
A

Maximizing the Number of Good Dies for Streaming Applications in
NoC-based MPSoCs under Process Variation

DAVIT MIRZOYAN, Delft University of Technology

BENNY AKESSON, Czech Technical University in Prague

SANDER STUIJK and KEES GOOSSENS, Eindhoven University of Technology

Scaling CMOS technology into nanometer feature size nodes has made it practically impossible to precisely
control the manufacturing process. This results in variation in the speed and power consumption of a cir-
cuit. As a solution to process-induced variations, circuits are conventionally implemented with conservative
design margins to guarantee the target frequency of each hardware component in manufactured multipro-
cessor chips. This approach, referred to as worst-case design, results in a considerable circuit upsizing, in
turn reducing the number of dies on a wafer.

This work deals with the design of real-time systems for streaming applications (e.g., video decoders)
constrained by a throughput requirement (e.g., frames per second) with reduced design margins, referred
to as better than worst-case design. To this end, the first contribution of this work is a complete modeling

framework that captures a streaming application mapped to a NoC-based multiprocessor system with voltage-

frequency islands under process-induced die-to-die and within-die frequency variations. The framework is
used to analyze the impact of variations in the frequency of hardware components on application throughput

at the system level. The second contribution of this work is a methodology to use the proposed framework and

estimate the impact of reducing circuit design margins on the number of good dies that satisfy the throughput

requirement of a real-time streaming application. We show on both synthetic and real applications that the
proposed better than worst-case design approach can increase the number of good dies by up to 9.6% and
18.8% for designs with and without fixed SRAM and IO blocks, respectively.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-Time
and Embedded Systems

General Terms: Algorithms, performance, design

Additional Key Words and Phrases: Process variation, multiprocessor system, reduced design margins

ACM Reference Format:

Mirzoyan D., Akesson B., Stuijk S., Goossens K.. Maximizing the Number of Good Dies for Streaming Appli-
cations in NoC-based MPSoCs under Process Variation. ACM Trans. Embedd. Comput. Syst. V, N, Article A
(January YYYY), 25 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Streaming applications in embedded multimedia and wireless systems are usually con-
strained by a throughput requirement such as frames per second for a video decoder.
Considerable computational capability is required to implement these applications

This work was partially funded by projects EU FP7 288008 T-CREST and 288248 Flextiles, Catrene
CA104 Cobra, CA505 BENEFIC, CA703 OpenES, ARTEMIS-2013-1 621429 EMC2 and 621353 DEWI,
NL STW 10346 NEST, and the Ministry of Education of the Czech Republic under project number
CZ.1.07/2.3.00/30.0034.
Author’s addresses: D. Mirzoyan, Delft University of Technology, email: d.mirzoyan@tudelft.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 D. Mirzoyan et al.

due to an increasing amount of functionality. Additionally, many portable consumer
electronics impose requirements on low power consumption for long battery life [van
Berkel 2009]. To meet these requirements, streaming applications are implemented
on a multiprocessor system-on-chip (MPSoC), where multiple processing cores exploit
task and data-level parallelism to increase performance. The components inside a mul-
tiprocessor system were traditionally connected to each other by a bus. However, tra-
ditional buses do not provide scalable interconnection. For this reason, a paradigm
shift towards network on a chip (NoC) based interconnection inside multiprocessor
systems has been seen in recent years [Dally et al. 2001]. Present-day MPSoCs are
implemented by means of the globally asynchronous, locally synchronous (GALS) de-
sign style [Muttersbach et al. 2000], which was introduced to alleviate the bottleneck
of global clock distribution and reduce the related major source of power consump-
tion in multiprocessor systems. The GALS architecture is composed of synchronous
blocks, communicating with each other on an asynchronous basis. Within the GALS
design paradigm, the concept of voltage-frequency islands (VFI) enables scaling the
frequency (voltage) of each individual hardware component (clusters of components)
in a multiprocessor system to further reduce power consumption.

To reduce circuit area and thus integrate more functionality on a chip die, CMOS
technology has traditionally been scaled down. However, scaling in the nanoscale era
has brought significant variability in the manufacturing process. This variability or
inability to precisely control the manufacturing process results in significant variation
in the maximum supported frequency of hardware components in a multiprocessor
system [Bowman et al. 2002]. Considerable variability of up to 50% in the longest path
delay of a processor is reported [Miranda et al. 2009]. As a solution, circuits are con-
ventionally implemented with design margins or guard-bands to guarantee the target
frequency of hardware components. Under this design paradigm, known as worst-case
design, the hardware components in a multiprocessor platform are operated at their
minimum frequencies. The tasks of an application are mapped to the hardware compo-
nents such that a certain timing requirement (e.g., throughput or latency) imposed on
the application is satisfied. This is illustrated in Figure 1a. However, worst-case design
results in a considerable increase in circuit area and power consumption [Jeong et al.
2009], reducing the benefits of technology scaling.

This work deals with the design of real-time systems for streaming applications con-
strained by a throughput requirement with reduced design margins, referred to as
better than worst-case design. With better than worst-case design, the area and the
power consumption of a circuit are reduced. Smaller circuit area and thus die size re-
sults in a larger number of gross dies on a wafer, but the target maximum supported
frequency of hardware components in a multiprocessor system is not guaranteed any-
more. However, there may be hardware components with maximum frequencies higher
and lower than the target frequency on the same chip die due to the impact of within-
die variation. Operating each hardware component at its actual maximum supported
frequency and using the available mapping freedom, the allocation of the tasks of an
application to the hardware components can be tailored for each specific chip such
that the throughput requirement is satisfied whenever possible. This is illustrated in
Figure 1b. We introduce a design metric called application yield that quantifies the
percentage of dies that satisfy the application throughput requirement. Figure 1c il-
lustrates qualitative curves for die area, application yield and the number of good dies
against guard-band reduction. The application yield reduces gradually, slower than die
area, due to tailoring the mapping for each die. Thus, the number of good dies ((wafer
area / die area) x application yield)) that satisfy the throughput requirement of the
application is maximized. This is experimentally proven in Section 6.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:3

t1 t2 t3

pe1 pe2 pe3

ftg

(a)

t1 t2 t3

pe1 pe2 pe3

ftg

mapping
freedom

(b)

guard-band
reduction

0% 100%

WCD

application yield

nr. good dies

die area

(c)

Fig. 1. An application constrained by a throughput requirement is allocated to a multiprocessor platform
under (a) worst-case (WCD) and (b) better than worst-case designs. Each hardware component is operated at
its (a) worst-case maximum supported (target) frequency ftg, and (b) actual maximum supported frequency.
Better than worst-case design (reduced guard-bands) results in more good dies due to a combination of
smaller die area and high application yield (c).

This work has two contributions. The first contribution is a complete modeling frame-
work that captures a streaming application mapped to a NoC-based multiprocessor sys-
tem with voltage-frequency islands under process-induced die-to-die and within-die fre-
quency variations. The framework is used to analyze the impact of variations in the fre-
quency of hardware components on application throughput. Any set of clock-frequency
levels can be specified per VFI domain. We use synchronous data-flow (SDF) to model
a streaming application mapped to an MPSoC. The novelty of our SDF formulation lies
in the explicit modeling of software execution in terms of clock cycles (which is inde-
pendent of the frequency variation of hardware components), and in terms of seconds
(which does depend on the frequency variation of hardware components), which are
linked by an explicit binding. The second contribution of this work is a methodology
to use the proposed framework and estimate the impact of reducing circuit design mar-
gins on the number of good dies that satisfy the throughput requirement of a real-time
streaming application (see Figure 1c). This is what a system designer requires to de-
cide by how much to reduce the design margins to maximize the number of good dies
(minimize the cost per die). We show on both synthetic and real applications that the
proposed design paradigm can increase the number of good dies by up to 9.6% and
18.8% for designs with and without fixed SRAM and IO blocks, respectively.

2. RELATED WORK

Techniques have been proposed to mitigate the impact of process variation at the cir-
cuit level. The main ideas are related to adaptive supply voltage and body biasing
approaches [Meijer et al. 2012]. Both supply voltage upscaling and forward body bi-
asing are effective for process-dependent performance compensation, and provide a
large range of frequency upscaling. The disadvantage of the approaches is the increase
in power consumption. The better than worst-case design approach proposed in this
work is orthogonal to these methods and can be used in combination with them to
further reduce design margins and increase the number of good dies.

Marculescu et al. analyze the probability distribution of latency of systems with
multiple voltage-frequency islands considering within-die variation [Marculescu et al.
2008]. Their approach is only applicable to systems specified as acyclic task graphs,
which are not able to capture the iterative and overlapping execution of many real-life
streaming applications. In contrast, we allow arbitrary task graphs that may include

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 D. Mirzoyan et al.

cyclic data dependencies. We model a system by means of an SDF graph, which is well-
suited for modeling and analysis of real-time streaming applications with throughput
requirements. A methodology to perform system-level throughput analysis of multiple
VFI designs, considering process variation, is presented by [Garg et al. 2008]. How-
ever, they only account for within-die variation, while we consider both within-die and
die-to-die variations. Their approach is based on Homogeneous SDF (HSDF) graphs,
which is a restricted case of an SDF graph that we use. An SDF graph provides much
more compact application models, which is why many real-time streaming applica-
tions are modeled in an SDF formulation. To be able to use the approach in [Garg
et al. 2008] for an application specified as an SDF graph, a conversion from the SDF
graph to an equivalent HSDF graph is required [Sriram et al. 2000]. This can lead to
an exponential increase in the graph size (in terms of the number of actors and edges),
as compared to the original SDF graph. Performing throughput analysis on such a
large graph results in prohibitively high computation times, making the approach in
[Garg et al. 2008] unsuitable for many applications. The work in [Garg et al. 2008] as-
sumes a one-to-one mapping of tasks to processing elements, while we allow resource
sharing and assume static-order scheduling among tasks of an application allocated
to the same core. They assume that the communication between tasks takes a given
number of cycles, while we derive minimum bandwidth requirements based on an ap-
plication and model a communication channel in a TDM-based NoC as a latency-rate
server [Stiliadis et al. 1998]. Additionally, we define the relation between the reduction
in circuit design margins and the number of good dies per wafer, which is what system
designers require. This is new to the state-of-the-art. The related work on die-to-die
and within-die variations is cited throughout the article whenever relevant.

