the four platform configurations

configuration, the varying offset determined this delay only

when the messages were created later in the CAN bit period.

Hence, using a separate controller for each application leads

to a better average performance.

In configuration V2 we have six sending applications send-

ing messages with a period of 8.35 ms. As we have no external

CAN device connected, the results shown characterize only

the sending software cost and the corresponding maximum

message latency. Here, the minimum cost is around 12µs and

is basically given by the message communication time on

the NoC. We implemented a time-based round robin schedule

which iterates between the six senders based on the order of

their CAN message ID and each time slot is equal to the CAN

bit duration (10µs). Thus the maximum cost is obtained when

the sending application has just missed its time slot in the CAN

gateway and has to wait until the messages coming from all

the other applications have been sent.

VI. CONCLUSIONS

In this paper we proposed how multiple applications can

share a CAN port in a MPSoC platform. The shared CAN

port can be on the local processor tile, or on a remote one.

As part of our hardware and software design process, we

tune the number of applications per CAN port, we explore

the possibility of using local and remote CAN ports and

we dimension the bit rate of the CAN bus accordingly. We

evaluate each solution and we show the obtained software cost

and end-to-end latency for the CAN messages.

ACKNOWLEDGMENT

This work was partially funded by projects CATRENE

CA505 BENEFIC, CA703 OpenES, CT217 RESIST;

ARTEMIS 621429 EMC2, 621353 DEWI, and 621439

ALMARVI.

REFERENCES

[1] D. Reinhardt et al., “Domain Controlled Architecture - A new approach
for large scale software integrated automotive systems,” in PECCS,
2013.

[2] P. Barham et al., “Xen and the art of virtualization,” SIGOPS Oper. Syst.

Rev., vol. 37, no. 5, 2003.
[3] C. Herber et al., “HW/SW trade-offs in I/O virtualization for controller

area network,” in DAC, 2015.
[4] H. Kopetz et al., “The time-triggered architecture,” Proceedings of the

IEEE, 2003.
[5] A. Nelson et al., “CoMik: A predictable and cycle-accurately compos-

able real-time microkernel,” in DATE, 2014.
[6] A. Nieuwland et al., “C-HEAP: A heterogeneous multi-processor ar-

chitecture template and scalable and flexible protocol for the design of
embedded signal processing systems,” Design Automation for Embedded

Systems, 2002.
[7] O. Sander et al., “Hardware virtualization support for shared resources

in mixed-criticality multicore systems.” in DATE, 2014.
[8] C. Herber et al., “A network virtualization approach for performance

isolation in controller area network (CAN),” in RTAS, 2014.
[9] R. Obermaisser, “CAN emulation in a time-triggered environment,” in

ISIE, vol. 1, 2002.
[10] “AUTOSAR release 4.2 - SWS CANDriver,” Tech. Rep.
[11] R. Stefan et al., “dAElite: A TDM NoC supporting QoS, multicast,

and fast connection set-up,” Computers, IEEE Transactions on, vol. 63,
no. 3, 2014.

[12] “ISO11989-1:2015 road vehicles – Controller area network (CAN) –
Part 1: Data link layer and physical signalling,” Tech. Rep.


