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Abstract—SDRAM is a shared resource in modern multi-core
platforms executing multiple real-time (RT) streaming applica-
tions. It is crucial to analyze the minimum guaranteed SDRAM
bandwidth to ensure that the requirements of the RT streaming
applications are always satisfied. However, deriving the worst-
case bandwidth (WCBW) is challenging because of the diverse
memory traffic with variable transaction sizes. In fact, existing
RT memory controllers either do not efficiently support variable
transaction sizes or do not provide an analysis to tightly bound
WCBW in their presence.

We propose a new mode-controlled data-flow (MCDF) model
to capture the command scheduling dependencies of memory
transactions with variable sizes. The WCBW can be obtained by
employing an existing tool to automatically analyze our MCDF
model rather than using existing static analysis techniques, which
in contrast to our model are hard to extend to cover different
RT memory controllers. Moreover, the MCDF analysis can exploit
static information about known transaction sequences provided
by the applications or by the memory arbiter. Experimental
results show that 77% improvement of WCBW can be achieved
compared to the case without known transaction sequences. In
addition, the results demonstrate that the proposed MCDF model
outperforms state-of-the-art analysis approaches and improves
the WCBW by 22% without known transaction sequences.

I. INTRODUCTION

The memory subsystem is becoming critical to the overall
performance of multi-core systems, since the off-chip SDRAM
is shared by an increasing number of memory clients (e.g.,
cores, DMAs, and hardware accelerators) that execute more
memory-intensive real-time (RT) streaming applications [1].
The analysis of worst-case bandwidth becomes a key issue to
meet the throughput requirements of these RT applications.
However, this analysis is difficult because of the diverse
memory traffic generated by the different clients [2], [3]. It is
a mix of read and write transactions with variable sizes, which
access different sets of SDRAM banks. They are executed
in a pipelined manner by scheduling memory commands,
a process which is highly dependent on when the previous
commands (possibly corresponding to previous transactions)
were scheduled. These complicated dependencies make the
worst-case bandwidth analysis challenging.

Most existing real-time memory controllers are limited to
a single transaction size, either in architecture or analysis,
and cannot efficiently deal with diverse memory traffic. The
memory controller in [4] addresses the diversity by dynam-
ically scheduling commands for each memory transaction.
However, its worst-case execution time (WCET) of trans-
actions is derived by a complex static analysis approach,
where exploiting static information, e.g., the static sequence of
transactions specified by the application or by the arbitration of
memory clients, to obtain better worst-case results is difficult.
Moreover, it does not provide bounds on worst-case bandwidth.
Another issue with state-of-the-art RT memory controller anal-
yses is that all the manual time-consuming analysis has to be

done all over again if there are any changes to the mechanisms
of the memory controller because of the complex command
scheduling dependencies. As a result, the existing analyses are
difficult to extend.

In this paper, we propose to use mode-controlled data-
flow (MCDF) models [5] to capture the memory command
scheduling, where the command scheduling dependencies are
described by an MCDF graph. Moreover, the worst-case band-
width (bytes/second) is used as a notion of the critical cycle
path of the MCDF graph rather than the typical maximum
cycle mean (MCM) for worst-case throughput (tokens/second)
of data-flow graphs. The advantages of the MCDF model
include: 1) It leverages standard data-flow analysis techniques
and tools to analyze the worst-case bandwidth of memory
command scheduling without the need to manually develop
new complex static analyses. 2) It can easily exploit static
information, such as the transaction sequence given by the
application or static arbitration of memory clients (e.g., time-
division multiplexing). 3) The analysis of the MCDF model
returns the critical cycle that shows the sequence of com-
mands (corresponding to transactions) that limit the worst-
case bandwidth, which is beyond the capability of existing
analyses. This information is useful when designing scheduling
algorithms, such that the critical sequence of transactions is
avoided and hence a better worst-case bandwidth is obtained.
4) The validation of the MCDF model is easier than existing
analyses because the formal model is also executable. 5) The
MCDF model can be easily adapted to cover other memory
controllers with different scheduling policies. 6) Finally, the
worst-case bandwidth results are better than state-of-the-art
analyses [4], [6] with a maximum improvement of 22%. We
also experimentally show that exploiting static sequences of
transactions achieves up to 77% higher worst-case bandwidth.

In the remainder of this paper, Section II describes the
related work, followed by the background of RT memory
controllers and MCDF modeling in Section III. The MCDF
modeling of memory command scheduling is given in Sec-
tion IV, while the WCBW analysis is presented in Section V.
Experimental results are shown in Section VI, before this paper
is concluded in Section VII.

II. RELATED WORK

The worst-case memory bandwidth is challenging to ana-
lyze because of the command scheduling dependencies based
on the complex internal states of SDRAM [7] and the diverse
memory traffic. Most existing approaches to compute memory
bandwidth abstract away the complexity of SDRAM internal
states. A memory access control approach has been proposed
in [8] to allocate enough bandwidth to a critical core that
runs a real-time application. However, it uses constant memory
access time to compute the bandwidth, which is pessimistic for
variable transaction sizes with different execution time. This
drawback also applies to the bandwidth sharing scheme in [9]978-1-4673-8164-2/15/$31.00 c© 2015 IEEE



that treats every memory access as a constant delay. A mixed-
criticality memory controller in [10] provides guaranteed band-
width based on a fixed TDM schedule of command scheduling.
This is similar to the Predator controller [6] that computes
bandwidth based on semi-static command schedules. Both of
them cannot efficiently deal with variable transaction sizes
because the hardware restricts the number of static schedules.
These problems also apply to [11], resulting in pessimisms
in its WCBW. The PRET DRAM controller [12] computes
bandwidth based on the conservative periodic cycles of issuing
commands, leading to pessimisms in the WCBW as well. The
dynamically-scheduled memory controller in [4] avoids this
hardware restriction by dynamically scheduling commands for
each transaction. However, its analysis is complicated and only
the WCET is provided. In this paper, we tackle this complexity
by modeling command scheduling with a data-flow model [5],
where existing analysis techniques and tools can be used.