In our previous work [Mirzoyan et al. 2013], we assumed a zero-latency interconnect
in a multiprocessor system. As an extension to this work, we model an interconnect
consisting of routers, links and network interfaces that are affected by process-induced
frequency variations. We model the latency for sending data across the interconnect as
a latency-rate server, and refine the previously proposed modeling framework accord-
ing to the extensions. Additionally, we illustrate how the number of good dies is maxi-
mized with reduced guard-bands for a set of SDF graphs modeling real applications.

3. OVERVIEW

This section demonstrates how the different concepts introduced in this article fit to-
gether in the proposed better-than worst-case design flow. The block diagram of the
design flow is illustrated in Figure 3. In Step 1, for a given guard-band value, a char-
acterization and modeling of process-induced frequency variations is performed for
each hardware component in the multiprocessor platform. The model of a multipro-
cessor platform is introduced in Section 4.1. The modeling of variation is presented
in Section 4.2, and Section 5.2 describes how variation characterization for a given
guard-band is performed. In Step 2, the multiprocessor platform as a whole is char-
acterized by possible sets of frequencies for all hardware components (chip outcomes
after manufacturing) based on the variation. This is given in Section 4.3. For each fre-
quency set, there is a binding of application tasks to the hardware components. The
real-time streaming application constrained by a throughput requirement is modeled
by an application graph (Section 4.4). For each frequency set, the resource allocation in
the hardware platform is modeled in the application graph based on the given binding
(Step 3). The result is a resource-aware application graph for each frequency set. This
is presented in Section 4.5. The application yield is then the percentage of resource-
aware application graphs that provide throughput equal or greater than the require-
ment (Step 4). In Step 5, the die area is estimated with the specified guard-band. The
number of good dies that satisfy the throughput requirement is then estimated given

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:5

the application yield and the die area in Step 6. Section 5.1 presents the details for
Steps 4, 5 and 6. Starting at full guard-bands, this flow is repeated with reducing
guard-bands (thus die area), such that the number of good dies is maximized. The re-
sult is a guard-band value that provides an estimated maximum number of good dies.

(2) Platform
characterization

(3) Resource allo-
cation modeling

(4) Application
yield estimation

(6) Nr. good dies
estimation

(1) Variation
modeling

(5) Die area esti-
mation

Platform

Bindings Application

R
ed

u
ce

g
u

a
rd

-b
a

n
d

s

Guard-band value

Fig. 2. Design flow for a real-time streaming application under better than worst-case designs.

4. FORMAL FRAMEWORK

This section presents the first contribution of this article, the modeling framework
which is used to analyze the throughput of an application mapped to a multiprocessor
system with voltage-frequency islands under the impact of process variation. To an-
alyze the throughput of an application in a multiprocessor platform, a model of com-
putation is required. The model needs to capture the application, the platform and
the mapping of the application to the platform. The impact of process variation on the
hardware resources (i.e., processing elements, routers, network interfaces and links)
in the platform also needs to be captured. This section introduces the formal models
of this work. We start by defining a hardware multiprocessor platform as a platform
graph. We present how the modeling of variation in hardware resources is performed.
Later, an SDF model of a streaming application, named a resource-aware application
graph, is introduced. This model is unaware of the binding of application actors to pro-
cessing elements, and is hence decoupled from hardware variation. Finally, we define
another SDF model of the application, coined as a bound application graph. This graph
captures the binding of a resource-aware application graph to a platform graph. We de-
scribe how resource allocation is modeled in a bound application graph. This model is
used to perform timing analysis of the mapped application. Note that existing NoC-
based multiprocessor systems such as CoMPSoC [Goossens et al. 2013], CA-MPSoC
[Shabbir et al. 2010] and DaedalusRT [Bamakhrama et al. 2012] use underlying mod-
els for performance modeling and analysis similar to the ones presented in this work.
More specifically, these are a data-flow graph for application modeling, buffer size and
latency-rate connection models for capturing resource allocation. However, these sys-
tems do not consider the impact of process variation in contrast to this work.

4.1. Platform graph

The template of a hardware multiprocessor platform used in this work and referred
to as a platform graph is illustrated in Figure 3a. It consists of generic processing el-
ements, such as processors, DSPs, or hardware accelerators, connected to each other
by a network on chip (NoC), later referred in this work as an interconnect. Process-
ing elements are denoted by pe. We assume an arbitrary topology interconnect, which
consists of routers, denoted by rt, and network interfaces, denoted by ni, connected
by unidirectional links, denoted by lk. The interconnect is assumed to provide loss-
less and ordered data transmission. Each processing element is connected to a single
network interface in the interconnect. It is assumed that the network interfaces sit

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 D. Mirzoyan et al.

close to processing elements, and that the connections between processing elements
and network interfaces do not introduce any delay. The path from a network inter-
face to another network interface in the interconnect is referred to as a connection.
A connection provides a certain maximum bandwidth (in bytes per cycle) given the
number of resources on the connection are reserved. It also has a certain hop count,
given by the number of routers on the path. We require that a connection can be mod-
eled as a latency-rate server [Stiliadis et al. 1998], independent of other connections.
In this work, we assume a time-division multiplexing (TDM) arbitration policy (al-
though other arbitration policies can be used). Resource reservation on a connection
is performed by allocating a number of slots in the TDM slot table. This provides a
certain minimum bandwidth and maximum latency on the connection, as described in
more details in Section 4.5.1. Examples of network-on-chips that provide the described
properties are Æthereal [Goossens et al. 2010], Nostrum [Millberg et al. 2004] and
SurfNoC [Wassel et al. 2013]. We formally define an interconnect in Definition 4.1.
We refer to a processing element, a router, a network interface and a link in a plat-
form graph as a (hardware) resource . As such, the union of the sets of processing
elements, routers, network interfaces and links represents the set of all resources in
the platform graph (Definition 4.2). The multiprocessor platform is given by a globally
asynchronous, locally synchronous (GALS) architecture [Meincke et al. 1999], where
the processing elements and the interconnect are partitioned into voltage-frequency
islands (VFI). The interconnect is placed in a single VFI, and thus the resources in
the interconnect belong to that island. The set of voltage frequency islands is denoted
by FI. Communication between islands is accomplished by means of mixed-clock first-
in-first-out (FIFO) buffers, which are part of network interfaces. A clock-generation
unit (CGU) that provides a set of discrete clock-frequency levels, is dedicated to each
voltage-frequency island. The formal definition of a platform graph gp is given in Defi-
nition 4.3. The set of all platform graphs is denoted by GP. The multiprocessor platform
depicted in Figure 3a is partitioned into four islands, namely fi1, fi2 and fi3 comprising
processing elements pe1, pe2 and pe3 respectively, and fi4 consisting of the interconnect.
The separation between clock domains is shown by the dotted lines.

pe1 pe2

pe3

in
te

rc
o
n

n
e
ct

rt1 rt2

ni1 ni2

n
i 3

lk1

lk2

lk3

fi1 fi2

fi3

fi4

(a)

a1

Motion est.

a2

MB enc.

a3

VLC

a5

Motion
comp.

a4

MB dec.

99 1

d1

1 99

d2

d3
1

1
d4

199

d5

d6

1

1d7

1 1

1

1 1

11

(b)

Fig. 3. (a) The template of a multiprocessor platform consisting of processing elements connected to each
other by an interconnect. The processing elements and the interconnect are placed in different voltage-
frequency islands. The separation between clock domains is shown by the dotted lines. (b) An example SDF
model of an H.263 encoder.

Definition 4.1. (Interconnect) An interconnect noc is a 6-tuple 〈RT,NI,LK, η, sztb,
szfl〉 consisting of a set RT of routers, a set NI of network interfaces, a set LK of links
connecting routers and network interfaces in an arbitrary topology, a TDM slot-table

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:7

size sztb (in number of slots) for all network interfaces, a flit size szfl (in bytes), a
function η(nii,nij), which for a connection from a network interface nii ∈ NI to a
network interface nij ∈ NI (nii 6= nij) returns a tuple 〈β,Ψ〉 with β the maximum
bandwidth (in bytes per cycle) assuming that all slots in the TDM table are reserved,
and Ψ the number of hops.

Definition 4.2. (Set of resources) The set R of resources is the union of the sets PE
of processing elements, RT of routers, NI of network interfaces, and LK of links in a
platform graph, and is defined as R = PE ∪ RT ∪ NI ∪ LK.

Definition 4.3. (Platform graph) A platform graph gp is a 5-tuple 〈PE,noc,FI, ψ, χ〉
consisting of a set PE of processing elements, an interconnect noc, a set of voltage-
frequency islands FI, a function ψ(fi) : FI → P(R), which for each voltage-frequency
island fi ∈ FI returns the set Rfi ⊆ R of resources belonging to the island, and a
function χ(pe) : PE → FI, which for each processing element pe ∈ PE returns the
voltage-frequency island fi ∈ FI to which the processing element belongs. Each pro-
cessing element pe ∈ PE is connected to a single network interface ni ∈ NI in the
interconnect noc.

4.2. Variation in hardware resources

The inability to precisely control the manufacturing process in sub-micrometer tech-
nology nodes leads to variability in key design (i.e., device and interconnect) parame-
ters across the wafer. This variability aggregates to a higher level of logic blocks, re-
sulting in variation in the maximum-supported frequency of hardware resources, such
as processing elements. Manufacturing process variation can be classified into die-to-
die and within-die variations. Die-to-die variation, also referred to as global variation,
acts globally on the entire chip die, affecting parameters of all devices (i.e., transistors)
and wires on the die identically. Global variation is seen between dies within a wafer
and between dies of different wafers (due to wafer-to-wafer variation); therefore, over-
all global variation presumes multiple wafers. In contrast, within-die variation, also
known as local variation, affects parameters of devices on the same die differently. It
can be classified into systematic and random components. Systematic local variation
exhibits spatial correlation, such that nearby devices possess similar parameter val-
ues. This correlation dies out quickly at the level of devices on a die as a function of dis-
tance. While the parameter correlation between adjacent devices on a die is high, the
correlation between larger adjacent logic blocks on a die, such as a processing element,
is typically much lower. There are existing works, such as [Huang et al. 2010], that
capture spatial correlation in their modeling framework. They assume correlation val-
ues based on measurements performed at 90 nm technology in [Friedberg et al. 2005].
However, new measurements performed in [Pang et al. 2008; 2009] show no significant
spatial correlation at 45 nm technology, in contrast to 90 nm technology. This is par-
tially because random local variation, which is purely random from device to device,
has more than doubled at 45 nm technology whereas systematic local variation has
decreased. For simplicity, we assume zero correlation between maximum supported
frequencies of hardware resources due to local variation. The impact of global and lo-
cal process variations in the maximum supported frequency of resources in a platform
graph is modeled by a normal distribution, which is shown to be a good fit for model-
ing the impact of global and local manufacturing process variations [Pang et al. 2008;
Bowman et al. 2002]. We now proceed by presenting the models.

