
Resource Utilization and Quality-of-Control
Trade-off for a Composable Platform

Juan Valencia, Eelco van Horsen, Dip Goswami, Maurice Heemels, and Kees Goossens
Electronic Systems Group - Eindhoven University of Technology

Eindhoven, The Netherlands
{j.valencia, e.p.v.horssen, d.goswami, w.p.m.h.heemels, k.g.w.goossens}@tue.nl

Abstract—This paper deals with implementation of feedback
controllers on embedded platforms and investigates the trade-off
between Quality-of-Control (QoC) and resource utilization. In
particular, we consider a setting where the embedded platform
executes multiple applications including the control application
under consideration. Such a setting is common in domains like
automotive where consolidation of several applications is desir-
able for cost reasons. While tackling inter-application interference
is a challenge, our platform offers composability using resource
virtualization allowing for interference-free application develop-
ment and cycle-accurate timing behavior. In this work, from
the feedback control perspective, we show that platform timing
behavior can be characterized by a finite, known and periodic set
of sampling intervals for a given resource allocation. Utilizing the
platform timing, we show that the control design problem can
be transformed into a classical discrete-time Linear Quadratic
Regulator (LQR) problem which can be efficiently solved to
obtain optimal QoC for a given resource allocation. Our method
is validated both in simulation and experiments, considering a
Multiple-Input and Multiple-Output (MIMO) control application.

I. INTRODUCTION

Consolidation of multiple applications into a single plat-
form is a trend [1] in cost-sensitive industries for obvious
reasons (e.g., a significant reduction in infrastructure and
complexity of hardware management and maintenance). The
challenge in realizing this consolidation is the deployment of
effective coexistence mechanisms to allow for interference-
free application development. One way to achieve this is
to create multiple virtual processors per physical processors
by using a micro-kernel. In this work, the virtualization is
realized in the Composable and Predictable System on Chip
(CompSOC) platform [2]. The physical processors, their in-
terconnections, and memories are virtualized following Time-
Division Multiplexing (TDM) policies. Unlike, Earliest Dead-
line First or Rate-Monotonic, the work-non-conservative nature
of the TDM policies allows for interference-free execution. In a
virtualized platform, a fraction of the platform resources can be
allocated to a control application, such that the controller can
run without interference. We address the problem of resource-
efficient implementation of feedback controllers on such a
platform.

Given a resource allocation, it is important to design the
controller in an optimal way to get maximum QoC out of
the allocated resource. Standard optimal control strategies
typically use uniform sampling schemes [3]. For control ap-
plications, a shorter sampling interval typically leads to a
higher QoC [4]–[6]. However, a shorter sampling interval
implies a higher resource usage in terms of communication

and computation. This clearly creates a trade-off between the
resource utilization and resulting QoC and it is of importance
to characterize this trade-off quantitatively in order to make ed-
ucated design decisions. From resource utilization perspective,
a uniform sampling scheme might not be the optimal choice
[7]. A resource-efficient implementation of feedback controller
often leads to a non-uniform sampling scheme [8]. This gives
rise to the need for control design methodologies taking into
account non-uniform sampling intervals resulting from a given
resource allocation. We tackle this problem in this work based
on ideas from periodic control systems [9] and connect this to
the resource utilization on CompSOC.

Contributions: In this work, we first show that the non-
uniform sampling intervals resulting from our composable
platform can be characterized by a finite, known and periodic
sequence for a given resource allocation. For such a sequence
of sampling intervals, using a time-lifted reformulation [10],
we recover a periodicity property [9] for which the optimal
control problem can be solved using periodic Riccati equations
[11]. Solving them, we obtain an optimal switched feedback
controller for the resulting periodic timing behavior from the
platform. As such, we present a co-design framework that
allows for trade-off analysis between resource utilization and
QoC for an embedded control implementation and illustrate
this on a MIMO control application, both in simulation and
experiments.

