
Distributed Power Management of Real-time Applications
on a GALS Multiprocessor SOC

Andrew Nelson and Kees Goossens
Eindhoven University of Technology

The Netherlands

ABSTRACT
It is generally desirable to reduce the power consumption
of embedded systems. Dynamic Voltage and Frequency
Scaling (DVFS) is a commonly applied technique to achieve
power reduction at the cost of computational performance.
Multiprocessor System on Chips (MPSoCs) can have mul-
tiple voltage and frequency domains, e.g. per-core. When
DVFS is applied to real-time applications, the effects must
be accounted for in the associated formal timing model.

In this work, we contribute our distributed multi-core run-
time power-management technique for real-time dataflow
applications that uses per-core lookup-tables to select low-
power DVFS operating points that meet the application’s
timing requirement. We describe in detail how timing slack is
observed locally at run-time on each core and is used to select
a local DVFS operating point that meets the application’s
timing requirement. We further describe our static off-line
formal analysis technique to generate these per-core lookup-
tables that link timing slack to low-power DVFS operating
points. We provide an experimental analysis of our proposed
technique using an H.263 decoder application that is mapped
onto an FPGA prototyped hardware platform.

Categories and Subject Descriptors
EDA3.1 [System-level low-power design and thermal
analysis, simulation and management]

Keywords
Low-power design, Modelling and prediction, Multiprocessor
systems, Real-time systems, Embedded Systems

1. INTRODUCTION
Power consumption of embedded systems is an ever grow-

ing design concern. It is of particular concern in portable
devices, as there is a trade-off between the capacity (and
hence physical size and weight) of the battery required, and
the time between charges. Dynamic Voltage and Frequency
Scaling (DVFS) is a common method used to reduce the
power consumption of synchronous electronic systems. This
method trades computational performance for a reduction
in power consumption.

Real-time applications have timing requirements that must
be met. Any performance reduction as a consequence of
DVFS must not violate these requirements. Real-time applic-
ations are typically verified using formal modelling methods
to derive timing guarantees. It is demonstrated in [23] how
an application mapped onto multiple cores of a Globally

NOC

DRAM Peripherals

Formal combined
application & platform

dataflow model [23]

POSe

power minimisation
Off-line WCET

analysis, for use at
run time

power management

Processor Tile

Platform
CompSOC

Space
User

Software

Hardware

3

2

1

Dataflow Application

Figure 1: Application of our proposed power man-
agement technique to the CompSOC platform.

Asynchronous Locally Synchronous (GALS) Multiprocessor
System on Chip (MPSoC) is modelled as a Homogeneous
Synchronous Dataflow Graph (HSDFG). By annotating the
actors with Worst-Case Execution Times (WCETs), static
worst-case bounds can be derived for the application’s latency
and throughput.

For Static-Periodic Schedules (SPSs), it was shown in [21]
how each edge in an application HSDFG can be represented
as a timing constraint that can be used as part of an off-line
linear program to minimise the period of the SPS without
violating causality. This is expanded upon in [22] to create an
off-line convex optimisation enabling the power consumption
of the application graph to be minimised while ensuring that
the period of the SPS meets the application’s throughput re-
quirement. The described technique can only take advantage
of static timing slack in the application’s schedule, producing
static Voltage and Frequency Scaling (VFS) levels for use at
run-time.

In this work, we propose a distributed run-time power-
management technique that uses locally (per-core) observed
timing-slack as a criteria to select a low-power DVFS oper-
ating point, from a table that is derived in an off-line static
analysis, that conservatively meets the application’s timing
requirement. Figure 1 illustrates how our proposed power
management scheme is applied to the predictable multipro-
cessor CompSOC platform [10], by formally modelling the
application and platform in a combined dataflow model for
off-line analysis. The result of this formal analysis is a per-
core DVFS look-up table that the local run-time application
power manager uses to select a local DVFS level for the
observed amount of local timing slack that is guaranteed not

to violate the application’s global timing requirement. To
achieve this we contribute:

1. A method that uses observed local timing slack to
infer a conservative amount of global slack that is used
to select the DVFS operating point from an off-line
derived table.