4.2.1. Global variation. To model the impact of global variation, we describe the maxi-
mum supported frequency of each hardware resource r ∈ R in a platform graph gp by a
random variable f rg distributed normally with µrg mean and σrg standard deviation. To

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 D. Mirzoyan et al.

denote that f rg is normally distributed, the notation f rg = N(µrg, (σ
r
g)

2) is used. Global
variation affects the maximum supported frequency of all hardware resources on a
chip die identically. This results in equally faster or equally slower resources on each
manufactured die. Therefore, we can say that the correlation between (f rig , f

rj
g) for any

ri, rj ∈ R is equal to 1. Additionally, the standard deviation to mean ratio (σrg/µ
r
g) is

the same for all resources. The probability density function (PDF) and the cumulative
distribution function (CDF) of a normally distributed random variable x = N(µ, σ2)
are denoted by φ(x, µ, σ) and θ(x, µ, σ), respectively. The CDF θ(x0, µ, σ) represents the
probability that the random variable x takes on a value less than or equal to x0. Note
that neighboring dies on a wafer tend to have similar variation degrees. However, we
do not deal with this spatial correlation as it does not influence the results presented
in the work. To estimate the number of good dies, the dies with various variation pro-
files have to be considered, but the relative positioning of the dies does not need to be
known.

4.2.2. Local variation. Let us assume that a hardware resource has a certain maximum
supported frequency f rg = f0 due to global variation. The impact of local variation on
the maximum supported frequency of the resource is overlaid on f0. We thus introduce
a normally distributed random variable f rl = N(f0 − δr, (σrl)

2) to model the impact of
local variation on the maximum supported frequency of a hardware resource with re-
spect to a global frequency value f rg = f0 of the resource. Here, σrl is the standard devia-
tion and δr models a reduction in mean frequency of the hardware resource. Processing
elements often contain multiple critical paths, and the frequency of a processing ele-
ment is decided by the slowest critical path [Bowman et al. 2002]. The probability that
at least one of the critical paths is slowed down due to variation is higher than the
probability that a single path is slowed down. This results in a mean frequency reduc-
tion, as shown in [Bowman et al. 2002]. Links contain multiple wires, and variation
has a similar impact on the mean frequency as in processing elements. The reduction
for links has been shown experimentally in [Hernandez et al. 2012]. In the same paper
it is shown that the reduction in mean frequency is negligible for routers. We make a
similar assumption of a negligible mean frequency reduction for network interfaces.
As we assume no spatial correlation between the variation in maximum supported fre-
quencies of hardware resources due to local process variation, the covariance between
(f ril , f

rj
l) for any ri, rj ∈ R is equal to zero. Figure 4 illustrates an example PDF of f rg

for a processing element with µrg = 300 MHz and σrg = 12 MHz. The same figure shows

the PDFs of f rl = N(f0 − δr, (σrl)
2) with respect to f0 = (µrg + k · σrg) for (k = −1, 0, 1),

where δr = 15 MHz and σrl = 10 MHz; these numbers are representative for 45 nm
technology nodes, as the measurements in [Pang et al. 2008] show.

To describe the maximum supported frequency of a hardware resource by a single
distribution, global and local distributions are combined by convolution. As explained
before, global and local variations in the maximum-supported frequency of a resource
are modeled by means of normal distributions. It is known that the convolution of
two normal distributions is also a normal distribution with added means and vari-
ances. Therefore, the maximum supported frequency of a hardware resource due to
both global and local variations is described by a normally distributed random vari-
able given by Equation (1). The combined distribution for the example described in
Figure 4 is shown in the figure.

f r = N(µrg − δr,
(

σrg
)2

+ (σrl)
2
) = N(µr, (σr)

2
) (1)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:9

240 260 280 300 320 340 360

0.015

0.03

0.045

Frequency (MHz)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

f rg = N (µ rg, (σ
r
g)

2
)

f rl = N (µ rg − σrg − δr , (σrl)
2
)

f rl = N (µ rg - δr , (σrl)
2
)

f rl = N (µ rg + σrg − δr , (σrl)
2
)

f r (µ r , (σr) 2)= N

Fig. 4. fr
g PDF (due to global variation) for a processing element with µr

g = 300 MHz, σr
g = 12 MHz; fr

l

PDFs (due to local variation) with respect to fr
g = 273, 285 and 297 MHz, δr = 15 MHz, σr

l
= 10 MHz;

combined PDF of fr is the convolution of PDFs of fr
g and fr

l
.

4.3. Clock-frequency characterization

From an implementation perspective, all clock-generation units, associated with
voltage-frequency islands in a platform graph, provide only a set of discrete clock-
frequency levels. The selection of a set of clock-frequency levels for a voltage-frequency
island is based on the variation in the maximum supported frequencies of hardware
resources belonging to the island. It is performed in the following way. In a general
case, a voltage-frequency island is comprised of multiple hardware resources (either
processing elements or interconnect resources). Each resource is characterized by a
combined distribution of its maximum supported frequency, reflecting both global and
local process variations. For the purpose of clock-frequency selection, we consider only
the frequency range within three standard deviations from mean (i.e., µr ± 3σr) in the
distributions. The probability of the maximum supported frequency being outside the
range of three standard deviations is only 0.3%. Considering the range outside the
three standard deviations, and thus providing clock-frequency levels in a wider range,
will result in a lower number of clock frequencies in the range of three standard devi-
ations (for the same number of levels). This can result in a performance degradation
in manufactured chips, as the gap between the actual maximum supported frequency
and the clock frequency a resource is operated at will be on average larger for 99.7%
of the resources. Figure 5 illustrates example combined distributions for the range of
three standard deviations for two hardware resources belonging to the same island.
We assume that the combined distributions can be in any arbitrary positioning with
respect to each other. The clock frequency of an island is limited by the slowest re-
source belonging to the island. Considering all resources in a voltage-frequency island,
we identify the frequency given by the lowest positive three standard deviations from
mean (i.e., µr+3σr) in the combined distributions. In Figure 5, this frequency is shown
by fhigh. Similarly, the frequency given by the lowest negative three standard devia-
tions is derived, as shown by flow in Figure 5. Once the frequencies flow and fhigh are
identified, the clock-frequency levels are selected in the range given by (fhigh − flow).
In principle, clock-frequency levels in the range (fhigh − flow) can be selected in any
arbitrary way. The policy of selection does not affect the rest of the methodology in this
work. We choose to select the clock-frequency levels equidistantly, as formally defined
in Definition 4.4. Figure 5 illustrates how five equidistant clock-frequency levels are
obtained for the given example.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 D. Mirzoyan et al.

Definition 4.4. (Clock-frequency levels) A set of n equidistant clock-frequency levels
available to a voltage-frequency island fi ∈ FI comprised of a set ψ(fi) of hardware
resources in a platform graph gp ∈ GP is given by c(gp,fi, n) : GP × FI × N → P(R+),
and for flow = min

r∈ψ(fi)
(µr − 3σr), fhigh = min

r∈ψ(fi)
(µr + 3σr), is defined as

c(gp,fi, n) = {flow + (k − 1) · (fhigh − flow)

n
| k = 1, 2, .., n} (2)

270 280 290 300 310 320 330 340
0

0.01

0.02

0.03

0.04

0.05

0.06

Frequency (MHz)

P
ro

ba
bi

lit
y

de
ns

ity

f r1 = N (µr1, (σr1)2)

f r2 = N (µr2, (σr2)2)

f 1
clk f 2

clk f 3
clk f 4

clk f 5
clk

fhigh
flow

Fig. 5. An example showing how equidistant clock-frequency levels are selected for a voltage-frequency
island comprising two hardware resources.

Given that each voltage-frequency island can be operated at any clock-frequency
level in the set c(gp,fi, n), for a set FI of islands in a platform graph, there are multiple
possible combinations of clock-frequency levels. An instance of clock-frequency levels
for all islands in a platform graph is captured in a chip-frequency vector, denoted by
fc, and is an M-dimensional vector for M islands (Definition 4.5). Each element in fc
represents a clock-frequency level fclk ∈ c(gp,fi, n) for a corresponding island fi ∈ FI.
The set of all possible chip-frequency vectors is obtained by the Cartesian product of
individual sets c(gp,fi, n) (Definition 4.6).

Definition 4.5. (Chip-frequency vector) A chip-frequency vector for a set FI of
voltage-frequency islands in a platform graph gp specifies a clock frequency fclk from
the set c(gp,fi, n) for every island fi ∈ FI, and is given by fc(fi) : FI → R

+.

Definition 4.6. (All chip-frequency vectors) The set of all possible chip-frequency
vectors for a set FI of voltage-frequency islands in a platform graph gp is given by

FC =
∏

fi∈FI

c(gp,fi, n) (3)

Each chip-frequency vector fc ∈ FC is associated with a probability, which is the
probability that voltage-frequency islands in a platform graph are operated at the par-
ticular clock-frequency levels specified by fc. From probability theory, it is known that
the joint probability of independent events equals the product of their individual prob-
abilities. However, due to the correlated global variation in hardware resources in a
platform graph, frequencies described by random variables f r are not independent.
On the other hand, resource frequencies described by random variables f rl are inde-
pendent, as we assume no spatial correlation for local variation. For this reason, the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:11

joint probability of a chip-frequency vector fc is represented as a sum of components.
Each component is the joint local probability, which is the probability that the islands
are operated at the particular clock-frequency levels based on local distributions with
respect to a chip-level global frequency deviation. We introduce a base hardware re-
source, denoted by rb, which is chosen arbitrarily among hardware resources in the
platform graph. The base hardware resource serves as a reference for computing the
global frequency values of all the resources in the platform graph. Given an absolute
global frequency value f rbg = f0 of the base hardware resource, the global frequency
value of any resource r ∈ R is given by f0 · (µrg/µrbg), where µrbg and µrg are the global
mean frequencies of hardware resources rb and r, respectively.