Data-flow models have been widely used to model shared
resources in modern multi-core systems and provide guaran-
teed performance. For example, the behavior of a network-on-
chip (NoC) is captured by a data-flow model [13] that is used
to compute the required buffer size of a network interface, such
that the performance of an application is guaranteed. Another
example is the data-flow modeling of TDM arbitration [14],
that enables an optimized TDM slot allocation to meet the
requirements of concurrent applications. The data-flow models
of these two examples actually describe the dependencies of
resource sharing, and existing data-flow analysis techniques
are employed to provide the worst-case results. This paper
proposes to capture the complex command scheduling depen-
dencies by a data-flow model, where we extend an analysis
tool to address these complexities and provide the WCBW.

III. BACKGROUND

This section introduces background information about
SDRAM and a dynamically scheduled real-time memory con-
troller [4], followed by the basic concepts and analysis of
data-flow models in general and mode-controlled data-flow
models [5] in particular.

A. Real-Time Memory Controller

A memory controller receives transactions from the mem-
ory clients, such as processor cores, last-level caches, DMAs
or hardware accelerators. These heterogeneous components
generate diverse memory traffic in terms of mixed read or write
transactions with variable sizes. The memory controller trans-
lates each transaction into a sequence of memory commands
that are scheduled to the SDRAM, as shown in Fig. 1. For
RT streaming applications, the memory controller must offer
guaranteed bandwidth to ensure correct operation [15].

A DDR3 SDRAM chip is composed of 8 banks, which
consists of memory cells arranged in rows and columns, as
presented in Fig. 1. Each cell contains a number of data bits.
This paper focuses on a single chip, which is common in the
embedded domain, but can be easily extended to multiple chips
forming more than one rank. The SDRAM is controlled by
different commands via the command bus, while the physical
address of each command in terms of bank, row, and column is
sent on the address bus. As shown in Fig. 1, an activate (ACT)
command copies the contents of the required row in an array
into the row buffer, such that a burst of data can be read or
written triggered by a read (RD) or write (WR) command. As a
consequence, the data burst is transferred via the data bus, i.e.
read from or written into the SDRAM. The burst length (BL)

is 8 words for all DDR3 SDRAMs. A RD or WR command
is followed by a precharge (PRE) command to write back the
contents of the row buffer to the storage cells. A close-page
policy is often used by RT memory controllers [6], [16], [4]
to achieve better worst-case results, and it implies that a PRE
is always scheduled after finishing read or write, regardless
of which bank or row it targets. Note that the scheduling of
a command has to satisfy timing constraints that are speci-
fied by the JEDEC DDR3 standard [7]. The inter/intra-bank
timing constraints are the minimum time between commands
to SDRAM banks. Finally, the SDRAM device has to be
refreshed periodically to maintain the data stored in the cells.
The relevant timing constraints of DDR3 SDRAM are shown
in Table I, where a 16-bit DDR3-1600G device with a capacity
of 2 Gb is taken as an example.
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Fig. 1. The general structure of a dynamically scheduled memory con-
troller [4] and the SDRAM.

TABLE I. TIMING CONSTRAINTS FOR DDR3-1600G SDRAM [7].

TC Description Cycles
tRCD Minimum time between ACT and RD or

WR command to the same bank
8

tRRD Minimum time between ACT commands
to different banks

6

tRAS Minimum time between ACT and PRE
commands to the same bank

28

tFAW Time window in which at most four
banks may be activated

32

tCCD Minimum time between two RD or two
WR commands

4

tWL Write latency. Time from a WR
command until first data is available
on the bus

8

tRL Read latency. Time from a RD
command until first data is available
on the bus

8

tRTP Minimum time between a RD and a
PRE command to the same bank

6

tRP Precharge period time 8
tWTR Minimum time between WR and RD

commands
6

tWR Write recovery time. Minimum time
from the last data has been written to a
bank until a precharge may be issued

12

tRFC Refresh period time 128
tREFI Refresh interval 6240

The memory controller in [4] executes a transaction by
interleaving it over a number of banks in parallel, and each
bank may receive several data bursts. The number of inter-
leaved banks (BI) and the data burst count (BC) per bank
are used by the Command Generator in Fig. 1 to determine
the total number of commands that must be generated for a
transaction. To access a bank using close-page policy, an ACT
is required to open the target row followed by BC RD or WR
commands that transmit the data. Finally, the data in the row
buffer are copied back to the array by issuing either an explicit
PRE or using an auto-precharge flag attached to the last RD



or WR command of a bank. These commands are sequentially
buffered in the queue per bank. This repeats BI times for all
the required consecutive banks, and the data access granularity
is BI×BC×BL words [17]. By varying BI and BC, different
transaction sizes are supported [4].

The commands in the queues are scheduled by an arbiter
subject to the timing constraints that are tracked by timing
counters, as shown in Fig. 1. RD and WR commands are sched-
uled in a first-come first-serve (FCFS) manner of transactions
to ensure coherent memory. While ACT commands to different
banks are issued in a pipelined manner with the prioritized RD
or WR commands to improve performance.

Fig. 2 shows the scheduling dependencies between com-
mands to any two sequentially accessed banks, which are
caused by the JEDEC timing constraints [7] and the order
specified by the command scheduling algorithm in [4]. For
∀j ≥ 0, the jth bank access has an ACTj followed by BCj
RD or WR (RWk

j , k ∈ [0,BCj − 1]), where BCj is the burst
count for bank bj. bj denotes the bank identifier (id) and
bj ∈ [0, 7] for DDR3 SDRAMs. The solid and dotted arrows
in Fig. 2 represent dependencies within a bank and between
two successive banks, respectively. The labels near the arrows
specify the timing constraints given in Table I or derived
from [4]. For example, the timing constraints to schedule an
ACT include tRRD, tRP and tFAW. Therefore, an ACT has three
input arrows that denote the corresponding timing constraints.
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Fig. 2. The command scheduling dependencies of successively accessing any
two banks [4].

As can be seen from Fig. 2, the scheduling of an ACT can
be pipelined with RD or WR commands for previous banks.
Since the command bus only sends one command per cycle,
an ACT may be blocked by a prioritized RD or WR [4]. This
command scheduling conflict postpones the ACT by one cycle.
The collision is depicted by the filled circle in Fig. 2, which
represents the blocking RD or WR command.