2. A technique to derive these DVFS look-up tables for
use at run-time.

3. A case study analysis of our power management tech-
nique applied to an H.263 decoder application.

The rest of this paper is structured as follows. In the
next section, we present the related work to our power man-
agement technique. We follow this by describing relevant
background information in Section 3 before proceeding to
describe the effects of DVFS on dataflow task scheduling
in Section 4. We present our distributed run-time power-
management technique in Section 5 that uses per-core DVFS
tables that are derived in an off-line analysis of the applica-
tion and platform. We describe our off-line analysis technique
in detail in Section 6. In Section 7 we provide a case study
analysis of our technique applied to an H.263 decoder applic-
ation, before making concluding statements in Section 8.

2. RELATED WORK
Research on using DVFS as a processor power-management

mechanism goes back at least two decades [5, 11]. In this
section, we will attempt to relate our power-management
techniques that we present in this paper to other relevant
work or similar techniques that we are aware of. For a broader
overview of power-management and DVFS techniques, we
direct the reader to [1, 15].

Many DVFS techniques employ a notion of load when
making DVFS decisions [4]. For whatever definition of load
they each have, the power-management mechanism gener-
ally lowers the DVFS-level when processor load is low and
increases it when load is high. Real-time applications need
timing guarantees requiring formal mathematical analysis.
Algorithms for static off-line and dynamic run-time energy
optimal scheduling are proposed in [26] for independent real-
time tasks with deadlines. The work in [17] extends the
algorithms from [26] for tasks with arbitrary arrival times,
deadlines and execution times. These techniques are lim-
ited to single processor systems, whereas the techniques
in [2, 18,19,25] apply to multiprocessor systems.

The multiprocessor DVFS technique in [25] applies to
tasks with precedence constraints that form a graph topo-
logy. An off-line power-management technique is proposed
in [7,8] to reduce energy consumption of periodically sched-
uled Kahn Process Network (KPN) applications on multi-
processor platforms. Off-line and run-time DVFS techniques
are proposed in [6] for Finite State Machine Scenario Aware
Dataflow (FSM-SADF) applications. The techniques de-
scribed in [6] are not implemented for any platform. Details
are not provided on how this would be achieved or on the im-
pact of any implementation practicalities on their described
technique. This work describes a run-time DVFS technique
that uses and off-line analysis of an Homogeneous Synchron-
ous Dataflow (HSDF) model of the combined application
and platform, that is implemented on the CompSOC multi-
processor platform [10].

Distributed multiprocessor power-management techniques
address the scalability problem of synchronising information

System
Clock

core
MicroBlaze

DVFS
dmem

imem
ILMB

cmems

dmamems

DLMB

DMAs

Tile Clock

Processor Tile

clk

DPLB

DTL

DTL DTL

FSL

clk

Figure 2: CompSOC processor tile.

with a centralised decision algorithm. Care must be taken
when using local information to lower DVFS-levels as de-
scribed in [16]. Local DVFS decisions affect global timing
and therefore impact the ability of other cores to make local
DVFS decisions, e.g. one core lowers its DVFS level causing
other cores to have to increase their DVFS levels. Progress
information is explicitly communicated for the technique
in [16], whereas queue occupancy is used in [3] to implicitly
communicate application progress. This is achieved in [3] for
dataflow applications with a single identifiable producer and
consumer task.

Buffer occupancy is used as a feedback in the closed DVFS
control loop. It is not described in [3] how well their de-
scribed technique works with small buffer capacities, i.e. of
size one. Their technique works with “tuned” occupancy
thresholds, but no description is given how these thresholds
are derived. Our proposed DVFS technique is applicable
to all dataflow applications that can be abstracted as an
HSDFG. We use local application progress as an indicator of
global performance, rather than buffer occupancy, enabling
the use of small buffer capacities as may be required on
resource constrained embedded systems. We describe our
off-line analysis technique to derive the DVFS tables used by
our power-management control loop in detail in Section 6.