We proceed by explaining how the probability that an island is operated at a clock
frequency with respect to a global frequency value of the base resource is computed. In
a general case, an island consists of multiple hardware resources. The clock frequency
of the island is decided based on the slowest resource in the island. To compute the
probability that the island is operated at a clock frequency fclk, the probability that
the maximum supported frequency of all resources in the island is higher than fclk

needs to be considered. This is given by the product of probabilities (1− θ(fclk, µ
r
l , σ

r
l))

for all hardware resources belonging to the island. Definition 4.7 defines the CDF of
the minimum of maximum supported frequencies of hardware resources in an island;
the CDF θm(x0,fi, f0) represents the probability that the minimum of the maximum
supported frequencies of hardware resources takes on a value lower than x0 with re-
spect to an absolute global frequency value f rbg = f0 of the base resource rb.

Definition 4.7. (Cumulative distribution of minimum) The CDF of the minimum
of maximum supported frequencies of hardware resources r ∈ ψ(fi) belonging to a
voltage-frequency island fi in a platform graph gp ∈ GP is given by θm(gp, x,fi, f0) :
GP × R

+ × FI × R
+ → R

+, and is defined as

θm(gp, x,fi, f0) = 1−
∏

r∈ψ(fi)

(1− θ(x, µrl , σ
r
l)) (4)

where µrl is the mean of the normally distributed random variable f rl , and is computed
with respect to an absolute global frequency value f rbg = f0 of the base hardware re-
source rb ∈ R by µrl = f0 · (µrg/µrbg)− δr

Depending on the maximum supported frequencies of hardware resources in a
voltage-frequency island, each island is operated at the highest possible clock-
frequency level. Let us consider a case where five clock-frequency levels {f1

clk, · · · , f5
clk}

are provided to a voltage-frequency island fi. For any actual x (minimum of the max-
imum supported frequencies) in the range (f4

clk, f
5
clk], the island is operated at f4

clk.
The probability of x being in the interval (f4

clk, f
5
clk] is computed by the difference

(θm(gp, f5
clk,fi, f0)− θm(gp, f4

clk,fi, f0)). Similarly, the probability that the island is oper-
ated at f5

clk is given by (1− θm(gp, f5
clk,fi, f0)). This is formally defined in Definition 4.8.

Definition 4.8. (Probability of clock frequency) The probability that a voltage-
frequency island fi ∈ FI in a platform graph gp ∈ GP is operated at a clock frequency
f iclk for a set {f1

clk, · · · , fnclk} of clock-frequency levels, where f iclk < f i+1
clk

, with respect to
a global frequency value f rbg = f0 of the base hardware resource rb ∈ R, is given by

pf(gp, f iclk,fi, f0) : GP × R
+ × FI × R

+ → R
+, and is defined as

pf(gp, f iclk,fi, f0) =

{

θm(gp, f i+1
clk

,fi, f0)− θm(gp, f iclk,fi, f0) i < n

1− θm(gp, f iclk,fi, f0) i = n
(5)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 D. Mirzoyan et al.

The probability of a chip-frequency vector fc ∈ FC for a set FI of voltage-frequency
islands, with respect to a global frequency value f0 of the base hardware resource, is
computed by the product of individual probabilities pf(gp, fc(fi),fi, f0) and the proba-
bility of the global frequency value. This is formally defined in Definition 4.9.

Definition 4.9. (Local probability of fc) The probability of a chip-frequency vector
fc ∈ FC for a set FI of voltage-frequency islands in a platform graph gp ∈ GP, with
respect to a global frequency value f rbg = f0 of the base hardware resource rb ∈ R, is

given by p(gp, fc, f0) : GP × FC × R
+ → R

+, and is defined as

p(gp, fc, f0) = φ(f0, µ
rb
g , σ

rb
g) ·

∏

fi∈FI

pf(gp, fc(fi),fi, f0) (6)

The overall probability of a chip-frequency vector fc is obtained by adding the joint
local probabilities for all global frequency values in the range of three standard devia-
tions from mean for the base hardware resource, as defined in Definition 4.10.

Definition 4.10. (Probability of fc) The probability of a chip-frequency vector fc ∈ FC
in a platform graph gp ∈ GP is given by pc(gp, fc) : GP × FC → R

+, and for I =
[µrbg − 3σrbg , µ

rb
g + 3σrbg], is defined as

pc(gp, fc) =
∑

f0∈I

p(gp, fc, f0) (7)

4.4. Resource-aware application graph

We model a real-time streaming application by means of synchronous data-flow (SDF)
graphs [Lee et al. 1987]. An SDF graph provides a good compromise between expres-
siveness, modeling ease, analysis potential and implementation efficiency. With an
SDF model, an application is captured by a directed graph, where the nodes, called
actors, represent computation, communication or storage. Actors communicate with
each other by sending streams of data elements, called tokens, over their edges. We
formally define an SDF graph in Definition 4.11.

Definition 4.11. (SDF graph) An SDF graph sdfg is a 3-tuple 〈A,D, P 〉 consisting
of a set A of actors, a set D = A2 of dependency edges and a set P of ports. Each
dependency edge d ∈ D has a number of initial tokens ξ(d) : D → N

0. Each actor
a ∈ A is associated with input and output ports, where each port pt ∈ P has a rate
rate(pt) : P → N

+. The source of a dependency edge is an output port of an actor, and
the destination of a dependency edge is an input port of an actor. Each port of each
actor is connected to a single edge, and each edge is connected to ports of actors.

Figure 3b illustrates an example SDF model of an H.263 encoder application. It
consists of five actors connected to each other by seven dependency edges. Edges d3, d6
and d7 each contain one initial token, illustrated by black dots in the figure. An actor
fires (executes) when it has sufficient number of tokens on each of its input ports, as
specified by port rates rate(pt). The port rates are shown near the channel ends in
Figure 3b. When an actor fires it removes the number of tokens from all its input ports
and before the end of the firing produces a number of tokens on each output port, as
given by its output port rates. The sequence of actor firings that restores the initial
configuration of the graph (the initial distribution of tokens on dependency edges d ∈
D) is termed an iteration. During a single iteration of the graph, each actor can fire
multiple times. This is determined by the port rates of actors, and is captured by the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:13

repetition vector of the graph (Definition 4.12). The repetition vector of the SDF graph
shown in Figure 3b is equal to 〈1, 99, 1, 99, 1〉 for actors 〈a1, a2, a3, a4, a5〉, respectively.

Definition 4.12. (Repetition vector) A repetition vector of an SDF graph sdfg speci-
fies the number of times each actor a ∈ A fires during a single iteration, and is given
by κ : A → N, such that for each dependency edge d ∈ D from an actor ai ∈ A to an
actor aj ∈ A, i 6= j, rate(ptsr

d) ·κ(ai) = rate(ptds
d) · κ(aj), where ptsr

d ∈ P and ptds
d ∈ P , are

the source and destination ports of the dependency edge, respectively.

When mapping an application described by an SDF graph to a multiprocessor plat-
form, the minimum throughput requirement (in iterations per second) of the applica-
tion (for real-time applications) and information on resource requirements of the appli-
cation must be known. Such information includes the number of clock cycles each actor
requires to finish its execution on a processing element, for all processing elements to
which the actor can be bound (Definition 4.13), the buffer space (in number of tokens)
assigned to each dependency edge for storing the data tokens produced by actors (in
a real implementation these buffers can be allocated in local memories of processing
elements), and the size (in bytes) of data tokens sent across each dependency edge. Exe-
cution cycles can be derived using worst-case execution-time estimation tools [Wilhelm
et al. 2008]. After the actors in an application are bound to the processing elements
in a multiprocessor platform, dependency edges may be allocated to connections in the
interconnect (i.e., if two actors connected by a dependency edge are bound to different
tiles). To reserve resources on the interconnect, additional information on the mini-
mum bandwidth (in bytes per cycle) required by dependency edges has to be known.
We formally define an SDF model of an application, called a resource-aware applica-
tion graph (ga) that includes the described information in Definition 4.14. The set of
all resource-aware application graphs is denoted by GA. A resource-aware application
graph states the resource requirements, but does not include the binding of actors to
processing elements and dependency edges to connections in the interconnect.

Definition 4.13. (Execution cycles) The number of cycles required to execute an ac-
tor a ∈ A on a processing element pe ∈ PE to which it can be bound is given by
ec(a,pe) : A× PE → N.

Definition 4.14. (Resource-aware application graph) A resource-aware application
graph ga is a 4-tuple 〈sdfg, treq, ec, ω〉 consisting of an SDF graph sdfg, a minimum
throughput requirement treq for real-time applications, the function ec(a,pe) that as-
signs each actor a ∈ A with execution cycles for the subset of processing elements in
the set PE that a can be bound to, and a function ω(d), which for each dependency edge
d ∈ D returns a 3-tuple 〈szd, β

rq
d , αd〉 with szd the size of the data token (in bytes) sent

across the dependency edge, βrq
d the required bandwidth (in bytes per cycle), and αd

the buffer size (in number of tokens) assigned to the dependency edge.

The impact of the buffer size αd assigned for storing data tokens on each dependence
edge d ∈ D on the throughput of an SDF graph has been previously explored in [Stuijk
et al. 2006a]. Here it is fixed to a sufficiently large number 2 · rate(ptsr

d) · κ(asr), where
rate(ptsr

d) is the rate of the source port of the edge and κ(asr) is the number of times the
source actor fires in an iteration. The term rate(ptsr

d) · κ(asr) represents the number of
tokens produced on the edge in a single iteration. We use a buffer size twice larger due
to possible overlapping of multiple iterations. Any buffer dimensioning can be used by
a system designer based on the requirements on the throughput.