B. Data-Flow Modeling

Data-flow models are popular to describe concurrent pro-
cesses with unidirectional graphs, where a process is repre-
sented by a node (i.e., actor) while an edge between two nodes
is a FIFO communication channel between the corresponding
processes. In the simplest version of data-flow, e.g., single rate
data-flow (SRDF), each actor has a fixed execution time and
communicates with other actors using tokens (i.e., a chunk
of data) through its channels. An actor fires, i.e. the process
executes, by consuming one token from each input channel
and producing one token on each output channel. Initial tokens
are specified on some edges of the SRDF graph, such that the
graph starts firing with particular actor(s). An SRDF model ex-
presses the dependencies between concurrent processes while
having good analytical properties that guarantee the latency
and throughput of the graph [18].

Mode-controlled data-flow (MCDF) [5] is a restricted
variant of Boolean data-flow [19] that supports dynamism
by selecting different sub-graphs of the MCDF graph to fire
for each graph iteration. These sub-graphs, called modes, are
actually smaller data-flow graphs. MCDF features single rate
dataflow (SRDF) actors and two types of special actors, named
select and switch, which conditionally consume/produce to-
kens from/on specific edges depending on the mode selected
for that firing, which is defined by the value of the token
consumed from its mode control input. In addition, a special
single-rate actor is marked as mode controller (MC) and
produces all tokens consumed through the control ports of
all switches and selects in the MCDF graph. For each firing
of MC, one token with the same mode value is produced by
MC on all control inputs of all switches and selects, which
are enabled to fire exactly once in an iteration. Note that an
iteration of an MCDF graph is defined as a set of actor firings,
such that all the initial tokens return to their initial edges, i.e.,
the MCDF graph returns to the initial state. The single-rate
actors can be either amodal or modal depending on topology.
In each iteration, all amodal actors and all modal actors of a
single selected mode fire exactly once, while all modal actors
of non-selected modes do not fire.

The construction rules of an MCDF model are that 1) it
uses a single MC actor and an arbitrary number of switch,
select and tunnel actors. These actors always fire for any
chosen mode. 2) MC selects a mode by sending a control
token. The switch and select activate the actors of the selected
mode to fire. The actors of unselected modes cannot fire. 3)
An actor is not allowed to belong to more than one mode.
With these rules, the MCDF model has strong expressiveness
to capture the dynamism of a system by dynamically choosing
modes. A pre-defined static mode sequence (SMS) specifies a
static order of modes to fire, while multiple SMSs can be used
dynamically in any random order. In addition, MC can repeat
an SMS, resulting in recurring SMS. Note that a MCDF model
is able to guarantee analytical properties [5].
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Fig. 3. An MCDF graph and a basic tunnel.

Fig. 3 shows a simple MCDF graph that consists of two
modes, M0 and M1, where the former consists of actor A and
latter actor B. All other actors do not belong to any mode,
as they fire once per iteration, independently from the values
of the mode control tokens. The MC produces control tokens
that are sent to the control input port of the switch (SW),
select (SL), and tunnel. Tunnel actors encapsulate an MCDF
construct enabling well-defined communication between dif-
ferent modes, as explained below. Besides the control input
port, a SW has a data input port and a number of output ports
that connect to actors belonging to different modes. The SW
consumes both the data token sent by the source (Src) actor
and the control token given by MC, and produces the same data
token on the output port that connects to the mode specified by
the control token. Conversely, a SL consumes the control token
and the input data token associated with the mode indicated by
its received control token, and produces the same data token
on the output port. Fig. 3 also shows a tunnel constructed by



a switch (Tsw) and a select (Tsl). It has an internal (initial)
token that is always replaced by its input data token. As a
result, it always passes the latest token from the input mode
to the output mode via the data out port.

By choosing modes according to pre-defined static mode
sequences (SMS), a worst-case throughput analysis of the
MCDF model can be based on the SMSs. Each SMS specifies
a static firing order of modes. The firing dependencies of a
recurring SMS are hence equivalently described by a static
data-flow graph, which is obtained by eliminating the actors
and edges (i.e., dependencies) of the modes that are not chosen
by the SMS. We simply assume that SMS1 only contains mode
M0 and SMS2 has mode M1 (see Fig. 3), i.e., SMS1=[M0]
and SMS2=[M1]. When SMS1 or SMS2 is repeatedly used by
MC, recurring mode sequences are brought and are represented
by [M0]∗ and [M1]∗ for SMS1 and SMS2, respectively. The
equivalent SRDF graphs are shown in Fig. 4(a) and Fig. 4(b)
for SMS1=[M0]∗ and SMS2= [M1]∗, respectively. For a re-
curring SMS3=[M0, M1]∗, its equivalent SRDF is shown in
Fig. 4(c) that is obtained by unrolling the MCDF model in
Fig. 3, where M0 is always followed by M1 and the transitions
are denoted by the red dashed edges. Therefore, to analyze
the worst-case throughput of a given SMS, we only need to
analyze its equivalent static data-flow graph with existing data-
flow analysis techniques [5].
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Fig. 4. The equivalent SRDF of recurring SMS for the MCDF in Fig. 3.