A DVFS technique for single core mixed-criticality systems
is proposed in [14]. The CompSOC multiprocessor platform
supports virtual execution for mixed time-criticality systems
[10]. The HSDF dataflow modelling technique [23] that
produces the combined application and platform models
used by our power-management technique also models the
virtualisation. We leave an extension of the work in this paper
to include power-management for multiprocessor mixed time-
criticality applications, as future work.

3. BACKGROUND
We begin the explanation of our run-time power-

management technique by describing the CompSOC
hardware and software platform [10] to which it can be
applied. A CompSOC platform consists of one or more
processor tiles connected by the timing predictable Æthereal
Network on Chip (NoC). Each tile exists in its own voltage
and clock domain. The local processor is able to change its
own voltage and frequency by programming the operating
point on the local DVFS control module.

As illustrated in Figure 2, each processor tile consists of a
MicroBlaze processor with local scratch pad memories, for
instructions (imem) and data (dmem) that are accessible over
single-cycle access I/DLMB buses. Direct Memory Access

(DMA) modules are used to enable off-tile communication
by providing access to distributed shared memories over the
NoC. Each DMA module has an associated scratch pad
memory (dmamem) that is accessed by the local processor
via the DLMB bus. The DMA modules are programmed over
the single master DPLB bus, but have direct single-cycle
access to their associated dmamem via a point-to-point link
that uses the DTL protocol. The DMA modules read/write
a specified amount of data from/to a specified location in its
associated dmamem and writes/reads this data to/from a
specified remote location accessible via the NoC. To enable
data to be written directly to local tile memory, some local
dual-port scratch pad memories (cmems) that are accessible
from the local processor on the DLMB bus are also connected
directly to the NoC using the DTL protocol.

Real-time dataflow applications are executed using the
Predictable Operating System (POSe) [23]. Both the com-
putation and communication of the application executing
on the CompSOC platform are predictable. The timing of
the application and the platform hardware is modelled as
a combined application and platform HSDFG [23]. It was
shown in [22] how the power consumption of an HSDFG
can be minimised for an SPS using a convex optimisation
technique.

4. DATAFLOW TASK SCHEDULING
As a starting point, we assume that the dataflow applic-

ation is mapped to the CompSOC platform, and that an
HSDFG of the combined application and CompSOC plat-
form has been constructed, as per [23]. A simplified HSDFG
application and core mapping is presented in Figure 3a for
illustration purposes. Nodes in the graph represent dataflow
actors for modelling, and application tasks for execution.
The edges represent dataflow channels and inter-task First In
First Out (FIFO) communication. Figure 3b is the resultant
combined application and platform HSDFG that is produced
from the technique described in [23].

An HSDFG G is represented as a tuple (V,E, t, d). Vertices
v ∈ V in a dataflow graph are called actors and represent
delay t(v) due to computation, etc. Edges between vertices
(i, j) ∈ E are directed, with i ∈ V being the producing actor
and j ∈ V the consuming actor, and represent inter-actor
FIFO communication channels. Tokens represent atomic
units of communication between actors. Initial token place-
ment is represented by a black circle on the communication
channel it occupies. The number of initial tokens on a channel
is represented as d(i, j) ∈ N.

The combined application and platform HSDFG from Fig-
ure 3b models task execution timing as actors ev. The POSe
Operating System (OS) executes dataflow applications fol-
lowing the dataflow Model of Execution (MOE). Tasks are
executed following a per-core Static-Order Schedule (SOS).
In keeping with dataflow actor firing rules, a task can only
start execution whenever data and space is available on all of
its incoming and outgoing FIFOs, respectively. The timing
overhead associated with performing these checks for the
application’s tasks are represented by actors sv. After the
task has completed execution, the data that is produced is
written to any remote locations using the DMA. The time
taken to execute the DMA driver function to program the
DMA is modelled using the wv actor. The time taken by the
DMA to write the data onto the NoC is modelled by actor
ai,j where i and j are the producing and consuming task

Tile 1 Tile 2

2

4

1

3

(a) Mapped HSDF application
with actor SOS per-tile.