II. COMPOSABLE PLATFORM

We consider a tile-based architecture that offers configu-
ration with multi-processors (processor tiles), interconnections
through a Network-on-Chip (NoC), and memories (memory
tiles) within the same platform. An example architecture is
shown in Fig. 1. Each processor tile is mainly composed of a
MicroBlaze soft-core processor. The monitor tile is for debug-
ging purposes. The memory tile contains the external memory
interface and controller, and the NoC provides interconnection
between the tiles. To enable independent implementation, ver-
ification and execution of multiple applications, the platform
offers composability by virtualizing all processors, intercon-
nections, and memory resources.

A. Virtualization
For platform virtualization, we use CoMik (Composable

and Predictable Micro-kernel) that creates multiple virtual
processors (VPs) that can be used as dedicated resources [12].
Each VP’s utilization of the underlying physical processors and
their interconnections (i.e., NoC communication) are allocated
in a TDM manner. Using perfectly periodic TDM policies

Memory Tile Monitor Tile

NoC Interconnect

Processor Tile 0
Micro-kernel

VP 1 VP 2

Processor Tile 1
Micro-kernel

VP 3 VP 4

Fig. 1. Example: Composable platform using virtualization.

both in the processors and their interconnections, the platform
achieves global synchronization with a very fine (i.e., cycle
accurate) time granularity.

To achieve cycle-accurate temporal behavior, we split the
TDM frame in terms of fix duration CoMik slots of length
ω clock cycles and partition slots (or VPs) of length ψ clock
cycles. The CoMik slots enable jitter-free context switching
between VPs, and the applications only execute on the VPs.
Overall, the processor utilization at the application-level is
given by ψ

ψ+ω which indicates that a large ω is undesired
as it reduces VPs utilization. An application is executed in
an allocated partition slot (or VP) and is paused every time
a new CoMik slot starts. Its execution is only resumed in the
next partition slot assigned for the same application. The TDM
frame is defined at design time with desired execution order
of the VPs. In Fig. 2 this mechanism is illustrated by dividing
a TDM frame into four partition and CoMik slots, where two
applications have been assigned with two partition slots each.

B. Platform Resource Utilization
We use a TDM frame consisting of N ≥ 1 partition slots.

The total TDM frame duration is given by N × (ψ+ω) clock
cycles. For a set Λ of at most N applications (e.g., control
and multimedia applications), the number of partition slots,
i.e. the amount of resources, assigned to a unique application
λ ∈ Λ is given by the function S : Λ → N[1,N]

1. The
indices of the slots allocated to application λ are given by the
set A(λ) ⊆ N[1,N]. Since each partition slot has ψ clock
cycles, an application uses S(λ) · ψ clock cycles during one
TDM frame. The resource utilization by an application λ ∈ Λ
(as a fraction of the total resource) is given by,

R(λ) :=
S(λ)

N
· ψ

(ψ + ω)
· 100[%]. (1)

In Fig. 2, we show, for N = 4, an example of resource
utilization for two unique applications Λ = {λC , λ2}. In
this example, the first and last partition slots are allocated
to the application λC (i.e., control application under study)
and the other two partition slots are allocated to application
λ2 (i.e., any other application that can span from control to
entertainment systems). Thus, S(λC) = 2, A(λC) = {1, 4},
S(λ2) = 2, and A(λ2) = {2, 3}.

In summary, the virtualization capability of the platform
enables the development and execution of applications by
scheduling them into customizable partition slots. This allows
application designers to take into account the timing properties
of the platform (e.g., slot lengths and resource allocation) in
order to independently develop and verify applications on this

1N[1,N] denotes the natural numbers in the interval [1, N], i.e.
N[1,N] = {n ∈ N | 1 ≤ n ≤ N}.

h4h4 h1h1h1h1h1h1

ψ
TDM frame

ω

λ1=λC λ2 λ2 λ1=λC λ1=λC
...
t

h2
...

sensing actuating computing sensor-to-actuator overhead
control application slot micro-kernel slot other application slots

Fig. 2. Resource utilization example, for N = 4, with two applications
Λ = {λC , λ2} where S(λC) = 2 and A(λC) = {1, 4}. The patterns
repeat after the end of the TDM period. (above) The black blocks indicate
the CoMik slots while the blue and white blocks indicate partitions slots
for applications λC and λ2, respectively. (below) Control application tasks
execution and allocation-dependent sampling intervals.

platform whilst ensuring that there will be no interference
between applications.