The transitions across multiple SMSs are usually not
known apriori, since they are dynamically executed. All the
possible transitions can be described by a finite-state ma-
chine (FSM), where each SMS is represented by a state that is
able to transit to any states including itself. By assuming the
total number of SMSs to be NS (NS > 0), this case is described
by [SMS1 | SMS2 | ... | SMSNS]∗, where the transitions are
given by the FSM. The worst-case analysis approach in [20]
actually does not need to explore all the transitions of the
FSM to obtain the worst-case results of [SMS1 | SMS2 | ...
| SMSNS]∗ for an MCDF model. Instead, it merges all the
equivalent static data-flow graphs of each individual recurring
SMS (e.g., SMSi, ∀i ∈ [1, NS]), resulting in a larger equiva-
lent static data-flow graph that captures all the dependencies
of dynamically executing an arbitrary SMSi. This merging is
achieved by adding all the dependencies (i.e., edges with initial
token(s)) between the actors chosen by different SMSs. For
example, Fig. 5 shows the merging of the SRDF graphs of
SMS1=[M0]∗ and SMS2=[M1]∗, which are shown in Fig. 4(a)
and Fig. 4(b). The added dependencies are denoted by those
red dashed edges with an initial token. The merged graph is the
equivalent SRDF of executing [SMS1 | SMS2]∗. Therefore, it

only requires to equivalently analyze the merged static data-
flow graph to derive the worst-case results.
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Fig. 6 illustrates the execution of each actor in Fig. 5 for
two iterations. The execution trace in Fig. 6 shows that the
actor firings of each SMS in a new iteration depends on the
slowest SMS executed in the previous iteration. Therefore, the
worst-case situation is guaranteed for any SMS that is dynam-
ically executed. As highlighted by the red dashed arrows, the
firing of both SMS1 and SMS2 in the second iteration starts
after the finishing of SMS1 in the first iteration. The reason
is that actor A has the longest execution time (i.e., 3) in the
MCDF graph in Fig. 3, resulting in the critical path (shown by
the red dashed arrows) of executing SMS1 in the first iteration.
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IV. MCDF MODELING OF MEMORY COMMAND
SCHEDULING

This section firstly discusses the modeling of memory
command scheduling in data-flow, followed by introducing the
MCDF model of command scheduling for DDR3 SDRAMs,
which includes a generalization of the tunnels used by the
MCDF model and how memory transactions are supported by
using static mode sequences.

A. Data-Flow Modeling of Command Scheduling

The timing dependencies of command scheduling are es-
sentially the same as the data dependencies described by data-
flow graphs. A command can be scheduled only if all its timing
constraints are satisfied, as shown in Fig. 2, while a data-flow
actor fires when all its input tokens are available. Therefore,
a data-flow graph can describe the command scheduling de-
pendencies by means of 1) modeling each command as an
actor and its execution time is set as the time spent on the
command bus; 2) tracking the timing constraints by using
delay (DL) actors, whose execution time are equal to the con-
stants of the DDR3 JEDEC-specified timing constraints [7];



3) capturing the command scheduling dependencies by adding
edges between the actors of commands and timing constraints.
For example, Fig. 7 illustrates an example of modeling a
simple periodic schedule of an ACT, RD, and PRE to a
bank (Fig. 7(a)) with a static data-flow graph (Fig. 7(b))
according to the above scheme.
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Fig. 7. An example of data-flow modeling of commands to a bank.

A memory transaction is executed by interleaving it over BI
banks, each of which requires an ACT, followed by BC times
of RD or WR and finally a PRE according to a close-page
policy. The command scheduling of a particular transaction in
terms of specific type (read or write), BI, BC, and physical
address (starting bank) can be modeled by a specific static
data-flow graph, such as the simple example shown in Fig. 7.
Therefore, different static data-flow graphs are needed to
capture the command scheduling of transactions depending on
type, size, and physical address. MCDF captures the command
scheduling dependencies of various transactions by specifying
static mode sequences (SMSs).
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Fig. 8. An overview of the MCDF modeling of memory controllers.

Fig. 8 shows a high-level overview of the MCDF modeling
of memory controllers. As aforementioned, memory com-
mands and the SDRAM timing constraints are modeled by
actors, which further constitute each individual mode (shown
in Fig. 9). The scheduling of commands per transaction is
captured by using a proper pre-computed static mode se-
quence (SMS) (presented in Section IV-C). Note that SMSs
are computed for different kinds of transactions (T) in terms
of type, sizes, and physical addresses. These SMSs are dynami-
cally employed to model the memory traffic. A fully connected
FSM can describe the transitions among all kinds of transac-
tions associated with the SMSs (NS denotes the total number)
if there is no apriori information about the traffic (discussed
in Section V). Overall, the MCDF graph naturally captures
commands and timing constraints of SDRAM and can be
generally used by various memory controllers, which only need
to compute their proper SMSs. When static knowledge about
the traffic is provided, e.g., the known transaction sequence
given by the application or by memory arbiter (e.g., TDM), it
only requires to restrict the FSM to keep the known sequence.
Therefore, the proposed MCDF model can be easily extended
to different RT memory controllers.

B. MCDF Modeling of Command Scheduling

We proceed by generally modeling command scheduling
of transactions with an MCDF graph. There are four different

commands that are used to execute each transaction, ACT,
RD, WR, and PRE. Note that the refresh (REF) command
is not modeled explicitly because it is only needed for a
large interval of tREFI and reduces the bandwidth by ap-
proximately 3% [16]. Its effect will be taken into account
later when computing the worst-case bandwidth in Section V.
The commands can be dynamically scheduled to the required
banks according to various scheduling algorithms subject to
the inter/intra-bank timing constraints. To generally support
any command scheduling algorithm for transactions, each per
bank command can be modeled by creating a mode that
has actors representing the command and the inter/intra-bank
timing constraints. In particular, the actors of inter-bank timing
constraints are used to support the transitions across modes.
Finally, the execution of a transaction is modeled by using a
mode sequence that specifies the order of modes corresponding
to the required commands. In this way, various command
scheduling algorithms for transactions can be supported by
specifying their mode sequences.

Fig. 9 shows the MCDF model of command scheduling. It
consists of 18 modes, representing the scheduling of different
memory commands to any of the 8 banks. Each mode consists
of a command (ACT, RD, AWR, or PRE) actor and several
delay (DL) actors that track the relevant timing constraints.
The edges between actors in Fig. 9 show the dependencies.
Since the command bus transfers one command per cycle, the
execution time of all the command actors is 1 cycle except
for ACT actors where it is 2 cycles. This is because an ACT
commonly has lower priority than a RD or a WR as stated in
Section III-A. We hence conservatively assume an ACT always
collides with a RD or WR, resulting in one cycle additional
delay. The execution time of DL actors in Fig. 9 are configured
to be the values of the JEDEC timing constraints in Table I.
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Fig. 9. Mode-controlled data-flow model of memory command scheduling.