Tile 1 NOC Tile 2

s1

e1

w1

s3

e3

w3

Processor

a3,4

a1,2

DMA

s4

e4

w4

s2

e2

w2

Processor

n2,1 a2,1

a4,3

DMA

n4,3

n1,2

n3,4

cmem

cmem

(b) Combined application and platform HSDFG.

Figure 3: Application and platform HSDF.

ID, respectively. Actor ni,j represents the time taken for the
last word of data written onto the NoC by the DMA to be
written into the local cmem of the receiving task.

POSe executes applications following a Self-Timed
Schedule (STS) while the application timing is conservatively
modelled as an SPS. Modelling the application’s timing
as an SPS enables the power minimisation techniques that
we describe in Section 8 to be applied. Application tasks
are time triggered at set times when scheduled following an
SPS. Executing the application following a data driven STS
enables tasks to start earlier due to earlier finishing times
of previous tasks. This enables applications to accumulate
timing slack at the application level.

Figure 4a illustrates an example Worst-Case Self-Timed
Schedule (WCSTS) for the application illustrated in Fig-
ure 3a. In this example, communication and other delays
of the combined application and platform HSDFG are not
illustrated for simplicity. Each actor v has its firing duration
annotated with its WCET t(v). We refer to the time taken
to execute a single iteration of the application graph as the
schedule length. The minimum rate at which the application
completes graph iterations is determined by the duration T
of the critical cycle or cycles of the application’s WCSTS,
which in this instance is the duration of the application’s SOS
on each core, i.e. t(1)+t(3) and t(2)+t(4). The application’s
critical cycle can be shorter than its schedule length. If this is
the case, multiple application iterations execute concurrently
to achieve the application’s minimum execution rate. This
can be seen in Figure 4a where the second iteration of actor
1 starts before the first iteration of actor 4 has completed.

Figure 4a also illustrates the schedule represented as an

Core 1

Core 2

t(1)

t(2) t(2)

t(1) t(1)

t(2)

t(3) t(3) t(3)

t(4) t(4)
s(2, 0) s(2, 1) s(2, 2)

TS

L R−1 R−1

(a) WCSTS and SPS.

Core 1

Core 2

L>T R−1
>T

LT R−1
T

1 3

2 4

1 3

2 4

(b) SPS where the period of the second graph
iteration >T is longer than that of the first
T .

Core 1

Core 2

L<T R−1
<T

R−1
TLT

1 3

2 4

1 3

2 4

(c) SPS where the period of the second graph
iteration <T is shorter than that of the first
T .

Figure 4: Example schedules of the dataflow applic-
ation in Figure 3a.

SPS. The start of each SPS iteration is indicated by upwards
arrows. The SPS starts with a period of T and has a sched-
ule length S greater than T . The first application graph
iteration completes after the schedule length and with a rate
of T−1 thereafter. Application graph iteration completions
are therefore conservatively modelled using a latency-rate
abstraction, i.e. after a latency of duration L the finishing
times of the application can be conservatively modelled with
a rate R. For an SPS schedule of an HSDF application,
latency L and rate R components of the latency rate server
abstraction are calculated from the schedule length S and
schedule period T as follows:

R = T−1 (1)

L = S − T (2)

where L ≥ 0 as S ≥ T .
Timing slack is used to reduce the application’s power con-

sumption by lowering the DVFS level of the processors. The
WCET of the tasks and hence the worst-case execution time
of an iteration of the application graph increases, for decreas-
ing DVFS levels. The off-line analysis technique described in
Section 6, derives low-power frequencies for each core such
that the application has a throughput of T−1. Application-
level timing slack is used to lower the application throughput
at run-time, which causes the application schedule length
to also increase. This can be seen in Figure 4b where the
period of the second application graph iteration > T is scaled
using DVFS to be longer than the first T . Not only is the

Time Account
Observe

SlackBudget

−
+

Manager
Power Frequency

DVFS
Output

Used Budget

Figure 5: Per-core power-management control loop.

rate of execution of the graph R>T lower than RT , but the
latency L>T of the second iteration is greater than that of
the first LT . Care must therefore be taken when performing
power-management to lower the frequency that the available
slack is sufficient to bound the increase in application latency
and the decrease in application execution rate.