The required bandwidth βrq
d (in bytes per cycle) for a dependency edge d ∈ D in a

resource-aware application graph ga is estimated by rate(ptsr
d) · κ(asr) · szd · tαd

, where
tαd

is the throughput (in iterations per cycle) of the resource-aware application graph

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 D. Mirzoyan et al.

with the specified αd buffer size for each dependency edge. The product of the first
three terms (i.e., the number of bytes that are produced on the edge during a single
iteration) and the throughput tαd

represents the number of bytes produced on the
edge in a single cycle. Note that the throughput tαd

is evaluated on the resource-aware
application graph assuming that only a single execution of each actor is allowed at the
same point in time (an execution of an actor can only start after the previous execution
has finished). This is done as we do not allow multiple concurrent executions of an
application actor on a processing element, as described in Section 4.5.1. As such, the
throughput tαd

is simply used to derive an estimated required bandwidth (independent
of mapping) that is not overly pessimistic.

4.5. Bound application graph

When implementing the application on a multiprocessor platform, designers need to
make choices on mapping of application actors to processing elements and thus depen-
dency edges to connections in the interconnect, reserving resources on the connections,
and scheduling of actors on the same processing element. Once these decisions have
been made, a new SDF model, the bound application graph, that captures these deci-
sions is constructed such that it can be used to perform timing analysis of the system.
While a resource-aware application graph describes performance in terms of execution
time in cycles, the essence of a bound application graph is that it considers performance
in terms of execution time in seconds. This allows us to take process-induced variation
in the frequency of processing elements into account. This section details how a bound
application graph is constructed.

4.5.1. Modeling resource allocation. We start by capturing the binding of the resource-
aware application graph to the platform graph. We assume that each actor can be
bound to a number of processing elements from the set PE, as given by Definition 4.15.
Therefore, there are multiple bindings of a set A of actors to a set PE of processing
elements. The set of all possible bindings is obtained by the Cartesian product of the
individual sets of possible bindings (Definition 4.16).

Definition 4.15. (Actor bindings) The function ba(a) : A→ P(PE)\∅ returns the set
of processing elements to which an actor a ∈ A can be bound.

Definition 4.16. (Binding) The setB of all possible actor to processing element bind-
ings is given as

B =
∏

a∈A

ba(a) (8)

A given binding of actors to processing elements is captured in a binding vector,
denoted by b, and is an N-dimensional vector for N actors (Definition 4.17). Each
element in b specifies the processing element to which each actor is bound. For ex-
ample, let us assume that the resource-aware application graph shown in Figure 3b
is mapped to a multiprocessor platform comprising two processing elements; a2, a3
are bound to pe1 and a1, a4, a5 are bound to pe2. This is given in a binding vector
〈a1, a2, a3, a4, a5〉 → 〈pe2,pe1,pe1,pe2,pe2〉.

Definition 4.17. (Binding vector) A binding vector for a set A of actors specifies the
processing element pe ∈ PE to which each actor a ∈ A is bound, and is given by
b(a) : A→ PE.

For a given binding vector b, the execution cycles ec(a,pe) of each actor a ∈ A is
known from Definition 4.13. The execution time et(gp, a,pe) in seconds is obtained

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:15

by the division of ec(a,pe) by the clock frequency fc(χ(b(a))) of the voltage-frequency
island to which the processing element belongs (Definition 4.18).

Definition 4.18. (Execution time) The execution time (in seconds) of an actor a ∈ A
on a processing element pe ∈ PE, which belongs to a voltage-frequency island χ(b(a))
operated at a clock frequency fc(χ(b(a))) in a platform graph gp ∈ GP, is given by
et(gp, a,pe) : GP ×A× PE → R

+, and is defined as et(gp, a,pe) = ec(a,pe)/fc(χ(b(a)))

In this work, we assume that only a single execution of an actor is allowed on a pro-
cessing element at any point in time. In an SDF graph, this is modeled by adding a self-
edge with a single initial token and with rates equal to one on source and destination
ports on all actors (Figure 6a). This prohibits an execution from starting until the pre-
vious execution has finished. To model buffers with a finite capacity in an SDF graph,
the approach in [Poplavko et al. 2003] is used. Figure 6b shows how the available buffer
space on the dependency edge d with ξ(d) initial tokens (Definition 4.11) and a buffer
size αd (Definition 4.14) is modeled in the graph. For this, a backward edge db from aj to

ai is added with (αd−ξ(d)) initial tokens on the edge, for which (rate(ptsr
db
) = rate(ptds

d))

and (rate(ptds
db
) = rate(ptsr

d)) hold, where (ptsr
d ,ptds

d) and (ptsr
db
,ptds

db
) are the source and

destination ports of the edges d and db, respectively. Token consumption from the edge
db can be seen as claiming space in the buffer for writing the data tokens. Similarly,
token production on db can be seen as freeing space in the buffer.

ai

1 1

1

(a)

ai aj
q o
d

ξ(d)

oq

db(αd − ξ(d))

(b)

ai al aρ aj
q

1ξ(d) 1 1 1 o
1q

(αsr
d − ξ(d))dsr

b

o1

αds
d dds

b

1 11

(c)

Fig. 6. Modeling resource allocation in an SDF graph. (a) Actor bound to a processing element. (b) Model of
available buffer space between actors. (c) SDF model of a connection in the interconnect.

Now we consider how to model latency of data communication across a connection
in the interconnect in an SDF graph. In Figure 6b, the latency for sending data to-
kens across the dependency edge d equals zero. We assume that this is the case when
two actors are bound to the same processing element, as they communicate through
a shared local memory. However, when two actors are bound to different processing
elements, the dependency edge that connects the actors is bound to a connection in the
interconnect. In this scenario, the interconnect introduces latency for sending a data
token across the connection. We now describe a connection model that considers the in-
terconnect architecture is constructed in an SDF graph. As detailed in Section 4.1, we
model a connection as a latency-rate server [Stiliadis et al. 1998]. We use a TDM-based
NoC modelled similarly to [Hansson et al. 2009], see in Figure 6c. It assumes the SDF
graph of Figure 6b, where actors ai and aj are bound to different processing elements,
and thus the dependency edge d is bound to a connection in an interconnect. The execu-
tion time of actor al captures the maximum latency a data token can ever experience
in a connection. To model pipelining between data tokens the actor does not have a
self-edge with an initial token on it. The edge dds

b , with αds
d initial tokens on it, models

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 D. Mirzoyan et al.

the buffer space at the destination tile. Actor al fires only when sufficient tokens are
available on the edge, corresponding to a data transaction being initiated only when
buffer space is available at the destination processing element. The execution time of
the actor is the sum of the slot-table injection latency and path latency. Data injection
into the router network is regulated by the reserved slots in the TDM table of a connec-
tion. The slot-table injection latency depends on the number of reserved slots. Based on
the required bandwidth βrq

d of a dependency edge d ∈ D, a number Λ = ⌈(βrq
d /β) · sztb⌉

of slots are reserved in the TDM table (with a size sztb) of a connection, where β is the
maximum bandwidth (in bytes per cycle) of a connection from a network interface nii
to a network interface nij , i 6= j, (Definition 4.1). The bandwidth β assumes that all
slots in the TDM table are reserved. The allocated bandwidth (in bytes per cycle) is
computed by βal = (Λ/sztb) · β.

The slot-table injection latency not only depends on the number of reserved slots,
but also on the distance between them. In this work, we assume a continuous slot
reservation strategy due to the simplicity of its analysis and implementation. With
this strategy, in the worst-case situation, a data token arrives right after the reserved
Λ slots, resulting in a waiting time of a number (sztb − Λ) of slots. The slot-table in-
jection latency (in cycles) is given by Θtb = (sztb − Λ) · (szfl/β), where szfl/β represents
the latency (in cycles) of a single slot. Note that other reservation strategies, such as
distributed slot reservation, are possible. These strategies may give a lower service
latency, but are more difficult to analyze and implement.

The path latency depends on the number Ψ of hops, given by the function η (Def-
inition 4.3), and the pipelining depth αrt of the routers. In the case of the Æthereal
network [Goossens et al. 2010], the pipelining depth of the routers is three, which is
also chosen in this work. The path latency (in cycles) is given by Θhp = Ψ ·αrt. Combin-
ing the path latency and the slot-table injection latency, the execution time (in seconds)
of actor al is given by Equation (9).

etl(al) =
(Θtb +Θhp)

fc(finoc)
(9)

Actor aρ bounds the rate at which data tokens are sent. With a self edge and a single
initial token on it, the execution time of the actor captures the time it takes to serve a
data token after an initial latency etl. The execution time (in seconds), given an allo-
cated bandwidth βal and a token size szd, is given by Equation (10). The edge dsr

b with
(αsr
d − ξ(d)) initial tokens models the available buffer space at the source processing

element. In this work, both αsr
d and αds

d are chosen to be equal to αd/2. Having pre-
sented the modeling of resource allocation in the resource-aware application graph, a
bound application graph gb is formally defined in (Definition 4.19). The set of all bound
application graphs is denoted by GB.

etρ(aρ) =
szd/βal

fc(finoc)
(10)

Definition 4.19. (Bound application graph) A bound application graph gb is a 5-
tuple 〈sdfg, ga, gp, b, fc, 〉 consisting of an SDF graph sdfg that models resource alloca-
tion when the resource-aware application graph ga is mapped to the platform graph
gp, a binding vector b that specifies the processing element pe ∈ PE to which each actor
a ∈ A is bound, and a chip-frequency vector fc ∈ FC that specifies the clock-frequency
of each voltage-frequency island fi ∈ FI.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:17

4.6. Throughput computation and scheduling

Throughput is an important design metric in streaming applications. In the context
of an SDF graph, it quantifies the rate at which output data tokens are produced. An
example is frames per second for an H.263 decoder. In this work, the throughput of a
bound application graph, denoted as τ(gb), is computed based on the timed execution
of the graph, as proposed in [Ghamarian et al. 2006]. We use static-order scheduling
to schedule the execution of actors on the same processing element. The schedules
are constructed during the timed execution of the SDF graph, as demonstrated in
[Stuijk et al. 2007]. Libraries offered by the publicly available SDF3 tool are used to
perform throughput computation based on timed execution of an SDF graph [Stuijk
et al. 2006b].

5. BETTER THAN WORST-CASE DESIGN

Reducing the design margins or guard-bands when implementing a circuit provides the
benefit of reduced circuit area, resulting in a larger number of gross dies on a wafer.
This in turn may provide a larger number of good dies that satisfy the throughput
requirement of the application. In this section, we present the methodology to use the
variation-aware modeling framework introduced in Section 4 and estimate the number
of good dies with reduced design margins (i.e., better than worst-case design).

