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Abstract Memory controller design is challenging as mixed time-criticality embed-
ded systems feature an increasing diversity of real-time (RT) and non-real-time (NRT)
applications with variable transaction sizes. To satisfy the requirements of the applica-
tions, tight bounds on the worst-case response time (WCRT) of memory transactions
must be provided to RT applications, while the lowest possible average response time
must be given to the remaining applications. Existing real-time memory controllers
cannot efficiently achieve this goal as they either bound the WCRT by sacrificing the
average response time, or cannot efficiently support variable transaction sizes. In this
article, we propose to use dynamic command scheduling, which is capable of effi-
ciently dealing with transactions with variable sizes. The three main contributions of
this article are: (1) a memory controller architecture consisting of a front-end and a
back-end, where the former uses a TDM arbiter with a new work-conserving policy
and the latter has a dynamic command scheduling algorithm that is independent of
the front-end, (2) a formalization of the timings of the memory transactions for the
proposed algorithm and architecture, and (3) an analysis of WCRT for transactions to
capture the behavior of both the front-end and the back-end. This WCRT analysis sup-
ports variable transaction sizes and different degrees of bank parallelism. The critical
part of the WCRT is the worst-case execution time (WCET) of a transaction, which
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is the time spent on command scheduling in the back-end. The WCET is bounded by
two techniques applied to both fixed and variable transaction sizes, respectively. We
experimentally evaluate the proposed memory controller and compare to an existing
semi-static approach. The results demonstrate that dynamic command scheduling sig-
nificantly outperforms the semi-static approach in the average case, while it performs
equally well or better in the worst-case with only a few exceptions. The former reduces
the average response time for NRT applications, and the latter pertains the WCRT for
RT applications.

Keywords Real time · Memory controller · SDRAM · Formalization · Variable
transaction sizes · Worst-case execution/response time

1 Introduction

The complexity of mixed time-criticality system design is growing as an increas-
ingly diverse mix of real-time and non-real-time (NRT) applications are integrated
on the same platform. To provide the necessary computational power at reasonable
power consumption, there is a trend towards heterogeneous multi-core systems where
important functions are accelerated in hardware (Benini et al. 2012; van Berkel 2009;
Kollig et al. 2009). The diversity of applications and processing elements in such sys-
tems is reflected in the memory traffic going to the shared SDRAM, which features
an irregular mix of transactions with variable sizes and heterogeneous requirements
(Stevens 2010; Gomony et al. 2014). For example, the memory requestors in the
NXP digital TV SoC (Kollig et al. 2009; Hansson and Goossens 2011) have small and
large transaction sizes, as well as different bandwidth and response time requirements.
Memory transactions from real-time applications require tightly bounded worst-case
response time (WCRT), while the lowest possible average response time are needed
by NRT applications to be responsive. Since memory controllers typically consists of
a front-end and a back-end (Akesson et al. 2007; Krishnapillai et al. 2014), the WCRT
of a transaction is composed of the maximum interference delay caused by interfering
transactions from other memory requestors in the front-end and its execution time
consumed by scheduling commands in the back-end. Therefore, the WCRT captures
the behavior of both front-end and back-end, and it is based on the WCET that cap-
tures the behavior of the back-end. A particular challenge when bounding the WCET
of memory transactions is that the bound depends on the memory-map configuration,
which is used to provide different trade-offs between bandwidth, execution time, and
power consumption, by varying the number of banks that are used in parallel to serve
a transaction (Goossens et al. 2012).

Most existing memory controllers are not designed with real-time applications in
mind and do not provide bounds on WCRT of transactions (Ipek et al. 2008; Kim
et al. 2011; Hur and Lin 2007). Existing real-time memory controllers address real-
time requirements by using either (semi-)static or dynamic command scheduling.
The former provide bounds based on their static command schedules that are worst-
case oriented, and cannot provide low average response time to NRT memory traffic
(Bayliss and Constantinides 2009; Akesson and Goossens 2011; Reineke et al. 2011).
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Fig. 1 A general real-time SDRAM controller supporting different requestors.

The latter can provide WCRT bounds and have lower average response times. However,
they are limited in architecture or analysis to a single transaction size andmemorymap
configuration (Paolieri et al. 2013; Shah et al. 2012; Choi et al. 2011; Wu et al. 2013;
Krishnapillai et al. 2014; Kim et al. 2014), resulting in inefficiency for applications
with variable transaction sizes.

This article addresses the memory problem of mixed time-criticality systems by
providing tight bounds on the execution time and response time for RT memory trans-
actions, while at the same time providing low average execution time and response
time for both RT and NRT transactions in systems with variable transaction sizes and
different memory map configurations. Fig. 1 shows an overview of our contributions
for a real-time memory controller, and also the corresponding section for each of them
in this article. We subdivide the three main contributions as mentioned in the abstract
into the following five items in more detail:

(1) A memory controller architecture with a front-end and a back-end, as illustrated
in Fig. 1. (i) The front-end receives transactions with variable sizes and schedules
them by a TDM arbiter with a new work-conserving policy that exploits the back-
end properties to reduce the WCRT. (ii) The back-end architecture is designed to
support transactions with variable sizes and different memory-map configurations.
It executes transactions sent by the front-end with a dynamic command scheduling
algorithm that provides pipelining between successive transactions. This back-end
can be used with any existing real-time memory controller front-end (transaction
arbiter), such as Akesson et al. (2008) and Goossens et al. (2013), not just the one
proposed here.

(2) A formalization of the timing behavior of the proposed dynamic command arbiter
that captures all the SDRAM timing constraints within and between memory
banks.

(3) A generic WCET analysis of an arbitrary transaction in the back-end parametric
on the size of the previous transaction. Moreover, the WCET is derived for two
specific cases: transactions with fixed size, and with variable sizes. This is achieved
by two techniques. The first is analytical and is easy to use, but produces a slightly
pessimistic WCET. The second technique employs our formalism to derive the
worst-case initial states of banks and then uses an off-line implementation of the
command scheduling algorithm to compute a tight WCET.
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(4) The result that the WCET is monotonic in the transaction size. It is therefore
safe to assume the maximum transaction size of a requestor with transactions of
variable sizes when computing its WCRT.

(5) The WCRT analysis of transactions based on their WCET for fixed size and
variable sizes, respectively, by adding a novel TDM arbitration mechanism in the
front-end, as indicated by Trans Arbiter in Fig. 1.

We experimentally evaluate the proposed architecture, formalization and analy-
sis with fixed and variable transaction sizes, respectively. The results indicate that
the formalization is correct, and the WCET and WCRT of transactions are tightly
bounded. Moreover, we show that our dynamic command scheduling significantly
outperforms a state-of-the-art semi-static approach (Akesson and Goossens 2011) in
average execution time and response times, and performs equally well or slightly bet-
ter in the WCET and WCRT for different transaction sizes with only a few exceptions
that are highly dependent on particular transaction size and the timings of the DDR3
SDRAM. For example, the average execution time of 32 Bytes transactions is reduced
by 40.2 % for DDR3-800D, which is the main reason we gain 38.9 % improvement in
average response time for the Mediabench application jpegdecode (Lee et al. 1997).
Note that hard real-time systems have no interest in average results, but any mixed
time-criticality systems could profit in terms of soft/non-real time tasks getting shorter
response times while the WCRT of hard real-time tasks is still guaranteed. The results
also show that smaller transactions benefit more from dynamic command schedul-
ing because of a more efficient command scheduling pipeline between successive
transactions in the back-end.

In the remainder of this article, Sect. 2 describes the related work. The background
of SDRAM and real-time memory controllers are given in Sect. 3. Section 4 presents
the memory controller front-end, while Sect. 5 introduces the back-end. The timing
behavior of transactions under our dynamic command scheduling is formalized in
Sect. 6. With the formalization, Sect. 7 defines the worst-case initial states for a trans-
action, which is used to derive the worst-case finishing time in Sect. 8. The WCET is
then computed in Sect. 9, before the WCRT analysis is presented in Sect. 10. Experi-
mental results are given in Sect. 11, before the article is concluded in Sect. 12.

2 Related work

Analyzing the impact of using a shared memory on worst-case execution time of
applications receives increasing attention in the real-time community, as multi-core
systems challenge the traditional single processor-centric view on systems. Most of
this work focuses on commercial-off-the-shelf systems and consider the system bus
and the memory controller as a poorly documented black box, whose access time is
typically represented by a constant obtained by assumptions or using measurements
(Dasari et al. 2011; Schliecker et al. 2010; Nowotsch et al. 2014). The work in this
article is complementary to this effort, as it focuses on the architecture and scheduling
algorithm of an important part of that black box (the memory controller) and provides
results that are required to derive that constant for different transaction sizes and
memory map configurations.
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Several types of real-time memory controller designs have been proposed in the
past decade. Static (Bayliss and Constantinides 2009) or semi-static (Akesson and
Goossens 2011; Reineke et al. 2011) controller designs are used to achieve a bounded
execution time. In Bayliss and Constantinides (2009), an application-specific static
command schedule is constructed using a local search method. However, it requires a
known static sequence of transactions, which is not available in a system with multiple
applications. A semi-static method is proposed in Akesson and Goossens (2011) that
generates static memory patterns, which are shorter sub-schedules of SDRAM com-
mands computed at design time, and schedules them dynamically based on incoming
transactions at run time. The drawback of this solution is that it cannot efficiently
handle variable transaction sizes as the patterns are statically computed for a partic-
ular size. When it is employed by transactions with variable sizes in a system, larger
transactions use the pattern multiple times, but smaller transactions use the pattern and
discard unneeded data. Reineke et al. (2011) presents a semi-static predictable DRAM
controller that partitions sets of banks into virtual private resources with independent
repeatable actual timing behavior. However, it requires constant duration of accessing
the virtual resources. Thus, the actual or average case execution time is equal to the
worst-case execution time.

Dynamic command scheduling is used because it more flexibly copes with variable
transaction sizes and it does not require schedules or patterns to be stored in hard-
ware. Several dynamically scheduled memory controllers have been proposed in the
context of high-performance computing, e.g., Ipek et al. (2008), Kim et al. (2011),
Hur and Lin (2007). These controllers aim at maximizing average performance and
do not provide any bounds on execution times, making them unsuitable for real-time
systems. Paolieri et al. (2013) propose an analytical model to bound the execution
time of transactions under dynamic command scheduling on a modified version of the
DRAMSim memory simulator (Wang et al. 2005), although the modifications to the
original scheduling algorithm are not specified. In addition, the analytical model is
limited to a fixed transaction size and a single memory map configuration. This also
applies to Shah (2012), where the WCET of transactions with fixed size is analyzed
on an FPGA instance of a dynamically scheduled Altera SDRAM controller using an
on-chip logic analyzer. In Wu et al. (2013) and Krishnapillai et al. (2014), a dynami-
cally scheduled controller is presented that combines the notion of bank privatization
with an open-page policy, which results in both low worst-case and average-case exe-
cution time. However, the analysis is limited to a single transaction size and memory
map configuration, and the assumption that the number of memory requestors is not
greater than the number of memory banks. The number of banks is at most 32 whereas
complex heterogeneous systems, such as Kollig et al. (2009), have more memory
requestors. This limitation also applies to Ecco et al. (2014). The memory controller
in Kim et al. (2014) employs First-Ready First-come First-Serve (FR-FCFS) policy to
dynamically schedule commands for transactions with different priorities. However,
its analysis of the WCET is pessimistic because of the conservative interference delay
among different memory commands. For example, the maximum switching delay
between write and read is always taken as the maximum delay for a read or write
command. The analysis is also limited to a single transaction size and memory map
configuration.
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In short, current real-time memory controllers do not efficiently address the dynamic
memory traffic in complex heterogeneous systems because of the limitations either
in architecture or in analysis with respect to variable transaction sizes and memory
map configurations, or both. To fill this gap, this article presents both a dynamically
scheduled memory controller architecture and a corresponding analysis that supports
different transaction sizes and memory map configurations. This requires a more elab-
orate analysis than previously published, since different timing constraints become
bottlenecks for different transaction sizes and memory map configurations, requiring
more of them to be included in the model. Our analysis is supported by a formal
framework in which the correctness of the results are proven, and by experimental
validation.

3 Background

This section presents the required background information to understand the contents
of this article. The architecture and basic operations of SDRAM memories are shown,
and then a general real-time memory controller that executes memory transaction by
scheduling commands to the SDRAM is introduced.

3.1 Introduction to SDRAM memories

An SDRAM chip comprises a set of banks, which contains memory elements arranged
in rows and columns (Jacob et al. 2007), as shown in Fig. 2a. All DDR3 memories
have 8 banks. Multiple such chips can be combined to form a DIMM with one or more
ranks, although without loss of generality, this article focuses on a single chip configu-
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ration, which is common in the embedded domain. The SDRAM interface consists of
command, address, and data buses. A single command is transferred per clock cycle,
while two data words are transferred per cycle by a contemporary DDR3 memory. To
issue a command, several timing constraints have to be satisfied, as specified by the
JEDEC DDR3 standard (JEDEC Solid State Technology Association 2010). Note that
although this article focuses on DDR3 SDRAMs, it requires only minor adaptations
to work with other types of SDRAMs, such as DDRx, LPDDRx and Wide I/O.

To access a bank, the contents of the required row must be copied into the row buffer
by issuing an Activate (ACT ) command, which takes tRCD cycles. As a result, the
required row is open. Then, a set of Read (RD) or Write (WR) commands are issued to
the open row to transfer bursts of a programmed burst length (BL) (typically 8 words).
The first bit of the required data exists on the data bus after tRL cycles when issuing
the RD command, while the delay between the WR command and the availability of
the first bit of the input data on the data bus is tWL cycles. Before activating another
row in the same bank, the current row must be closed by issuing a Precharge (PRE)
command to write back the contents to the storage cells. The PRE command can be
issued no earlier than tRAS cycles after the ACT command and tRTP cycles after the
RD command to the same bank. It is either issued via the command bus or by adding
an auto-precharge flag to a RD or WR command, where precharging is automatically
triggered when all timing constraints are satisfied. A PRE command following a WR
cannot be issued until tWR cycles after the last data has been written to the bank. A
NOP is issued if no other commands are valid, i.e., their timing constraints are not
satisfied. Similarly, multiple banks are accessed by repeating this process for each
of them. Finally, the SDRAM has to be periodically refreshed to retain the data. All
these timing constraints are specified by JEDEC DDR3 standard (JEDEC Solid State
Technology Association 2010), and are summarized in Table 1 that takes a 16-bit
DDR3-1600G memory device with a capacity of 2 Gb as an example.

For example, read data from two banks are illustrated in Fig. 2b. An ACT command
is scheduled to open the required row in one bank and two consecutive RD commands
that have sequential addresses within the same row are scheduled to read data. The
minimum time between two RD commands is tCCD. A PRE command is issued after
the last access to the opened row. The second bank is accessed similarly. Specifically,
its ACT command is issued earlier than the RD commands to the first bank to exploit
bank parallelism.

3.2 Real-time memory controllers

In modern multi-core platforms, the off-chip SDRAM is accessed via a memory
controller on behalf of memory requestors, such as cores, DMAs, and hardware accel-
erators. A general real-time memory controller is composed of a front-end and a
back-end, as shown in Fig. 1. The front-end generally connects to these requestors
that generate memory transactions via a communication infrastructure, e.g., a bus or
an on-chip network (NoC). The interconnect must offer real-time performance guaran-
tees, such as the dAElite NoC (Stefan et al. 2014) and be decoupled from the memory
controller. The received transactions are buffered in separate queues per requestor. One
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Table 1 Timing constraints for DDR3-1600G SDRAM (JEDEC Solid State Technology Association 2010).