Recall that, the variables ψ and ω were given as a number
of clock cycles. In what follows, the length of a clock cycle
is assumed to be known and the variables ψ and ω will refer
to the slot time in seconds for ease of exposition.

III. SAMPLED-DATA CONTROL

Since the platform allows for independent development
by functional and temporal separation, we focus only on the
control application λC ∈ Λ.

The control application λC is related to controlling a linear
time-invariant (LTI) continuous-time (CT) system represented
by the differential equations

ẋ(t) = ACx(t) +BCu(t), x(0) = x0 (2)

where x(t) ∈ Rnx 2 is the state of the system, and u(t) ∈ Rnu

is the control input applied to the system at time t ∈ R≥0.
Matrices AC ∈ Rnx×nx

and BC ∈ Rnx×nu

are constant.

The objective is to control the CT system such that the cost
criterion 3

J :=

∫ ∞
0

(x>QCx+ u>RCu)dt, QC � 0, RC � 0, (3)

is minimized, which corresponds to the classical linear
quadratic regulator (LQR) problem (see [3]). We adopt the
standard assumptions that (AC , BC) is controllable, BC has
full column rank, and (AC , Q

1
2

C) is observable.

Remark III.1. Having large QC compared to RC puts the
focus on making the state small (short settling time) possibly
at the cost of large control inputs. By increasing RC , large
control inputs are penalized, typically leading to a slower
response.

We are going to sample the system (2) (i.e. read out sen-
sors) at discrete time instances tk with sample index k ∈ N≥1.
The waiting time until the first sampling instance t1 is typically
considered to be zero, i.e. t1 = 0. The state at the sampling
instances can then be described in discrete time (DT) by

xk := x(tk), k ∈ N≥1. (4)

The execution time on the platform (i.e. reading sensors,
computation of the control inputs, and updating actuators)

2Rnx
denotes a (column) vector of real numbers of length nx.

3The (in-)equality M � 0 (M � 0) means that the matrix M is symmetric
and positive (semi-)definite.

sensing

computing

actuating

sensor-to-actuator
overheadPlant (System) Dynamics …

Ts TaTc

sk

T

xk+1

Ts

t
…

k+1k

xk uk

Fig. 3. Timing diagram of the control application.

results in a sensing-to-actuation delay T , which is detailed
in Section IV-A. We update the actuation signal in zero-order
hold (ZOH) actuation scheme

u(t) = uk, t ∈ [tk + T, tk+1 + T) (5)

where uk are the to-be-designed piecewise constant control
inputs. The sampling interval, i.e. the time between samples
k and k + 1, is denoted by sk. In Fig. 3 the timings of the
interaction between the platform and the plant are shown.

IV. COMPOSABLE EMBEDDED CONTROL SYSTEMS

We implement the control application λC on a platform
with an example architecture consisting of two synchronous
processor tiles, one memory tile, one monitor tile, and the NoC
(see Fig. 1). We map all tasks of the control application (that
only runs on its allocated partition slots) onto one processor tile
on the example architecture and characterize the exact timing
behaviour of λC in the platform. The timing behaviour is then
used to choose the sampling intervals.

A. Control Application Timing Properties
The control application is implemented by sequentially

executing sensing (reading of sensors), computing (computa-
tion of actuation signals), and actuating (writing to actuators)
tasks, subsequently, resulting in sensing-to-actuation delay.
This results in the control application execution time or control
task time, which is then defined as

T := T s + T c + T a + T o (6)

where T s, T a and T c are the execution times of the sens-
ing, computing, and actuating tasks in the platform, respec-
tively. Any overhead given by other operations in the sensor-
to-computing, computing-to-actuating, and actuating-to-plant
paths is captured by the overhead T o. In our setup, we make
sure that the sampling interval sk is longer than the execution
time T , i.e., sk ≥ T , and that the partition slot length ψ is
larger than T , i.e., T < ψ. The execution of the application
tasks is visualized in Fig. 3.

