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Embedded systems often contain multiple applications, some of which have real-time requirements and
whose performance must be guaranteed. To efficiently execute applications, modern embedded systems
contain Globally Asynchronous Locally Synchronous (GALS) processors, network on chip, DRAM and
SRAM memories, and system software, e.g. microkernel and communication libraries. In this paper we
describe a dataflow formalisation to independently model real-time applications executing on the
CompSOC platform, including new models of the entire software stack. We compare the guaranteed
application throughput as computed by our tool flow to the throughput measured on an FPGA
implementation of the platform, for both synthetic and real H.263 applications. The dataflow formalisa-
tion is composable (i.e. independent for each real-time application), conservative, models the impact of
GALS on performance, and correctly predicts trends, such as application speed-up when mapping an
application to more processors.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

By definition embedded systems are part of a larger device such
as a car, mobile phone, or hearing aid. These devices interact with
the physical environment that progresses in real time. Embedded
systems must therefore respect real-time deadlines to avoid unde-
sirable behaviour (e.g. stuttering audio or video), disallowed beha-
viour (e.g. violating communication standards), or even unsafe
behaviour (e.g. late message in brake by wire).

As integration of computing performance on a single System on
Chip (SOC) increases, it is now possible to integrate multiple appli-
cations on a single embedded system. For cost reasons this is
increasingly common. Running multiple applications on a single
(SOC) usually introduces interference of their (timing) behaviours,
which complicates the verification of their guaranteed perfor-
mance. This is especially the case in mixed-time-criticality systems,
in which some of the applications do not require those guarantees,
and may have unknown or unbounded timing characteristics.

We address the problem of designing embedded systems execut-
ing multiple applications of mixed time-criticality. We focus on the
verification of real-time streaming applications (but in the presence
of non-real-time applications). Any solution must include: (1) a pro-
gramming model for real-time applications, (2) a hardware and
software architecture for mixed-time-criticality systems, (3) a
formal verification method to guarantee the performance of the
real-time applications. Preferably, (4) each embedded system is
an instance of a general platform template that can be generated
and performance verified automatically. (5) Formal verification
should be performed independently per real-time application.

In this introduction, we first describe how the existing
Composable and Predictable Multi-Processor System-on-Chip
(COMPSOC) platform and CompSOC + SDF3 design flow already
address Requirements 1, 2, and 4, but 3 only partially. We provide
a detailed overview of our novel contributions in Section 1.2. In the
rest of the paper, we address Requirements 3 and 5, by defining a
dataflow formalisation to independently model real-time applications
executing on a Composable and Predictable CompSOC platform. This
formalisation enables independent performance verification of
real-time applications.

1.1. The CompSOC approach

Regarding Requirement 1, the CompSOC platform [1] uses the
dataflow model of computation as the application programming
model, illustrated in Fig. 1(a, left). Cyclo-Static Dataflow (CSDF)
[2] offers a good trade off between expressiveness and analysabil-
ity (Requirement 1). Absence of deadlock, guaranteed minimum
throughput, and guaranteed maximum latency can be computed
for CSDF programs, even in the presence of cyclic dependencies.
lti-Pro-
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Fig. 1. CompSOC high-level overview.
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Regarding Requirement 2, the CompSOC platform consists of
hardware resources: processors, distributed shared memories,
Direct Memory Access (DMA) modules, and Network on Chip
(NOC), see Fig. 1(b) in multiple asynchronous clock domains (i.e.
a GALS system). The processors execute system software: micro-
kernel, inter-processor communication library, and dataflow
library. To execute applications within guaranteed timing bounds,
all hardware and software components of the platform are
individually predictable in their timing behaviour, i.e. it is possible
to compute a Worst-Case Execution Time (WCET).

Resources are shared within and between applications for cost
reasons. A resource management library is used to divide physical
resources in smaller virtual resources, by allocating resource
budgets. Every application executes within its dedicated Virtual
Execution Platform (VEP), i.e. a set of resource budgets, cf.
Fig. 1(d). Only the system application has access to the resource
management library and creates and manages VEPs in a safe and
controlled manner at run time, e.g. for the real-time and non-
real-time applications in Fig. 1(a). A VEP isolates an application
from the behaviour of other applications, i.e. the execution of an
application is composable.

The VEPs are cycle-accurately composable, which means that
they do not interfere by even a single cycle. Mixed-time-criticality
applications that execute on separate VEPs can therefore be com-
posed on the same physical resources with no interference, satisfy-
ing Requirement 2. Composable execution facilitates independent
verification of real-time applications when sharing resources with
mixed-time-criticality applications. The CompSOC platform’s vir-
tualised resources not only have a guaranteed budget quantity
but are also guaranteed when they will receive it, enabling real-
time applications to share resources with non real-time applica-
tions without any timing interference. Real-time applications are
verified independently for the given budget allocation of their
VEP without the need to further account for interference from con-
current applications on other VEPs, satisfying Requirement 5.

It is shown in [3] that dataflow applications with schedulers
that guarantee a minimum service budget within a given periodic
interval have an upper bound on the finishing time of task execu-
tions. We use dataflow as an application programming model for
Requirement 1, and also for Requirement 3 as the mathematical
formalism to verify their timing performance. Dataflow is used to
capture the application graph as well as the mapping of the appli-
cation on the platform (i.e. the application’s VEP). However, our
previous formalisations [4,5] do not include the effects of GALS
and system software, and do not consider verification indepen-
dently per application.
Please cite this article in press as: A. Nelson et al., Dataflow formalisation of rea
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Regarding Requirement 4, platform instances are generated
with automated CompSOC tools, directed by the system designer
[6]. Applications can be manually mapped to the platform, or alter-
natively an automated tool such as those described in [7] can be
used to map the application to the hardware. Given a dataflow
model of the mapped application, the SDF3 tool [8] (or similar
dataflow analysis tool) can be used to compute the guaranteed
throughput and latency.

1.2. Contributions

The main contribution of this paper is a dataflow formalisation to
independently model concurrent real-time applications executing on a
mixed-time-criticality platform. Regarding Requirement 3, the exist-
ing CompSOC hardware and software platform, and the dataflow
models of its components are extended in the following important
ways. First, we model and quantify the effect of GALS on the appli-
cation performance. Second, all system software is modelled for
the first time. In particular, the intra-application and inter-applica-
tion scheduling using a microkernel on the processors. The soft-
ware inter-processor communication using Distributed Shared
Memory (DSM) and the dataflow execution library are also mod-
elled. We introduce an algorithm to automatically combine data-
flow models of all components into a combined system model.
For Requirement 5, we show that the use of Virtual Execution
Platform (VEPs) leads to independent verification per application.