TC Description Cycles

tCK Clock period 1

tRCD Minimum time between ACT and RD or WR commands to
the same bank

8

tRRD Minimum time between ACT commands to different banks 6

tRAS Minimum time between ACT and PRE commands to the
same bank

28

tFAW Time window in which at most four banks may be activated 32

tCCD Minimum time between two RD or two WR commands 4

tWL Write latency. Time after a WR command until first data is
available on the bus

8

tRL Read latency. Time after a RD command until first data is
available on the bus

8

tRTP Minimum time between a RD and a PRE command to the
same bank

6

tRP Precharge period time 8

tWTR Internal WR command to RD command delay 6

tWR Write recovery time. Minimum time after the last data has
been written to a bank until a precharge may be issued

12

tRFC Refresh period time 128

tREFI Refresh interval 6240

of these transactions is then selected by the arbiter according to a scheduling policy,
such as TDM (Goossens et al. 2013), Round Robin (Paolieri et al. 2013) or Credit-
Controlled Static-Priority Arbitration (Akesson et al. 2008), and is finally sent to the
back-end. Note that the general front-end shown in Fig. 1 is suitable for contemporary
multi-core platforms. For many-core platforms with a very large number of requestors,
techniques such as coupling NoC and memory controller (Dev Gomony 2014), dis-
tributed arbitration (Gomony et al. 2015) and multiple memory channels (Gomony et
al. 2013) can be used. However, this is outside the scope of this article.

In the back-end, the logical address of a transaction is translated into a physical
address (bank, row, and column) according to the memory map, which determines the
location of data in the SDRAM. The memory map also specifies how a transaction
is split over the memory banks and thus the degree of bank parallelism used when
serving it. This is captured by two parameters: the bank interleaving number (BI) and
the burst count (BC) (Goossens et al. 2012). BI determines the number of banks that
a transaction accesses while BC represents the number of RD or WR commands, i.e.,
bursts, per bank. Each burst has a fixed length that is specified by the SDRAM. The
burst length (BL) is 8 words for DDR3 SDRAMs. For a given transaction size, a fixed
BI andBC pair is used, and the product ofBI,BC andBL is equal to the transaction size
in memory words. The command generator translates the transaction into a sequence of
commands that are stored in the command queues. Finally, the command arbiter issues
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commands to the memory, subject to the timing constraints, and data transmission is
triggered by a read or write command. Note that various memory mapping strategies
can be supported by specifying different BI and BC combinations. For example, a
small BI and a large BC support a block-oriented memory mapping that increases the
row hit rate by mapping consecutive data bursts to the same row of a bank (Hameed
et al. 2013). In contrast, stripe-oriented mapping with large BI and small BC allocates
data bursts to different banks and exploits bank parallelism (Lin et al. 2001).

Real-time memory controllers (Paolieri et al. 2013; Shah et al. 2012; Akesson and
Goossens 2011; Reineke et al. 2011) typically employ a close-page policy, where the
open row is precharged as soon as possible after each bank access. The advantage is that
the time from the precharge to activate can be (partially) hidden by bank parallelism.
A close-page policy minimizes the WCET of a transaction with bank interleaving
(Paolieri et al. 2013), which is the reason we use it in this article.

4 Memory controller front-end

In this section, we introduce the architecture of our memory controller front-end. We
define the front-end hardware architecture that receives transactions from memory
requestors and schedules them to the back-end according to a new work-conserving
TDM arbiter, offering lower interference delay. The back-end that executes each trans-
action by dynamically scheduling commands to the SDRAM is later introduced in
Sect. 5.

4.1 Front-end architecture

The front-end receives memory transactions on its ports from different requestors
either directly or via a bus or a network-on-chip. Transactions are queued in the request
buffers per requestor, as illustrated in Fig. 3. Typically, requestors generate memory
transactions with fixed size, e.g., CPU cache misses (Stevens 2010). Therefore, each
requestor is assumed to have a fixed transaction size, while it varies between different
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requestors. Note that this assumption can be relaxed later in Sect. 9.3, where a safe
WCRT is guaranteed by using the largest transaction size of a requestor when it actually
generates variable transaction sizes. The size of a request buffer is determined by the
maximum number of outstanding transactions from the requestor. In a fully timing-
compositional architecture, each of the requestors is assumed to have at most one
outstanding memory transaction (a cache miss) (Axer et al. 2014). The delay caused
by the shared SDRAM is additive to the application execution time. In this article,
we assume that each requestor has a single outstanding transaction. After sending a
read transaction, a requestor cannot schedule the next transaction before receiving the
response, i.e., the data is returned. For a write transaction, an acknowledgment is sent
back to the requestor after the data is written into the SDRAM memory, and then the
requestor sends the next transaction. The response buffer per requestor receives the
data that is read from the memory for a read transaction, before it is returned back to the
corresponding requestor. This assumption ensures that requestors do not experience
self-interference. The self-interference can be taken into account in the system-level
model into which the memory controller is integrated.

The front-end in Fig. 3 supports any predictable arbiter chosen at design time.
We have implemented CCSP (Akesson et al. 2008), TDM (Goossens et al. 2013),
and Round Robin (PrimeCell AHB SDR and NAND memory controller 2006). The
arbiter selects one request queue and sends the first transaction to the back-end. A
novel TDM arbiter in the next section is taken as an example to show how the pro-
posed memory controller with dynamic command scheduling works. It exploits static
information of the TDM schedule of requestors with different transactions sizes, and
this static information is also used by the proposed worst-case analysis. The arbiter
makes a scheduling decision when triggered by the back-end via the arbitration signal
act_cmds_done in Fig. 3.

4.2 Work-conserving TDM arbitration for variable-sized transactions

We proceed by introducing a new work-conserving TDM arbitration for transactions
with variable sizes. By exploiting the order of requestors based on their (largest)
transaction size, the work-conserving TDM has a lower WCRT than traditional work-
conserving TDM. We first discuss the issues of supporting variable transaction sizes
and then specify the algorithm, before illustrating its operation with an example.

4.2.1 TDM arbitration issues for variable-sized transactions

The non-preemptive TDM arbiter, shown in the front-end in Fig. 3, serves requestors
with different transaction sizes, which results in variable execution time for transac-
tions and hence different time slot durations. The execution time is defined as the
scheduling time of the last command of the transaction minus the starting time of
the transaction, and it depends on both the size of the transaction and the initial bank
states when it arrives at the back-end. In particular, the size of the previous transaction
affects the bank states, and a smaller previous transaction results in a larger WCET
of the current transaction. The reason is that larger successive transactions pipeline
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more efficiently, as discussed later in Sect. 9. It hence follows that the order of serving
requestors with different transaction sizes, i.e., their order in the TDM table influences
the WCET of their transactions. From this discussion, we conclude that the duration
of TDM slots varies and depends on several different factors. This is an issue that
should be solved when using TDM arbitration for variable transaction sizes.

For a non-work-conserving non-preemptive TDM arbiter, each slot is statically
allocated to a requestor. The slot therefore has the maximum duration equal to the
WCET of transactions of that fixed size. Traditional work-conserving non-preemptive
TDM dynamically reallocates unused slots to a requestor with pending transactions,
according to some slack management policy. Unfortunately, this may increase the
worst-case slot duration from the WCET of the (smallest) transactions of the idle slot
owner, to the WCET of the transactions of any requestor receiving the slot (which
may be the requestor with the largest transactions). Traditional work-conservation
therefore has a negative effect on the WCRT in presence of variable-sized transactions
by increasing the worst-case slot duration, which is another issue that needs to be
addressed.

To solve these two issues, we firstly propose a new work-conserving policy for
non-preemptive TDM arbiters used by requestors with variable transaction sizes. This
policy has two innovations. (1) When a requestor r that is allocated the current TDM
slot has no pending transactions, the current slot becomes idle and we specify that this
idle slot and the following slots belonging to r are skipped by the arbiter. Instead,
the next requestor with pending transaction(s) is served. As a result, idle slots are
skipped, instead of being reallocated to another requestor (with larger transactions
perhaps). Therefore, the maximum interference experienced by a requestor is always
smaller than when its slots would have been reused by another requestor. Moreover,
skipped slots reduce the waiting time for all other requestors. (2) We configure the
TDM arbiter to serve requestors in descending order of their transaction sizes, such
that their WCET and hence slot durations are smaller. This takes advantage of the fact
that a transaction has a smaller WCET when preceded by a larger transaction. Note
that the largest transaction is preceded by the smallest one because the TDM arbiter
periodically serves requestors. However, the approach still results in the minimum
total length of all slots. Sect. 11 experimentally validates these innovations.

4.2.2 Transaction scheduling algorithm

Algorithm 1 presents the proposed work-conserving TDM arbitration. The inputs of
Algorithm 1 include the arbitration signal act_cmds_done in Fig. 3, which triggers the
front-end to arbitrate when the back-end is ready to accept a new transaction. Another
input is the information whether or not a request queue has a pending transaction, and
it is collected by RQueues[ ]. The third input is the TDM slot allocation, which is
configured in a table TDM_Table[ ]. It specifies the order of serving requestors and the
number of slots per requestor. The TDM arbiter is configured to serve requestors in
descending order of their transaction sizes, which is the second innovation presented
previously. The transaction sizes of requestors hence decrease from requestor 0 to
requestors N-1, and the requestors are served in this order. Finally, the output of Algo-
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rithm 1 is the number of the request queue, denoted by Q_ID, whose head transaction
is scheduled to the back-end.

Algorithm 1 Transaction scheduling with work-conserving TDM

1: Inputs: act_cmds_done, RQueues[ ], TDM_Table[ ]
2: Internal state: r_index, Q_ID, s_index
3: Initialization: act_cmds_done ← true; r_index ← 0; s_index ← 0;
4: Begin:
5: Q_ID← invalid; /*No requestor is selected.*/
6: if act_cmds_done = true && ∃i, RQueues[i] has a transaction then
7: Repeat:
8: if RQueues[r_index] has a transaction then
9: Q_ID ← r_index; /*Serve requestor r_index, and update the index of its slots.*/
10: s_index ← (s_index + 1) mod TDM_Table[r];
11: if s_index = 0 then /*The final slot is taken by requestor r_index.*/
12: r_index ← (r_index + 1) mod N ; /*Update the requestor index.*/
13: else /*The requestor has no transaction, skip forward to the next one. */
14: r_index ← (r_index + 1) mod N ; /*Update the index for next requestor.*/
15: s_index ← 0; /*Initialize the slot index for the next requestor r_index.*/
16: Until Q_ID is valid.
17: End
18: Output: Q_ID

To obtain Q_ID, Algorithm 1 uses two internal variables r_index and s_index that
are the index of a requestor (associated with a request queue) and the index of its
allocated slots, respectively. Algorithm 1 begins with initializing Q_ID to be invalid
(line 5), and it ends when Q_ID becomes valid (line 16). However, the exploration of
a valid Q_ID (between line 7 and 17) starts only if act_cmds_done is true and there
exists at least one request queue with a pending transaction, as shown on line 6. If
there are no queues with pending transactions, this algorithm restarts the following
clock cycle until a new transaction arrives at the front-end. The algorithm firstly checks
whether the request queue indexed by r_index has a transaction (line 8). If not, then its
allocated slots become idle and are skipped by setting r_index to the next request queue,
and s_index to 0 (line 14 to 15). This is different from traditional work-conserving
TDM arbitration, where the idle slots are reallocated to another arbitrary requestor
with pending transaction(s). This is the first innovation as discussed previously. If the
request queue r_index has a pending transaction (line 8), the algorithm behaves the
same as normal TDM arbitration.

Next, we position our proposed TDM arbiter with respect to other similar arbitration
mechanisms. Round robin is a special case of the work-conserving TDM when each
requestor is only allocated a single slot. In TDM, requestors can have more than one
slot and the allocated slots can be placed in any order in the TDM table (Akesson
et al. 2015). In our case, we allocate continuous slots to a requestor, and the slots
of different requestors are placed in descending order of their transaction sizes. The
FlexRay communication protocol (Pop et al. 2008) contains a dynamic segment in
which requestors with variable messages sizes indicate whether or not they have a
message to send in a given slot. If not, a mini-slot (i.e., a short time period) is wasted
instead of the given slot. This mini-slot accumulates when a number of given slots are
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Fig. 4 The worst-case
interference delay for requestor
r1: a TDM slot allocation; b the
proposed work-conserving TDM
arbiter; c traditional
work-conserving TDM arbiter.
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not used. Moreover, because the segment has fixed length, it may happen that the last
message will not fit, resulting in that the remaining time in the segment is wasted. The
proposed Algorithm 1 does not suffer these problems.

4.2.3 Example

Take four requestors r0, r1, r2, and r3 with different transaction sizes as an example to
illustrate the benefits of the proposed work-conserving TDM arbitration. As previously
stated, we assume the transaction sizes decrease from r0 to r3. Each of them is allocated
one slot in the TDM table, as shown in Fig. 4a. The slot duration of each requestor
is the WCET of its transactions experienced in the back-end. The larger transactions
have larger WCET, as later shown in Sect. 9.3. As a result, the slot duration of r0
is largest while it is the smallest for r3 (see Fig. 4a). Moreover, the TDM arbiter is
configured to serve requestors in the descending order of their transaction sizes. As a
result, the requestors are served in the order from r0 to r3.

Take requestor r1 as an example. In the worst case, a transaction from r1 arrives
just as it misses its slot. This idle slot is hence skipped according to the proposed
work-conserving TDM arbitration, and the following requestors r2, r3 and r0 use their
allocated slots. This leads to the maximum interference delay tinterf for r1, as shown
in Fig. 4b. A traditional work-conserving TDM arbiter could reallocate this idle slot
to another requestor, e.g., r0 as a bonus, according to some slack-management policy.
Then, the following requestors r2, r3, and r0 consume their allocated slots (Fig. 4c),
leading to interference delay t′interf > tinterf. The difference between them is actually
the duration of the idle slot that was given as a bonus to requestor r0. Hence, the
proposed work-conserving TDM arbiter is capable of providing smaller WCRT for
transactions with variable sizes.

5 Memory controller back-end

The memory controller back-end receives scheduled transactions from the front-end,
as shown in Fig. 3. However, it is a general component that could be used without the
front-end, for example by connecting to a memory tree NoC (Gomony et al. 2015)
that plays the arbitration role to schedule transactions from different requestors to the
back-end. Each arriving transaction is translated into a number of memory commands
that are scheduled to a number of consecutive banks subject to the timing constraints
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of the memory. The basic idea underlying the back-end architecture (Sect. 5.1) and
command arbiter (Sect. 5.2), is that each transaction generates an ACT command
followed by BC times RD or WR commands, the last one with an auto-precharge.
This commences with the starting bank bs and is repeated BI times for all the required
banks. Commands are generated one per cycle, but are usually scheduled more slowly,
due to timing constraints. Commands are therefore buffered per bank (see Fig. 3, and
discussed below). To limit the size of the command queues per bank while still enabling
pipelining between transactions, a new transaction is sent by the front-end and hence
new commands are admitted to the queues only when all the ACT commands of the
current transaction have been issued to the memory. This is enforced by the command
arbiter via the act_cmds_done signal in Fig. 3 that triggers a new scheduling decision
in the front-end. To avoid read/write hazards or read-response reorder buffers, the
RD/WR commands of a transaction are scheduled before those of the next transaction.
This order (as a (BI,BC, bs) tuple) of each transaction is stored in the parameter queue
(PQ), and used by the command arbiter to guarantee in-order execution of transactions.
This results in an efficient pipelined back-end.

5.1 Back-end architecture

We proceed by introducing the main components in the back-end to support variable
transaction sizes, which include theLookupTable, parameter queue (PQ),Command
Generator and the Cmd Arbiter, as shown in Fig. 3. In addition, other common
components used by existing memory controllers are also briefly introduced to show
how these components constitute a dynamically scheduled back-end.