5.1. Number of good dies

Circuit guard-banding is typically done by using corner-files during the design and
verification stages; these files describe the worst-case and best-case delay values
of standard-cells, corresponding to slow and fast process corners, respectively. The
change in circuit area when reducing these guard-bands (i.e., implementing the circuit
with reduced worst-case and increased best-case delay values) is assessed by [Jeong
et al. 2009]. They use open-source cores and an industrial embedded processor core
with target clock frequencies ranging from 300 to 600 MHz; the cores are synthesized
using 90, 65 and 45 nm technology model libraries. Based on measured data, the au-
thors provide a linear regression model for circuit-area reduction versus guard-band
reduction. The provided model is v = 1− 0.0033 ·u, where v is the area reduction factor
and u is the guard-band reduction in percent.

The number of gross dies on a wafer corresponding to a u% guard-band reduction
is given by Equation (11), where l is the radius of the wafer and Vu% is the die area
corresponding to a u% guard-band reduction [Jeong et al. 2009]; the second term in
the equation accounts for wasted area around the edges of the circular wafer. The die
area Vu% is given by Equation (12), where npe and ncgu are the number of processing
elements and clock-generation units, respectively; Vpe, Vnoc and Vcgu are the area of a
processing element, the interconnect and the clock-generation unit, respectively; and
vsc ∈ [0, 1] is the fraction of the scaled logic. When reducing guard-bands, either the
whole die area is scaled (i.e., vsc = 1 and thus V = v · (npe ·Vpe +Vnoc)+ncgu ·Vcgu) or only
a fraction of it scales (i.e., vsc = [0, 1)) in case the area consisting of embedded SRAM
and IO cells does not scale. Note that an assumption that the area of clock-generation
units does not change due to guard-band reduction is made.

Ngross
u% = π ·

(

l2

Vu%
− 2l√

2Vu%

)

(11)

Vu% = ((v − 1) · vsc + 1) · (npe · Vpe + Vnoc) + ncgu · Vcgu (12)

We are interested in the number of good dies that provide throughput at least equal
to the minimum throughput requirement of an application. The number of good dies

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 D. Mirzoyan et al.

is given by the product of the number of gross dies and application yield, which is a
system-level metric quantifying the percentage of manufactured chips that satisfy the
throughput requirement imposed on an application. The application yield is computed
using the variation-aware framework proposed in Section 4. For this, the throughput
of the bound application graph gb = 〈sdfg, ga, gp, b, fc, 〉 for each chip-frequency vec-
tor is computed. Whenever the throughput requirement is satisfied, the application
yield is incremented by the probability of the chip-frequency vector. Note that for this
computation, a binding for each chip-frequency vector is required. Thus, a set B′ ∈ B
of different bindings for all chip-frequency vectors is required (this set is derived by a
heuristic algorithm as later explained in Section 6.1). For a given setB′ of bindings, the
application yield over all chip-frequency vectors fc ∈ FC, where each chip-frequency
vector has a probability weight pc(gp, fc), is given by Definition 5.1. As expressed in
the definition, the application yield is incremented by the probability pc(gp, fc) if the
throughput requirement is satisfied with at least one binding in the set B′.

Definition 5.1. (Application yield for a set of bindings) The percentage of chips,
characterized by a bound application graph gb = 〈sdfg, ga, gp, b, fc, 〉, that satisfy
the throughput requirement treq over all chip-frequency vectors fc ∈ FC, for a spec-
ified resource-aware application graph ga ∈ GA, platform graph gp ∈ GP and a
set B′ of bindings from the set B of all possible bindings, is given by γ(ga, gp, B′) :
GA × GP × P(B) \ ∅ → R

+, and is defined as

γ(ga, gp, B′) =
∑

fc∈FC

{

pc(gp, fc) if ∃b ∈ B′ | τ(gb) ≥ treq
0 otherwise

(13)

5.2. Variation characterization

Each guard-band value results in a particular circuit implementation with a cer-
tain area, after the design and verification stages. By performing statistical char-
acterization (Monte Carlo simulations) on each circuit implementation, the PDFs of
the maximum supported frequency of the hardware resources (processing elements,
routers, network interfaces and links) in a platform graph is obtained. A statistical
characterization flow is proposed in [Miranda et al. 2009]. The following is required
for performing statistical characterization. 1) Standard-cell library models for guard-
band reduction, 2) a hardware platform in RTL, 3) synthesis (place and route) and
verification flows, and 4) a statistical characterization flow. Implementing this re-
quires considerable time and specific expertise. Thus, we opt out of statistical char-
acterization. Instead, we make the following intuitive assumptions. With the original
guard-band (i.e., 0% guard-band reduction), we assume that about 99.85% of man-
ufactured hardware resource instances satisfy the target frequency f rtg. This corre-
sponds to a combined normal distribution of maximum supported frequency such that
(µr0%− 3σr0% · (µr0%/100)) = f rtg, where σr0% is the standard deviation in percents of mean
frequency. Therefore, the mean frequency is computed by µr0% = f rtg/(1 − 3σr0%/100).
For a resource with f rtg = 300 MHz target frequency, σrg = 4%, σrl = 3.3%, and thus

σr0% =
√

(σrg)
2 + (σrl)

2 ≈ 5.186%, the mean frequency µr0% is equal to ≈ 355 MHz. The

combined distribution f r = N(µr0%, σ
r
0%) is shown in Figure 7. These numbers are

based on the available data at 45nm technology [Pang et al. 2008].
With no guard-band (i.e., 100% guard-band reduction), we assume that half of manu-

factured hardware resource instances satisfy the target frequency ftg considering only
global variation. This corresponds to a global normal distribution of maximum sup-
ported frequency with f rtg mean. Therefore, the mean of the combined distribution is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:19

250 300 350 400 450
0

0.01

0.02

0.03

Frequency (MHz)

P
ro

ba
bi

lit
y

de
ns

ity

f r = N (µr
0%, (σ

r
0%)

2)

f r = N (µr
40%, (σ

r
40%)

2)

f r = N (µr
100%, (σ

r
100%)

2)

µ
r
100%

f r
tg µ

r
0%

Fig. 7. Combined fr PDF of a hardware resource due to a 0%, 40%, 100% guard-band reduction. The target
frequency fr

tg is 300 MHz, δr = 5%, σr
g = 4%, σr

l
= 3.3%, and thus σr

u%
≈ 5.186% of mean frequency.

given by µr100% = (f rtg − δr · (f rtg/100)), and thus µr100% = f rtg · (1− δr/100), where δr is the
reduction in mean frequency (in percents) due to local variation. We assume that the
standard deviation to mean ratio σr

u%/µ
r
u% of the combined normal distribution for any

u% guard-band reduction is constant. In reality, it may change due to local variation
that depends on circuit implementation, which is different for each u% guard-band re-
duction (global variation does not depend on circuit implementation). However, only
small differences in a close range of mean frequency are expected (e.g., the ratio dif-
ference for 300 MHz and 355 MHz mean frequency circuit implementations is much
lower than for 300 MHz and 2 GHz circuit implementations). For the example de-
scribed above, where ftg = 300, σrg = 4%, σrl = 3.3%, and thus σr100% ≈ 5.186%, and
assuming that δr = 5%, the distribution f r = N(µr100%, σ

r
100%) is shown in Figure 7.

Given the values µr0% and µr100%, a u% guard-band reduction results in a new com-
bined normal distribution with a mean frequency µr

u% = µr0% − u · (µr0% − µr100%)/100.
Figure 7 shows the combined distribution f r = N(µr40%, σ

r
40%) for a 40% guard-band re-

duction. For a given mean frequency µr
u%, the frequency µrg corresponding to a guard-

band reduction value can be computed by Equation (14), where δr is the mean re-
duction in percents of µrg. It is assumed that the ratio δr/µg for any u% guard-band
reduction is constant (only small differences in the local variation in a close range of
mean frequency µr

u% are expected as explained above).

µrg =
µr
u%

(1− δr

100)
(14)

6. EXPERIMENTAL RESULTS

On case studies, this section presents the improvements in the number of good dies
achieved by the proposed better than worst-case design methodology. Note that the
provided improvements are estimates. An experiment to confirm the numbers would
be very expensive and impractical to conduct. Related to the confidence factor in the
estimates, there are two aspects to be considered. The correctness (suitability) of the
model of computation (MoC), i.e. application, hardware platform and resource alloca-
tion modeling, and the model of variation in hardware resources. As a MoC, we use a
data-flow graph (more specifically an SDF graph). Data-flow graphs are shown to well
capture the behavior of streaming applications and are used in modern multiprocessor
systems, such as CoMPSoC [Goossens et al. 2013], CA-MPSoC [Shabbir et al. 2010],

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 D. Mirzoyan et al.

for modeling and analysis. Both global and local variations in hardware resources are
modeled using a normal distribution, which is shown to be a good fit for capturing
the impact of manufacturing process variations [Bowman et al. 2002]. Although we
do not acquire the variation numbers, we use the available measured data for current
technology nodes at specified frequencies. We assume no spatial correlation between
hardware resources due to systematic local variation, but the impact of it is expected to
be low, as explained in Section 4.2. Therefore, we expect similar improvement numbers
in reality for such systems. We proceed to describing our experimental setup.