In the remainder of this paper, we first introduce the dataflow
formalism in Section 2. In Sections 3–7, we introduce the compo-
nents of the CompSOC platform with their dataflow models. In
Section 8, we show how to automatically combine the models of
each of the components of earlier sections in a system model of
an application mapped to its VEP. In Section 9, we experimentally
quantify the tightness of the dataflow models of several applica-
tions. We also quantify how the degree of synchronisation of the
processors due to GALS affects the tightness. Section 10 discusses
related work.
2. Dataflow formalism and modelling

Dataflow formalism, in combination with a worst-case analysis,
enables the computation of guaranteed throughput and latency,
and proof of absence of deadlock. The dataflow formalism exists
in many variants. Homogeneous Synchronous Dataflow (HSDF) is
the least expressive of these variants. It is therefore possible to
directly represent HSDF models in more expressive dataflow vari-
ants such as Cyclo-Static Dataflow (CSDF) [2].

In this work, we demonstrate how an application and CompSOC
platform instance are modelled using HSDF. Our technique is
directly applicable to dataflow variants, such as CSDF, that can be
translated to a timing equivalent HSDF [9,10]. While it is possible
to create a timing equivalent Homogeneous Synchronous
Dataflow Graph (HSDFG) of a CSDF Graph (CSDFG), the conversion
process can lead to a much larger graph than the original CSDFG,
however the degree of expansion depends on the CSDFG being
translated. The causes and techniques to minimise CSDFG to
HSDFG expansion are outside of the scope of this article.
Nevertheless, by modelling the CompSOC platform hardware using
HSDF models, our models can also be combined with applications
modelled using more expressive dataflow variants (A detailed
explanation of how this would be achieved is left as future work).

2.1. Dataflow formalism

A HSDFG has actors represented by the graph vertices and First
In First Out (FIFO) communication channels between actors
l-time streaming applications on a Composable and Predictable Multi-Pro-
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represented by directed edges. Formally, an HSDFG G is repre-
sented using the tuple ðV ; E; t; dÞ. V is the finite set of annotated
vertices. The vertices are dataflow actors and can represent tasks
of a dataflow modelled application or other timing delays. E is
the finite set of annotated directed edges that connect the vertices.
An edge is represented by the tuple ði; jÞ 2 E where i 2 V is the actor
producing tokens on the edge and j 2 V is the actor consuming
tokens from the edge. The execution time of an actor i is given
by tðiÞ, with t : V ! Rþ. The initial token occupancy of an edge
ði; jÞ is given by dði; jÞ, with d : E! N.

In simple terms, data is communicated along channels, repre-
sented by the edges of the graph, in atomic units of tokens. The ini-
tial placement of a token in a dataflow graph is represented as a
black circle on an edge. Edges have an infinite token capacity,
meaning that the number of tokens on an edge does not inhibit
the production of more tokens on that edge. HSDF actors require
a single token on each incoming edge before they are able to fire,
i.e. the actor has the data required for execution. In a Self-Timed
Schedule (STS) actors fire as soon as they are able. When an actor
fires, a token is atomically consumed from each incoming edge.
Upon completing execution, one token is produced on each outgo-
ing edge. CSDF extends HSDF with the ability to consume or pro-
duce zero or more tokens on each edge according to a cyclic
schedule. This makes it significantly easier to capture application
behaviour.

Each actor has an execution time. The (reciprocal of the)
throughput of a HSDFG is computed by finding the critical cycle
in the graph. This is derived by calculating the sum of actor execu-
tion times divided by the number of initial tokens on that path (i.e.
pipeline depth) for all cycles in the graph, and then taking the lar-
gest of these values. This Maximum Cycle Mean (MCM) and similar
analyses [11] are implemented by dataflow analysis tools such as
SDF3 [8].

The execution time of different firings of an actor may vary due
to data-dependent behaviour. However, for real-time applications,
we want to predict the worst-case (minimum) throughput of the
HSDF, that is possible for the actual actor execution times. We
achieve this by performing a worst-case analysis. The application’s
HSDFG is annotated with each actor’s WCET, enabling the applica-
tion’s worst-case throughput to be calculated using a so-called
Worst-Case Self-Timed Schedule (WCSTS) analysis [12]. The
throughput calculated for the WCSTS is guaranteed to be conserva-
tive in comparison to the STS of the application’s actual execution,
i.e. the application’s actual throughput can only be better than or
equal to the throughput derived from the WCSTS analysis. This is
due to the monotonicity of dataflow execution under an STS [12],
where a later actor finishing cannot lead to an earlier actor firing,
and conversely an earlier actor finishing cannot lead to a later actor
firing.
2.2. Modelling CompSOC

We use HSDF to model an application and its mapping, i.e. its
VEP, to a CompSOC platform instance, containing multiple shared
hardware resources with system software. A dataflow graph is exe-
cuted on the basis of token availability only: actors fire as soon as
they have a token on each input. However, mapping a dataflow
application on a real platform introduces resource constraints.

For example, when two actors use the same (single-threaded)
resource, such as a processor, then only one executes at any point
in time, even when both are enabled in the application graph. The
application HSDFG does not capture this behaviour, and must be
adapted by introducing new actors and edges, as defined in
Section 4. Resource virtualisation and scheduling pose similar
problems.
Please cite this article in press as: A. Nelson et al., Dataflow formalisation of rea
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Similarly, the application’s communication must also be
mapped to platform resources, as illustrated in Fig. 1. A simple
edge in the application graph is implemented with a software
FIFO communication protocol that uses the processor tile’s local
memories, DMA, NOC, and Static Random Access Memory
(SRAM) or Dynamic Random Access Memory (DRAM) memory
tiles. Each resource is modelled by additional actors and edges in
the application HSDFG, as explained in Sections 5–7.

Our strategy is therefore to encode all constraints in the HSDFG
model such that it models the application, all hardware and soft-
ware platform components, and the VEP, i.e. allocated resource
budgets. In Section 8 we define an algorithm that uses the
HSDFG of each component to generate a combined system model
for analysis. The final model only depends on the application and
its VEP, and thus the performance analysis of the application is
independent of other applications.

Our performance analysis computes the minimum guaranteed
throughput using the WCSTS. Since the CompSOC platform
executes dataflow applications using a STS, this is conservative
with respect to any execution of the application on the platform,
as discussed above.
3. CompSOC hardware platform overview

CompSOC offers its predictability in several stages. First, all
resources are predictable, i.e. offer service with a known WCET.
Second, all shared resources are scheduled with predictable arbi-
ters. Third, the behaviour of each actor mapped to a resource is
characterised by a HSDFG. For compositional performance verifica-
tion, this subgraph must be independent of other resources.
Finally, the subgraphs are then combined in one HSDFG describing
the performance of the application in its VEP, which is then veri-
fied. Since the VEP is defined by resource budgets for the applica-
tion only, verification is independent of other applications.

Fig. 2 presents an example CompSOC platform with three pro-
cessor tiles, one memory tile with DRAM, and a Thin-Film
Transistor (TFT) tile. Each tile and the NOC can operate in their
own clock domain, with Clock Domain Crossings CDCs used to
communicate between domains (DMAs and cmems function as
CDCs). In the following sections, we introduce the processor tiles,
memory tiles, and NOC, followed by the C-HEAP communication
library, and the POSe dataflow library, each with their correspond-
ing dataflow model.
4. Processor tile

As illustrated in Fig. 2, processor tiles contain a Microblaze pro-
cessor, configured as a single 5-stage in-order pipeline to increase
its predictability. Branch prediction is disabled because the branch
predictor state carries over from the execution of one actor (or
application) to the next, influencing the latter’s execution time.
This complicates WCET calculations, but worse, invalidates com-
posability, i.e. interference-free execution of multiple applications.
The processor has an instruction memory (imem) and a data mem-
ory (dmem) that are tightly coupled, i.e. have single-cycle access
via an Instruction/Data Local Memory Bus (LMB).