As shown in Fig. 3, (1) The Lookup table translates the transaction size to the bank
interleaving number (BI) and burst count (BC), which are needed by the command
generation. They are determined at design time when the memory map configuration
is chosen and are programmed via a configuration interface (cfg) when the system is
initialized. If there is no (BI, BC) corresponding to a transaction size in the Lookup
Table, the (BI, BC) related to the next larger size is used with the additional data being
masked out. An important (usually unstated) assumption on the translation from size
to (BI,BC) is that it must be monotone, as given by Definition 1, where S(T′) and
S(T) are the sizes of transaction T′ and T, respectively. A methodology to choose the
memory map configuration based on the requirements of bandwidth, execution time
and power consumption has been presented in Goossens et al. (2012). (2) With the BI
and BC, the widely used MemoryMap module in Fig. 3 translates the logical address
of the transaction into the starting physical address that consists of the starting bank
bs, row, and column. (3) Then (BI, BC, bs) of the transaction is inserted at the back of
the parameter queue (PQ). This queue keeps track of the order of transactions in the
back-end and is used by the command scheduling algorithm in Sect. 5.2.

Definition 1 (Monotone memory mapping) For ∀T and T′, S(T′) ≤ S(T) �⇒ BI′ ≤
BI ∧ BC′ ≤ BC.

Based on (BI,BC) and the physical address, (4) theCommandGenerator generates
memory commands for each bank, i.e., an ACT command is generated, followed by
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BC number of RD or WR commands, where the last one attaches an auto-precharge
flag. These commands are sequentially inserted into the command queue (i.e., FIFO)
corresponding to the bank. This is repeated for each of the BI banks. Note that a new
transaction can be sent by the front-end when the arbitration signal act_cmds_done is
true, which happens only if all theACT commands of the currently executed transaction
are no longer in the command queue, i.e., have been issued to the memory.

To account the timing constraints of the commands, (5) timing counters are com-
monly used by dynamically scheduled memory controllers. Each counter tracks one
timing constraint specified by the JEDEC DDR3 standard (JEDEC Solid State Tech-
nology Association 2010). We classify the timing constraint counters (TCC) into local
TCC and global TCC, which constrain the command scheduling for the same bank
and different banks, respectively. Most timing constraints shown in Fig. 3 are directly
provided by JEDEC, while tRWTP and tSwitch are derived from the JEDEC specifi-
cation and are shown in Eqs. (1) and (2), respectively. tRWTP is the time between a
RD or WR command and the precharging to the same bank, while tSwitch limits the
time between two successive RD and/or WR commands. Due to the double data rate
of DDR SDRAM, BL/2 is the time consumed transferring a burst of data associated
with a RD or WR command.

tRWTP =
{
tRTP PRE follows RD
tWL + BL/2 + tWR PRE follows WR

(1)

tSwitch =
⎧⎨
⎩
tRL + tCCD + 2tCK − tWL WR follows RD
tWL + BL/2 + tWTR RD follows WR
tCCD otherwise

(2)

A command that is at the head of the command queue can be issued only if its timing
constraints are satisfied in the current cycle. It is then called a valid command. As shown
in Fig. 3, the (6)Timing Selector of the bank shows whether the timing constraints for
the head command are satisfied. Multiple command queues may have a valid command
simultaneously. This implies command scheduling collisions, since only one command
can be issued per cycle on the command bus. Therefore, an arbiter is required to select
a valid command, which is the (7)CmdArbiter shown in Fig. 3. It has to guarantee in-
order execution of transactions to avoid the architectural and analysis complexity of re-
ordering. Moreover, it provides the valid arbitration signal act_cmds_done to the front-
end when all the ACT commands of the current transaction have been scheduled, such
that the front-end schedules a new transaction to enable pipelining of transactions. To
achieve these goals, it uses the command scheduling algorithm presented in Sect. 5.2.
Finally, the chosen command is removed from the command queue and is passed to
the memory. Meanwhile, both the local and global TCC associated with the scheduled
command are reset. This is shown by the feedback wires from the output of the arbiter
to the TCC in Fig. 3. Lastly, a refresh command needs to be scheduled every tREFI
cycles. Once triggered, it is scheduled after the data transmission of the currently
executing transaction to prevent unnecessary interference, while still ensuring that no
refresh command is delayed more than 9 × tREFI clock cycles, as specified by the
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DDR3 standard (JEDEC Solid State Technology Association 2010). Refresh is also
implemented by timing counters, which are not depicted in Fig. 3 for simplicity.

5.2 Dynamic command scheduling algorithm

After memory commands are generated and stored in the command queues by the
Command Generator in Fig. 3, the arbiter has to decide which command to schedule
every clock cycle for transactions in the back-end. It has to solve three critical issues,
namely:

(1) a single command must be chosen from the set of valid commands;
(2) transactions must be executed in first-come-first-serve (FCFS) order to avoid

reorder buffers for the responses;
(3) to simplify logical-to-physical address translation (Goossens et al. 2012), succes-

sive banks of a single transaction have to be accessed in ascending order.

These issues are not independent from each other, and we proceed by explaining
how they are addressed by the arbiter. To guarantee the FCFS, the valid commands of a
transaction have higher priority than the valid commands of the following transactions.
Moreover, to transfer data as quickly as possible to/from the memory, valid RD/WR
commands have higher priority than ACT commands, resulting in lower execution
time. Within a transaction, the command queue corresponding to a bank with a lower
number has higher priority, forcing banks to be served in ascending order. Though
these priorities cannot guarantee an optimal command scheduling algorithm, they
solve the three critical issues.

These priorities form the basis of Algorithm 2 that is used by the arbiter to select
a command from the multiple valid commands in every cycle. Note that a NOP is
scheduled when there is no valid command in a cycle. As shown in Fig. 3, the
inputs of the arbiter include the outputs of the Timing Selectors, the type (ACT,
RD or WR) of each command at the head of the command queues, and the head
and tail elements of the parameter queue. These inputs are taken by Algorithm 2
and represented by constraint_satisfied, cmd_type, and PQ_head and PQ_tail, respec-
tively. constraint_satisfied and cmd_type are arrays with sizes equal to the number
of command queues. The outputs of Algorithm 2 are bank_id, all_cmds_done and
act_cmds_done, where bank_id indicates the command queue whose head command
can be scheduled to bank bank_id. all_cmds_done is true when all commands of the
current transaction have been issued to the memory. The (BI,BC, bs) triple at the head
of the parameter queue is then removed. act_cmds_done indicates whether all ACT
commands of the current transaction have been sent to the memory. When true, this
triggers the front-end to arbitrate for a new transaction, even thoughRD/WR commands
of current and past transactions are (likely to be) pending.

In Algorithm 2, line 6 checks whether there is a valid RD/WR command for the
current bank (rw_bank) for reading/writing. Otherwise, line 14 checks whether there
is a valid ACT command. This guarantees that a valid RD or WR command has higher
priority than a valid ACT command. act_bank and rw_bank indicate the number of
the bank to which an ACT or a RD/WR command can be scheduled, respectively.
act_bank is increased by one after an ACT command has been selected (line 18),
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Algorithm 2 Dynamic command scheduling

1: Inputs: PQ, constraint_satisfied, cmd_type
2: Internal state: rw_bank, act_bank
3: Initialization: bank_id ← null; act_bank ← null; rw_bank ← null;

act_cmds_done ← true; all_cmds_done ← false;
4: if act_bank = null then act_bank ← PQ_tail.bs; act_cmds_done ← false;
5: if rw_bank = null then rw_bank ← PQ_head.bs;
6: if cmd_type[rw_bank] = RD/WR and constraint_satisfied[rw_bank] = true then
7: bank_id ← rw_bank;
8: if last RD/WR of PQ_head transaction then
9: rw_bank ← null;
10: all_cmds_done ← true;
11: else if last RD/WR of PQ_head transaction to bank bank_id
12: then rw_bank ← rw_bank+1;
13: else if act_bank != null and then
14: if cmd_type[act_bank] = ACT and constraint_satisfied[act_bank] = true then
15: bank_id ← act_bank;
16: if last ACT of PQ_tail transaction then
17: act_bank ← null; act_cmds_done ← true;
18: else act_bank ← act_bank+1;
19: Outputs: bank_id, act_cmds_done, all_cmds_done

while rw_bank increases by one whenBC number ofRD/WR commands of the current
transaction have been scheduled to bank bank_id (line 12). This update scheme ensures
the banks are accessed in ascending order for each transaction. act_bank and rw_bank
are initialized with the starting bank bs of the transactions associated with the tail
and head of the parameter queue, respectively (line 4, 5). A new transaction can
only be sent to the back-end if all the ACT commands of the current transaction
have been issued, as indicated by act_cmds_done (line 17). As a result, only one
transaction has ACT commands in the command queues, namely the one at the tail of
the parameter queue (PQ_tail). Hence, transactions are served in FCFS order, the banks
of each transaction are served in ascending order, and command priorities ensure that
only a single command is scheduled per cycle. Algorithm 2 thus addresses all three
critical issues mentioned previously. Although command priorities are used, there is
no livelock or starvation since transactions are executed in FCFS order.

Regarding the hardware cost, our memory controller is comparable to existing
memory controllers, such as the one based on First-Ready First-Come First-Serve
(FR-FCFS) policy (Kim et al. 2014), the ROC (Krishnapillai et al. 2014) and the
cadence DDR controller (Cadence Design Systems Inc 2014). Our memory controller
has the common components with these existing memory controllers, such as the
request/response buffers in the front-end and the memory map, command queues,
command generator, and the timing constraint counters in the back-end. The additional
components of our memory controller are the lookup table and the parameter queue,
which have a limited number of entries. Moreover, the arbiters in the front-end and
back-end use Algorithms 1 and 2, respectively. They are similar to existing arbiters,
such as the work-conserving TDM (Goossens et al. 2013) and the 3-level arbitrations
of ROC (Krishnapillai et al. 2014). We therefore expect our memory controller to be
similar in area and speed to existing designs.
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6 Formalization of dynamic command scheduling

In this section, we introduce standard notation and definitions to formalize the back-
end architecture and the dynamic command scheduling of transactions, as is specified
by Algorithm 2 in Sect. 5.2. As introduced in the previous section, a transaction is
translated into a series of BI bank accesses. Each bank access activates a bank, and
then reads or writes BC times, the last time with auto-precharge. A command can only
be scheduled and executed at its scheduling time when the timing constraints from
previous commands are satisfied. Timing constraints therefore result in scheduling
dependencies. A bank access is a natural self-contained group of commands, and each
transaction is made up of one or more bank accesses. For this reason, in our analysis, we
focus on sequences of individual bank accesses b j , and care less (in the first instance)
about the sequence of individual transactions Ti that generated these bank access. The
notation used in this section is summarized in Table 2. Note that the formalization of
dynamic command scheduling and the analysis in this article are the novelties and not
the mathematical analysis techniques.

Table 2 Summary of notation.

Variables Descriptions

i The number of an arbitrary transaction arrived at the back-end. i ≥ 0.

Ti The ith transaction received by the back-end

S(Ti) The size of transaction Ti

j The first bank access number for the current transaction Ti. j ≥ 0 is
defined by Eq. (3).

BIi, BCi The bank interleaving number (BI) and burst count (BC) of Ti
bj The bank number that is targeted by the jth bank access, which is also

the starting bank of Ti. bj ∈ [0, 7] represents one of the 8 banks in
DDR3 SDRAMs.

ACTj The ACT command of the jth bank access

t(ACTj) The scheduling time of ACTj
C(j) The delay in scheduling ACTj due to a collision; and it is either 1 or 0

cycle depending on whether the collision exists or not.

RWk
j The kth (∀k ∈ [0,BCi − 1]) RD or WR command of the jth bank access

t(RWk
j ) The scheduling time of RWk

j

PREj The PRE command for the jth bank access

t(PREj) The scheduling time of PREj
ts(Ti) The starting time of Ti
t̂s(Ti) The worst-case starting time of Ti
tf(Ti) The finishing time of Ti

t̂f(Ti) The worst-case finishing time of Ti

tET(Ti) The execution time of Ti
l Used to index the banks of a transaction Ti and ∀l ∈ [0,BIi − 1]
k Used to index the bursts of a bank for Ti, and ∀k ∈ [0,BCi − 1]
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Fig. 5 Timing dependencies between successive bank accesses.

6.1 Timing dependencies

In dynamic command scheduling, the order of command execution is decided at run
time on the basis of the timing constraints between commands. Timing constraints
therefore impact the command schedule by introducing scheduling dependencies. This
is shown in Fig. 5, where the dotted and solid arrows represent dependencies between
banks (b j and b j+1) and within a single bank (b j ), respectively. Note that b j and
b j+1 may be from the same or different transactions. The scheduling of a command
depends on the previous commands, which are specified by the input arrows. The labels
near the arrows specify the timing constraint between the commands, i.e., the number
of cycles that the following command has to wait before it could be scheduled. For
example, the timing constraints to schedule an ACT command include tRRD, tRP and
tFAW, previously described in Table 1. Therefore, the block of an ACT command (see
Fig. 5) has three input arrows that represent the corresponding timing constraints. The
scheduling of the first RD or WR command for a bank access has to satisfy the timing
constraints tRCD and tSwitch. The following RD or WR commands of the bank access
only need to take the timing constraint tCCD into account. Finally, an auto-precharge
considers the timing constraints tRAS and tRWTP. The timing dependencies among
the commands are illustrated in Fig. 5. Note that refresh commands are not depicted
because their impact on WCET can be easily analyzed, as presented in Sect. 10.
Moreover, the effect of REF is small (approximately 3 %) in memory interference
delay, and it is not a main concern in this article.

According to Algorithm 2, an ACT command may be blocked by a higher-priority
RD or WR command from previous bank accesses. This command scheduling conflict
postpones theACT command by one cycle. The collision is depicted by the filled circle
in Fig. 5, which represents a RD or WR command that blocks the ACT command. The
arrow corresponding to the maximum time dominates the scheduling of a dependent
command, since all relevant timing constraints must be satisfied. The PRE in Fig. 5
does not use the command bus due to the auto-precharge policy, and hence cannot
cause a command collision. However, the time at which the auto-precharge actually
happens is necessary to determine when the bank can be reactivated.
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6.2 Formalization

Having explained the dependencies between commands in a bank access according to
the DDR3 standard and illustrated them in Fig. 5, we analyze the execution time of a
transaction by computing the actual scheduling time of commands under our dynamic
scheduling algorithm. We compute the worst-case execution time in Sect. 9.

Definition 2 (Arrival time of transaction Ti) ta(Ti) is defined as the time at which Ti
arrives at the interface of the back-end.

When an arbitrary transaction Ti (∀i > 0) arrives at the back-end with the arrival
time defined by Definition 2, it is executed by scheduling commands to a number of
banks. We assume Ti uses BIi and BCi, and the starting bank is bj. j is the number of
the first bank access of Ti and it is a function of i, as given by Eq. (3). It is the total
number of bank accesses by previous transactions. Note that j(i) is denoted by j for
short throughout this article.

j(i) =
i−1∑
k=1

BIk (3)

Expanding Fig. 5 to an entire transaction Ti, Fig. 6 illustrates the scheduling depen-
dencies between all its commands. The command scheduling for Ti depends on zero
or more previous transaction(s) Ti′ . For ∀l ∈ [0,BIi−1], the (j+ l)th bank access com-
prisesACTj+l and severalRD orWR commands to bank bj+l. TheRD orWR commands
are denoted by RWk

j+l, where ∀k ∈ [0,BCi − 1]. Moreover, an auto-precharge PREj+l

is issued after the access of bank bj+l, and it is specified by an auto-precharge flag
issued together with RWBCi−1

j+l . For BIi > 4, the scheduling of some ACT commands
also depends on the previous ACT commands of the current transaction Ti because of
the four-activate window (tFAW ).