B. Periodic Sampling Pattern
A classical control implementation is to use the minimum

sampling interval sk = T for all k ∈ N≥1. However, resource
limitation prevents from such implementation. Instead, for
a given allocation A(λc), we adopt a finite sequence of
sampling intervals that occur periodically with the TDM frame,
according to the following scheme:

We consider the base or minimum sampling interval to be

h1 := T. (7)

Our approach is to consecutively execute the control task as
many times as possible within a partition slot, i.e.

⌊
ψ
h1

⌋
times.

If the remaining time in the partition slot is shorter than T ,
i.e. when (ψ −

⌊
ψ
h1

⌋
h1) < T , a complete execution is not

possible anymore. In that case, the sensing task is delayed to
the start of the next assigned partition slot. The last sampling
interval in the partition slot is thus extended according to the
resource allocation A(λ). The other sampling intervals, for
2 ≤ i ≤ N + 1, are given by

hi = T + (ψ −
⌊
ψ

h1

⌋
h1) + (i− 1)ω + (i− 2)ψ, (8)

where the four terms of (8) correspond to the execution time,
the remaining time in the partition slot, the number of CoMik
slots until the next assigned slot, and the number of unassigned
partition slots until the next assigned slot, respectively. Then,
the sequence of sampling intervals in the TDM frame can be
denoted by the tuple

H := (hi) occurring in order according to A(λC). (9)

By the above scheduling scheme, we avoid the application
execution drift along TDM frames giving us a small number of
elements in H . In our scheme, the number of unique elements
hi ∈ H , denoted by unique(H), is limited by

(unique(H)− 1) · unique(H)

2
≤ N. (10)

For example, H can have at most five unique elements for
N = 10. For the resource allocation in Fig. 2, the periodic
pattern H = (h1, h1, h4, h1, h1, h2) is illustrated for the case
where

⌊
ψ
h1

⌋
= 3.

The sampling intervals are then given, for
r := card(H) and H(j) the j-th element in H , by
sk = H(1 + (k − 1 mod r)), i.e. sk is takes the value
of hi after sample k in accordance with H . Thus, we utilize
the periodicity of the sequence H in the design of the control
law. V. CONTROL DESIGN

This section describes the design of sampled-data optimal
control taking into account periodically switched sampling
pattern H resulting from a given resource utilization in the
platform. The design steps, visualized in Fig. 4, are detailed
for tutorial purpose, see, e.g., [3], [9], [11], [13] for more
details.
A. Discrete-Time Problem

We compute the evolution of the system in discrete time by
exact discretization of the system (see e.g. [13]). The evolution
of the CT state after sample k ∈ N≥1 can be described as

x(tk + τ) =

Φ(τ)xk + Γ1(τ)uk−1, when τ ∈ [0, T)

Φ(τ)xk + Γ2(τ)uk−1 + Γ3(τ)uk,

when τ ∈ [T, tk+1 − tk),

where we distinguish between the situations before and after
the actuation update, and where 4

Φ(τ) := eACτ

Γ1(τ) :=

∫ τ

0

Φ(s)dsBC = [Inx 0] e

[
AC BC
0 0

]
τ
[

0
Inu

]
Γ2(τ) := Φ(τ − T)Γ1(T)

Γ3(τ) := Γ1(τ − T).

4
[
Inx 0

]
denotes the concatenation of an identity matrix of dimension

nx and a zero matrix of dimension nx × nu.

Composable
platform

Slot lengths φ, ωAppl.
Λ

Resource alloc.
S(λ), A(λ)

Usage
R(λ)

Sampling pattern
H (9)

Control app.
λC (2-5)

Task time/delay
T (5,6)

Min. sampl.
interval h1 (7)

Sampl. int. sk

DT sys. (11)
Ak, Gk, Bk

Augm. sys. (12,13)
Âk, B̂k, Q̂k, Ŝk, R̂k

TDM level
behaviour (14)

sub-TDM level
behaviour (17)

TDM level
cost (16)

QoC: (18)
DARE sol. P̃

TDM level controller K̃

sub-TDM controller Kl (19,20)

act. delay augment.

TDM period augment.

Tr
ad

e-
of

f
an

al
ys

is

Fig. 4. Flowchart of the design procedure (with equation references).