Since real-time applications can share the processor with non-
real-time applications that may not have a WCET, the
Composable and Predictable Microkernel (CoMik) [13] preemp-
tively divides the processor into Time Division Multiplexed
(TDM) time slices (service units) that are allocated to virtual pro-
cessors. Each virtual processor can perform scheduling [14] and
power management [15], receive interrupts and set timed inter-
rupt events, independently of other virtual processors. To achieve
this, we use a hardware Timer, Interrupt, and Frequency Unit
l-time streaming applications on a Composable and Predictable Multi-Pro-
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Fig. 2. CompSOC platform overview.

Fig. 3. Single-resource-constraint control edges.
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(TIFU) that offers a ‘‘HALT until deadline’’ instruction [16], timers,
timed interrupts, and exceptions per virtual processor, as well as
for the CoMik microkernel. The TIFU (accessed via a Fast Simplex
Link (FSL) connection) also allows run-time scaling of the fre-
quency of the processor and instruction and data memories at
run time. The DMAs (accessed via a DATA Processor Local Bus
(PLB)) with memories (dmamem) for incoming and/or outgoing
data (accessed from DMAs via Device Transaction Level (DTL) con-
nection), and communication memories (cmem) for incoming data
(accessed from NOC via DTL connection) are discussed in detail in
Section 6.3.

Without virtualisation by CoMik, a single actor in the dataflow
application executing on a physical processor is modelled by a sin-
gle actor in the HSDFG model annotated with its WCET. When an
actor fires (details follow in Section 7) it has all its input tokens
and space for its output token. Since it only uses the instruction
and data memories that are tightly coupled to the processor, exe-
cution does not stall on shared resources, I/O, etc. As a result, the
computation of the WCET therefore only depends on the actor code
and the processor, which is simple for commercial WCET tools [17]
to compute. (Coherent) caches are not used in CompSOC because
the WCET of an actor would then depend on multiple resources
in the system, namely processor, NOC, and memory tile, which is
not compositional.

In the application dataflow graph it is possible that the same
actor can fire multiple times at the same time instant. This auto-
concurrency is not permitted in an implementation, since even if
the actor implementation is reentrant, a processor can only exe-
cute one instruction at the same time. The real behaviour is easily
modelled by introducing an edge from every actor to itself, with an
initial token, which forces at most one firing of that actor at any
point in time.

4.1. Intra-application processor sharing

In this paper, scheduling of actors within a real-time application
is assumed to be cooperative. Hence, only one actor belonging to
an application can execute per processor at any given time.
Please cite this article in press as: A. Nelson et al., Dataflow formalisation of rea
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Under a STS, actors start firing as soon as they have sufficient
tokens to do so, but multiple actors on the same processor may
concurrently have sufficient tokens to fire. Fig. 3(a) illustrates a
single resource on which all three actors are (incorrectly) able to
fire concurrently. The shared-resource constraint is therefore mod-
elled using additional (so-called) control edges in the HSDFG.
Fig. 3(b) shows the updated graph that ensures that actors fire
one at a time, in a Static-Order Schedule (SOS), starting with the
actor that has the initial token on its incoming control edge (actor
1 in the example).

4.2. CoMik for virtual processors

When an actor executes on a virtual processor it receives only
part of the processor capacity. CoMik [18,13] uses TDM arbitration
to divide the processor into fixed duration TDM slots with each slot
further divided into a CoMik slot followed by a Virtual Processor
(VP) slot. VP’s are allocated dedicated slots in the TDM table.
There is no upper bound on the number of slots that COMik’s
TDM table can have as it is maintained in software, but the number
of TDM slots is statically dimensioned at design time and set dur-
ing platform initialisation. The number of slots in the TDM table
provides the upper bound on the number of concurrent VPs on a
processor and hence the number of concurrent applications also.

CoMik’s TDM arbitration can be conservatively modelled as a
latency-rate server [19] that can be represented as a HSDFG of
l-time streaming applications on a Composable and Predictable Multi-Pro-
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Fig. 5. HSDFGs of a three-actor SOS on a physical and CoMik virtual processor.
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two actors [20], see Fig. 4. The R actor represents the
conservatively sustainable rate of the TDM table while the L actor
represents the latency before the rate R is conservative. Rate
R ¼ S=T, where S is the number of cycles of service received in a
single table length divided by the number of cycles for a single
table length T. Latency L ¼ r � R�1, with r ¼ T � Sþ 1 is the TDM
table’s Worst-Case Response Time (WCRT). An actor a that has a
WCET t on a physical processor, its WCET on a virtual processor
is modelled by a latency-rate graph with unchanged latency
L and updated R�1

a ¼ t � R�1.
For example, in the CompSOC system of Section 9.1, a CoMik

slot has 4; 096 cycles and a virtual processor slot 65,536 cycles.
A virtual processor receiving five out of ten TDM slots has a sus-
tainable rate R of 8 virtual cycles for every 17 cycles of the physical
processor (1). This rate is conservative after a latency of
L ¼ 368;639 cycles (2). If actor a’s WCET is 5000 cycles, then its vir-
tualised WCET is R�1

a ¼ 10;625 cycles (3).

R ¼ 5� 65;536
10� ð65;536þ 4096Þ ¼

8
17

ð1Þ

L ¼ 10� ð65;536þ 4096Þ � 5� 65;536þ 1� 17
8
¼ 368;638:875

ð2Þ

R�1
a ¼ 5000� 17

8
¼ 10;625 ð3Þ
4.2.1. HSDF application virtualisation
We now combine the above techniques, in a novel manner, to

map multiple actors of a single application on a single virtual pro-
cessor. CoMik’s TDM table length and virtual processor slot alloca-
tion are configured (possibly differently) per core. The CompSOC
platform is also a GALS system, and as such, the clock on each pro-
cessing tile, and therefore CoMik’s TDM tables cannot be assumed
to be synchronised. All these, coupled with dynamic variations in
actor execution time, mean that data can arrive and enable an actor
to fire at any moment within CoMik’s TDM table.

Fig. 5 illustrates how the HSDF modelled latency-rate server is
incorporated into the SOS, to express that each actor could experi-
ence the WCRT of the virtual processor’s allocation in CoMik’s TDM
table. Each application actor v is split into a latency and rate actor,
as defined in Section 4.2. The incoming edges of the actors are con-
nected to their respective latency actors that represent the worst-
case duration before the task is processed at the sustainable rate of
the virtual processor, once the task is enabled to fire. The outgoing
edges from the task actor v are connected to the their respective
rate actors. The self edges of the rate actors, are optional here, as
the SOS control edges already prevent their auto-concurrency.