The finishing time of Ti (Definition 3) is the time when the last RD orWR command
RWBCi−1

j+BIi−1 is scheduled. The starting time of Ti (Definition 4) is defined as the earliest
time at which the arbiter tries to schedule its commands. This is either one cycle after
the finishing time of the previous transaction Ti−1 or two cycles after the arrival time
(pipeline stages for the Lookup Table and Command Generation in Fig. 3), whichever
is larger. Lastly, the difference between the finishing time and the starting time is
referred to as the execution time (Definition 5) of the transaction.

Definition 3 (Finishing time of transaction Ti) tf(Ti) = t(RWBCi−1
j+BIi−1)

Definition 4 (Starting time of transaction Ti) ts(Ti) = max{ta(Ti) + 2, tf(Ti−1) + 1}
Definition 5 (Execution Time of transaction Ti) tET(Ti) = tf(Ti) − ts(Ti) + 1.

For Ti, Eq. (4) computes the scheduling time of ACTj+l where m = maxk< j {k|bk =
b j+l}, is the previous bank access to bank bj+l. The max function in Eq. (4) guarantees
that all the timing constraints for scheduling ACTj+l are satisfied. In addition, the
scheduling time of ACTj+l is at least 2 cycles after Ti arrives, which are consumed
by the look up table and command generation, as previously mentioned. In case of
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Fig. 6 The timing dependencies of command scheduling for transaction Ti.

a command scheduling collision when ACTj+l is blocked by a RD or WR command,
C(j+l) is equal to 1 and 0 otherwise. Similarly, the scheduling time ofRWk

j+l is given by
Eqs. (5) and (6). Eq. (5) provides the scheduling time of the first RD or WR command
of Ti to bank bj+l. It depends on t (RWBCi−1

j+l−1 ), which is the scheduling time of the last

RD orWR to bj+l−1, and the scheduling time ofACTj+l. Note that for l = 0, t (RWBCi−1
j−1 )

is defined as the finishing time of Ti−1. The scheduling time of the remaining RD or
WR commands (k ∈ [1,BCi − 1]) to bank bj+l only depend on the previous RD or WR
command, and is given by Eq. (6). Finally, the precharging time of the auto-precharge
for bank bj+l is given by Eq. (7). This is the time at which the precharge actually
happens, although it was issued earlier as an auto-precharge flag appended to the last
RD or WR command to the same bank. We define the finish time of the first transaction
as tf(T0) = −∞, such that the ACT of the first transaction T1 can be scheduled at time
0. These equations have been implemented in our open source tool (Li et al. 2014b)
to provide the scheduling time of commands.

t (ACTj+l) = max
{
t (ACTj+l−1) + tRRD, t (PREm) + tRP,

t (ACTj+l−4) + tFAW, ta(Ti) + 2
} + C(j+l) (4)

t (RW0
j+l) = max

{
t (RWBCi−1

j+l−1 ) + tSwitch, t (ACTj+l) + tRCD
}

(5)

t (RWk
j+l) = t (RW0

j+l) + k × tCCD (6)

t (PREj+l) = max
{
t (ACTj+l) + tRAS, t (RWBCi−1

j+l ) + tRWTP
}

(7)

Based on Eq. (4)–(7), it is possible to determine the finishing time of Ti by only
looking at the finishing time of Ti−1 and the scheduling time of its ACT commands.
As shown in Fig. 6, only the first RD or WR commands and the ACT to each bank have
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dependencies on previous transactions. The other RD or WR commands can be sched-
uled with the dependencies directly or indirectly originating from those commands.
Intuitively, the finishing time of Ti is determined only by the scheduling time of all
its ACT commands, the finishing time of the previous transaction and JEDEC-defined
timing constraints. This intuition is formalized by Lemma 1 and the proof is included
in the appendix.

Lemma 1 For ∀i > 0 and tf(T0) = −∞,

t f (Ti ) = Max
0≤l≤BI i−1

{
t f (Ti−1) + t Swi tch + (BI i × BCi − 1) × tCCD,

t (ACT j+l) + t RCD + [(BI i − l) × BCi − 1] × tCCD
}

7 Worst-case initial bank states

The command scheduling for the current transaction Ti is highly dependent on the
initial bank states resulting from when the commands of the previous transactions (e.g.,
Ti−1 and Ti−2) were scheduled. Intuitively, given that the minimum starting time of Ti
is fixed by the finishing time of Ti−1, the worst-case finishing time of Ti occurs when
all the commands of Ti−1 were scheduled as late as possible (ALAP), because this
maximizes the timing dependencies. In this section, we formalize theALAP scheduling
of Ti−1, which defines the worst-case initial bank states for Ti. Later Sect. 8 computes
the worst-case finishing time of Ti based on these worst-case initial bank states. The
WCET of Ti is finally given in Sect. 9.

7.1 Worst-case starting time

From Definition 5, it follows that the execution time, tET(Ti) is maximized if the start-
ing time is minimum while the finishing time is maximum. According to Definition 4,
the starting time ts(Ti) is determined by its arrival time ta(Ti) and the finishing time
tf(Ti−1) of the previous transaction Ti−1. In the worst-case situation, Ti has arrived
before the finishing of Ti−1, such that the commands for Ti have to wait longer time
for their timing constraints to be satisfied. Therefore, the worst-case starting time of
Ti is only one cycle after the finishing time of Ti−1 and is given by Eq. (8).

t̂s(Ti) = tf(Ti−1) + 1 = t
(
RW BCi−1−1

j−1

)
+ 1 (8)

To derive the maximum finishing time of Ti, denoted by t̂f(Ti), the scheduling time
of its ACT commands should be maximized according to Lemma 1. Eq. (4) indicates
that the scheduling of an ACT command depends on the previous PRE to the same
bank, the previous ACT commands and the possible collision caused by a RD or WR
command. Therefore, the worst-case finishing time of Ti is achieved by maximizing
the scheduling time of the previous PRE and ACT commands as well as assuming
there is always a command collision for every ACT command.
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This preceding transaction Ti−1 has many possibilities, since it is not statically
known. For example, it may be a read or a write with variable sizes and requiring
different sets of banks, and its commands were scheduled based on its initial bank states
that were determined by even earlier transactions. Therefore, it is hard to statically
know which Ti−1 provides the worst-case initial bank states for Ti. However, the worst-
case starting time given by Eq. (8) defines the finishing time t(RWBCi−1−1

j−1 ) of Ti−1 and
we can conservatively assume all the commands of Ti−1 were scheduled as late as
possible (ALAP) with respect to the fixed finishing time of Ti−1, subject to the timing
constraints of the memory. This ALAP scheduling ensures the latest (i.e., maximum)
possible scheduling time of the previous commands, which are the worst-case initial
bank states for Ti.

7.2 ALAP scheduling

This section shows how to formalize the ALAP scheduling by computing the worst-
case (latest possible) scheduling time of all the commands for the previous transaction.
According to ALAP scheduling, the scheduling time of the previous ACT, RD or WR
commands and PRE can be obtained by calculating backwards from the scheduling
time of the last RD or WR command at t(RWBCi−1−1

j−1 ). Specifically, the time between
any successive commands must be minimum while satisfying the timing constraints,
thereby ensuring an ALAP schedule of the previous commands. Therefore, the mini-
mum time interval between any two commands is significant to formalize the ALAP
scheduling. Recall that Ti−1 has BIi−1 and BCi−1. First, as stated in Table 1, the min-
imum time between two RD or WR commands is tCCD. Since RD or WR commands
targeting the same bank are scheduled sequentially, the minimum time between the
first RD or WR commands to consecutive banks is BCi−1 × tCCD. Second, an ACT
command is followed by a RD or WR command to the same bank, and their mini-
mum time interval is tRCD (see Table 1). This implies that an ACT command must be
scheduled at least tRCD cycles before the first RD or WR command to the same bank.
To calculate backwards, the time interval between two successive ACT commands to
different banks has to be at least BCi−1 × tCCD. In addition, Table 1 also states that
the minimum time between two ACT commands to different banks is tRRD. Hence,
the minimum time interval between two successive ACT commands to different banks
without violating any timing constraints is max{tRRD,BCi−1 × tCCD}.

Fig. 7 illustrates an example ofALAP scheduling for a DDR3-1600G SDRAM. This
example assumes the current transactionTi and the previous write transactionTi−1 have
the same starting bank Bank 0. Ti has BIi = 4 and BCi = 2, while Ti−1 uses BIi−1 = 2
and BCi−1 = 2. With the fixed finishing time t(RW1

j−1) of Ti−1, the scheduling time
of all the previous commands is computed backwards with the minimum time interval
between them. Fig. 7 shows the ALAP scheduling of the previous commands for Ti−1
to Banks 0 and 1. In this way, some ACT commands have the same scheduling time as
some WR commands, which indicates command scheduling collisions. However, we
conservatively ignore these collisions so that larger scheduling time of the previous
ACT and WR commands for Ti−1 is achieved, which provide the initial bank states for
the new transaction Ti.
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Fig. 7 An example of As-Late-As-Possible (ALAP) scheduling with DDR3-1600G SDRAM for Ti which
has BIi = 4 and BCi = 2. The previous transaction Ti−1 uses BIi−1 = 2 and BCi−1 = 2. The starting
bank for both Ti-1 and Ti is Bank 0.

Next, ALAP scheduling is formalized to provide the scheduling time of previous
commands. First, the preceding transaction Ti−1 must have banks in common with Ti,
because the reactivation of a bank for Ti needs more time if it was accessed by Ti−1. To
obtain larger finishing time, the starting bank bj of Ti must have been accessed by Ti−1,
and the last bank bj−1 of Ti−1 is also required by Ti. As a result, the set of common
banks is [bj, bj−1]. We introduce the short hand notation bcom = bj−1 − bj and the
number of common banks is hence bcom + 1. For example, the set of common banks
between Ti−1 and Ti in Fig. 7 is [0, 1], and the number of common banks is 2. With the
minimum time interval between commands, for ∀l ∈ [0, bcom] and ∀k ∈ [0,BCi−1−1],
the scheduling time of the RD or WR commands to a common bank bj + l is given by
Eq. (9). Note that t̂s(Ti) − 1 is the finishing time of Ti−1 according to Eq. (8). Eq. (9)
can be used to conservatively determine the ALAP scheduling time of all RD or WR
commands of Ti−1.

t̂(RWk
j−1−(bcom−l)) = t̂s(Ti) − 1 − (BCi−1 − 1 − k) × tCCD

− (bcom − l) × BCi−1 × tCCD (9)

Given a finishing time of Ti−1, the scheduling time of its last ACT command is
obtained since the minimum time interval between an ACT command and the first RD
orWR command to the same bank is tRCD (see Table 1). Thus, with the minimum time
interval betweenACT commands, the scheduling time of the previousACT commands
is calculated by Eq. (10). Based on Eq. (7), the time of the previous PRE is obtained by
using the worst-case scheduling time for RD or WR and ACT commands from Eqs. (9)
and (10), respectively. It is given by Eq. (11) based on two observations of the timing
constraints in JEDEC DDR3 standard (JEDEC Solid State Technology Association
2010), namely: (1) tRWTP is larger for a write transaction than for a read transaction,
and (2) there is tRWTP > tRAS − tRCD for a write transaction. Therefore, the worst-
case initial states for Ti is that Ti−1 is write rather than read, and Eq. (11) is further
simplified.

t̂(ACTj−1−(bcom−l)) = t̂s(Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD

− (bcom − l) × max{tRRD,BCi−1 × tCCD} (10)
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t̂(PREj−1−(bcom−l))

= max
{
t̂(ACTj−1−(bcom−l)) + tRAS, t̂(RWBCi−1−1

j−1−(bcom−l)) + tRWTP
}

= t̂s(Ti) − 1 + tRWTP − (bcom − l) × BCi−1 × tCCD (11)

Note that Eq. (9), (10) and (11) formalize ALAP command scheduling for Ti−1,
leading to the worst-case initial bank states for Ti. This formalization is parameterized
to BIi−1 and BCi−1 used by Ti−1. If more is known about Ti−1, e.g., its accessed
banks, theALAP can be specialized to obtain better analysis results. For example, bank
privatization is employed by the PRET (Reineke et al. 2011) and ROC (Krishnapillai
et al. 2014) memory controllers for different requestors. We leave the exploitation of
this static knowledge to obtain a tighter WCET as future work.

8 Worst-case finishing time

Based on the worst-case initial bank states given by the ALAP scheduling in Sect. 7,
we can compute the maximum scheduling time of commands for Ti, resulting in the
worst-case finishing time t̂f(Ti). Before deriving t̂f(Ti), this section firstly proves that
the off-line ALAP scheduling of the preceding transaction Ti−1 indeed guarantees a
conservative t̂f(Ti). This is achieved by introducing Lemmas 2 and 3 that demon-
strate the maximum scheduling time of the ACT commands for Ti only rely on the
ALAP command scheduling of Ti−1. Finally, in Lemma 4, t̂f(Ti) is computed based
on Lemma 1.

8.1 Conservative t̂f(Ti) based on ALAP scheduling

Intuitively,ALAP scheduling of commands for the previous write transaction Ti−1 pro-
vides the worst-case initial bank states forTi. However, the actual command scheduling
for Ti may not only depend on Ti−1 but also earlier transactions. Fig. 8 shows an exam-
ple where Ti uses 4 banks from Bank 0 to Bank 3. Ti−1 has the common banks Bank 0
and Bank 1 with Ti. Ti−2 and Ti−3 accessed Bank 2 and Bank 3, respectively. We can
see that the ACT commands for Ti to the common banks Bank 0 and Bank 1 have to
follow the constraints from the previous WR commands of Ti−1. For the non-common
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Fig. 8 An illustration of the ALAP scheduling that provides worst-case initial bank states for the current
transaction Ti.
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banks Bank 2 and Bank 3, the ACT commands of Ti may be scheduled according to
the WR commands of earlier transactions Ti−2 and Ti−3 to the same bank. Moreover,
tFAW must be satisfied between ACTj of Ti and ACTj−4 of Ti−3.

We proceed by formally proving that the ALAP command scheduling of Ti−1 guar-
antees a conservative t̂f(Ti), even though earlier transactions (e.g., Ti−2, Ti−3) may
actually have constraints that dominate in the command scheduling for Ti. This goal
is achieved by three steps. As shown in Fig. 8, the first step is given by Lemma 2
stating that the scheduling of ACT commands of Ti to non-common banks with Ti−1
is only determined by the ACT commands to the common banks. This indicates the
constraints from earlier transactions Ti−2 and Ti−3, as depicted by the green arrows in
Fig. 8, cannot dominate in the scheduling of these ACT commands. The second step
given by Lemma 3 guarantees that the ACT commands of Ti to common banks with
Ti−1 can be scheduled only dependent on the ALAP scheduling of commands of Ti−1,
as shown in Fig. 8. As a result of Lemmas 2 and 3, the scheduling of ACT commands
of Ti only depends on Ti−1. Finally, the third step computes the t̂f(Ti) based on the
ALAP command scheduling of Ti−1 in Lemma 4. All the proofs are included in the
appendix.

The idea of Lemma 2 and Lemma 3 is to eliminate all the dependencies that cannot
dominate in the scheduling of theACT commands ofTi according to the worst-case ini-
tial bank states formalized by theALAP scheduling. Lemma 2 states that the scheduling
time of theACT command to any non-common bank bj+l (∀l ∈ (bcom,BIi−1]) is deter-
mined by t(ACTj+bcom), which is the scheduling time of the ACT command to the last
common bank bj+bcom . We can observe that a smaller bcom provides larger t(ACTj+l)

for the particular non-common bank bj+l (i.e., fixed l). Since bcom = bj−1 − bj, the
smallest bcom is achieved only if bj−1 is as close as possible to bj, implying that Ti
starts with a bank bj that is very close to the finishing bank bj−1 of Ti−1. Note that
this gap is determined by the size of Ti−1 or Ti, whichever is smaller. As a result,
bcom = min{BIi−1,BIi} − 1 leads to the worst-case scheduling time of these ACT
commands of Ti to non-common banks.