Note that the system matrices only depend on the length of
the sampling interval and not on the sample index. The system
can now be represented by the discrete-time (DT) model

xk+1 = Akxk +Gkuk−1 +Bkuk, k ∈ N≥1, (11)
Ak := Φ(sk), Gk := Γ2(sk), Bk := Γ3(sk),

where sk = H(1 + (k − 1 mod r)), r := card(H) as de-
tailed in Section IV-B.

By augmenting the state with the delayed actuation ξk =
[x>k , u

>
k−1]> (see e.g. [10]) the system (11) can be rewritten

in standard discrete-time linear time-varying (DT-LTV) form

ξk+1 =

[
Ak Gk
0 0

]
ξk +

[
Bk
I

]
uk = Âkξk + B̂kuk, (12)

for all k ∈ N≥1, with initial state ξ1 = [x>1 , u
>
0]>.

A discrete-time representation [13] of the cost is given by

J =

∞∑
k=1

∫ tk+1

tk

[
x(s)
u(s)

]> [
QC 0
0 RC

] [
x(s)
u(s)

]
ds

=

∞∑
k=1

ξ>k Q̂kξk + 2ξ>k Ŝkuk + u>k R̂kuk,

[
Q̂k Ŝk
Ŝ>k R̂k

]
� 0,

(13)

where 5

Q̂k :=

∫ T

0

?>
[
QC 0
0 RC

] [
Φ(s) Γ1(s)

0 I

]
ds

+

∫ sk

T

?>
[
QC 0
0 RC

] [
Φ(s) Γ2(s)

0 0

]
ds,

Ŝk :=

∫ sk

T

[
Φ(s) Γ2(s)

0 0

]> [
QC 0
0 RC

] [
Γ3(s)
I

]
ds,

R̂k :=

∫ sk

T

?>
[
QC 0
0 RC

] [
Γ3(s)
I

]
ds,

depend on the sampling intervals sk and the delay T and can
be computed by numerical integration.

The control problem can now be formulated as follows:
Given x1 and u0 (i.e. ξ1)

J?(ξ1) := min
{uk}k∈N≥1

(13) subject to (12).

In general, this problem does not have a closed-form solu-
tion for arbitrary {tk}k∈N≥1

. However, on the composable
platform under consideration, the sampling intervals occur in
the periodic sequence H . Hence, the set of possible Âk and
B̂k can be precomputed and result in a discrete-time linear
periodically time-varying (DT-LPTV) system [14] for which
solutions to the control problem, e.g. using periodic Riccati
equations, exist.

B. Periodicity: Time-lifted Reformulation
For a DT-LPTV system with period r, the dynamics and

cost have the periodicity property

X̂k+r = X̂k, X ∈ {A,B,Q, S,R}.

With TDM period index j, the time-lifted reformulation [9]

ξ(j+1)r+1 = Ãξjr+1 + B̃ūj , j ∈ N≥0, (14)

gives the dynamics over one TDM period, where 6

Ã =

[
1∏

k=r

Ak

]
, B̃ =

[[
2∏

k=r

Ak

]
B1

[
3∏

k=r

Ak

]
B2 · · · ArBr−1 Br

]
.

and the cost can be written as

J = lim
p→∞

∑p

j=0
ξ̄>j Q̄ξ̄j + 2ξ̄>j S̄ūj + ū>j R̄ūj (15)

= lim
q→∞

q∑
j=0

ξ>jr+1Q̃ξjr+1 + 2ξ>jr+1S̃ūj + ū>j R̃ūj (16)

Q̃ = Ā>Q̄Ā, S̃ = Ā>S̄ + Ā>Q̄B̄, R̃ = R̄+ B̄>Q̄B̄

using the augmented variables

ξ̄j =

ξjr+1

...
ξjr+r

 , ūj =

ujr+1

...
ujr+r

 , Q̄ = diagk∈N[1,r]
Q̂k,

S̄ = diagk∈N[1,r]
Ŝk,

R̄ = diagk∈N[1,r]
R̂k,

and using the dynamics within the TDM period

ξ̄j = Āξjr+1 + B̄ūj , j ∈ N≥0, (17)

5A>QA denotes ?>QA for any matrices A,Q of appropriate dimensions.
6 ∏m

k=r Ak denotes (for r ≥ m) the multiplication ArAr−1 ·Am+1Am.

where

Ā =

I
A1

A2A1

...
1∏

k=
r−1

Ak

, B̄ =

0 · · · 0
B1 0 0
A2B1 B2 0 0

...
. . .