4.3. GALS multi-core CoMik TDM alignment

When the model that we present in Section 4.2.1 is annotated
with the calculated latency and rate values derived from
Section 4.2, it enables the derivation of conservative timing bounds
assuming inter-core communication always experiences the WCRT
of CoMik’s TDM table on the receiving core, i.e the communicated
Fig. 4. HSDFG representation of a latency-rate server, used to model virtual-
processor, NOC, and DRAM service.
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data always has a Worst-Case Arrival (WCA) time. While this can
be the case, it is an over pessimistic assumption in many instances.
This pessimism can be reduced for GALS systems in which the TDM
tables are symmetrically dimensioned and the alignment (phase
difference) of the TDM tables is temporally bounded. These bounds
can be achieved using GALS clock tree techniques, such as those
presented in [21].

In a multi-core system, CoMik TDM tables are symmetrically
dimensioned when for each core (1) the CoMik slot has the same
duration (2) the VP slot has the same duration, (3) the TDM tables
have the same number of slots, and (4) the application is allocated
the same slots in each table. If the TDM tables are also Fully
Aligned (FA), then the latency of the TDM table’s latency-rate tim-
ing abstraction only needs to be taken into account once for the
rate to be conservative for the rest of the execution. The FA case
is the same as having a bounded alignment of zero. If the bounded
alignment is greater than zero, then the TDM table’s latency minus
the alignment bound is taken into account once, and the VP latency
actors, Ln in Fig. 5(b), are annotated with a duration equal to the
alignment bound. If the alignment bound equals the TDM table’s
latency then the analysis is therefore the same as for the WCA
assumption.

We provide an experimental analysis of the conservativeness
and accuracy of modifying the annotated timing of the VP’s latency
component of its latency-rate server abstraction in Section 9. Our
modification improves the tightness of the prediction and is not
required by our technique to produce a conservative timing analy-
sis. We leave a formal proof of the conservativeness of our timing
modification as future work.

5. Memory tiles

Memory tiles support both SRAM [4], and DRAM memories [22–
24]. As illustrated in Fig. 2, each requestor for a memory has a con-
nection to the memory tile. Since transactions of a requestor sent
to memory tiles may be of any size and may arrive at any rate,
so-called atomisers chop transactions into smaller finite-size
transactions called atoms. These atoms are arbitrated using round
robin, TDM, or Credit Controlled Static Priority (CCSP) [25] arbitra-
tion. Each atom is then executed non-preemptively with a guaran-
teed WCET by the memory [26]. SRAM tiles offer single-cycle read
and write access, and DRAM tiles offer fixed-size read and write
access, implemented with DRAM patterns (of about 30 cycles for
a 64 B access to the DDR3 memory on our FPGA). (If TDM is not
used, then composability requires a delay block that delays each
response to its WCRT [27,28]. Since this does not affect predictabil-
ity, it will be ignored in the remainder.) Responses for a single orig-
inal transaction are coalesced on return.

When a dataflow token is stored in a memory tile, then it will be
copied there by a tile DMA (see next section). As a result, all trans-
actions arriving at a memory tile have a known size and the effect
of atomisers can be taken into account in the memory tiles data-
flow model. Here, we abstract the guaranteed timing behaviour
l-time streaming applications on a Composable and Predictable Multi-Pro-
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of each requestor at a memory tile by a latency-rate server mod-
elled as an HSDFG, with latency and rate values as computed in
[28].

6. Communication with NOC and C-HEAP

In this section, we describe the NOC hardware, how to model
finite-capacity channels, and the C-HEAP software communication
protocol.

6.1. Network on Chip

The Æthereal Network on Chip (NOC) [29,30] connects the tiles.
It provides virtual point-to-point connections that have predictable
upper bounds on throughput and latency. The connections time
share the hardware along their path using TDM arbitration, config-
ured to avoid all contention. Transaction requests and responses
use independent connections. Since as for memories, incoming
transactions may be infinitely long or stall halfway, the NOC net-
work interfaces preempt incoming data into service units (flits)
of three words. Each connection in the NOC can be modelled as a
HSDFG at various levels of abstraction [5]. Below, we use a
latency-rate model for a NOC connection, with latency and rate
computed as defined in [5].

6.2. Finite FIFO capacity

Application actors communicate using FIFO channels (Fig. 6(a))
with infinite capacity. However, after mapping on resources, i.e. in
a Virtual Execution Platform (VEP), their capacity is finite. In imple-
mentation, tokens in memory have a static finite size and the FIFO
buffer is an array with capacity for a finite number of tokens, as
described in Section 6.3. A FIFO buffer with finite capacity is mod-
elled as a HSDFG with two opposing edges. One edge represents
data transfer between the two actors, and the other the transfer
of free space in the buffer, as shown in Fig. 6(b). Thus, the effect
on throughput of a producer stalling on a slower consumer, or vice
versa, i.e. back pressure or flow control, is modelled correctly.
Fig. 6(c) illustrates two buffers of Bp and Bc tokens between a pro-
ducer (e.g. processor tile), NOC modelled with a latency-rate
HSDFG, and a consumer (e.g. another processor tile), respectively.
Note that individual components (e.g. NOC, memory tile) are mod-
elled with a latency-rate abstraction that does not incorporate back
pressure – this is handled by the combined HSDFG instead.

6.3. C-HEAP FIFO communication

Finite-capacity FIFOs are used for streaming peer-to-peer com-
munication, e.g. for requests or responses of a transaction. When
an actor sends a token to another actor of the same application,
Fig. 6. HSDFGs for FIFO and NOC.
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multiple transactions are required. The C-HEAP [31] library imple-
ments this higher-level protocol for multiple processors with dis-
tributed shared memories, cf. Fig. 2. Actors on the same
processor tile communicate using the local data memory (dmem).
When producer and consumer actors reside on different tiles, e.g.
actors 1 and 3 in Fig. 1, the producer writes the token in a dmamem
and instructs the DMA to write the data over the NOC in a cmem of
the consumer tile. The processor tile’s local memories (dmem,
cmem, dmamem) are fast since they are tightly coupled to the pro-
cessor, but also relatively small. Larger on-chip SRAM or off-chip
DRAM remote shared memories can also be used, in which case
the producer DMA writes data into the remote memory, and the
consumer DMA reads the token from the remote memory.

C-HEAP safely synchronises access to shared data in the dis-
tributed shared memories of the CompSOC platform. Resources
are never locked with semaphores or otherwise, since this invali-
dates composability: the execution time of one actor would
depend on the behaviour of another actor, rather than only on its
allocated budget. Instead each C-HEAP channel uses a Write
Counter (WC) and a Read Counter (RC) in a shared memory that
indicate the position to which data has been written and read,
respectively, in a circular FIFO. Actors poll the WC and RC to com-
pute the availability of data or space in the FIFO before either writ-
ing data or reading data. After this, they either increment the WC
(producer only) or RC (consumer only). Since memory accesses to
a single word are atomic, no locking is therefore required. For best
performance, only posted writes over NOC are used, with a local
copy of the counters. Fig. 7(a) and (b) illustrate this for communi-
cation without and with shared remote memory, respectively,
which are the most common channel mappings.