Decreasing the application graph’s period through DVFS
decreases the latency L<T while increasing the application’s
rate of execution R<T . This can be seen in Figure 4c where
the period of the first application graph iteration is T and
the second iteration is <T . In this instance the decrease in
the latency L>T is bounded by the previous rate RT . The
second iteration of the graph immediately enters the rate
component of its latency-rate server abstraction after the
first iteration has completed. From Figures 4a & 4b, it can be
seen that only the rate component of the latency-rate server
abstraction needs to be taken into account when maintaining
or decreasing the graph’s period T , while Figure 4b shows
that both components of the latency-rate server abstraction
of the graph need to be taken into account when increasing
the graph’s period T .

5. DISTRIBUTED POWER MANAGE-
MENT

Our distributed power management technique sets conser-
vative DVFS levels on each core of the application without
using explicit power management related communication
between cores. Each core executes the power management
code and performs local observations of the application’s pro-
gress. The power manager on each core uses its independent
observation to conservatively infer global application pro-
gress. Slack in the application’s timing (i.e. how far it is
ahead of schedule) is used to decrease the application’s DVFS
level for subsequent iterations of the graph. In this section,
we describe our run-time power management technique in
detail.

5.1 Per-core Power Management
Our power management technique applies to HSDF applic-

ations that are mapped onto one or more processing cores,
e.g. the HSDF application that is mapped onto two cores
that is illustrated in Figure 3a. The application’s power man-
agement code is executed locally on each of the cores to which
it is mapped. Our proposed power-management scheme is
generalised as the control loop illustrated in Figure 5.

The application’s real-time requirement is represented in
POSe as a time budget on each core with the use of this
budget recorded in a time account. The application is alloc-
ated a budget of time to perform a number of iterations of the
application graph. The time taken to complete the number
of iterations is the used budget. The difference between the
budgeted amount of time and the actual time it took to
complete the number of iterations is timing slack. For a real-
time application that always meets its timing requirement,
its timing slack can never be negative, i.e. it can not use

Core 1

Core 2

1 31313

24242

(a) SPS with same task start times as
WCSTS but with varying task execution
durations.

Core 1

Core 2

Y1,0 Y1,1

Y2,1Y2,0

U0 e.g.D1 e.g.D2

L R−1 R−1

1 3 1 3 3

2 4 2 4 2

1

(b) STS with local slack observations Yc,i.

Figure 6: Example schedules using tasks with vary-
ing execution time.

more time than was budgeted. Positive slack means that
the application is running ahead of schedule. The power
manager on each core decides what frequency level the next
iterations of the application graph will be executed at, given
the amount of available timing slack.

Care must be taken that the frequency level that is chosen
does not violate the application’s timing requirement. This
is especially difficult when making distributed power man-
agement decisions, as local application DVFS affects global
application timing. Our proposed technique uses locally
observed application progress and timing information to con-
servatively infer global progress and timing, i.e how many
full application graph iterations have completed and how far
ahead of schedule (global slack).

In our proposed technique, the power manager is a simple
table lookup algorithm that selects the appropriate DVFS
level (i.e. low power but also temporally conservative) for
the available global timing slack. The derivation and use of
these tables is explained in detail in Section 6.

5.2 Per-core Slack Observation
The application’s progress is observed per-core, by com-

paring the actual time taken to perform N iterations of the
application graph with the budgeted time to execute N itera-
tions of the application graph. Using an H.263 video decoder
as an example, if one video frame consists of 99 macro blocks
(x×y size pixel blocks) and one graph iteration decodes a
single macro block, then the application performance should
be measured every N = 99 application graph iterations if it
is to be measured once per decoded frame.

In this work, we consider the case where application tasks
are mapped onto multiple cores, but each task is only mapped
onto a single core. Tasks are scheduled on each core following
a SOS to complete a single graph iteration. In this scenario,
application progress that is measured locally is the time taken
to complete N local SOS iterations. We consider an SOS
complete if the first task of the next iteration of the SOS is
able to execute. Tasks may have varying execution durations,
and are modelled for timing analysis as following an SPS, as
illustrated in Figure 6a. Tasks are actually executed following
an STS, enabling variations in task execution duration to

Core 1

Core 2 2 4 2 4

1 3 1 3 1
GALS
skew

(a) Core 1 timer running late.