. . .
... 2∏

k=
r−1

Ak

B1

 3∏
k=
r−1

Ak

B2 · · · Br−1 0

.

Now, we note that matrices (Ã, B̃, Q̃, S̃, R̃) in (14) and
(16) do not depend on the period index j, i.e. they are
time-invariant. The lifted problem thus has the standard time-
invariant DT LQR form which can be solved efficiently.

C. Periodically Switched Controller Synthesis
For the time-invariant lifted reformulation (14) and (16),

standard optimal control methods [3], [15] can find the optimal
solution

J?(ξ1) = ξ>1 P̃ ξ1, (18)

where P̃ is the unique positive definite solution to the discrete-
time algebraic Riccati equation (DARE)

P̃ = Ã>P̃ Ã+ Q̃− (B̃>P̃ Ã+ S̃>)>(R̃+ B̃>P̃ B̃)−1(B̃>P̃ Ã+ S̃>).

Furthermore, V (ξ) = ξ>P̃ ξ is a Lyapunov function for the
system at the start of the TDM period, ensuring stability for
the optimal control actions

ūj = −K̃ξjn+1, K̃ := (R̃+ B̃>P̃ B̃)−1(B̃>P̃ Ã+ S̃>).

Note that this is the solution to the lifted problem over a TDM
period. This can be transformed into a state feedback for the
original DT-LPTV system (12) leading to,

uk = −Klξk, with l = (k − 1 mod r) + 1, k ∈ N≥1,
(19)

where ξk = [x>k , u
>
k−1]>. From Pn+1 = P̃ , the solutions Pl

for l ∈ N[1,r] can be found from the solution to the standard
finite horizon discrete-time dynamic Riccati equation (DDRE)

Pl = A>l Pl+1Al +Ql

− (B>l Pl+1Al + S>l)>(Rl +B>l Pl+1Bl)
−1(B>l Pl+1Al + S>l),

which represents the discrete-time periodic Riccati equation
(DPRE) [11] when Pl+n = Pl. The control gains Kl, l =
1, 2, . . . , r, are given by

Kl := (Rl +B>l Pl+1Bl)
−1(B>l Pl+1Al + S>l). (20)

Hence, (19) is the optimal feedback law which is to be applied
in (5).

VI. EVALUATION RESULTS

To illustrate our methods, we simulate a modified version
of a two-body oscillator model

AC =

 0 1 0 0
−2 0 1 0
0 0 0 1
1 0 −2 0

 · 104, BC =

0 0
1 0
0 0
0 1

 .
Here, we have chosen a very fast system with very small time
scales close to the sampling periods of the platform under
consideration. We take initial conditions x0 = [0 10 0 0]>,

t1 = 0 (i.e. x1 = x0), and u0 = [0 0]>. The weighting matrices
in the cost criterion are chosen as

QC = I4, RC = I2 · 10−4,

such that the emphasis is on having small states.

The platform has been configured with ω = 34.31·10−6[s],
ψ = 477.87 · 10−6[s], and a global clock frequency of 120
MHz. The execution of the control task on the platform is
measured to take T = 138·10−6[s]. The base sampling interval
is taken as h1 = 140 ·10−6[s], which results in

⌊
ψ
h1

⌋
= 3. The

number of partition slots N is chosen to be 10 (i.e., N = 10).

We computed the QoC for eight different resource allo-
cations using an analytical approach and a MATLAB-based
simulation. Tab. I shows the sampling pattern H , the allocation
pattern A(λC) and the increasing resource usage R(λC). The
resulting QoC, measured in terms of the optimal quadratic
cost J?(ξ1) (18), is computed analytically and validated by
simulation (using MATLAB).