Fig. 7(a) is modelled by the novel HSDFG model shown in
Fig. 7(c). The actors in the HSDFG are marked with the transaction
enumeration from Fig. 7(a) to show which transaction timings they
represent, with some actors representing the timing of multiple
transactions.

The C-HEAP FIFO is initially empty with its buffer capacity rep-
resented by B initial tokens in Fig. 7(c). The producing task checks
for space in the buffer by comparing RC and local WC. The produc-
ing actor can subsequently fire if there is space in the FIFO and also
enough space in its local output buffer of capacity Bp. Once the pro-
ducing task has completed, DMA transactions 1 & 2 write the data
and updated WC into the consuming tile’s cmem. The timing of
these transactions is represented by two dataflow actors. The first
actor models the time taken by the DMA to write the data followed
by the WC onto the NOC. The second actor models the time taken
for the last word of transactions 1 & 2 to be transported by the NOC
and written into the consumer cmem.

The consuming actor is enabled to fire whenever it observes the
presence of the data in the buffer by comparing its local RC and
WC. After its firing has completed, it updates the local RC and per-
forms transaction 3 to release the space. The timing of transaction
3 is modelled using two dataflow actors, which is similar to what
was described for the producer. The producing task is now able
to observe this space by comparing its RC and local WC.

Fig. 7(b) and (d) illustrate the same process when a SRAM or
DRAM memory tile is used. The HSDFGs capture that producer,
consumer, their DMAs and NOC operate in a parallel and pipelined
manner.
7. POSe dataflow execution library

The hardware and system software components described up to
this point are sufficient to write applications consisting of commu-
nicating tasks running on multiple shared processors, using dis-
tributed shared memories, including C-HEAP applications [31],
l-time streaming applications on a Composable and Predictable Multi-Pro-
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Fig. 7. Inter-tile C-HEAP FIFO communication using local memories only (a, c), and with local and remote memories (b, d).
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Kahn process networks [32], dataflow applications, or time-trig-
gered applications [14].

The POSe library simplifies writing dataflow modelled applica-
tions (HSDF/Synchronous Dataflow (SDF)/CSDF). The behaviour of
an actor is defined using a single function written in the C lan-
guage. Input/output tokens are function inputs by reference. The
function must be pure, i.e. is not stateful and has no side effects,
such as using static or volatile variables, or pointers to shared state.
The application programmer defines a C function for each dataflow
actor, and defines the firing rules and mapping of the actors. As
indicated by our novel dataflow model in Fig. 8, POSe wraps each
C function with standard functionality required for every dataflow
actor: (1) checking the actor’s firing rule; (2) reading the input
tokens into local memory; (3) firing the actor, i.e. executing the C
function on the input tokens, producing output tokens; (4) writing
the output tokens into appropriate memories.

In Step 1, for each input and output channel of the actor, C-
HEAP is used to check that input tokens are available, and space
is available for output tokens. Input tokens may reside in dmem
(local producer), cmem or remote shared memory (remote pro-
ducer). In Step 2, they are copied to local dmamem by the DMA,
before they can be accessed by the C function. The C function fires
in Step 3, producing any output tokens either in its dmem or dma-
mem. In Step 4, if required, the DMA copies the tokens to a remote
consumer tile’s cmem or shared remote memory. Recall that the
use of DMAs enforces composability by ensuring that the WCET
Fig. 8. Actors and POSe dataflow library.
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of the (wrapped) C function only depends on the processor and
its local memories.

Each actor in the application graph is expanded to the HSDFG of
Fig. 8, which captures the cost of inter-actor communication in a
physical tile. Sharing the processor with other actors (of same or
different applications) must be modelled additionally, using tech-
niques presented in Section 4. The next section explains how this
is done.
8. Modelling applications mapped on a platform

In the previous sections, we described the components required
to execute dataflow applications, as well as their individual mod-
els. We now combine all pieces to translate a dataflow application
mapped on a platform to a dataflow graph that models both the timing
of the application and the timing of the hardware and software com-
ponents of the CompSOC platform. Each application has its own
HSDFG that can be analysed independently.

Next, we explain our novel automated method to translate the
original application dataflow graph by modifying and adding data-
flow actors and edges, to take into account dependencies and
delays due to (8.1) mapping, (8.2) C-HEAP communication (incl.
DMAs, NOC, and memory tiles), (8.3) POSe dataflow library, and
(8.4) CoMik processor virtualisation using TDM.
8.1. Incorporating application mapping

The starting point of our technique is a mapped dataflow appli-
cation, produced by SDF3 or equivalent tools. Each actor of a data-
flow application is mapped on a processor, assuming a deadlock-
free SOS per processor. An example mapping of the dataflow appli-
cation of Fig. 9(a) is shown in Fig. 9(b). Actors 1 and 3 are mapped
to the processor on tile 1, and actors 2 and 4 to the processor on tile
2. Actors are scheduled with per-tile SOS which is captured with
the additional control edges, cf. Section 4.1.
l-time streaming applications on a Composable and Predictable Multi-Pro-
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8.2. Incorporating C-HEAP communication

The application mapping of Fig. 9(b) has two FIFOs between
actors on the same processor. These use C-HEAP, but require no
additional hardware resources. Also, since they contain only one
token, the reverse edges modelling their capacity may be omitted.
The two inter-tile C-HEAP FIFO communication channels do
require hardware resources: one or two DMAs, the NOC, and pos-
sibly a memory tile (cf. Section 6.3). The capacity of each FIFO is
modelled using a reverse edge with the number of initial tokens
equal to its capacity. The HSDFG of the FIFO depends on the mem-
ories on which the read and Write Counter and data are mapped, as
discussed in Section 6.3. Fig. 9(c) illustrates the HSDFG for the
example application.

Algorithm 1 incorporates the C-HEAP models from Section 6.3
into the mapped-application HSDFG. For example, applying it to
HSDFG of Fig. 9(b) results in Fig. 9(c). The algorithm iterates over
all of the C-HEAP edge pairs fðp; cÞ; ðc; pÞg# E that represent the
forward data path and the reverse space path of a single C-HEAP
FIFO from producer p to consumer c, replacing them with the
appropriate C-HEAP HSDFG, which is Fig. 7(c) in this case.
getCHEAPHSDFG: E� E! G returns the appropriate HSDFG repre-
sentation of the C-HEAP FIFO for the C-HEAP edge pair.