6.1. Experimental setup

The case studies in this section are based on a synthetic application and a set of six
SDF graphs that model real DSP and multimedia applications. From the DSP domain,
the set contains a Modem [Bhattacharyya et al. 1999] and from the multimedia do-
main an H.263 encoder [Oh et al. 2004], an H.263 decoder [Stuijk et al. 2008], an MP3
playback [Wiggers et al. 2007] and an MP3 decoder [Stuijk et al. 2008]. An overview
of the SDF graphs is shown in Table Ia. The table reports the number of actors, the
number of cycles (feedback loops) in each graph and the available parallelism in terms
of the minimum number of processing elements that can fully exploit it. The reason we
include the synthetic application is that it has a higher level of parallelism compared
to the real applications. The topologies of the applications, together with the execution
times (in cycles) of actors and the size of data tokens (in bytes) sent across dependency
edges, are given in [Mirzoyan 2013]. These application SDF graphs are the resource-
aware application graphs in our formal framework. The described real applications are
allocated to a NoC-based MPSoC platform consisting of three homogeneous processing
elements (most of the applications have a parallelism of three processing elements).
The MPSoC platform, described by a platform graph in our modeling framework, is
shown in Figure 3a. The three processing elements and the interconnect (NoC) are
placed in separate voltage-frequency islands; as such, there are four islands. Note that
we do not analyze the impact of VFI partitioning on the number of good dies due to
limited space. This is evaluated in [Mirzoyan 2013]. The number of clock-frequency
levels provided by clock-generation units (not shown in Figure 3a) to each of the four
voltage-frequency islands is chosen to be five. The interconnect consists of two routers,
three network interfaces and multiple links, which connect the processing elements to
each other. The net bandwidth (i.e., the overall bandwidth capacity) of each connec-
tion in the interconnect is assumed to be βc = 4 bytes per cycle. The flit size is set to
sztb = 12 bytes, and a TDM table size of szfl = 20 slots for each network interface is
assumed. Note that the net bandwidth may be affected by possible overheads, such as
inserted headers. To account for this, we assume a worst-case scenario, where four out
of twelve bytes in a flit is a header. Therefore, the net bandwidth used for transferring
data becomes two-thirds of the original bandwidth. These numbers correspond to the
Æthereal network [Goossens et al. 2010]. The synthetic application has a parallelism
that can be fully exploited by a minimum number of seven processing elements. Thus,
this application is mapped to a multiprocessor platform consisting of seven homoge-
neous processing elements.

Table Ib illustrates the target frequency and the variation-related parameters for
the random variables describing the maximum supported frequency of hardware re-
sources in the multiprocessor platforms. The target frequency for each processing ele-
ment is 300 MHz. For routers and network interfaces, a 500 MHz target frequency is
chosen. The choice of the target frequency for links, compared to the target frequency
for routers, is made according to a NoC implementation given in [Hernandez et al.
2012], where the authors design a link slightly faster than the routers not to limit the
performance of the NoC and to preserve power. We select a target frequency of 560

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:21

MHz for links. Note that the target frequencies for the routers, network interfaces and
links are higher than that of the processing elements. In a high performance 80-core
TeraFLOPS processor, both the routers and cores operate at equal 4 GHz frequencies
[Vangal et al. 2008]. However, we choose a faster interconnect to avoid any bottleneck
in the communication. The mean frequencies µrg of the random variables describing the
maximum supported frequency of hardware resources due to global variation are com-
puted based on a guard-band reduction value (Equation (14)). As reported in [Dighe
et al. 2011], at high computing frequencies (in the order of GHz), the variation is large.
In our work, we target embedded systems running streaming applications, where the
typical frequencies are in the order of hundreds of MHz. Measurements at 45 nm tech-
nology in the frequency range of interest are provided in [Pang et al. 2008]. Based on
this data, we assume standard deviation to mean ratios of 4% and 3.3% for within-die
and die-to-die variations, respectively (Table Ib). We assume a 5% reduction in mean
frequency for processing elements and links due to multiple critical paths and wires,
respectively. For routers and network interfaces, no reduction in mean frequency is
assumed. These choices correspond to the discussion presented in Section 4.2.

Table I. Application SDF graph overview (a). Target frequency and variation-related parameters as-
sumed for hardware resources (b).

Nr. Nr. Parallelism

actors cycles (Nr. PEs)

Synthetic 17 3 7

H.263 decoder 4 0 3

H.263 encoder 5 1 3

MP3 playback 4 1 2

Modem 16 5 3

MP3 decoder 14 0 3

(a)

pe rt ni lk

fr
tg (MHz) 300 500 500 560

σr
g (% of µr

g) 4 4 4 4

δr (% of µr
g) 5 0 0 5

σr
l

(% of µr
g) 3.3 3.3 3.3 3.3

(b)

The area of a processing element is assumed to be 0.7 mm2, based on the area
of an ARM Cortex-A5 processor at 45 nm technology. The area of the interconnect
is 3.1 mm2. We assume that a typical fine-grained clock-generation unit has area of
0.03 mm2 [Rylyakov et al. 2008]. We neglect the area of clock-generation units with
0% guard-band reduction, as a simple clock-generation unit is required for providing a
single (target) clock frequency for each voltage-frequency island. We assume that 70%
of the area of processing elements and the interconnect consists of standard logic cells,
and 30% of embedded SRAM and IO cells. Two scenarios are distinguished: (1) guard-
band reduction results in an overall decrease in die area (i.e., vsc = 1), (2) only the area
of logic cells is reduced when reducing guard-bands (i.e., vsc = 0.7) (Equation (12)).

The throughput requirement for each application is decided such that it is just satis-
fied with full guard-bands (i.e., the target clock frequencies of the hardware resources
are guaranteed in manufactured chips). This means that the hardware platform is di-
mensioned just enough for the particular application with full guard-bands. Selecting
a more relaxed throughput requirement would lead to having performance slack. Thus,
guard-band reduction would still result in sufficiently fast dies for the given through-
put requirement (i.e., a large number of good dies). This would not fairly demonstrate
the benefits of reducing guard-bands. To determine the throughput requirement, each
application is mapped to the platform with the specified target frequencies such that
the throughput is maximized. The heuristic mapping algorithm presented in [Mir-
zoyan et al. 2014] is used for finding a mapping with maximized throughput. The

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 D. Mirzoyan et al.

result of the mapping is a throughput value, which is taken as the requirement for
each application. The application yield corresponding to a u% guard-band reduction is
evaluated by Definition 5.1. The set of bindings provided for estimating the application
yield is determined using the variation-aware heuristic mapping algorithm given by
[Mirzoyan et al. 2014]. There are two phases in the heuristic mapping algorithm, ini-
tial resource allocation and allocation optimization. In the initial resource allocation,
an initial binding of application actors to processing elements is derived such that the
execution load on the processing elements is balanced. The actors whose execution
times are likely to have a large impact on the throughput are considered first. This
initial binding later undergoes an optimization stage where the allocation of each ac-
tor is reconsidered to improve the throughput. The mapping stages are performed for
each chip-frequency vector, resulting in a set of bindings for all chips. More details on
the algorithm can be found in [Mirzoyan et al. 2014].

6.2. Evaluation results

Figure 8a illustrates the change in the number of good dies per wafer against guard-
band reduction for the H.263 decoder and Modem applications. Normalized values
against the number of good dies with 0% guard-band reduction are used. The graphs
are presented for two different assumptions: a design with and without fixed blocks.
The design with fixed blocks refers to having IPs that have predefined layouts (SRAM,
IO, analog cells), the area of which does not change with guard-band reduction. The
design without fixed blocks refers to not having IPs with predefined layouts or design-
ing IPs specifically for each guard-band value. The application yield corresponding
to different u% guard-band reduction values is shown in Figure 8b (application yield
computation times for the different applications can be found in [Mirzoyan 2013]). Fig-
ure 8a shows that for the H.263 decoder application and the design with fixed blocks,
the number of good dies is maximized at a 30% guard-band reduction. This results in
a 4.8% more dies that satisfy the throughput requirement imposed on the application.
When there are no fixed blocks, the increase in the number of good dies is 10.3% at
a 60% guard-band reduction. For the Modem application, significant improvements of
9.6% (with fixed blocks) and 18.8% (without fixed blocks) in the number of good dies
are illustrated at a 70% guard-band reduction. This is due to the relatively high ap-
plication yield provided at a 70% reduction in guard-bands, as shown in Figure 8b.
Note that a 9.6% increase in the number of good dies is significant. For example, if 4 K
wafers are required to produce 30 M good dies, a 9.6% larger number of good dies per
wafer translates into 350 fewer wafers for the same 30 M good dies. For a wafer cost
of e3000, the cost saving is $ 1,050,000. For each application, the number of good dies
gradually decreases after a certain guard-band value (e.g., beyond 70% for the Modem
application). This is because the application yield becomes considerably lower and the
gain in the number of gross dies due to smaller die area is not large enough to offset
the loss in the application yield, resulting in less good dies, which is the product of the
number of gross dies and application yield. For the Modem application at 80% guard-
band reduction, the application yield is 71%, while the increase factor in number of
gross dies for without fixed blocks is 1.32 (Figure 8b). The product of these two leads to
a lower number of good dies. The number of good dies for each guard-band value can
be computed using the data in Figure 8b.

Table II illustrates the increase in the number of good dies per wafer and the as-
sociated reduction in guard-bands for the rest of the applications considering designs
with and without fixed blocks. The results for the H.263 encoder and MP3 decoder
applications are identical. A 30% reduction in guard-bands results in 3.7% and 7%
more good dies for designs with and without fixed blocks, respectively. For the MP3
playback application and considering the design with fixed blocks, the number of good

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:23

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Guard-band reduction (%)

N
r.

 g
oo

d
di

es
 p

er
 w

af
er

 (
no

rm
al

iz
ed

)

 H.263 decoder: with fixed blocks
 H.263 decoder: without fixed blocks
 Modem: with fixed blocks
 Modem: without fixed blocks

(a)

u% y% (I) y% (II) ng n′

g

0 99 99 1.00 1.00

10 99 99 1.00 1.01

20 99 99 1.02 1.04

30 99 99 1.05 1.08

40 90 99 1.07 1.12

50 90 96 1.10 1.17

60 90 96 1.13 1.21

70 49 93 1.16 1.26

80 49 71 1.19 1.32

90 49 68 1.23 1.38

100 9 43 1.26 1.45

(b)

Fig. 8. (a) Number of good dies per wafer against guard-band reduction for the H.263 decoder and Modem
applications. Designs with and without fixed blocks are considered. (b) Application yield for a u% reduction
in guard-bands for the (I) H.263 decoder and (II) Modem applications. The increase factor in the number of
gross dies for with and without fixed blocks is given by ng and n′

g , respectively.

dies is maximized at a 30% reduction in guard-bands, resulting in a 4.8% more good
dies. For a design without fixed blocks, a 60% guard-band reduction provides a 11.5%
more good dies. Finally, considerable improvements of 6.1% and 12.3% are seen for the
synthetic application. These results show that a higher number of good dies with re-
duced guard-bands is obtained, increasing profit. Note that these results are given for
an architecture where five clock-frequency levels are provided to each of the voltage-
frequency islands. It has been shown in [Mirzoyan et al. 2014] that a larger number of
clock-frequency levels provided to islands is more likely to result in a higher applica-
tion yield. Therefore, increasing the number of clock-frequency levels that provided to
each island is more likely to result in an increased number of good dies.