The ACT and PRE commands to different banks have to be
modeled by different modes because of the intra-bank timing
constraints. For example, the scheduling of an ACT has to
satisfy the tRP constraint from the previous PRE to the same



bank, as shown in Fig. 2. Mode 0 to Mode 7 in Fig. 9 model
the ACT to a bank from Bank 0 to Bank 7, respectively. While
Mode 8 to Mode 15 capture the PRE to a bank from Bank 0
to Bank 7, respectively. For ∀i ∈ [0, 7], the transition between
Mode i and Mode (i+8) captures the timing constraints (e.g.,
tRAS and tRP) between the ACT and PRE to the same bank.
Note that the transition between modes is supported by tunnels.
A basic tunnel is shown in Fig. 3 that only supports transition
from one mode to another. The proposed MCDF model in
Fig. 9 requires a general M × N tunnel that supports the
transition from M modes to N modes, where M > 0 and
N > 0. In the same way, the timing constraints between ACT
commands are also captured, such as the tRRD and tFAW.
Finally, RD or WR commands are sequentially scheduled, and
it is not necessary to distinguish different banks. Therefore, RD
and WR are modeled by Mode 16 and Mode 17, respectively,
where all the relevant timing constraints are captured by tun-
nels. For example, the RCD Tunnel keeps the tRCD constraint
from an ACT to a RD or WR, as shown in Fig. 9. The general
M× N tunnel will be detailed later in Section IV-D.

The Source actor in Fig. 9 triggers the command scheduling
each clock cycle by producing a token on the input port of
the Mode switch, and its execution time is 1. This models
the worst-case behavior, where pending transactions are back-
logged, i.e., enough commands make the scheduler always
busy. The Mode controller (MC) determines which mode
to choose, i.e., which command to schedule, by specifying
the mode sequence corresponding to a transaction. Therefore,
when the Source actor produces a token to trigger a mode, it
also gives a token to MC that produces a control token based
on the mode sequence for all the switch, select, and tunnel
actors to choose the mode. The translation from transactions
to mode sequences will be detailed later in Section IV-C.

The memory controller schedules commands with limited
speed due to the timing constraints. This is captured by a
feedback edge from the Mode select to the Source actor (see
Fig. 9), which makes the proposed MCDF model strongly
connected. The token on this edge is produced by the Mode
select that is triggered after the firing of each command actor
per mode, and the token is then consumed by the Source to
produce a new token to trigger the next command actor, i.e.,
schedule a new command. Note that the initial tokens on this
edge must guarantee that commands are scheduled as soon as
all timing constraints are satisfied. The proper number of the
initial tokens will be obtained from experiments.

C. Mode Sequences

The MCDF model in Fig. 9 is able to capture the depen-
dencies of different command scheduling mechanisms, e.g.,
close/open-page policy, bank privatization/interleaving, priori-
ties. For a particular mechanism used by a memory controller
to execute transactions, we only need to create the appropriate
mode sequences that specify the firing order of modes, and
hence the order of commands. To create a mode sequence of
executing a transaction, we firstly create a mode sequence per
bank, and then combine these per-bank mode sequences for
the transaction according to its required banks.

Take the scheduling algorithm of dynamic command
scheduling in [4] as an example. We show next how mode
sequences are created for it. The dynamic command scheduling
is discussed in Section III-A, where a transaction interleaves
over BI banks and there are BC data bursts per bank. This
requires commands to be scheduled to all BI banks, where
each of them receives an ACT, followed by BC number of RD

or WR commands and finally a PRE (see Fig. 2). Therefore,
the mode sequence for each bank must be an ACT mode, BC
times of RD or WR mode and a PRE mode. This is given
by Definition 1 that defines the mode sequence ms(k, BC)
for an arbitrary bank k (∀k ∈ [0, 7]). As shown in Fig. 9,
Mode k captures the ACT command to bank k and the mode
for the PRE command to the same bank is Mode (k+8). The
mode number for the BC number of RD or WR commands is
Mode 16 or Mode 17, as given by Eq. (1).

Definition 1 (Mode sequence per bank): For ∀k ∈ [0, 7]
and ∀l ∈ [0, BC − 1], ms(k, BC) = [Mode k, RW0, ..., RWl,
..., RWBC-1, Mode (k+8)].

RWl =

{
Mode 16, RD command
Mode 17, WR command (1)

For an arbitrary transaction Ti (∀i ≥ 0) that uses BIi and
BCi, its corresponding mode sequence MS(Ti) is given by
Definition 2, which is a sequential combination of the BIi
number of mode sequences per bank.

Definition 2 (Mode sequence per transaction): For ∀i ≥ 0
and ∀j ∈ [0,BIi−1], MS(Ti) = [ms(bs, BCi), ..., ms(bs+j, BCi),
..., ms(bs+BIi − 1, BCi)], where bs is the starting bank of Ti.

For example, a read transaction has BI=2 and BC=1, and
its starting bank is Bank 0, i.e., bs=0. The mode sequences for
the two banks Bank 0 and Bank 1 are [Mode 0, Mode 16,
Mode 8] and [Mode 1, Mode 16, Mode 9], respectively.
Therefore, the mode sequence for the transaction is the com-
bination of these two mode sequences per bank, which is
[Mode 0, Mode 16, Mode 8, Mode 1, Mode 16, Mode 9].
Note that the mode sequence is only used by the MC to
trigger different modes sequentially, while the actual firings
of the command actors may occur in a different order, since
the firings rely on the dependencies between actors. Therefore,
this enables command scheduling pipelining.

D. Tunnels

The tunnels of the MCDF model shown in Fig. 9 are
used to support the transition between modes, and they need
multiple data inputs and data outputs. As a result, the basic
tunnel shown in Fig. 3 has to be extended, since it only has
single data input and output. We generalize these tunnels to
an M × N tunnel that has M data inputs and N data outputs,
as depicted by Fig. 10. In addition, it consists of a single
internal token. This generic tunnel is instantiated to support
all the tunnels in Fig. 9 except the FAW tunnel that captures
the tFAW constraint to restrict the scheduling of at most four
ACT commands within the time window. A single internal
token cannot support tFAW. The FAW tunnel is designed with
a cascade structure of four internal tokens, as shown in Fig. 11.