Algorithm 1. Incorporate Inter-Tile C-HEAP

Require: input HSDFG G (e.g. Fig. 9(b))
for all C-HEAP edge pairs fðp; cÞ; ðc; pÞg# E do

E E n fðp; cÞ; ðc; pÞg
G G[getCHEAPHSDFGðfðp; cÞ; ðc; pÞgÞ

end for
for all processors P do

Vp  getActorsðG; PÞ
for all DMAs D local to P do

Vd  getActorsðG;DÞ
G createSOSðG;VdÞ
G orderSOSactorsðG;Vp;VdÞ

end for
end for
return HSDFG G (e.g. Fig. 9(c))
C-HEAP FIFOs can share a single DMA, requiring a cycle of con-
trol edges to ensure sequential firing of all DMA actors. To add
these edges, Algorithm 1 iterates over all the DMAs of all the pro-
cessors, finding all the actors that belong to each DMA, before
forming a single SOS per DMA and ordering the actors relative to
the SOS of the task actors on the local processor. The function
getActors: G� H! V takes a graph G and a hardware resource H
and returns the set of actors V from G that represent the timing
of H. It is used to find the set of actors Vp that represent the proces-
sor P and the set of actors Vd that represent the DMA D.
createSOS: G� V ! G takes an HSDFG G and a subset of actors V
and returns a graph G with a cycle of control edges to the actors
V in G, forming a SOS. orderSOSactors: G� V � V ! G takes the
graph G and two subsets of actors V, ordering the SOS of the second
set of actors relative to the first. The algorithm uses this to order
the SOS of the DMA actors Vd relative to the ordering of the task
actors on the local processor Vp.

The result of applying Algorithm 1 to the HSDFG of Fig. 9(b) is
shown in Fig. 9(c). The two inter-tile C-HEAP edge pairs are
replaced with the C-HEAP HSDFG for C-HEAP communication using
local scratchpad memories, cf. Section 6.3. Both C-HEAP FIFOs use
the same DMA on each processing tile. Following Algorithm 1, the
actors modelling DMA transactions are added to a SOS per DMA
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and ordered relative to the task execution order of the local
processor.

8.3. Incorporating POSe dataflow library

The actors representing the processing actors of Fig. 9(c) are the
same as the original actors in the application graph in Fig. 9(a).
Section 7 explained how POSe implements the dataflow execution
model including firing rule checking, token copying, and actor fir-
ing (C function execution). Algorithm 2 describes how the POSe
dataflow library is incorporated into the combined application
and CompSOC platform HSDFG.

Algorithm 2. Incorporate POSe dataflow library

Require input HSDFG G (e.g. Fig. 9(c))
for all processors P do

Vp  getActorsðG; PÞ
for all actors v 2 Vp do

G substituteðG;v ;POSeTaskHSDFGðvÞÞ
end for

end for
return HSDFG G (e.g. Fig. 9(d))

The algorithm iterates over all actors in the HSDFG that model
processor actors, substituting each of them with the POSe
HSDFG. The function substitute: G� V � G! G takes a graph G
with an actor V to be substituted with a graph G and returns the
resulting graph G. The incoming edges of the substituted actor
are transferred to the first actor in the actor order of the replace-
ment graph, and the outgoing edges to the last actor.
POSeTaskHSDFG: V ! G takes an actor and returns the POSe
HSDFG for that actor.

The result of applying Algorithm 2 to the graph of Fig. 9(c) is
shown in Fig. 9(d). Each actor n is expanded to actors firing rule
sn, execute en and write wn. No read rn actors are present because
in this example no remote shared memory (SRAM or DRAM) is
used.

8.4. Incorporating CoMik microkernel

CoMik virtualises a single processor into multiple virtual pro-
cessors using TDM arbitration. Section 4.2 defined how to incorpo-
rate CoMik’s latency-rate server abstraction into the application
HSDFG. Algorithm 3 implements this, translating e.g. Fig. 9(d) into
Fig. 9(e).

Algorithm 3. Incorporate CoMik TDM Timing

Require: input HSDFG G (e.g. Fig. 9(d))
for all processors P do

Vp  getActorsðG; PÞ
for all edges ði; jÞ 2 E do

if i R Vp and j 2 Vp then
G substituteðG; j;CoMikLRserverðjÞÞ
Vp  Vp n j

end if
end for

Vp  getActorsðG; PÞ
for all actors v 2 Vp

G updateLRtimingðG;vÞ
end for

end for
return HSDFG G (e.g. Fig. 9(e))
l-time streaming applications on a Composable and Predictable Multi-Pro-
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The algorithm iterates over all the edges in the graph ði; jÞ for
every processor P. For the set of actors Vp belonging to P, if the pro-
ducing actor i is not in Vp and the consuming actor j is in Vp then
the edge ði; jÞ is an incoming inter-tile communication edge. The
function CoMikLRserver: V ! G takes an actor and returns the
latency-rate server HSDFG for that actor with the CoMik TDM
latency as described in Section 4.2. The algorithm then substitutes
the latency-rate graph for j in graph G. The actor j is then removed
from the set of actors Vp as the substitution only needs to occur
once per consuming actor. The function updateLRtiming:

G� V ! G takes the HSDFG G and an actor v and updates its
annotated timing tðvÞ to correspond with its execution time on
the virtual processor R�1

v , as described in Section 4.2. The latency
actors of CoMik’s latency-rate server abstraction, are appended to
the incoming inter-tile communication edges.

Finally, Algorithms 1–3 are executed sequentially to create a
HSDFG of an application executing in a VEP. This algorithm is exe-
cuted independently for each dataflow application running on the
CompSOC platform.

9. Experiments

Having described in the previous sections how dataflow mod-
elled real-time streaming applications that are mapped onto a
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CompSOC platform are modelled as an HSDFG for timing
analysis, we proceed to demonstrate the accuracy of our modelling
technique. To do this, we execute applications on a Field
Programmable Gate Array (FPGA) prototyped four core CompSOC
platform and compare their actual timings with those predicted
by timing analysis of the application’s associated HSDFG. For this
purpose, we use both the example application from Fig. 9(a)
(which we will henceforth refer to as the synthetic application),
and an H.263 decoder application with which we decode various
video streams. In this section, we will show:

� our technique applied to both a synthetic and H.263 decoder
application,
� the tightness of our technique using applications with tasks that

constantly execute with WCETs,
� that our technique conservatively bounds the timings of GALS

systems, ranging from 100% synchronous FA clock and symmet-
ric TDM table, to systems where the alignment of TDM tables
are unknown and all inter-core communications are conserva-
tively assumed to arrive with WCA,
� that the tightness of the bounds predicted by our technique

depends on the amount of knowledge of the system, i.e. the
alignment of the TDM tables,
l-time streaming applications on a Composable and Predictable Multi-Pro-
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� that our technique can correctly predict trends, e.g. whether an
improvement in throughput is expected when moving between
mappings.