Lemma 2 For ∀l ∈ (bcom,BIi − 1
]
,

t (ACT j+l) = t (ACT j+bcom ) + [l − bcom] × t RRD +
l∑

l ′=bcom+1

C( j + l ′)

Lemma 3 states that the scheduling of an ACT command to a common bank
bj+l (∀l ∈ [0, bcom]) is either dominated by t(ACTj−1) (l=0) or the ALAP schedul-
ing time of the PRE commands for Ti−1. Note that ACTj−1 is the last ACT command
of Ti−1.

Lemma 3 For ∀l ∈ [0, bcom],

t (ACT j+l) =max{t (ACT j+l−1) + t RRD, t (PRE j−1−(bcom−l)) + t RP}
+ C( j + l)
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From Lemma 2 and Lemma 3, we can therefore conclude thatall theACT commands
of Ti are scheduled based on the ALAP scheduling of commands for Ti−1 in the worst-
case.

8.2 Worst-case finishing time

We proceed by deriving the worst-case finishing time based on the worst-case initial
bank states provided by the ALAP scheduling. Lemma 1 states that the finishing time
of Ti is determined by the finishing time of the previous transaction Ti−1 and the
scheduling time t(ACTj+l) (∀l ∈ [0,BIi−1]) of each ACT command for Ti. Therefore,
the worst-case finishing time t̂f(Ti) is obtained by using t̂f(Ti−1) = t̂s(Ti) − 1 and
t̂(ACTj+l) that is obtained by substituting the ALAP formalization into Lemma 2 and
Lemma 3.

Lemma 3 illustrates that t(ACTj+l) is determined by either the scheduling
time t(ACTj+l−1) of the previous ACT command or the last precharge time
t(PREj−1−(bcom−l)) to the same bank, where l ∈ [0, bcom]. t̂(PREj−1−(bcom−l)) is
given by Eq. (11) according to the ALAP command scheduling for the previ-
ous write transaction Ti−1. Moreover, Lemma 2 shows that the scheduling time
t(ACTj+l)(l ∈ (bcom,BIi − 1]) of ACT commands to non-common banks is deter-
mined by t(ACTj+bcom), which is the scheduling time of the ACT to the last common
bank and can be computed with Lemma 3. As a result, t̂(ACTj+l) can be obtained
by iteratively using Eq. (11), Lemmas 2 and 3. We proceed by introducing Lemma 4,
which gives the worst-case finishing time of Ti. The proof is presented in the appendix.
Intuitively, the worst-case finishing time of Ti is the worst-case starting time of Ti plus
the maximum of all relevant timing dependencies (assuming an ALAP schedule).

Lemma 4 For ∀i > 0, ∀l′ ∈ [0, bcom] and ∀l ∈ [l′,BIi − 1], bcom = bj−1 − bj,

t̂f(Ti) = t̂s(Ti) − 1+ max{(l + 1) × tRRD − (BCi−1 − 1) × tCCD

+ [(BIi − l) × BCi − 1] × tCCD +
l∑

h=0

C(j + h),

tRWTP + tRP + tRCD − (bcom − l′) × BCi−1 × tCCD

+ (l − l′) × tRRD + [(BIi − l) × BCi − 1] × tCCD

+
l∑

h=l′
C(j + h),

tSwitch + (BIi × BCi − 1) × tCCD}

9 Worst-case execution time

After deriving the worst-case finishing time in Sect. 8, this section proceeds by com-
puting the WCET, the time between the worst-case starting time and the worst-case

123



Real-Time Syst

finishing time. A generic parameterized WCET is first derived, followed by two inter-
esting special cases, fixed transaction size and variable transaction sizes, respectively.

9.1 Generic worst-case execution time

According to Definition 5, the WCET is the difference between the worst-case starting
time and the worst-case finishing time, which are both included in Lemma 4. Therefore,
the WCET is obtained by rewriting Lemma 4. We observe that the expressions in the
max{} of Lemma 4 either linearly increase or decrease with l and l′. As a result, these
expressions can be simplified to give the worst-case finishing time t̂f(Ti) and hence
the WCET t̂ET(Ti). We proceed by introducing Theorem 1 that shows t̂ET(Ti) is only
determined by the JEDEC DDR3 timing constraints (JEDEC Solid State Technology
Association 2010), and the sizes of Ti and Ti−1 via (BIi−1,BCi−1) and (BIi,BCi)
according to the chosen memory map configurations. Therefore, Theorem 1 provides
a WCET parameterized by the sizes ofTi andTi−1. The proof of Theorem 1 is presented
in the appendix.

Theorem 1 (Generic Worst- case execution time) For ∀i > 0,

t̂ET(Ti) = max{(BCi − BCi−1) × tCCD + BIi × (tRRD + 1),

tRWTP + tRP + tRCD

+ [BIi × BCi − 1 − (min{BIi−1,BIi} − 1) × BCi−1] × tCCD + 1,

tRWTP + tRP + tRCD

+ [(BIi − (min{BIi−1,BIi} − 1)) × BCi − 1] × tCCD + 1,

tRWTP + tRP + tRCD + (BIi − 1) × (tRRD + 1) + 1

+ [BCi − 1 − (min{BIi−1,BIi} − 1) × BCi−1] × tCCD,

tRWTP + tRP + tRCD + (BCi − 1) × tCCD

+ [BIi − min{BIi−1,BIi}] × (tRRD + 1) + 1,

tSwitch + (BIi × BCi − 1) × tCCD}
In general systems with variable transaction sizes, the specific size of the previous

transaction that leads to WCET is unknown. We have found that the smallest previous
transaction size must be assumed to derive a conservative WCET. This is later captured
by Corollary 1. However, in the special case of the TDM arbitration presented in
Sect. 4.2, the previous transaction size is known in the worst-case due to the static
mapping of requestors to TDM slots. Therefore, less pessimistic WCET is obtained
based on the known size of the previous transaction. A special case is that a system
has a single fixed transaction size, such as × 64 Byte cache lines. As a result, the
previous transaction size is statically known. The WCET for this special case is given
by Corollary 2 in the next section. Note that the analysis of these two special cases only
needs to instantiate Theorem 1 that is generic to any preceding and current transaction
sizes.

Theorem 1 defines that the WCET t̂ET(Ti) is parameterized by the sizes of Ti and
Ti−1. We can observe that t̂ET(Ti) increases when BIi−1 and BCi−1 decrease. By taking
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both of them to be 1, i.e., Ti−1 is the smallest transaction, we obtain Corollary 1, which
is conservative for any (unknown) preceding transaction. Intuitively, Ti experiences
the WCET when the previous transaction is a small write that has only one burst to the
starting bank of Ti. Moreover, it is not necessary to assume a collision for the first ACT
command of Ti. The reason is that the finishing bank of Ti−1 is the starting bank of
Ti, and no WR commands of Ti−1 collide with the first ACT of Ti. Therefore, t̂ET(Ti)
given by Corollary 1 is tighter than Theorem 1.

Corollary 1 (Analytical WCET for variable transaction sizes) For ∀i >

0,

t̂ET(Ti) = max{tRWTP + tRP + tRCD + (BIi × BCi − 1) × tCCD,

tRWTP + tRP + tRCD + (BCi − 1) × tCCD

+ (BIi − 1) × (tRRD + 1)}

Another common situation is that all transactions have the same size. For example,
a homogeneous multi-core system may have a single memory transaction size, since
the cache-line size of all the cores is the same. Transactions with the same size use
the same BI and BC. So, BIi−1 = BIi = BI and BCi−1 = BCi = BC. According to
Theorem 1, we can derive Corollary 2 that provides the WCET to transactions with the
same size. The intuition of Corollary 2 is that a transaction suffers the WCET when
its previous transaction is a write that accessed the same set of banks.

Corollary 2 (Analytical WCET for fixed transaction size) For ∀i > 0,
BIi−1 = BIi = BI and BCi−1 = BCi = BC,

t̂ET(Ti) = max{tRWTP + tRP + tRCD + (BC − 1) × tCCD + 1,

tRWTP + tRP + tRCD + (BC − 1) × tCCD

+ (BI − 1) × (tRRD + 1 − BC × tCCD) + 1,

tSwitch + (BI × BC − 1) × tCCD}

9.2 Scheduled worst-case execution time

The analytical WCET given by Corollaries 1 and 2 have the benefit of being simple
equations that bound the WCET by just inserting the timings of the particular memory
device and the chosen memory map configuration for a transaction. However, they
are somewhat pessimistic, since they conservatively assume that there is a command
collision for every ACT command. Here, we present a second approach that builds on
the presented formalism and ALAP schedule to overcome this limitation and derive a
tighter bound.

The idea is to derive the worst-case initial bank state for a transaction based on
the ALAP schedule as presented in Sect. 7.2, followed by actually scheduling the
commands of the transaction off-line.This has the advantage of only accounting for the
actual number of command collisions and knowing exactly howmany cycles theWCET
increases due to the collisions. The drawback of the approach is that it is no longer a
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Fig. 9 An example illustrating that the actual execution time of a larger transaction (32 Bytes write) can
be less than that of a smaller transaction (16 Bytes write).

simple equation, but requires a software implementation of the scheduling algorithm.
To this end, the formalization of the timing behavior of the proposed scheduling
algorithm, previously presented in Sect. 6, has been implemented as an open-source
off-line scheduling tool (Li et al. 2014b). For the remainder of this article, we will refer
to this approach as the scheduled WCET and the bounds obtained from Corollaries 1
and 2 as the analytical WCET. Both of them can be obtained from our tool (Li et
al. 2014b).

9.3 Monotonicity of worst-case execution time

Intuitively, a transaction with a smaller size should have lower execution time than
a larger one. However, it is not always true in the actual execution of transactions.
The reason is that the execution time is highly dependent on the initial bank states
for the current transaction, i.e., the bank accesses by previous transactions. Fig. 9
shows a counter example. The 32-Byte write transaction uses bank 2 and bank 3
and the corresponding ACT commands can be scheduled in a pipelined manner with
the previous write transaction that uses bank 0. As a result, the scheduling of the
WR commands is dominated by the tCCD constraint. In contrast, the 16-Byte write
transaction accesses bank 0. It has to wait longer (tRWTP+tRP) to precharge bank 0
and then activate it. This shows that a smaller transaction may have a longer actual
execution time.

However, the WCET of a smaller transaction cannot be larger than that of a larger
transaction. This is guaranteed by Theorem 1 that shows the WCET of an arbitrary
transaction Ti monotonically increases with BIi and BCi. Moreover, Definition 1 states
that the transaction size is monotone with its BI and BC. Theorem 2 hence states that
the WCET monotonically increases with transaction size. The proof is included in the
appendix.

Theorem 2 For ∀T,T′, S(T) ≤ S(T′) �⇒ t̂ET(T) ≤ t̂ET(T′).

Theorem 2 allows us to use the WCET of the largest transaction that a requestor
can issue as an upper bound for all its transactions. This is especially useful to relax
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the requirement of fixed transaction size per requestor in the front-end (see Sect. 4)
by conservatively using the largest transaction size from the requestor.

10 Worst-case response time in the front-end

The worst-case response time (WCRT) of a transaction represents the maximum time
consumed to access the shared memory including both front-end and back-end. It is
based on the WCET computed in Sect. 9. This section introduces the analysis of the
WCRT based on the proposed front-end that uses a work-conserving TDM arbiter for
requestors with variable transaction sizes, previously presented in Sect. 4.

As shown in Fig. 3, a transaction arrives at the head of the request queue at time
t0. In particular, the arrival of a write transaction is recognized as the time its last
word arrives. The service of a read transaction is finished at the time tlastword when
the last data word returns to the response queue. Similarly, a write transaction is
finished when its acknowledgment arrives, which is sent by the back-end when the
last write command is scheduled at time tlastwrite, since the data is written into the
memory afterwards. Therefore, the response time tRESP of a read or a write transaction
is defined by Definition 6.

Definition 6 (Response time of a transaction)

tRESP =
{
tlastword − t0, Read transaction
tlastwrite − t0, Write transaction

(12)

A TDM arbiter is used in the front-end of the memory controller to serve trans-
actions from different requestors. We assume the number of requestors is N. For an
arbitrary requestor r ∈ [0,N − 1], the TDM arbiter allocates Nr consecutive TDM
slots to it. Moreover, the TDM arbiter is configured to serve requestors in descending
order of their transaction sizes to achieve smaller WCET, as discussed in Section 4.2.
We assume the TDM arbiter serves requestors in the order from Requestor 0 to
Requestor N − 1, where Requestor 0 has the largest and Requestor N − 1 has the
smallest transactions.

The response time of a transaction from requestor r consists of the interference
delay that is caused by other requestors, its own execution time in the back-end, and
the time to return read data. As a result, the transaction experiences the worst-case
response time (WCRT) only if its interference delay is maximum, after which it suffers
its WCET in the back-end. With the proposed work-conserving TDM arbitration in
Sect. 4.2, the maximum interference delay for a transaction occurs only if it misses
any of its slots, causing all its following consecutive slots to be skipped by the arbiter,
while the following requestors use all their allocated slots. Moreover, we have to
conservatively assume that each transaction from requestor r is executed with the
worst-case execution time t̂

r
ET in the back-end. Since the previous transaction size is

known when using TDM arbitration, we use Theorem 1 to compute t̂
r
ET. As a result,

the WCET t̂
r
ET is less pessimistic than using Corollary 1, leading to a shorter TDM

slot length. The TDM frame size, which is the sum of all slot lengths in the TDM
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table (given by Definition 7), is hence smaller. We experimentally show the benefits
of this approach in Sect. 11.4.3.

Definition 7 (Frame size of the TDM table) The frame size FS = ∑N−1
r=0 Nr × t̂

r
ET.

The worst-case response time t̂rRESP of a transaction from requestor r comprises three
parts, as shown in Eq. (13). t̂rinterf is the maximum interference delay for requestor r,
which is given by Eq. (14). It is the sum of the WCET of transactions from all other
requestors that are executed within their slots. The WCET results of these transac-
tions are given by Theorem 1 with known previous transaction sizes. For the first
interfering transaction, its WCET is computed assuming its preceding transaction has
the minimum size in the TDM table. This results in conservative WCET of the first
interfering transaction, since its previous transaction may be from any requestor and
is hence unknown. The second part of Eq. (13) is the worst-case execution time of
the transaction. Since the execution time of a transaction finishes when the last RD
or WR command is scheduled, the �t (the third part of Eq. (13)) represents the extra
time spent on returning the data of the last RD command to the response buffer and is
given by Eq. (15) that only comprises JEDEC specified timings.

t̂
r
RESP = t̂

r
interf + t̂

r
ET + �t (13)

t̂
r
interf =

∑
∀r′∈[0,N−1],r′ 
=r

t̂
r′
ET × Nr′ (14)

�t =
{
tRL + BL/2, Read transaction
0, Write transaction

(15)

Finally, the transaction may be delayed by a refresh. The worst-case refresh delay
t̂REF is given by Eq. (16), which consists of the time between the last WR command
of the previous transaction and the associated PRE and the precharge period as well
as the refresh period. However, a refresh is regularly needed every tREFI cycles, i.e.
a relatively long period of 7.8μs. Therefore, the penalty caused by refreshing leads
to only about 3 % increase in the total delay of accessing memory for an application.
As a result, it is not added to the WCRT of each transaction to avoid pessimism, but
added as an average cost in the system-level analysis of the application.

t̂REF = tRWTP + tRP + tRFC (16)

11 Experimental results

This section experimentally evaluates our memory controller and the corresponding
analysis. First, the experimental setup is presented, followed by three experiments. The
first experiment shows that the formalization accurately describes the timing behavior
of the back-end. The last two experiments evaluate our analysis for fixed transaction
size and variable transaction sizes, respectively. The results in terms of WCET, WCRT,
and the average execution time are analyzed and compared to a state-of-the-art semi-
static approach (Akesson and Goossens 2011).
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Table 3 An overview of the experiments.