1) Generic Tunnel: The generic tunnel presented in Fig. 10
consists of a switch and a select, and the edge between
them has an initial token (i.e., internal state). The switch
has 18 inputs while the select contains 18 outputs corre-
sponding to all the 18 modes in the MCDF model. For an
arbitrary input/output of the select/switch m (∀m ∈ [0, 17]),
the corresponding mode is Mode m in Fig. 9. The tunnel
is instantiated to support M data inputs and N data outputs,
where ∀M,N ∈ [1, 18]. It also has one control input that
delivers control tokens sent by the MC to the switch and
select. The M inputs correspond to the modes from Mode i
to Mode (i+M-1), while the N outputs are associated with
Mode j to Mode (j+N-1), where ∀i ∈ [0, 18 − M ] and
∀j ∈ [0, 18−N ].
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Fig. 10. A generic mode tunnel with M inputs and N outputs.

Each data input of the generic tunnel firstly connects to
an actor with 0 execution time, called merger (MEG), and it
consumes both the input data token and the internal token and
produces the same data token. Note that the internal token is
forwarded by the switch (see Fig. 10). The token produced by
the MEG is consumed by the select when the control token
indicates the mode corresponding to this data input, and the
select produces the same token that becomes the new internal
token. In this way, the internal state is updated. For a data
output of the generic tunnel in Fig. 10, the output token is
provided by an actor, namely splitter (SPL) that is connected
by the output of the switch. The execution time of a SPL is
0. The output of the switch forwards the internal token to the
SPL that produces the data output token and also returns it to
the internal state via the select.

The select and switch of a tunnel fire by consuming both
the input token and the control token. They may receive a
control token that is not associated with any data input or
output of the tunnel, since the MC produces each control token
for all select and switch actors. A default actor (DEF) with
the mode indicated by this control token is used to connect
the output of the switch to the input of the select, which
correspond to the same mode. The execution time of DEF is
0. The DEF enables both the switch and select to consume the
control tokens not associated with the M inputs and N outputs.

We proceed by introducing the connections of the M data
inputs and the N data outputs. For an arbitrary data input
k (∀k ∈ [0,M − 1]) with the corresponding Mode (i+k), it
connects to a MEG that further connects to the (i + k)th input
of the select in Fig. 10. An output of the select connects to a
SPL that connects to an arbitrary data output h (∀h ∈ [0,N−1])
corresponding to Mode (j+h). If ∃h such that j+h = i+k (i.e.,
the same mode), an output of the SPL connects to the input of
the MEG. Otherwise, the (i+k)th output of the switch connects
to the input of the MEG. In addition, one of the outputs of the
SPL goes back to the (j + h)th input of the select.

2) Cascade FAW Tunnel: The FAW tunnel in Fig. 9 cap-
tures the tFAW constraint (in Table I) that allows maximally 4
ACT commands to be scheduled within the rolling time win-
dow. It supports any transitions amongst Mode 0 to Mode 7.
As a result, the FAW tunnel consists of 8 data inputs and 8

data outputs, which connect Mode 0 to Mode 7. Note that
we cannot simply add four internal tokens to the generic
tunnel in Fig. 10 to support tFAW. It is because all the four
internal tokens may be consumed when the modes indicated by
control tokens are not between Mode 0 to Mode 7. Therefore,
when a control token for a mode between Mode 0 to Mode 7
arrives, it cannot be consumed by the select since the four
internal tokens have already been consumed. To overcome this
problem, a cascade tunnel with four pairs of select and switch
is designed, as shown in Fig. 11, where the internal state of
each pair contains an initial token. These four initial tokens
allow at most 4 different ACT modes execute within the tFAW
time window. When one of them is triggered, an initial token
of the FAW tunnel is consumed by its ACT command actor
and a new token will be produced by its DL actor with the
execution time of tFAW. This new token goes to one of the
data inputs of the FAW tunnel to update the internal state.

The execution of an ACT mode requires one internal token
of the FAW tunnel. After tFAW cycles, it produces a token
to update the internal state, such that new ACT mode can be
triggered. The four initial tokens of the FAW tunnel are able
to trigger four ACT modes, while the fifth one has to wait
for an internal token that is updated by the first ACT mode
after tFAW cycles. In this way, the rolling tFAW constraint is
captured. When the FAW tunnel receives control tokens for
modes from Mode 8 to Mode 17, they are consumed by each
pair of switch and select through the default connection, i.e.,
the edge with a DEF actor, as shown in Fig. 11. Note that an
internal token can be transferred to the next pair of select and
switch or the data output of the FAW tunnel only if a control
token for Mode 0 to Mode 7 is received. So, the firing of an
ACT mode either gets an internal token or waits for the update
of the internal state when the tFAW constraint is met.

V. WORST-CASE BANDWIDTH

This section gives the definition of bandwidth provided
by scheduling commands for transactions. The worst-case
bandwidth is then analyzed by employing the MCDF analysis
technique [20], as briefly introduced in Section III-B. Note
that the MCM (tokens/second) is replaced by worst-case
bandwidth (bytes/second) to define the critical cycle path of
the MCDF graph.

A. Definition

The memory bandwidth determines how fast data can be
transferred into/from SDRAM. It is determined by the memory
controller that executes transactions by scheduling commands
to the memory. The execution time caused by scheduling
commands is highly dependent on the transaction type, size,
and physical address. As a result, the bandwidth provided by
a memory controller varies depending on the application(s).
Definition 3 defines the bandwidth, where S is the transaction
size and tET denotes the execution time of the transaction.
In addition, eref is the refresh efficiency given by Eq. (2),
which accounts for the cycles that are lost due to refreshing the
memory array. tref is the time overhead caused by refreshing,
and it includes the time for precharging all the banks after
executing a transaction and completing the refresh itself. tREFI
is the JEDEC-specified refresh interval as given in Table I. fmem
denotes the SDRAM frequency.

Definition 3 (Bandwidth): bw = S
tET
× fmem × eref

eref = 1−
tref

tREFI
(2)
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Fig. 11. A cascade tunnel structure to support multiple initial tokens for a specific set of modes.