The CompSOC platform that we use for our experiments has
four homogeneous processor tiles executing at 120 MHz, with local
instruction, data, communication and DMA memories. Each tile has
multiple DMAs, but for the purposes of composability, each DMA is
only used by a single application on each tile. To simplify exposi-
tion, in our experiments, each application is allocated a single
DMA per tile.
9.1. Synthetic application

We start our experimentation by comparing the actual graph
iteration finishing times of the synthetic application, as measured
on the FPGA prototype of the CompSOC platform, with the pre-
dicted latency and throughput of its HSDF model from Fig. 9(e).
The synthetic application is structured following Fig. 9(a) with
each actor representing a task and each edge a C-HEAP FIFO
between the tasks. For the purposes of ascertaining the accuracy
of the model for worst-case analysis, each task has a constant exe-
cution time and therefore always executes at its worst-case. Each
CoMik instance is configured to have a TDM table length of ten
slots with five slots allocated to the synthetic application’s VP.
Each TDM slot comprises of a CoMik slot and a VP slot, with dura-
tions of 4,096 and 65,536 cycles, respectively. The finishing times
of the application’s graph iterations, as measured from the FPGA
instance of the CompSOC platform, are presented in Fig. 10(a).
The synthetic application can be seen to make progress (complete
graph iterations) whenever its VP is scheduled for five out of the
ten iterations of the TDM table, creating the impression of ‘‘steps’’.
The CoMik overhead between its five allocated slots also prevents
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application progress, but is so small that it is unnoticeable in the
graph.

The predicted timings of the application’s HSDF model are also
presented in Fig. 10(a), and the predicted latency and rate can be
seen to conservatively bound the synthetic application’s actual fin-
ishing times. The effect on timing performance of the VPs’ TDM
allocation is captured by a latency-rate abstraction, as described
in Section 4.2. The rate of execution of each VPs is calculated as
8 virtual cycles per 17 cycles of the physical processor. The timings
of actors sf1;2;3;4g; ef1;2;3;4g, wf1;2;3;4g, from Fig. 9(e), are modified to
reflect the virtual rate of execution.

The VP’s rate of execution is sustainable after a latency of
368639 cycles, as derived by (2) in Section 4.2. In Section 4.3, we
described how knowledge about the alignment and dimensioning
of the TDM table is used to reduce pessimism in the model. In
the most pessimistic case, it is assumed that data communicated
between cores always arrives at the WCA time. In this case, the
latencies L1 and L2 from Fig. 9(e) are annotated with the latency
of the CoMik TDM table for that tile. Alternatively, if the TDM
tables are symmetrically dimensioned and FA (100% synchronous),
the latency of the VP’s latency-rate abstraction is conservatively
taken into account as a single offset before the rate of the VP is sus-
tainable, as described in Section 4.3, with zero delay being assigned
to L1 and L2. The results presented in Fig. 10(a) for the FPGA imple-
mented CompSOC platform has cycle-accurate FA CoMik TDM
tables on each core. The HSDF model’s prediction achieves a con-
servative bound for both the WCA and FA cases. The FA method
achieves a tighter bound (predicting throughput to within 1.65%
of the actual case) than the WCA method (predicting throughput
to within 91.68%). In some GALS systems, it may not be possible
to bound the TDM table alignment, or it may be desirable to use
a non-symmetric CoMik TDM configuration, and for these
instances, the WCA method still gives a guaranteed conservative
timing bound.
l-time streaming applications on a Composable and Predictable Multi-Pro-
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Fig. 11. HSDFG of the H.263 decoder application.
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If it is possible to bound the alignment of the TDM tables, it is
possible to get a less pessimistic conservative timing bound.
Fig. 10(b) presents the synthetic application’s measured through-
put, from the CompSOC FPGA implementation, for the complete
range of TDM table alignments, which is achieved by misaligning
the application’s TDM allocations on each core. It also presents
the throughput predicted by the HSDF model when annotated with
the TDM table’s alignment bound. The bounded alignment (BA)
annotation method uses a single VP latency offset minus the align-
ment bound, and annotates latencies L1 and L2 with the alignment
bound. If the misalignment is zero, then the BA annotation matches
the FA case, while if the misalignment is equal to the VP latency,
then the BA annotation matches the WCA case. From Fig. 10(b) it
can be seen that the predicted throughput is quite tight (to within
1.86%) when there is no misalignment, but becomes less tight as
the TDM tables are more misaligned. This happens because the
model assumes that every iteration of the graph is affected by
the misalignment, but since multiple graph iterations can finish
within a single slot, as can be seen in Fig. 10(a), while the applica-
tion still has some slots that are scheduled concurrently, this is not
the case. As the tables become more unaligned, more iterations of
the graph are affected by the misalignment and the accuracy of the
model increases again. From this, it can be seen that the WCA
annotation can be tightly accurate (to within 0.4% in Fig. 10(b))
while conservatively bounding all other alignments.
9.2. H.263 decoder

We proceed to apply our technique to an H.263 decoder that
has data dependent task execution times. The HSDFG of the
H.263 decoder is illustrated in Fig. 11. The decoder consists of five
tasks; Variable Length Decoding (VLD), Inverse Quantisation (IQ),
Inverse Discrete Cosine Transform (IDCT), Motion Compensation
(MC) and Frame Reconstruction (FR) (combined into a single task),
and Up Scaling (UP). Fig. 10(c) presents the frame finishing times
from multiple decoding runs and the predictions from the FA and
WCA modelling cases. Three different videos (akiyo, bus and tree
[33]) are used as input for the H.263 decoder. To demonstrate
the accuracy of our technique for worst-case analysis, the wcet
run executes the H.263’s tasks with the constant worst-case task
timings measured from the runs of the three videos.

The H.263 decoder is mapped onto all four cores of the FPGA
prototyped CompSOC platform, with FA symmetric CoMik TDM
tables. Each table has three slots, of which two are allocated to
the H.263 decoder’s VPs. Each TDM slot is configured to have a
CoMik slot duration of 4096 cycles and a VP slot duration of
196,608 cycles. From Fig. 10(c), it can be seen that the FA and
WCA annotated HSDF model predictions conservatively bound
the three video runs and the wcet run, although it is hard to see
from Fig. 10(c) that the FA annotated model conservatively bounds
the wcet runs timing because the FA prediction is so tight that the
wcet and FA lines appear to overlap at this scale. As the three
videos (akiyo, tree and bus) generally have better than worst-case
task execution times, their achieved throughput is higher than for
the wcet execution and therefore also the HSDF model predictions.
This is a limitation of worst-case analysis in general and is not
specific to our technique. What is important, is that our technique
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conservatively bounds the application’s worst-case execution, and
it achieves this.

For our final experiment, we compare the accuracy of the H.263
decoder’s HSDF model throughput prediction with the throughput
achieved by the H.263 decoder executing with constant task WCET
on the FPGA instance of the CompSOC platform (wcet), for the
H.263 decoder mapped onto one to four cores. Apart from the
application mapping, the platform is configured the same as for
the previous H.263 decoder experiment. From Fig. 10(d), it can
be seen that the FA annotated model that matches the platform’s
alignment achieves a tight conservative bound for the four map-
pings. The WCA also achieves a conservative bound, which is less
tight but also bounds the application’s throughput if the TDM
table’s alignment was unknown. While the WCA bound is conser-
vative for all table alignments, Fig. 10(d) shows that for a platform
with a bounded and relatively small variation in TDM, the WCA
bound becomes less accurate as the number of cores increases.
This is due to the pessimistic assumption that every inter-core
communication arrives at the worst-case time in the TDM table,
and therefore incurs a WCRT. Both the FA and WCA HSDF annota-
tions correctly show that the two core mapping of the H.263 deco-
der does not offer an advantage for application throughput over
the single core mapping. The FA predicted throughput also cor-
rectly shows that the three and four core mappings perform better
for application throughput than the single core mapping, whereas
the WCA predicts throughputs worse than the single core mapping
for the three and four core mappings. Both FA and WCA correctly
predicts an improvement in graph throughput moving from a
two core to three core mapping, and from a three core to four core
mapping.