Core 1

Core 2
GALS
skew

1

2 4 2 4

1 3 13 3

2

(b) Core 2 timer running late.

Core 1

Core 2

U0 L R−1 R−1Q

t(1)

t(2) t(2)

t(1) t(1)

t(2)

t(3) t(3) t(3)

t(4) t(4)

(c) Bounds on application latency and rate
for bounded GALS skew.

Figure 7: The effect of GALS timer skew on applic-
ation timing.

translate into application-level timing slack, as illustrated in
Figure 6b.

Timing slack is measured locally by taking a timestamp
U0 at the start of the application’s execution. Throughput
constraints are translated into a set of absolute deadlines
Dn with n ∈ N+ that are relative to U0 at intervals equal
to the budgeted bN amount of time for N application graph
iterations, i.e.

Dn = U0 + n× bN (3)

A timestamp Un is taken after every N local SOS itera-
tions, and compared with the deadline Dn to find the locally
observed slack Yc,n as follows:

Yc,n = Dn − Un −Q (4)

where c ∈ N is the core ID. Each core c can observe a different
amount of local slack Yc,n, with the global application-slack
Zn being the minimum of all locally observed slack, i.e.
Zn = min(Yc,n), ∀c ∈ Core IDs. Temporally bounded GALS
skew Q is explained in Section 5.3. Communicating the
application’s local progress information between the cores,
and hence finding the exact global slack value, is not scalable.
We propose conservatively deriving the global slack value
on each core, i.e each core uses its own local slack value to
derive a global slack value that cannot be greater than the
actual global slack value. Each core may derive a different
value for global slack, but as long as all of the derived values
are not greater than the actual global slack value then all
of the local DVFS values selected from the core’s lookup
table are guaranteed not to violate the application’s timing
requirements. This is explained in more detail in the following
sections.

5.3 Slack Observation in GALS Systems
In GALS systems some clock skew can exist between clock

domains, i.e. even if the clocks in different domains have the
same frequency, they are not guaranteed to be synchronous.

This skew must be taken into account in the SPS timing
analysis to ensure that the amount of available application-
level slack is not over-estimated.

Figure 7 illustrates two GALS skew scenarios, for the
WCSTS/SPS schedule from Figure 4a. Figure 7a illustrates
the scenario that the timer used for reference on Core 1 is
running behind the timer on Core 2, i.e. the timer on Core 1
reports an earlier time than the timer on Core 2 at the same
instant. The synchronised time at which both cores start
executing is therefore also skewed. In Figure 7a, this has the
effect that the tasks on Core 1 are able to start executing
later on Core 1 than on Core 2. The tasks on Core 2 are
dependent on data from the tasks on Core 1, and therefore
cannot start executing until tasks on Core 1 produce the
required data. This has the effect that the tasks on Core 2
finish later than their worst case finishing time when using
the timer on Core 2 as a reference.

Similarly, Figure 7b illustrates the scenario that the timer
on Core 2 runs later than the timer on Core 1. The tasks
on Core 1 initially have space available to produce data, as
illustrated by the dataflow application’s initial token place-
ment in Figure 3a. After one iteration, the tasks on Core 1
must wait until task 2 completes so that task 1 can start
executing its second iteration. The tasks on Core 1 finish
later than their worst-case finishing time when using the
timer on Core 1 as reference. The GALS skew must therefore
be taken into account during timing analysis so that timing
guarantees can be derived.

To be able to take the GALS skew into account the amount
of skew must be temporally bounded. Algorithmic software
[9] and hardware [20,24] techniques have been proposed that
achieve a temporal bound on timer skew. Figure 7c illustrates
how the GALS skew bound Q is used in combination with
the application’s latency and rate bounds to conservatively
bound the application’s worst-case timing. The GALS skew
bound Q is taken into account when measuring the local
slack in Equation 4.