Exp. 1 and Exp. 8 represent the cases where only one slot
is used or all slots are used, and typically give the worst and
best performance that can be achieved in our framework, re-
spectively. For the chosen system, we find that more resources
give better QoC (lower J?(ξ1)), which is consistent with the
expectations. However, the results show significant variation of
QoC for variations in the pattern. Here, contiguous allocation is
found to be better than a spread allocation. Hence, by changing
allocation, one may find that less resources are needed to
achieve the same QoC. Our methods provide a quantitative way
to analyze this trade-off, leading to educated design decisions.

Hardware-In-the-Loop (HIL) simulation: we performed a
HIL simulation for one of the cases in Tab. I (Exp.#2) for
validating the platform timing behavior and our results. In
the HIL simulation, we synthesized the CompSOC platform
described in Section II on an FPGA module (Xilinx Virtex-
6) and we simulated the discrete-time system Equation (11)
as illustrated in Fig. 3. Fig. 5 and Fig. 6 show the measured
behavior of the first state of x(t) and the first input of u(t),
respectively. The results from the MATLAB-based and HIL
simulations closely follow each other. It should be noted that
the difference between MATLAB-based and HIL simulations
results from the data truncation due to the transformation from
double to single precision floating point units. We clearly see
the oscillatory behaviour of the state, which was expected.
Although not visible from the figures, the simulation shows
that the system is indeed asymptotically stable (implying that
the state converges to the zero state). The convergence rate
depends on the chosen allocation. Difference in actuation is
clearly visible from the staircase signal of the input.

Discussions: we show how our design framework can be
used to analyze the trade-off between resource usage, resource
pattern, and QoC. We note here that the initial condition, the
cost criterion, and the timing scale of the platform with respect
to the plant dynamics, greatly influence the QoC as well. In
order to make a good design trade-off one should consider all
these factors before deciding on a choice of resource allocation.
For our chosen system, we found that contiguous allocation
performed better than more spread allocation. As expected, for
a fixed pattern, increasing resources improves performance.

Table I. ALLOCATIONS, SENSING INTERVALS, AND PERFORMANCE FOR N = 10 FOR THE CONTROLLED TWO-BODY OSCILLATOR. THE SAMPLING
INTERVALS ARE GIVEN BY {h1, h2, . . . , h11} = {140, 232, 744, 1256, 1768, 2280, 2792, 3304, 3816, 4328, 4840}µs.

Exp.# S(λC) A(λC) R(λC) H J?(ξ1) Jsim

1 1 1 ≈ 9% (h1,h1,h11) 6.119 6.115
2 3 1−3 ≈ 27% (h1,h1,h2,h1,h1,h2,h1,h1,h9) 3.137 3.128
3 3 1,5,7 ≈ 27% (h1,h1,h5,h1,h1,h3,h1,h1,h5) 3.596 3.586
4 5 1−5 ≈ 45% (h1,h1,h2,h1,h1,h2,h1,h1,h2,h1,h1,h2,h1,h1,h7) 2.411 2.398
5 5 1,3,4,6,9 ≈ 45% (h1,h1,h3,h1,h1,h2,h1,h1,h3,h1,h1,h4,h1,h1,h3) 2.696 2.685
6 7 1−7 ≈ 63% (h1,h1,h2,h1,h1,h2,h1,h1,h2,h1,h1,h2,h1,h1,h2,h1,h1,h2,h1,h1,h5) 2.015 2.003
7 7 1,2,4,5,6,8,9 ≈ 63% (h1,h1,h2,h1,h1,h3,h1,h1,h2,h1,h1,h2,h1,h1,h3,h1,h1,h2,h1,h1,h3) 2.158 2.146
8 10 1−10 ≈ 90% (h1,h1,h2)× 10 1.728 1.715

t [s]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

F
ir
s
t
s
ta

te
 o

f
x
(t

)

-6

-4

-2

0

2

4

6

8

MATLAB

HIL

Fig. 5. Measured behaviour of the first state of x(t) for Exp. #2 for a
section of the simulation time, using a MATLAB-based simulation and a HIL
simulation.

t [s]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

F
ir
s
t
in

p
u
t
o
f
u
(t

)

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

MATLAB

HIL

Fig. 6. First input of u(t) for Exp. #2 for a section of the simulation time,
using MATLAB-based simulation and HIL simulation.