Table II. i% Increase in the number of good dies for a u% reduction in guard-bands (I)
with and (II) without fixed blocks for the rest of the applications.

H.263 encoder MP3 playback MP3 decoder Synthetic

(I) i% (u%) 3.7 (30) 4.8 (30) 3.7 (30) 6.1 (50)

(II) i% (u%) 7 (30) 11.5 (60) 7 (30) 12.3 (50)

7. CONCLUSIONS AND FUTURE WORK

This work addresses the problem of designing real-time streaming applications con-
strained by a throughput requirement on a NoC-based multiprocessor system under
better than worst-case design (i.e., with reduced design margins). With better than
worst-case design, circuit area is reduced, resulting in more dies on a wafer. However,
the target maximum supported frequency of hardware components in a multiprocessor
system is not guaranteed anymore. The first contribution of the work is a complete for-
mal framework to estimate the probability distribution of application throughput in a
NoC-based multiprocessor system with voltage-frequency islands under the impact of
die-to-die and within-die process variations. The second contribution is a methodology
to use the proposed framework and evaluate the impact of reducing design margins
on the number of good dies that satisfy the throughput requirement of a real-time

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 D. Mirzoyan et al.

streaming application. On both synthetic and real applications, we show that the pro-
posed better than worst-case design methodology can increase the number of good dies
by up to 18.8% compared to worst-case design. Assuming that 4 K wafers are required
to produce 30 M good dies, a 18.8% larger number of good dies per wafer translates into
632 fewer wafers for the same 30 M good dies. For a wafer cost of $3000, the cost saving
is $1,896,000 (i.e., $6,32 cents per die). While these results show clear benefits over the
worst-case design approach, the disadvantage of the proposed better-than worst-case
design is the longer design time due to iterative application yield estimation. Note that
the improvement in the number of good dies depends on the application yield against
guard-band reduction curve. The slower the application yield reduces, the higher the
benefits are. This curve will differ from application to application. It depends on the
topology of the application graph, its properties, as well as the hardware platform (e.g.,
the number of processing elements). For the synthetic and real applications, and dif-
ferent number of processing elements in the hardware platform, we experimentally
proved that the number of good dies is maximized (i.e., the application yield reduces
slower than die area).

In the proposed modeling framework, a single application is considered. In practice,
multiple applications are mapped to a multi-processor platform. Possible future work
is to extend the proposed framework such that multiple applications are considered.
For example, this can be achieved by TDM virtualization, where each application is
given a portion of a multi-processor platform such that there is no temporal inter-
ference between applications. Additionally, the models presented in Section 4.2 can
be extended such that correlation between hardware components due to systematic
within-die variation can be specified. This will provide a modeling framework that
more accurately captures the physical phenomenon of process-induced variation.

REFERENCES

BAMAKHRAMA, M. A. ET AL. 2012. A methodology for automated design of hard-real-time embedded
streaming systems. In Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE).

BHATTACHARYYA, S. S. ET AL. 1999. Synthesis of embedded software from synchronous dataflow specifica-
tions. Journal of VLSI Signal Processing Systems (IJVSPA) 21.

BOWMAN, K. ET AL. 2002. Impact of die-to-die and within-die parameter fluctuations on the maximum clock
frequency distribution for gigascale integration. Journal of Solid-State Circuits (JSSC) 37, 2.

DALLY, W. ET AL. 2001. Route packets, not wires: on-chip interconnection networks. In Proc. Design Au-
tomation Conference (DAC).

DIGHE, S. ET AL. 2011. Within-die variation-aware dynamic-voltage-frequency-scaling with optimal core
allocation and thread hopping for the 80-core TeraFLOPS processor. Journal of Solid-State Circuits
(JSSC) 46, 1.

FRIEDBERG, P. ET AL. 2005. Modeling within-die spatial correlation effects for process-design co-
optimization. In Proc. Quality of Electronic Design (ISQED).

GARG, S. ET AL. 2008. System-level throughput analysis for process variation aware multiple voltage-
frequency island designs. Transactions on Design Automation of Electronic Systems (TODAES) 13, 4.

GHAMARIAN, A. ET AL. 2006. Throughput analysis of synchronous data flow graphs. In Proc. Int’l Conference
on Application of Concurrency to System Design (ACSD).

GOOSSENS, K. ET AL. 2010. The Æthereal network on chip after ten years: Goals, evolution, lessons, and
future. In Proc. Design Automation Conference (DAC).

GOOSSENS, K. ET AL. 2013. Virtual execution platforms for mixed-time-criticality systems: The CompSOC
architecture and design flow. Special Interest Group on Embedded Systems (SIGBED) Review 10, 3.

HANSSON, A. ET AL. 2009. Enabling application-level performance guarantees in network-based systems
on chip by applying dataflow analysis. IET Computers & Digital 3, 5.

HERNANDEZ, C. ET AL. 2012. On the impact of within-die process variation in GALS-based NoC perfor-
mance. Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 31, 2.

HUANG, L. ET AL. 2010. Performance yield-driven task allocation and scheduling for MPSoCs under process
variation. In Proc. Design Automation Conference (DAC).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Maximizing the number of good dies under process variation A:25

JEONG, K. ET AL. 2009. Impact of guardband reduction on design outcomes: A quantitative approach. Trans-
actions on Semiconductor Manufacturing (SM) 22, 4.

LEE, E. ET AL. 1987. Synchronous data flow. Proceedings of the IEEE 75, 9.

MARCULESCU, D. ET AL. 2008. Process-driven variability analysis of single and multiple voltage frequency
island latency-constrained systems. Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) 27, 5.

MEIJER, M. ET AL. 2012. Body-bias-driven design strategy for area- and performance-efficient CMOS cir-
cuits. Transactions on Very Large Scale Integration (VLSI) Systems 20, 1.

MEINCKE, T. ET AL. 1999. Globally asynchronous locally synchronous architecture for large high-
performance ASICs. In Proc. Int’l Symposium on Circuits and Systems (ISCAS). Vol. 2.

MILLBERG, M. ET AL. 2004. The Nostrum backbone - a communication protocol stack for networks on chip.
In Proceedings of the International Conference on VLSI Design (VLSID).

MIRANDA, M. ET AL. 2009. Variability aware modeling of SoCs: From device variations to manufactured
system yield. In Proc. Quality of Electronic Design (ISQED).

MIRZOYAN, D. 2013. Better than worst-case design for streaming application under process variation. Ph.D.
thesis, EEMCS Department, Delft University of Technology.

MIRZOYAN, D. ET AL. 2013. Throughput analysis and voltage-frequency island partitioning for streaming
applications under process variation. In Proc. Embedded Systems for Real-Time Multimedia (ESTIMe-
dia).

MIRZOYAN, D. ET AL. 2014. Process-variation-aware mapping of best-effort and real-time streaming appli-
cations to MPSoCs. Transactions in Embedded Computing Systems (TECS) 13, 2s.

MUTTERSBACH, J. ET AL. 2000. Practical design of globally-asynchronous locally-synchronous systems. In
Proc. Int’l Symposium on Asynchronous Circuits and Systems (ASYNC).

OH, H. ET AL. 2004. Fractional rate dataflow model for efficient code synthesis. Journal of VLSI Signal
Processing Systems 37, 1.

PANG, L.-T. ET AL. 2008. Measurement and analysis of variability in 45nm strained-Si CMOS technology.
In Custom Integrated Circuits Conference (CICC).

PANG, L.-T. ET AL. 2009. Measurement and analysis of variability in 45 nm strained-Si CMOS technology.
Journal of Solid-State Circuits 44, 8.

POPLAVKO, P. ET AL. 2003. Task-level timing models for guaranteed performance in multiprocessor
networks-on-chip. In Proc. Int’l conference on Compilers, architecture and synthesis for embedded sys-
tems (CASES).

RYLYAKOV, A. ET AL. 2008. A wide tuning range (1 GHz-to-15 GHz) fractional-N all-digital PLL in 45nm
SOI. In Custom Integrated Circuits Conference (CICC).

SHABBIR, A. ET AL. 2010. CA-MPSoC: An automated design flow for predictable multi-processor architec-
tures for multiple applications. Journal of Systems Architecture (JSA) 56, 7.

SRIRAM, S. ET AL. 2000. Embedded Multiprocessors: Scheduling and Synchronization 1st Ed.

STILIADIS, D. ET AL. 1998. Latency-rate servers: a general model for analysis of traffic scheduling algo-
rithms. Transactions on Networking (TON) 6, 5.

STUIJK, S. ET AL. 2006a. Exploring trade-offs in buffer requirements and throughput constraints for syn-
chronous dataflow graphs. In Proc. Design Automation Conference (DAC).

STUIJK, S. ET AL. 2006b. SDF3: SDF For Free. In Proc. Int’l Conference on Application of Concurrency to
System Design (ACSD).

STUIJK, S. ET AL. 2007. Multiprocessor resource allocation for throughput-constrained synchronous
dataflow graphs. In Proc. Design Automation Conference (DAC).

STUIJK, S. ET AL. 2008. Throughput-buffering trade-off exploration for cyclo-static and synchronous
dataflow graphs. Transactions on Computers (TC) 57, 10.

VAN BERKEL, C. H. K. 2009. Multi-core for mobile phones. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE).

VANGAL, S. ET AL. 2008. An 80-tile sub-100-w TeraFLOPS processor in 65-nm CMOS. Journal of Solid-State
Circuits (JSSC) 43, 1.

WASSEL, H. M. G. ET AL. 2013. SurfNoC: a low latency and provably non-interfering approach to secure
networks-on-chip. SIGARCH Computer Architecture News 41, 3.

WIGGERS, M. H. ET AL. 2007. Efficient computation of buffer capacities for cyclo-static dataflow graphs. In
Proc. Design Automation Conference (DAC).

WILHELM, R. ET AL. 2008. The worst-case execution-time problem overview of methods and survey of tools.
Transactions on Embedded Compuing Systems (TECS) 7, 3.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