Experiment Trans Size Content Section

1 Any Formalization validation 11.2

2 Fixed Execution time 11.3.1

3 Fixed Response time 11.3.2

4 Variable Execution time 11.4.1

5 Variable Effect of preceding transaction size 11.4.2

6 Variable Effect of TDM service orders 11.4.3

7 Variable Response time 11.4.4

8 Variable WCET monotonicity 11.5

11.1 Experimental setup

Our memory controller is implemented as a cycle-accurate SystemC model. The exper-
iments use a combination of independent real application traces and synthetic traffic.
Each of them generates one transaction stream and they are reflected by a mixed
stream in the memory controller back-end. The WCRT of a transaction derived in
Sect. 10 does not cover the aspects, such as synchronization within a single applica-
tion. However, these issues should be addressed by using the WCRT of transactions
in a higher-level formalism (e.g., dataflow model and network calculus) for WCET
estimation of applications. We use application traces generated by running applica-
tions from the MediaBench benchmark suite (Lee et al. 1997) on the SimpleScalar
3.0 processor simulator (Austin et al. 2002), which uses separate data and instruction
caches, each with a size of 16 KB. The L2 caches are private unified 128 KB caches
where the cache-line size varies depending on the experiments. Synthetic traffic is gen-
erated using a normal distribution with very low variance, resulting in near-periodic
traffic inspired by e.g., some hardware accelerators and display controllers in the mul-
timedia domain. For each transaction size in the experiments, we have chosen the
memory map configuration that provides the lowest execution time for transactions
by interleaving more banks to exploit bank parallelism. The configured (BI, BC) for
transaction sizes of 16 Bytes, 32 Bytes, 64 Bytes and 128 Bytes are hence (1, 1), (2,
1), (4, 1) and (4, 2), respectively (Goossens et al. 2012). (4, 2) is used by 128 byte
transactions instead of (8, 1) because of tFAW that causes a larger execution time with
(8, 1). Experiments have been done with three JEDEC-compliant DDR3 SDRAMs,
DDR3-800D, DDR3-1600G, DDR3-2133K, all with interface widths of 16 bits and a
capacity of 2 Gb (JEDEC Solid State Technology Association 2010). Table 3 shows
an overview of all these experiments.

11.2 Experimental validation of the formalization

The purpose of our first experiment is to validate the formalization of the timing behav-
ior of the dynamic command scheduling Algorithm 2 by verifying that the scheduling
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Table 4 Characterization of memory traffic.

Size gsmdecode epic unepic jpegencode

TransN RRatio (%) TransN RRatio (%) TransN RRatio (%) TransN RRatio (%)

32 19734 64.4 182957 69.7 129145 61.0 173995 87.4

64 10104 64.3 96984 69.3 67664 61.0 92905 87.8

128 5216 64.1 55644 69.8 36540 60.9 55192 89.1

time of each command is the same as given by the SystemC implementation. To this
end, the open-source off-line scheduling tool (Li et al. 2014b) that implements the
formalism has been provided with the same inputs as the SystemC implementation
for all experiments in this article, covering a wide range of read and write transactions
with different sizes and inter-arrival time under different memory map configurations.
The results of this experiment are that all commands of all transactions are scheduled
identically, indicating that the formalization accurately captures the implementation.
This is important since the formalization forms the base for both the analytical and
the scheduled WCET bounds. Moreover, it suggests the SystemC implementation is
correct. This proven relation between the formal model and the implementation is an
important result of our work and a distinguishing feature compared to the related
work.

11.3 Fixed transaction size

This experiment evaluates our approach for transactions with fixed transaction size, and
compares both the worst-case and average results to a semi-static approach (Akesson
and Goossens 2011), the only other approach that supports different memory map
configurations. Four memory requestors are used, corresponding to four processors
executing different Mediabench applications (gsmdecode, epic, unepic and jpegen-
code). The TDM arbiter in the front-end allocates one slot per requestor. For each
application, the total number of transactions (TransN) and the ratio (or percentage) of
read transactions (RRatio) are shown in Table 4. The processors execute through their
L2 cache and have the same cache-line size, enabling Corollary 2 to be used to bound
the WCET. The experiment is executed for three different cache-line sizes of 32 Bytes,
64 Bytes and 128 Bytes with different memory map configurations, respectively.

11.3.1 Execution time

The execution time of a transaction is the time required by the back-end to schedule
commands to the memory. This experiment hence only evaluates the dynamically
scheduled back-end and that the front-end will be included later when evaluating
response times. The WCET and average execution time of transactions with fixed size
accessing a DDR3-1600G memory are presented in Fig. 10a. The results for other
memories are similar and not shown. We can observe that:
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Fig. 10 WCET and average ET for different DDR3 SDRAMs with fixed transaction size. Results are
compared to a semi-static approach (Akesson and Goossens 2011).

(1) The maximum measured WCET from the experiments is equal to or slightly
smaller than the scheduled WCET. This indicates that the proposed analysis pro-
vides a tight WCET bound. The scheduled WCET is a little too conservative for
some transaction sizes, e.g., 32 bytes and 64 bytes for DDR3-1600G that use
BC = 1. This is caused by the worst-case initial states determined by the ALAP
scheduling in Sect. 7.2, which is conservative since tCCD is used as the time inter-
val between two RD or WR commands. However, for BC = 1, the actual interval
is larger than tCCD because ACT command dominates in the scheduling of a RD
or WR command. This conservative is eliminated for 128 byte transactions that
have BI = 4 and BC = 2, where the ALAP scheduling accurately determines the
worst-case initial states.

(2) The analytical WCET derived from Corollary 2 is equal to or slightly larger
than the scheduled WCET. The difference is because Theorem 1 conservatively
assumes a collision per ACT command, which may not actually be the case and
the collisions do not lead to an increased execution time, since the ACT command
does not always dominate in the computation of the finishing time (see Lemma 1).
The maximum difference is BI cycles.

(3) The WCET given by the semi-static approach is identical to the measured WCET
of our approach. Note that there is only one exception for 32 byte transactions with
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DDR3-2133K, where the measured WCET given by our approach is 61 cycles,
while it is 59 cycles for the semi-static approach. Since this exception is highly
dependent on the timing constraints, it does not occur for most DDR3 SDRAMs.
For example, there is no such exception for DDR3-800D and the results have
been presented in Li et al. (2014a).

(4) Our memory controller has significantly better average ET than the semi-static
approach for all DDR3 SDRAMs, as shown in Fig. 10a, where DDR3-1600G
is taken as an example. This is because dynamic command scheduling monitors
the actual state of the required banks and issues commands earlier for a transac-
tion that requires a different set of banks from that of the previous transaction.
In contrast, the semi-static scheduling (Akesson and Goossens 2011) uses pre-
computed schedules that always assume worst-case initial bank state for every
transaction. Fig. 10b shows the improvement of average ET, which is defined as
100 % × (1 − t̄ dET/t̄

s
ET). t̄

d
ET and t̄ sET denote the average ET of our approach and

the semi-static approach, respectively.
(5) We see that smaller transactions benefit more from dynamic command scheduling.

For example with DDR3-1600G, 32 byte transactions gain 38.1 % while 128 byte
transactions gain 2.6 %. The reason is that smaller transactions require a fewer
banks, leading to higher chance for the next transaction to access the different
banks and can thus be scheduled earlier.

11.3.2 Response time

The WCRT of a transaction is given by Eq. (13): it is essentially determined by
accumulating the WCET of transactions from each requestor. This experiment shows
both the worst-case and average-case response time of a transaction. Fig. 11 presents
the WCRT for DDR3-1600G with fixed transaction sizes. The results are derived on
the basis of the WCET shown in Fig. 10a, and new observations from Fig. 11 include:
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Fig. 11 WCRT for DDR3-1600G with fixed transaction size.
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Fig. 12 Comparison to a semi-static approach 2011 in average response time of Mediabench application
traces for different DDR3 SDRAMs with fixed transaction size.

(1) the response time of transactions are bounded. The measured WCRT is smaller
than the bound in terms of scheduled and analytical WCRT. The difference between
them is because the worst-case situation is unlikely to occur in both the front-end and
back-end simultaneously, which requires transactions from all requestors competing
in the front-end, while each transaction in the back-end experiences worst-case initial
bank state. (2) The analytical WCRT is more pessimistic than the scheduled WCRT,
because the analytical WCRT is derived by accumulating the analytical WCET of
transactions from each requestor. This exaggerates the conservative assumption of a
collision per ACT command for computing the analytical WCET. These observations
also hold for other DDR3 SDRAMs, although their WCRT results are not presented
for brevity.

Our dynamically scheduled memory controller has significantly smaller average
response time (RT) compared to the semi-static approach for all DDR3 memories.
Fig. 12 shows the gained improvement percentage of average RT by using our approach
compared to the semi-static approach for various Mediabench application traces. The
improvement is defined similarly to that of average ET. Fig. 12 supports the obser-
vations (4) and (5) from Fig. 10(b) as given in Sect. 11.3.1 that significantly better
average RT is achieved while smaller transaction size benefits more from our dynam-
ically scheduled approach.

11.4 Variable transaction size

The last experiment evaluates our approach with variable transaction size. First, the
WCET of a transaction is evaluated without any priori information, e.g., the size of
the previous transaction, where the worst-case is assumed. Second, we experiment
the case when the size of the previous transaction is known, which is guaranteed
by the TDM arbiter. Then the impact of the service order of requestors with their
transaction sizes on the WCRT is evaluated, based on which the WCRT and average
response time are evaluated. The setup is loosely inspired by a High-Definition video
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and graphics processing system featuring a number of CPU, GPU, hardware accel-
erators and peripherals with variable transaction sizes. This system has 4 requestors
with the transaction sizes of 16 bytes, 32 bytes, 64 bytes and 128 bytes, respectively.
The first requestor Req_1 represents a GPU with 128 byte cache line size, executing
a Mediabench application jpegdecode. A video engine corresponding to requestor,
Req_2, is used for mpeg2decode and it generates memory transactions of 64 bytes.
The Mediabench application epic is executed by a processor with a cache-line size
of 32 bytes, which is denoted Req_3. A synthetic memory trace is used by a CPU
which has a 16 byte cache-line size, resulting in read and write transactions with
16 bytes. This is requestor Req_4. The TDM arbiter in the front-end allocates one slot
per requestor and it serves these requestors from Req_1 to Req_4 in descending order
of their transaction sizes.

11.4.1 Execution time

Corollary 1 is used to compute the WCET of transactions with variable size, and the
results for DDR3-1600G are shown in Fig. 13. It also shows the WCET results given
by the semi-static approach for particular sizes, including 16 bytes, 32 bytes, 64 bytes
and 128 bytes, respectively. It is worth noting that the static command schedules (also
named patterns) used by the semi-static approach are computed at design time for a
particular fixed size, and are configured before the system is running. We get similar
conclusions as previously presented in Sect. 11.3.1. New interesting observations are:
(1) the scheduled WCET bound is perfectly tight, since the worst-case situation for
a transaction is accurately captured by Corollary 1 for variable sizes, and actually
occurs during simulation. The situation is that the previous transaction is a write and
its finishing bank is the starting bank of the new transaction. (2) when the semi-static
approach is used for variable transaction sizes, it has to choose a particular pattern
size such that the total WCET of all requestors is minimum, leading to smaller WCRT.
For a particular pattern size, transactions with larger sizes have to be split into several
pieces that are served in consecutive TDM slots. If the transaction size is smaller than
the pattern size, it will fetch the data and throw the unnecessary part away. This has two
consequences. First, the WCET of transactions with variable sizes highly depend on
the chosen pattern size. For example, the 16 bytes pattern provides very high WCET
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Fig. 13 WCET for DDR3-1600G with variable transaction sizes.
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for larger transaction sizes, as shown in Fig. 13. Second, since data is discarded, it
wastes power and reduces the bandwidth provided by the SDRAM, which is a scarce
resource. The bandwidth analysis is out of the scope of this article. The best pattern
size depends on the mix of the transaction sizes and the timing constraints of the
memory. For example, the best pattern size used in our experiments for DDR3-1600G
is 128 bytes, while it is 64 bytes and 128 bytes for DDR3-800D and DDR3-2133K,
respectively. (3) the WCET for each transaction obtained from our approach is less than
or equal to than that of the semi-static approach. This demonstrates our dynamically
scheduled memory controller outperforms the semi-static approach in the worst case
with variable sizes. (4) moreover, the average execution time of transactions with
variable sizes are much lower just like in the case of fixed sizes. The average execution
time results are not shown.

11.4.2 WCET with known/unknown previous transaction size

The WCET of a transaction is given by Corollary 1 for unknown previous transaction
size, referred to as pre-size, while it is provided by Theorem 1 for known pre-size.
As discussed in Sect. 9, if there is no static information about the size of the previous
transaction, it has to assume the worst-case situation for a transaction that its starting
bank was the finishing bank of the previous write transaction. This results in pessimism
for the WCET given by Corollary 1. The TDM arbiter in the front-end provides static
information about the slot allocation per requestor. Therefore, the size of the previous
transaction is statically known in the worst case. In this experiment, four requestors
have transaction sizes of 128 bytes, 64 bytes, 32 bytes and 16 bytes, respectively. The
TDM arbiter allocates one slot per requestor and serves them in descending order of
sizes, e.g., from 128 bytes to 16 bytes. Fig. 14 shows the WCET of a transaction with
known and unknown size of the previous transaction for DDR3 SDRAMs, respec-
tively. We can see that the WCET with unknown previous transaction size is greater
than or equal to the case with known size. For example, a 128 byte transaction is
preceded by a 16 byte transaction consisting of one burst, leading to no difference for
its WCET if the previous size is known or unknown. In contrast, a 64 byte transaction
is preceded by a 128 byte transaction. Its starting bank cannot be the finishing bank of
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the 128 byte transaction for aligned transactions, resulting in much better WCET with
known previous transaction size (see Fig. 14). Therefore, shorter worst-case frame size
is obtained if the size of previous transaction is known. This leads to smaller WCRT
as presented in the following section.

11.4.3 TDM service order of requestors

Besides known size of the previous transaction, lower WCET is obtained if transac-
tions are executed in descending order of their sizes because of improved pipelining
between successive transactions, as previously discussed in Sect. 4.2. This results in
a shorter frame size. An experiment is carried out to explore all the possible orders
of serving 4 and 8 requestors with transaction sizes of 16 byte, 32 byte, 64 byte and
128 byte, respectively. For the case of 8 requestors, there are two requestors with
each transaction size. Each requestor has one slot in the TDM table. All the possible
orders of serving these requestors have been evaluated, although only frame sizes for
descending, ascending and the worst possible order are shown in Fig. 15a. The best
way to serve requestors is descending order of their transaction sizes. The worst order
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Fig. 15 The worst-case frame size of a TDM table for different number of requestors, and the improvement
by serving requestors in descending order of their transaction sizes.
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Fig. 16 WCRT for DDR3-1600G with variable transaction sizes.

is the one that results in the maximum frame size. The experiment shows that the
minimum frame size is always obtained using the descending order. Compared to the
worst order, the improved percentage of frame size by using descending order is given
by Fig. 15b. It indicates that a system with a larger number of requrestors benefits more
from the descending order, e.g., 13.4 % is gained for 8 requestors with DDR3-800D.
Note that this is a free improvement by using our analysis in Sect. 9.1, which provides
the WCET by exploiting more detailed information about the bank state when the size
of the previous transaction is known. This has not been considered by existing work.