VII. CONCLUSIONS

We present a co-design framework for efficient imple-
mentation of feedback controllers on composable embedded
platforms. The framework deals with three design consid-
erations: the percentage resource utilization, the allocation
pattern (e.g., contiguous or spread) and the (optimal) QoC. The
QoC depends on both the utilization and allocation pattern.
We demonstrated how our design framework can be used
to analyze this trade-off in a quantitative manner thereby

enabling educated designs of both the allocation pattern and
the (optimal) feedback controller. For the studied example, we
found that; (i) for a contiguous allocation pattern, a higher
utilization provides a higher QoC, (ii) for a given allocation, a
contiguous allocation pattern outperforms a spread allocation.
Acknowledgements This work was partially funded by
projects STW 12697, VICI 11382 (NWO and STW),
CATRENE CA505, BENEFIC, CA703 OpenES, CT217 RE-
SIST, ARTEMIS 621429 EMC2 and 621353 DEWI.

REFERENCES

[1] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz, “From a
Federated to an Integrated Automotive Architecture,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 28, no. 7, pp. 956–965, July 2009.

[2] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony,
S. Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad,
A. Nelson, and S. Sinha, “Virtual Execution Platforms for Mixed-time-
criticality Systems: The CompSOC Architecture and Design Flow,”
SIGBED Rev., vol. 10, no. 3, pp. 23–34, Oct. 2013.

[3] K. J. Åström, Introduction to stochastic control theory. Elsevier, 1970.
[4] A. Cervin and P. Alriksson, “Optimal On-Line Scheduling of Multiple

Control Tasks: A Case Study,” in ECRTS, 2006.
[5] E. Bini and A. Cervin, “Delay-Aware Period Assignment in Control

Systems,” in RTSS, 2008.
[6] A. Anta and P. Tabuada, “On the Benefits of Relaxing the Periodicity

Assumption for Networked Control Systems over CAN,” in RTSS, 2009.
[7] J. Valencia, D. Goswami, and K. Goossens, “Composable platform-

aware embedded control systems on a multi-core architecture,” in
Digital System Design (DSD), Euromicro Conference on, 2015.

[8] W. Heemels, K. Johansson, and P. Tabuada, “An introduction to event-
triggered and self-triggered control,” in IEEE Conference on Decision
and Control (CDC) 2012, Hawaii, USA, December 2012, pp. 3270–
3285.

[9] S. Bittanti and P. Colaneri, Periodic systems: filtering and control.
Springer Science & Business Media, 2008, vol. 5108985.

[10] M. Cloosterman, N. van de Wouw, W. Heemels, and H. Nijmeijer,
“Stability of networked control systems with uncertain time-varying
delays,” IEEE Transactions on Automatic Control, vol. 54, no. 7, pp.
1575–1580, 2009.

[11] A. Varga, “On solving periodic riccati equations,” Numerical Linear
Algebra with Applications, vol. 15, no. 9, pp. 809–835, 2008.

[12] A. Nelson, A. Nejad, A. Molnos, M. Koedam, and K. Goossens,
“CoMik: A predictable and cycle-accurately composable real-time mi-
crokernel,” in DATE, 2014.

[13] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory
and design. Courier Corporation, 2013.

[14] R. Meyer and C. Burrus, “A unified analysis of multirate and pe-
riodically time-varying digital filters,” Circuits and Systems, IEEE
Transactions on, vol. 22, no. 3, pp. 162–168, Mar 1975.

[15] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2005, 3rd Edition. Vol. 1 and Vol. 2.

	Introduction
	Composable Platform
	Virtualization
	Platform Resource Utilization

	Sampled-Data Control
	Composable Embedded Control Systems
	Control Application Timing Properties
	Periodic Sampling Pattern

	Control Design
	Discrete-Time Problem
	Periodicity: Time-lifted Reformulation
	Periodically Switched Controller Synthesis

	Evaluation Results
	Conclusions
	References