5.4 Conservative Global Slack Derivation
We use the properties of the application’s dataflow form-

alism and its run-time scheduling to conservatively derive a
global slack value on each core from locally observed timing
slack. Application’s execute at run-time following a static
order STS that is conservatively modelled as an SPS. The
derived global slack value is used to conservatively scale the
application’s SPS. The progress of the local application’s
execution is constrained by the availability of data/space on
incoming/outgoing FIFO channels of actors that are mapped
onto the local processor. The number of application graph
iterations that the local application execution can be ahead
of the application’s execution on other processors is therefore
dependent on the application’s mapping, buffer capacity and
initial buffer occupancy.

Tasks on each core follow a self-timed SOS that executes
local tasks in order to complete a single iteration of the ap-
plication graph. At the point when local application progress
is measured, the local application SOS may have completed
more iterations than the application’s SOSs on other cores.
To conservatively estimate global progress, we derive the
worst-case time for the application to complete at least the
same number of SOS iterations as the local core on all cores.

On each core, each SOS iteration cannot take longer than
the period of the application’s SPS when tasks are executed

at the processor’s lowest DVFS level Tmax. From the applic-
ation’s HSDFG, a local SOS on one core can be maximally
ahead of a remote SOS on another core by the shortest path
between an actor in the local SOS and an actor in the remote
SOSs. In this case, a path between two actors is any set of
directed edges in the HSDF that when traversed in the op-
posite direction starts at one actor and finishes at the other.
The path length is calculated as the sum of initial tokens on
all of the path’s edges. A conservative assumption can be
made about the number of iterations that any application
SOS can be behind another SOS by taking the longest of all
of the shortest paths between application SOSs.

For example, using the HSDFG example from Figure 3a,
the shortest path B1 from the actors on core 1 to the actors
on core 2 is between actors 1 and 2, and actors 3 and 4
with a path length of one, i.e. B1 = 1. The actors 1 and
3 can be maximally one iteration ahead of actors 2 and 4,
respectively. For core 2, the shortest path B2 is from actors
2 and 4 to actors 1 and 3, respectively. These paths have a
length of B2 = 0. This means that an iteration of actor 2
can only execute after the same iteration of actor 1. If the
SOS on core 1 has completed N iterations, then actor 1 has
completed N iterations and therefore actor 2 has completed
at least N − B1 iterations. This means that the SOS on
core 2 has at least partially finished iteration N −B1. We
can therefore conservatively estimate that the SOS on core 2
has to complete B1 + 1 iterations before it has completed N
iterations. We therefore conservatively estimate the global
slack Zc for core c from the local slack Yc as follows:

Zc = Yc − (Bc + 1) · Tmax (5)

This slack is used to relax the throughput requirement of
the application to enable a DVFS level reduction.

5.5 Distributed Conservative DVFS
The locally derived conservative global slack value Zc,

where c is the local core ID, is used to derive the local
processor’s DVFS for the following N application graph iter-
ations. For an application with an SPS period requirement
of Treq the required period Tc for the following N iterations
is calculated as follows:

Tc = Treq +
Zc

N
(6)

Using the off-line derived DVFS frequency and SPS period
table, described in Section 6, our distributed power manage-
ment technique selects the lowest DVFS level from the local
table that is guaranteed to have an SPS period less than Tc.
If the DVFS-level will be lower than the current level, then
the increase in the application’s latency must be taken into
account, as described in Section 4. For DVFS-levels lower
than the current level, the required period is calculated as
follows:

Tc = Treq +
Zc − (Lmax − Lmin)

N
(7)

where Lmax is the maximum latency of the application graph
that is derived when the application’s tasks have worst-case
timings and are executed with the minimum frequency level,
and Lmin is the application graph’s minimum latency and is
derived when the application’s tasks have worst-case timings

and are executed with the maximum frequency. Lmax−Lmin

is the maximum change in graph latency that can occur
and therefore conservatively bounds all possible changes to
graph latency. A greater value of global slack Zc is therefore
required to achieve a DVFS-level lower than the current
DVFS level.

The selected DVFS level is maintained for N application
graph iterations, until the local progress is re-evaluated and
a new DVFS level is set.