11.4.4 Response time

The WCRT for the four requestors is derived from Eq. (13) and the results for DDR3-
1600G are shown in Fig. 16. They are obtained on the basis of the WCET by using
Theorem 1. In addition, to fairly compare with the semi-static approach, we choose
the best pattern size, e.g., 128 byte for DDR3-1600G. As can be seen from Fig. 16, it
also supports the conclusion given by Fig. 13 that our dynamically scheduled mem-
ory controller outperforms the semi-static approach in worst case, since the WCRT
given by the semi-static approach is greater than or equal to that of our approach
for transactions from different requestors. As the observation also holds for the other
DDR3 SDRAMs, their results are not shown. Moreover, by collecting the average
response time of transactions from different requestors, we can conclude similarly
to Sect. 11.3.2 that our approach significantly reduces the time for each application
to access the memory. For example, compared to the semi-static approach, 53.3 %
reduction of the average response time for accessing DDR3-1600G is achieved by the
Mediabench application epic that has 32 byte memory transactions.

11.5 Monotonicity of WCET

Theorem 2 states that the analytical WCET monotonically increases with the trans-
action size, and it is based on the WCET given by Theorem 1. However, we cannot
prove this for the scheduled WCET, as presented in Sect. 9.2. We proceed by provid-
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Fig. 17 The monotonicity of scheduled WCET with transaction size for a requestor. DDR3-1600G is taken
as an example.

ing experimental evidence to show that the monotonicity property also holds for the
scheduled approach.

Experiments have been done with DDR3-800D, DDR3-1600G and DDR3-2133K
to collect the scheduled WCET of transactions. All pair-wise combinations of 16, 32,
64, 128, and 256 bytes transactions have been tested. Fig. 17 shows the scheduled
WCET results of transactions with different sizes under different preceding transac-
tion sizes for DDR3-1600G. The results are similar for the other memories and are not
shown for brevity. Using Theorem 1 we conclude that the scheduled WCET monoton-
ically increases with the transaction size for DDR3-800D/1600G/2133K memories.

12 Conclusions

This article provides tight WCRT bounds for memory transactions of real-time appli-
cations, while offering competitive low average response time to transactions of NRT
applications. To this end, we defined a memory command scheduling algorithm and
architecture supporting both fixed and variable transaction sizes with different memory
map configurations by dynamically scheduling commands. In addition, a formalization
of the dynamic command scheduling is proposed to capture the timings of commands,
based on which the WCET of transactions is defined. Based on the analysis, two
techniques are presented to bound the WCET. The first technique is an equation that
computes the WCET for a given transaction size and memory map configuration, while
the second technique tries to provide a tighter bound by using an off-line implementa-
tion of the dynamic command scheduling to compute actual command collisions. We
formally prove that the analytical WCET monotonically increases with the transaction
size, and we provide experimental evidence of DDR3-800D/1600G/2133K SDRAMs
that this also holds for the scheduled approach. With the WCET of transactions, the
WCRT is derived based on a new work-conserving TDM arbiter that schedules trans-
actions from different requestors in a way that provides low average response time
without negative impacting the worst case. Comparison with a state-of-the-art semi-
static scheduling approach shows that our approach significantly reduces the average
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response times, implying shorter time for each application to access the memory, while
it performs equally well or better in the worst-case with only a few exceptions.
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Appendix

Proof of Lemma 1

Proof To prove Lemma 1 that states the finishing time of a transaction is only deter-
mined by either the finishing time of the previous transaction, or the scheduling time
of its ACT commands, we only need to iteratively compute the scheduling time of its
RD or WR commands and finally obtain the scheduling time of the last RD or WR
command, which is defined as the finishing time of the transaction by Definition 3.

For an arbitrary transaction Ti (i > 0) that has BIi and BCi, its finishing time tf(Ti)
is shown in Eq. (17), which is the scheduling time of its last RD or WR (named RW )
command.

tf(Ti) = t(RWBCi−1
j+BIi−1) (17)

According to Eq. (6) that gives the scheduling of a RW command, the scheduling
time of the last RW command in Eq. (17) is given by Eq. (18). We see that this is
determined by the scheduling time of the first RW to the same bank.

t(RWBCi−1
j+BIi−1) = t(RW0

j+BIi−1) + (BCi − 1) × tCCD (18)

Equation (5) provides the scheduling time of the first RW command to a bank,
which is determined by either the scheduling time of the ACT command to the same
bank due to tRCD, or that of the previously scheduled RW command for the same
transaction because of tCCD, which is the last command to the previous bank. As a
result, t(RW0

j+BIi−1) in Eq. (18) is derived based on Eq. (5), and is shown in Eq. (19).

t(RW0
j+BIi−1) = max{t(ACTj+BIi−1) + tRCD, t(RWBCi−1

j+BIi−2) + tCCD} (19)

We proceed by combining Eq. (17), (18) and (19) to obtain a new expression of the
finishing time, as given by Eq. (20).

tf(Ti) = max{t(ACTj+BIi−1) + tRCD + (BCi − 1) × tCCD,

t(RWBCi−1
j+BIi−2) + BCi × tCCD} (20)
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In the same way, we can compute t(RWBCi−1
j+BIi−2) in Eq. (20), and it can be further

expressed by t(ACTj+BIi−2) and t(RWBCi−1
j+BIi−3). We iteratively substitute the scheduling

time of the last RW command to each bank of transaction Ti, and Eq. (21) is derived,
which consists of BIi number of terms.

t f (Ti ) = Max
1≤l≤BI i−1

{t (RW BCi−1
j ) + (BI i − 1) × BCi × tCCD,

t (ACT j+l) + t RCD + [(BI i − l) × BCi − 1] × tCCD}
(21)

We proceed by substituting t(RWBCi−1
j ) in Eq. (21) with the scheduling time of the

first RW to the same bank, which is given by Eq. (22), and is derived according to
Eq. (6).

t(RWBCi−1
j ) = t(RW0

j ) + (BCi − 1) × tCCD (22)

Furthermore, t(RW0
j ) in Eq. (22) can be computed based on Eq. (5). As a result,

Eq. (23) is obtained. Note that tf(Ti−1) is the finishing time of the previous transaction
Ti−1 that is also the scheduling time of the last RW command of the previous bank.
It was scheduled just before RW0

j and the timing constraint between them is tSwitch
(given by Eq. (2)).

t(RW0
j ) = max{t(ACTj) + tRCD, tf(Ti−1) + tSwitch} (23)

By combining Eq. (21), (22) and (23), Eq. (24) is derived.

t f (Ti ) = Max
0≤l≤BI i−1

{t f (Ti−1) + t Swi tch + (BI i × BCi − 1) × tCCD,

t (ACT j+l) + t RCD + [(BI i − l) × BCi − 1] × tCCD}
(24)

Hence, for ∀l ∈ [0,BIi − 1], tf(Ti) is expressed by Eq. (24). It indicates that tf(Ti)
only depends on the scheduling times of its ACT commands, the finishing time of
Ti−1, the memory map configuration in terms of BIi and BCi and the JEDEC-specified
timing constraints, which are constant values. ��

Proof of Lemma 2

Proof For ∀l ∈ (bcom,BIi − 1], the scheduling time of the command ACTj+l to bank
bj+l can be obtained from Eq. (4). It indicates t(ACTj+l) is determined by t(ACTj+l−1),
t(ACTj+l−4) or t(PREm), where m was the latest bank access number to bank bj + l
before Ti. This lemma can be proved by simplifying Eq. (4) to derive the scheduling
time ofACTj+l, which is finally given by Eq. (34). First, a simplified Eq. (25) is obtained
because of the dominance of t(ACTj+l−1) in this case. We proceed by explaining its
derivation.
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t(ACTj+l) =max{t(ACTj+l−1) + tRRD, t(PREm) + tRP,

t(ACTj+l−4) + tFAW} + C(j + l)

= t(ACTj+l−1) + tRRD + C(j + l) (25)

t(ACTj+l−1) dominates in the max{} of Eq. (25). We demonstrate this by showing
two relations between the terms in the expression: i) t(ACTj+l−1) > t(PREm) + tRP.
For ∀l > bcom, Eq. (4) is employed to derive Eq. (26), which shows a later bank access
(larger l) has a larger scheduling time of the ACT command. This is intuitive since the
scheduling algorithm (Algorithm 2) schedules ACT commands in order.

BIi − 1 ≥ ∀l > bcom �⇒ t(ACTj+l−1) ≥ t(ACTj+bcom) (26)

The command ACTj+bcom is scheduled to bank bj+bcom = bj−1 that is the finishing
bank of Ti−1. As a result, Eq. (27) is derived on the basis of Eq. (4). It simply states
that a bank cannot be activated until it has been precharged.

bj + bcom = bj−1 �⇒ t(ACTj+bcom) ≥ t(PREj−1) + tRP (27)

Moreover, the precharge of a bank is triggered by the auto-precharge flag appended
to aRD orWR command, which is issued sequentially. Therefore, banks are precharged
in the order of bank accesses, resulting in Eq. (28), where the latest access numberm for
bank bj + l is smaller than the latest bank access number j− 1. Finally, by substituting
Eq. (26), (27) and (28), we can prove the relation that t(ACTj+l−1) > t(PREm)+ tRP.

∀m < j − 1 �⇒ t(PREj−1) > t(PREm) (28)

ii) t(ACTj+l−1) > t(ACTj+l−4)+tFAW. According to Eq. (7), we can obtain Eq. (29),
which shows that the precharging time of a bank is after issuing the last RD or WR
command of a transaction to the same bank.

t(PREj−1) ≥ t(RWBCi−1−1
j−1 ) + tRWTP (29)

With Eq. (5) and (6) that capture the timing dependencies for aRD orWR command,
Eq. (30) is derived and it indicates that the last RD or WR command of a transaction
to a bank is scheduled later than the ACT command to the same bank.

t(RWBCi−1−1
j−1 ) ≥ t(ACTj−1) + tRCD + (BCi−1 − 1) × tCCD (30)

Since ACT commands are scheduled in order by Algorithm 2, the previously sched-
uled command ACTj+l−4 (l < 4) was not scheduled later than that of ACTj−1. We can
get Eq. (31).

∀l < 4 �⇒ t(ACTj−1) ≥ t(ACTj+l−4) (31)

By combining Eq. (29), (30), and (31), Eq. (32) is derived.

t(PREj−1) ≥ t(ACTj+l−4) + tRCD + (BCi−1 − 1) × tCCD + tRWTP (32)

123



Real-Time Syst

We now proceed by obtaining Eq. (33) based on the combination of Eq. (26), (27),
and (32). Moreover, we can observe tFAW ≤ tRC = tRAS+ tRP ≤ tRCD+ tRWTP+
tRP for all DDR3 devices from the JEDEC DDR3 timing constraints 2010. Therefore,
t(ACTj+l−1) > t(ACTj+l−4)+tFAW according to Eq. (33), proving the second relation.

t(ACTj+l−1) > t(ACTj+l−4) + tRCD + (BCi−1 − 1) × tCCD + tRWTP + tRP (33)

With the above two reasons, the simplified equation is given by Eq. (25). It indicates
the scheduling time of ACTj+l is only determined by that of the previous ACTj+l−1.
Based on Eq. (25) and ∀l ∈ (bcom,BIi − 1], we can get Eq. (34), which shows the
scheduling time of ACTj+l depends on that of ACTj+bcom . Note that ACTj+bcom was
scheduled to the last bank bj−1 of Ti−1.

t(ACTj+l) = t(ACTj+bcom) + [l − bcom] × tRRD +
l∑

l′=bcom+1

C(j + l′) (34)

��
Proof of Lemma 3

Proof To prove the lemma, we have to separate the problem into two pieces by ana-
lyzing the scheduling of commands for Ti to common banks with Ti−1 and to the
non-common banks, respectively. Since Lemma 2 implies the scheduling of ACT
commands to non-common banks is only determined by the scheduling of the ACT
command for Ti to the last common bank, we only need to prove the first piece that the
scheduling ofACT commands to common banks is only dependent onTi−1 in the worst
case. The common banks have been accessed by Ti−1, resulting in worst-case initial
bank state for Ti because of the timing dependencies. Moreover, when BIi−1 < 4, the
scheduling of an ACT command for Ti may be determined by the ACT commands of
earlier transactions, e.g., Ti−2 or Ti−3, through the tFAW timing constraint. We hence
only need to prove that these earlier ACT commands cannot dominate in the initial
bank state given by the ALAP command scheduling of Ti−1. Note that BIi−1 ≥ 4
ensures that there were at least four ACT commands for Ti−1. As a result, the com-
mand scheduling of Ti is only dependent on that of Ti−1 when BIi−1 ≥ 4. So, the
following only considers BIi−1 < 4.

We proceed by proving that the scheduling of ACT commands for Ti to com-
mon banks is only dependent on Ti−1. For a common bank bj + l between Ti−1 and Ti
where ∀l ∈ [0, bcom], the scheduling time of itsACT commandACTj+l is obtained from
Eq. (4) and is shown in Eq. (35), which indicates that t(ACTj+l) depends on the schedul-
ing time t(ACTj+l−1) of the previous ACT, the scheduling time t(PREj−1−(bcom−l)) of
the latestPRE to bank bj+l and the scheduling time t(ACTj+l−4) of the fourth previous
ACT command (due to tFAW ). Note that j− 1 − (bcom − l) is the latest access number
to bank bj + l according to the ALAP command scheduling of Ti−1. For example, if
l = bcom, bank bj+ l = bj+bcom is the last common bank between Ti−1 and Ti, where
its latest access number is j − 1. Since ACTj+l−1 is a command for Ti or Ti−1 (l = 0)
while PREj−1−(bcom−l) was for Ti−1, only ACTj+l−4 is possible to be a command for
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earlier transactions, e.g., Ti−2 or Ti−3, if BIi−1 < 4. To prove the lemma, we only
need to prove t(ACTj+l−4) does not dominate in the max{} of Eq. (35), which is then
further simplified as shown in Eq. (35).

t(ACTj+l) = max{t(ACTj+l−1) + tRRD, t(PREj−1−(bcom−l)) + tRP,

t(ACTj+l−4) + tFAW} + C(j + l)

= max{t(ACTj+l−1) + tRRD, t(PREj−1−(bcom−l)) + tRP}
+ C(j + l) (35)

For ∀l < 4 − BIi−1, ACTj+l−4 is a command for earlier transactions, e.g., Ti−2 or
Ti−3 when BIi−1 < 4. We proceed by computing the scheduling time of ACTj+l−4
based on the ALAP scheduling time of ACT commands for Ti−1, which are given
by Eq. (10). In particular, the possible maximum scheduling time of the first ACT
command of Ti−1 is obtained by using Eq. (10), which is shown in Eq. (36).

t̂(ACTj−1−(BIi−1−1)) = t̂s(Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD

− (BIi−1 − 1) × max{tRRD,BCi−1 × tCCD} (36)

By conservatively using the minimum time interval tRRD between two successive
ACT commands, Eq. (37) is derived, which provides the possible maximum schedul-
ing time of ACTj+l−4. Moreover, by substituting Eq. (36) into Eq. (37), an explicit
expression of t̂(ACTj+l−4) is obtained.

t̂(ACTj+l−4) = t̂(ACTj−1−(BIi−1−1)) − (4 − l − BIi−1) × tRRD

= t̂s(Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD

− (BIi−1 − 1) × max{tRRD,BCi−1 × tCCD}
− (4 − l − BIi−1) × tRRD (37)

In order to prove that t̂(ACTj+l−4)+tFAW cannot dominate in the max{} of Eq. (35),
we only need to prove that t̂(ACTj+l−4) + tFAW ≤ t̂(PREj−1−(bcom−l)) + tRP. Since
t̂(PREj−1−(bcom−l)) is given by Eq. (11) with assumption that Ti−1 is write while
t̂(ACTj+l−4) is provided by Eq. (37), Eq. (38) is derived.

t̂(PREj−1−(bcom−l)) + tRP − [t̂(ACTj+l−4) + tFAW]
= t̂s(Ti) − 1 + tRWTP − (bcom − l) × BCi−1 × tCCD + tRP

− [t̂s(Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD − (BIi−1 − 1)

× max{tRRD,BCi−1 × tCCD} − (4 − l − BIi−1) × tRRD + tFAW]
= tRWTP − (bcom − l) × BCi−1 × tCCD + tRP + tRCD

+ (BCi−1 − 1) × tCCD + (BIi−1 − 1) × max{tRRD,BCi−1 × tCCD}
+ (4 − l − BIi−1) × tRRD − tFAW (38)

The result of this equation is non-negative, as the positive terms in Eq. (38)
cancel out all the negative ones for the following four reasons: 1) max{tRRD,
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BCi−1 × tCCD} ≥ BCi−1 × tCCD. 2) bcom − l ≤ BIi−1 − 1 since ∀l ∈ [0, bcom] and
bcom = min{BIi−1,BIi}−1. 3) the observation from JEDEC DDR3 timing constraints
that tFAW ≤ tRWTP + tRP + tRCD for all DDR3 memories with write transaction.
4) l < 4 − BIi−1 from the above discussion. Therefore, t̂(PREj−1−(bcom−l)) + tRP ≥
t̂(ACTj+l−4) + tFAW, which indicates t(ACTj+l−4) cannot dominate in the max{} of
Eq. (35). These earlier ACT commands (ACTj+l−4) hence cannot dominate in the
scheduling of the ACT commands for Ti because of tFAW in the worst case. Thus,
Eq. (35) guarantees that the scheduling of ACT commands for Ti only depends on the
maximum possible scheduling time of the previous PRE for Ti−1 in the worst case
or ACTj+l−1 that belongs to Ti−1 for l=0. We can conclude that the ALAP command
scheduling of the previous write transaction Ti−1 is sufficient to give worst-case initial
bank state to Ti. ��

Proof of Lemma 4

Proof According to Lemma 1, the finishing time of a transaction Ti is determined by
the finishing time of the previous transaction Ti−1 and the scheduling time of all its
ACT commands. Therefore, the worst-case finishing time of Ti is obtained by using
the worst-case scheduling time (maximum) of its ACT commands, and the maximum
finishing time of Ti−1 that is t̂f(Ti−1) = t̂s(Ti) − 1 based on Eq. (8), where we fix the
worst-case starting time t̂s(Ti) of Ti.