The bandwidth given by Definition 3 varies according to
the transaction sizes S and its execution time tET , while
all other variables are determined by the particular SDRAM
device. The worst-case bandwidth (WCBW) is provided when
transactions suffer the longest execution time for a given size.

B. The Analysis of WCBW

The proposed MCDF model can capture the command
scheduling behavior of the memory controller by specifying
static mode sequences (SMSs) for all kinds of transactions in
terms of read or write, sizes and different sets of banks. To
analyze the WCBW of [SMS1 | SMS2 | ... | SMSNS]∗ by
using the analysis technique introduced in Section III-B, the
key issue is to obtain all these NS number of SMSs.

Definition 2 previously showed the method to derive the
mode sequence for a transaction, which requires information
about the transaction type, size, and physical address. The
type determines whether RD or WR commands are needed,
and hence the corresponding Mode 16 or Mode 17 in Fig. 9.
The size is mapped to BI and BC, while the physical address
gives the starting bank (bs). For example, when a system
only generates 64 byte read and write transactions, e.g.,
the L2 cache line size is 64 bytes for all cores, the most
efficient configuration of BI=4 and BC=1 is used to access
a DDR3 SDRAM with a 16-bit data bus [17]. Since DDR3
SDRAMs have 8 banks, the transactions may either interleave
consecutively over Bank 0 to Bank 3 or Bank 4 to Bank 7
for alignment reasons [17]. Therefore, four SMSs ([SMS1 |
SMS2 | SMS3 | SMS4]∗) are needed. Take a read transaction
interleaving over Bank 0 to Bank 3 as an example. The SMS1
is [Mode 0, Mode 16, Mode 8, Mode 1, Mode 16, Mode 9,
Mode 2, Mode 16, Mode 10, Mode 3, Mode 16, Mode 11].
Similarly, the rest of the SMSs can be obtained. When a static
transaction sequence is known, a larger SMS can be obtained
by sequentially concatenating the SMS of each transaction with
the sequence. The WCBW is hence analyzed based on the
combined SMS that guarantees the static transaction sequence.

As introduced in Section III-B, the analysis of the MCDF
model is performed by merging the equivalent static data-
flow graphs of each SMS, resulting in a larger static data-
flow graph that captures the dependencies of executing [SMS1
| SMS2 | ... | SMSNS]∗. The critical cycle defined by the
MCM is obtained when executing the merged static data-flow
graph, and it consists of a number of actors belonging to a
single mode or different modes, which are specified in one
or more SMS(s). As a result, these SMSs lead to the worst-
case situation, i.e., the corresponding transactions experience
a maximum average time (i.e., MCM) to execute each of
them. Note that MCM is defined as the maximum of the total

execution time of the critical cycle divided by the total number
of initial tokens on the critical cycle. Hence, the minimum
throughput (transactions per second) of the memory controller
is 1/MCM. However, the minimum throughput is not always
equivalent to the WCBW (bytes/second). For example, the
critical cycle can be obtained based on large transactions that
consume more time than small ones, but carry more data.

According to Definition 3, the bandwidth of the memory
controller depends on the size of the transaction and its
execution time. The critical cycle of the merged static data-flow
graph must be defined as the cycle that provides WCBW rather
than MCM. Similarly to the definition of MCM, the WCBW is
defined by Eq. (3). For every cycle C of the MCDF graph G,
the total execution time of the actors on C is denoted by |C|,
while the total number of initial tokens (or delays) on the edges
of C is ω(C). In addition, the total number of SMSs associated
with C is NS(C). Each SMS is used by a transaction and its
size is Si (∀i ∈ [1,NS(C)]). However, it is not guaranteed that
existing data-flow analysis algorithms can handle the WCBW
defined by Eq. (3), since both ω(C) and Si vary with C. As
a result, we simply assume ω(C) = 1, such that conservative
WCBW can be provided by existing analysis algorithms.

WCBW = min
∀C∈G

ω(C)×
∑NS(C)

i=1 Si

|C|
× fmem × eref (3)

The WCBW given by Eq. (3) is a new notion for defining
the critical cycle of the merged static data-flow graph to
provide the WCBW. This critical cycle gives the order of
executing the associated mode sequences that correspond to
transactions. We can extract the worst-case order of transac-
tions from the critical cycle, which can be used to design better
scheduling algorithms to eliminate this bottleneck.

VI. EXPERIMENTAL RESULTS

This section proceeds by experimentally showing the
WCBW of a dynamically scheduled memory controller, ana-
lyzed based on the proposed MCDF model. The experimental
setup is given, followed by validating the MCDF model for
fixed transaction size and variable sizes, respectively. The
results are compared to state-of-the-art analysis approaches.

A. Experimental Setup

The proposed MCDF model has been verified and analyzed
with Heracles [5], a temporal analysis tool developed at
Ericsson. The transaction sizes used by the experiments include
16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes. We have
chosen the memory map configuration (i.e., BI and BC) for



each size that provides the lowest execution time (i.e., higher
memory bandwidth) by interleaving over more banks to exploit
bank parallelism. The configured (BI, BC) for these transaction
sizes are hence (1, 1), (2, 1), (4, 1), (4, 2), and (4, 4) [17].
Note that (4, 2) and (4, 4) are used by 128 Byte and 256 Byte
transactions instead of (8, 1) and (8, 2), because of tFAW
that causes a larger execution time with BI=8. Experiments
have been done with JEDEC-compliant, DDR3-800D, DDR3-
1600G, and DDR3-2133K, all with interface widths of 16 bit
and a capacity of 2 Gb [7].

B. Validation of Command Scheduling

This experiment validates that the proposed MCDF model
conservatively captures the command scheduling behavior of a
dynamically scheduled memory controller. This is achieved by
comparing the scheduling time of each command obtained by
executing the MCDF model to that given by an open-source
scheduling tool [21] that implements the timing behavior of
the memory controller in [4]. First, we have to find the proper
number of initial tokens on the feedback edge of the MCDF
model in Fig. 9. This is achieved by experimentally increasing
the initial tokens until the feedback edge cannot dominate in
any command scheduling. The results show that 20 initial
tokens are enough for DDR3 SDRAMs and they are used
by the following experiments. This experimental method is
a quick, safe, and easy way to derive the proper number of
initial tokens, such that the proposed MCDF model accurately
captures the command scheduling of the memory controller.