From our experimentation, we can conclude that our
technique conservatively and accurately models application
worst-case timings when mapped onto multiple cores of the
CompSOC platform. The accuracy of our technique is better if the
alignment of symmetrically dimensioned CoMik TDM tables on
the cores can be bounded. Regardless of the TDM table’s alignment
or dimensioning, our technique is still able to produce
conservative timing predictions for application graph latency and
throughput.
10. Related work

Our work touches on many aspects of design and performance
verification of real-time systems and their components, and there
is hence a larger body of related work than can be exhaustively dis-
cussed. To structure the discussion, this section addresses related
work in two parts. The first part focuses on complete systems
and system-level approaches to address the performance verifica-
tion problem, while the second considers design and analysis of
individual platform components.
10.1. Systems

Time-Triggered Architectures [34] (TTA) and Precision-Timed
Systems (PRET) [35] are two well-known approaches to design
time-predictable and composable real-time systems. TTA [34] is a
well-established approach to building safety-critical embedded
systems with real-time applications, popular in the avionics and
automotive domains. Timing isolation is provided by only allowing
interactions between components at pre-computed points in time.
In terms of scheduling, it means that TTA uses non-work-conserv-
ing scheduling both within and between applications, while our
processor scheduling within an application is work-conserving to
improve efficiency. The PRET programming model [36] and
platform [37] focus on timing repeatability, which is similar to
l-time streaming applications on a Composable and Predictable Multi-Pro-
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our notion of composability, to address the verification problem of
real-time systems. However, unlike our approach, they
achieve this property by privatising (parts of) their hardware
resources, negatively impacting scalability. We discuss this issue
further in the context of their platform components in the follow-
ing section.

Earlier work has considered resource budgeting/reservation and
virtual platforms, similar to our VPs, to simplify verification by pro-
viding performance isolation for applications. A vision for a multi-
core resource management framework based on virtual private
machines was proposed in [38], although it does not concretely
explain how to satisfy real-time requirements. In contrast, the
ACTORS project [39] focused on adaptive resource management
for virtual platforms based on resource reservations. However,
the only resource that is explicitly managed is the CPU time and
interference in other shared resources, such as interconnect or
memory, is seen as load variations that are dealt with by adapting
the CPU time allocation and application service levels. In contrast,
we support static resource reservations in all shared resources and
have an automated tool flow to find configurations that satisfy
requirements. Other approaches based on timing isolation briefly
worth mentioning are [40–43], and real-time virtual resources
[44].

Many recent European research projects, such as (par) MERASA
[45,46], T-CREST [47] (this issue) and PROARTIS [48] have worked
on time-predictable architectures and developed both hardware
components and their corresponding timing analyses. In fact, the
T-CREST MPSOC uses modified versions of our NOC and memory
controller. However, all these projects focus on determining the
WCET of application tasks on different platforms of varying com-
plexity using static analysis [45–47], measurement-based
approached [45,46], or probabilistic analysis [48]. The obtained
WCETs enable system-level analysis using traditional real-time
techniques, which are well-suited for many real-time applications.
In contrast, we model all real-time applications and hardware
components as data-flow actors, which fits very well with real-
time streaming applications that may have cyclic dependencies,
and also accurately captures hardware constraints, such as finite
buffers.

This article extends our earlier work [4,5,1] by including proces-
sor sharing, DRAM, atomisers, and the complete software stack in
the platform and performance analysis. Closest to our work are
[49,50] that also use dataflow for real-time performance analysis.
These works can verify multiple real-time applications, but do
not consider the presence of non-real-time applications.
10.2. Platform components

A definition of time-predictability and a survey of recent
advances for building time-predictable embedded systems, consid-
ering both hardware and software components, is provided in [51].
A commonly used approach [52,53,36] for designing time-pre-
dictable hardware components is to discard the architectural fea-
tures that only improve average performance.

Similarly to our processor tile, PRET’s predictable processor
[16,54] has timing instructions like HALT with deadline [55]. An
important difference with our processor is that PRET uses a priva-
tised hardware thread per application, making it less scalable than
our use of TDM implemented with a software microkernel. Many
existing microkernels offer partitioning, e.g. with the ARINC
standard [56], VxWorks, OKL4 [57], PikeOS, INTEGRITY, and
LynxOS-178. However, unlike the CoMik microkernel, neither
of these provide cycle-accurate isolation between partitions.
Please cite this article in press as: A. Nelson et al., Dataflow formalisation of rea
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These microkernels hence suffice for verification of real-time
applications, but they cannot offer composable verification to
non-real-time applications.

Several real-time memory controllers have been proposed.
Similarly to our controller, most of them use a close-page policy
to reduce the worst-case response time of each memory request
[58,59]. The PRET memory controller [60] combines this with
memory bank privatisation per application to achieve repeatable
timing. Bank privatisation is also used in [61], which combines it
with an open-page policy and applies static analysis of memory
addresses to guarantee locality among the memory requests of
an application to reduce its WCET. Although these two works
clearly demonstrate benefits with bank privatisation, the number
of applications is limited by the number of banks, causing the
approach to scale poorly to complex systems with many applica-
tions. Furthermore, with the exception of [60], the provided analy-
ses focus on bounding execution times of single outstanding
requests and do not efficiently deal with memory traffic generated
by DMAs or hardware accelerators that are common in systems
with streaming applications.

TDM-based NOCs communication have also been proposed in
[62,63]. For the T-CREST platform [47] (this issue), our NOC has
been improved [64] by removing end-to-end flow control at the
cost of not offering streaming connections. It is also asynchronous,
which improves scalability in combination with GALS. Alternative
NOCs based on more expensive virtual-circuit buffering have also
been proposed.

11. Conclusions

In this paper, we presented a dataflow formalisation to indepen-
dently model concurrent real-time streaming applications executing
on a mixed-time-criticality platform. We focussed on the compos-
able and predictable CompSOC platform that contains multiple
processors, NOC, and SRAM/DRAM Distributed Shared Memory
(DSMs), connected in a GALS manner, executing system software,
in particular a microkernel and dataflow communication libraries.
Real-time streaming applications running on top of the system
software are written following any dataflow paradigm that is
translatable to a timing equivalent HSDF, whereas other applica-
tions may use any programming model. We presented all of the
hardware and software components together with their dataflow
models, and the algorithms that combine them into a single model
of a real-time streaming application executing on the platform. The
models of the software stack and the algorithms are novel. Each
application can be verified independently of other (non) real-time
applications. Finally, we verified that the performance of real-time
applications as computed automatically by our tool flow is conser-
vative and accurate compared to the performance as measured on
an FPGA implementation of the hardware & software platform for
synthetic and real H.263 applications.
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