We proceed by obtaining the worst-case scheduling time of the ACT commands for
Ti. Without loss of generality, Ti has BIi and BCi while Ti−1 uses BIi−1 and BCi−1. The
current bank access number is j, and the starting bank of Ti is bj, while the finishing
bank of Ti−1 is bj−1. This results in bcom = bj−1 − bj. For ∀l ∈ [0,BIi − 1], the worst-
case scheduling time of the ACT command to bank bj + l is denoted by t̂(ACTj+l). It
can be computed with two cases that l ∈ [0, bcom] and l ∈ (bcom,BIi−1], respectively.

For ∀l ∈ [0, bcom], the ACTj+l command is scheduled to bank bj + l that is a
common bank between Ti and Ti−1. Lemma 3 guarantees that the ALAP scheduling of
commands for the write transaction Ti−1 is sufficient to provide the worst-case initial
bank state for Ti. As a result, the worst-case scheduling time t̂(ACTj+l) can be obtained
based on this worst-case initial states. Eq. (35) is hence used to compute t̂(ACTj+l),
which indicates that the scheduling time of ACTj+l is either determined by its previous
ACTj+l−1 or the latest precharge, PREj−1−(bcom−l), to the same bank. By iteratively
using Eq. (35) to obtain the scheduling time of each of the ACT commands to the
common banks, we can derive a new expression of the scheduling time of ACTj+l that
is given by Eq. (39). Note that ∀l′ ∈ [0, l] indexes a bank (bj + l′) that is not accessed
later than bank bj + l, since bj + l′ ≤ bj + l.

t(ACTj+l) = Max
0≤∀l′≤l

{t(ACTj−1) + (l + 1) × tRRD +
l∑

h=0

C(j + h),

t(PREj−1−(bcom−l′)) + tRP + (l − l′) × tRRD +
l∑

h=l′
C(j + h)} (39)
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t(ACTj−1) in Eq. (39) is the scheduling time of the last ACT command for Ti−1.
According to ALAP scheduling, the worst-case scheduling time t̂(ACTj−1) can be
derived based on Eq. (10), and it is given by Eq. (40).

t̂(ACTj−1) = t̂s(Ti) − 1 − tRCD − (BCi−1 − 1) × tCCD (40)

Moreover, the worst-case scheduling time of PREj−1−(bcom−l′) to the common bank
bj + l′ based on ALAP scheduling is given by Eq. (11). Therefore, by substituting
t(ACTj−1) and t(PREj−1−(bcom−l′)) in Eq. (39) with their worst-case scheduling time
given by Eq. (40) and Eq. (11), we can obtain the worst-case scheduling time ofACTj+l,
as shown in Eq. (41).

t̂(ACT j+l) = Max
0≤l ′≤l≤bcom

{
t̂s(Ti ) − 1 − t RCD − (BCi−1 − 1) × tCCD

+ (l + 1) × t RRD +
l∑

h=0

C( j + h),

t̂s(Ti ) − 1 + t RWT P − (bcom − l ′) × BCi−1 × tCCD

+ t RP + (l − l ′) × t RRD +
l∑

h=l ′
C( j + h)

}
(41)

For ∀l ∈ (bcom,BIi − 1], the ACTj+l command is scheduled to the non-common
bank bj + l. Since Lemma 2 ensures that the scheduling time of an ACT command
to a non-common bank is only determined by that of the ACT command to the last
common bank, Eq. (34) is used to compute t(ACTj+l), and it is only dependent on
t(ACTj+bcom). Eq. (41) is used to compute the worst-case scheduling time t(ACTj+bcom),
which is further substituted into Eq. (34). Hence, t̂(ACTj+l) is also derived when
∀l ∈ (bcom,BIi − 1].

Finally, we can use t̂f(Ti−1) = t̂s(Ti) − 1 and t̂(ACTj+l) to derive the worst-case
finishing time t̂f(Ti) of Ti based on Lemma 1 (described by Eq. (24)). It is described by
Eq. (42), where ∀l′[0, bcom] and ∀l ∈ [l′,BIi − 1]. Intuitively, Eq. (42) illustrates that
the worst-case finishing time of a transaction is dependent on the precharging time of
the common banks with the previous write transaction.

t̂ f (Ti ) = Max
0≤l ′≤bcom ,l ′≤l≤BI i−1

{
t̂s(Ti ) − 1 − (BCi−1 − 1) × tCCD + (l + 1) × t RRD

+[(BI i − l) × BCi − 1] × tCCD +
l∑

h=0

C( j + h), t̂s(Ti ) − 1

+ t RWT P − (bcom − l ′) × BCi−1 × tCCD + t RP + t RCD + (l − l ′) × t RRD

+[(BI i − l) × BCi − 1] × tCCD +
l∑

h=l ′
C( j + h), t̂s(Ti ) − 1

+ t Swi tch + (BI i × BCi − 1) × tCCD} (42)

��
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Proof of Theorem 1

Proof Since Lemma 4 provides the worst-case finishing time of a transaction Ti, we
can hence compute the worst-case execution time (WCET) according to Definition 5.
Then we only need to simplify the expressions in the equation and obtain the WCET.

Lemma 4 indicates that the worst-case finishing time t̂f(Ti) depends on its worst-
case starting time t̂s(Ti), the BI and BC used by Ti−1 and Ti, and the JEDEC DDR3
timing constraints. According to Definition 5, the WCET is the time between t̂s(Ti)
and t̂f(Ti), and is given by Eq. (43).

t̂ET(Ti) = t̂f(Ti) − t̂s(Ti) + 1 (43)

Based on Eq. (42) that gives the worst-case finishing time, we further obtain Eq. (44)
according to Eq. (43) by moving t̂s(Ti) − 1 from the right side to the left of Eq. (42).

t̂ET (Ti ) = Max
0≤l ′≤bcom ,l ′≤l≤BI i−1

{
− (BCi−1 − 1) × tCCD

+ (l + 1) × t RRD + [(BI i − l) × BCi − 1] × tCCD +
l∑

h=0

C( j + h),

t RWT P − (bcom − l ′) × BCi−1 × tCCD + t RP + t RCD

+ (l − l ′) × t RRD + [(BI i − l) × BCi − 1] × tCCD +
l∑

h=l ′
C( j + h),

t Swi tch + (BI i × BCi − 1) × tCCD
}

(44)

Since we conservatively assume there is always scheduling collisions for ACT
commands, i.e., C( j + h) = 1, Eq. (44) can be simplified based on

∑l
h=0 C(j+ h) =

l + 1 and
∑l

h=l′ C(j + h) = l − l′ + 1, as shown in Eq. (45).

t̂ET (Ti ) = Max
0≤l ′≤bcom ,l ′≤l≤BI i−1

{
(BI i × BCi − BCi−1) × tCCD

+ l × (t RRD + 1 − BCi × tCCD) + t RRD + 1,

t RWT P + t RP + t RCD + [BI i × BCi − 1 − bcom × BCi−1] × tCCD + 1

+ l ′ × (BCi−1 × tCCD − t RRD − 1) + l × (t RRD + 1 − BCi × tCCD),

t Swi tch + (BI i × BCi − 1) × tCCD
}

(45)

We can observe from Eq. (45) that the expressions in the max{} function either
linearly increase or decrease with l and l′. Therefore, Eq. (45) can be further simplified
to obtain t̂ET(Ti) by using both the maximum and minimum values of l and l′ in the
max{} of Eq. (45). Since ∀l′[0, bcom] and ∀l ∈ [l′,BIi − 1], we substitute (l′, l) with
(0, 0), (0,BIi − 1), (bcom, bcom), and (bcom,BIi − 1) in all the terms of the max{} in
Eq. (45). t̂ET(Ti) is further given by Eq. (46). Note that some of the terms are removed,
since they cannot dominate in the max{} when deriving Eq. (46).
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t̂ET(Ti) = max
{
(BIi × BCi − BCi−1) × tCCD

+ (BIi − 1) × (tRRD + 1 − BCi × tCCD) + tRRD + 1,

tRWTP + tRP + tRCD + [BIi × BCi − 1 − bcom × BCi−1] × tCCD + 1,

tRWTP + tRP + tRCD + [(BIi − bcom) × BCi − 1] × tCCD + 1,

tRWTP + tRP + tRCD + [BCi − 1 − bcom × BCi−1] × tCCD

+ (BIi − 1) × (tRRD + 1) + 1,

tRWTP + tRP + tRCD + (BCi − 1) × tCCD

+ [BIi − 1 − bcom] × (tRRD + 1) + 1,

tSwitch + (BIi × BCi − 1) × tCCD
}

(46)

Note that bcom = bj−1 − bj and is determined by the size of Ti−1 and Ti, whichever
is smaller, i.e., bcom = min{BIi−1,BIi} − 1. Moreover, some of the expressions in the
max{} of Eq. (46) are further simplified according to the observation from JEDEC
DDR3 timing constraints that tSwitch > tRRD+1 when Ti−1 is a write. The simplified
t̂ET(Ti) is finally shown in Eq. (47).

t̂ET(Ti) = max
{
(BCi − BCi−1) × tCCD + BIi × (tRRD + 1),

tRWTP + tRP + tRCD + 1

+ [BIi × BCi − 1 − (min{BIi−1,BIi} − 1) × BCi−1] × tCCD,

tRWTP + tRP + tRCD + 1

+ [(BIi − (min{BIi−1,BIi} − 1)) × BCi − 1] × tCCD,

tRWTP + tRP + tRCD + (BIi − 1) × (tRRD + 1) + 1

+ [BCi − 1 − (min{BIi−1,BIi} − 1) × BCi−1] × tCCD,

tRWTP + tRP + tRCD + (BCi − 1) × tCCD

+ [BIi − min{BIi−1,BIi}] × (tRRD + 1) + 1,

tSwitch + (BIi × BCi − 1) × tCCD
}

(47)

��
Proof of Theorem 2

Proof To prove the WCET of a transaction provided by Theorem 1 monotonically
increases with its size, it is only necessary to prove that the WCET monotonically
increases with its BI and BC. The WCET of Ti is given by Theorem 1 (i.e., Eq. (47)).
We can see that the WCET, t̂ET(Ti), is determined by one of the 6 expressions in the
max{} function, which are all also functions of BIi and BCi. These 6 expressions are
denoted by expr1 to expr6, respectively, corresponding to the expressions from top to
bottom in Eq. (47). We proceed by proving the monotonicity for each of them.

Expression 1:
Since expr1(BIi,BCi) = (BCi − BCi−1) × tCCD + BIi × (tRRD + 1), BI′i ≤

BIi ∧ BC′
i ≤ BCi �⇒ expr1(BIi,BCi) ≥ expr1(BI′i,BC′

i).
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Expression 2:
expr2(BIi,BCi) = tRWTP+ tRP+ tRCD+1+[BIi×BCi−1−(min{BIi−1,BIi}−

1) × BCi−1] × tCCD.
Case 1: BIi ≤ BIi−1,
BIi ≤ BIi−1 �⇒ expr2(BIi,BCi) = tRWTP + tRP + tRCD + 1 + [BIi × (BCi −

BCi−1) + BCi−1 − 1] × tCCD.
We can observe that expr5 > tRWTP + tRP + tRCD + (BCi − 1) × tCCD + 1 in

this case for any BIi and BCi. As a result, expr2 can dominate the max{} function of
Eq. (47) only if the given BIi and BCi cannot make it smaller than tRWTP + tRP +
tRCD + (BCi − 1) × tCCD + 1. Therefore, BCi ≥ BCi−1 is a necessary condition
for expr2. On this condition, we can derive expr2(BIi,BCi) ≥ expr2(BI′i,BC′

i), where
BI′i ≤ BIi and BC′

i ≤ BCi.
Case 2: BIi > BIi−1,
BIi > BIi−1 �⇒ min{BIi−1,BIi} = BIi−1 �⇒ expr2(BIi,BCi) = tRWTP +

tRP + tRCD + 1 + [BIi × BCi − 1 − (BIi−1 − 1) × BCi−1] × tCCD.
For this expression, it follows that expr2(BIi,BCi) ≥ expr2(BI′i,BC′

i) if BI′i ≤ BIi
and BC′

i ≤ BCi in this case.
With these two cases, when expr2 dominates the max{} function of Eq. (47), there

is expr2(BIi,BCi) ≥ expr2(BI′i,BC′
i), where BI′i ≤ BIi and BC′

i ≤ BCi.
Expression 3:
expr3(BIi,BCi) = tRWTP + tRP + tRCD + 1 + [(BIi − (min{BIi−1,BIi} − 1)) ×

BCi − 1] × tCCD. For this expression, there are again two cases, where the theorem
follows straight-forwardly for both of them.

Case 1: BIi ≤ BIi−1,
expr3(BIi,BCi) = tRWTP + tRP + tRCD + 1 + (BCi − 1) × tCCD. As a result,

BI′i ≤ BIi ∧ BC′
i ≤ BCi �⇒ expr3(BIi,BCi) ≥ expr3(BI′i,BC′

i).
Case 2: BIi > BIi−1,
expr3(BIi,BCi) = tRWTP+tRP+tRCD+1+[(BIi−BIi−1+1)×BCi−1]×tCCD.

So, BI′i ≤ BIi ∧ BC′
i ≤ BCi �⇒ expr3(BIi,BCi) ≥ expr3(BI′i,BC′

i).
According to these two cases, there is expr3(BIi,BCi) ≥ expr3(BI′i,BC′

i), where
BI′i ≤ BIi and BC′

i ≤ BCi.
Expression 4, 5, and 6:
With a similar discussion as for Expression 2, we can conclude that expr4monoton-

ically increases with BIi and BCi. This conclusion also holds for expr5 if it is analyzed
in the same way asExpression 3, while expr6 can be discussed similarly toExpression
1. The detailed derivation is not shown here for brevity. ��
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