The five transaction sizes have been tested by specifying
all possible mode sequences. The MCDF model executes every
mode sequence independently during 40,000 cycles and all
the command scheduling times are obtained. This experiment
repeats the mode sequence, i.e., simulates the execution of the
same transactions using the scheduling tool. Note that we also
apply the collision assumption for each ACT command to the
scheduling tool, such that it runs under the same assumption
as the MCDF model. The scheduling time given by these two
approaches is identical for all commands. This observation
also holds for other experiments, where we have mixed the
mode sequences corresponding to different transactions in
terms of different sizes, read or write, and different banks. We
hence conclude that the proposed MCDF model conservatively
captures the timing behavior of the memory controller.

C. Worst-Case Bandwidth

This section presents the WCBW given by the analysis
of the MCDF model. The results are also compared to those
given by the scheduled and analytical approaches of dynamic
command scheduling in [4] and the semi-static approach in [6].
Those approaches compute the WCBW based on their WCET
of transactions. Note that the collisions for ACT commands are
actually detected by the scheduled approach, while collisions
are always assumed by the analytical approach. The semi-static
approach uses pre-computed command schedules with fixed
lengths in cycles, and the WCBW is obtained based on them.

1) Fixed Transaction Size: This experiment is carried out
to evaluate the WCBW provided by the memory controller
when it only executes transactions with fixed size, such as
when all cores have the same cache-line size. The experiment
is executed for five different cache-line sizes of 16 bytes,
32 bytes, 64 bytes, 128 bytes, and 256 bytes with different
memory map configurations, respectively.

Fig. 12 gives the WCBW results obtained from the MCDF
model. They are compared to that given by the scheduled,

analytical, and semi-static approaches, respectively. We can
observe that 1) the MCDF model always outperforms the an-
alytical approach, where the maximum improvement is 22.0%
for 64 byte transactions. This improvement is achieved because
the MCDF analysis technique provides WCBW results without
assumptions that are needed by the analytical approach. 2)
It is also better than the scheduled approach with a single
exception for 16 bytes, where it is 2.4% less. The reason is
that the MCDF model conservatively assumes a collision per
ACT command. 3) This exception also applies when comparing
to the semi-static approach that statically resolves command
collisions at design time. However, for large transaction sizes
(e.g., 256 bytes), the MCDF model provides higher WCBW.
This is because the semi-static approach uses pre-computed
static command schedules, which pipelines ACT commands
less efficiently. These observations also hold for other DDR3
SDRAMs, although the results are not shown for brevity.
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Fig. 12. The WCBW given by different analysis approaches for DDR3-1600G
SDRAM with fixed transaction size.

2) Variable Transaction Sizes: The memory controller re-
ceives transactions with variable sizes, which are generated by
different clients in a heterogeneous system, such as a High-
Definition video and graphics processing system featuring
a CPU, hardware accelerators and peripherals with variable
transaction sizes [22]. If there is no static information about
the transactions, e.g., the execution order of different trans-
action sizes, we have to conservatively analyze the WCBW
results by assuming any possible transaction order. However,
when clients with different transaction sizes are served by an
arbiter using static schedules, such as time-division multiplex-
ing (TDM) [23], the static order of transactions with variable
sizes is known. Note that we assume a fixed transaction size
per client. This static order of transaction sizes can be exploited
to give less pessimistic (but still conservative) WCBW results.
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This experiment considers mixed transactions with sizes of
64 bytes and 128 bytes, which arrive at the memory controller
with statically known or unknown order, respectively. The
static order used in this experiment is that a 128 byte transac-
tion is always followed by a 64 byte transaction and they are al-
ternately executed by the memory controller. For instance, this
can be enforced by a TDM arbiter. For unknown transaction
order, transactions with these two sizes may be executed in any
possible order. Fig. 13 shows the WCBW results for DDR3-
1600G SDRAM given by different analysis approaches. We
can see that the WCBW given by the MCDF model is always
better than other approaches for both known and unknown
transaction order. This indicates the MCDF model outperforms
these existing approaches because the scheduled and analytical
approaches use conservative assumptions while the semi-static
approach cannot efficiently deal with variable transaction sizes.
The maximum improvement is 14% compared to the analytical
approach with known transaction order.

Another experiment compares the WCBW results with
known and unknown transaction order for different DDR3
SDRAMs. The results are shown in Fig. 14, which demonstrate
that much better WCBW is obtained by exploiting the static
order of transactions. It achieves maximally 77.2% improve-
ment of WCBW for DDR3-800D SDRAM by exploiting the
static order of transactions.
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Besides these WCBW results,we can also obtain the worst-
case situation that causes the WCBW from the critical cycle.
Take DDR3-800D as an example, without knowing the static
order of 64-byte and 128-byte transactions, the WCBW is
provided when the memory controller repeatedly executes the
transaction in the order of a 128 byte read, 64 byte write,
128 byte write, and 64 byte write. In addition, all these
transactions access the same set of consecutive banks from
bank 0 to bank 3. When scheduling decision is made to avoid
this transaction order, better WCBW can be obtained.

VII. CONCLUSION

The worst-case memory bandwidth is critical to satisfy the
requirements of memory-intensive real-time streaming appli-
cations in modern multi-core systems. This paper proposes
a new MCDF model to capture the scheduling dependencies
of command scheduling, which is able to support different
mechanisms of memory controllers. The worst-case band-
width (WCBW) is analyzed using existing analysis technique,
where a new notion of the critical cycle of the MCDF graph
is introduced. The proposed MCDF model can easily exploit
the static order of different transaction sizes, which provides
(much) better WCBW results compared to the case with

unknown order. It also provides information about how trans-
actions are executed/scheduled in the worst case. Experiments
have been carried out to validate the MCDF model and the
results demonstrate that the MCDF model outperforms existing
analysis approaches and achieves better WCBW.
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