6. OFF-LINE DATAFLOW ANALYSIS
In this work, we apply the static analysis technique de-

scribed [22] to generate tables of DVFS operating points with
the associated minimum amount of observed local timing
slack (distributed observations that are local to each core
the application runs on) required to conservatively operate
at each point. Our run-time power-management technique
observes the local timing slack then selects and sets the
appropriate DVFS point from the table, as described in
Section 5.

6.1 Minimising Power Consumption
It was shown in [22] how HSDFGs timing graphs of ap-

plications that are mapped onto a CompSOC platform in-
stance, can be modelled as a convex optimisation to minimise
application power consumption. Code 1 is an example of
the HSDFG in Figure 3a represented as a Disciplined Con-
vex Program (DCP) [13] for the CVX convex programming
tool [12] for Matlab.

cvx_begin
variable s(NUM_ACTORS) % Actor start times
variable f(NUM_CORES) % Core frequencies
minimise(

% Any power model that complies with DCP
sum ((3.353E-5* pow_pos(f ,3)+2.065))

)
f >= MIN_FREQUENCY % Lower frequency bound
f <= MAX_FREQUENCY % Upper frequency bound
% per -edge constraints
s(1) + T*d(3,1) >= s(3) + t(3)* inv_pos(f(1))
s(2) + T*d(1,2) >= s(1) + t(1)* inv_pos(f(1))
s(3) + T*d(1,3) >= s(1) + t(1)* inv_pos(f(1))
s(4) + T*d(3,4) >= s(3) + t(3)* inv_pos(f(1))
s(1) + T*d(2,1) >= s(2) + t(2)* inv_pos(f(2))
s(2) + T*d(4,2) >= s(4) + t(4)* inv_pos(f(2))
s(3) + T*d(4,3) >= s(4) + t(4)* inv_pos(f(2))
s(4) + T*d(2,4) >= s(2) + t(2)* inv_pos(f(2))

cvx_end

Code 1: Formulation for the CVX Matlab tool.

DCPs consist of an objective function and constraints.
Code 1 uses a power model as a minimising objective function.
The particular power model used is not important for our
technique beyond that it (or an approximation of it) must
be able to be expressed following the rules of DCP. In this
work, we use the following processor power model:

P (f) = 3.353× 10−5f3 + 2.065 (8)

Where P (f) in Equation 8 is the processor power consump-
tion in nano-Joules and f is processor frequency in MHz
(We do not claim that this model is accurate for any par-
ticular processor). As our technique is only concerned with

0
10
20
30
40
50
60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
w

er
(m

W
)

Period T (ms)

Full search pareto point

Figure 8: Pareto front from a full search using the
model.

the DVFS level of the processors, the minimising objective
function in Code 1 minimises the sum of the power levels of
all of the processors used.

The objective function and constraints consist of variables
and constants. The variables in Code 1 are, the start time
s(v) of each actor v ∈ N, and the frequency f(c) of each
core c ∈ N (MIN_FREQUENCY and MAX_FREQUENCY are constant
values representing the minimum and maximum available
frequency levels in MHz). The constants in Code 1 are, the
WCET (at MAX_FREQUENCY) t(v) of each actor, the number
of initial tokens d(i,j) on the FIFO channel from actor
i to actor j, and the period of the SPS T where T ∈ R.
The convex program solver scales the values of the variables
to minimise the value of the objective function, i.e. Code 1
returns frequencies per-core f(c) that minimise the processor
power consumption for a graph throughput of T−1.

6.2 Lookup Table Creation
We use the combined application and hardware platform

DCP to generate the per-core table of DVFS operating points.
For relatively small designs it is possible to do a full search
of power consumption for all frequency combinations on all
cores for small designs, and find the pareto optimal power
versus frequency points from this set. Figure 8 presents such
a pareto front for a full search of the example application that
is illustrated in Figure 3. In this example, each processor
has 16 available discrete DVFS levels. For a full search of
the application mapped onto two cores, the period of 256
(16× 16) DVFS combinations were derived and the pareto
optimal in terms of power and period were selected to create
Figure 8. However, we focus here on our sampling technique
to derive the tables that is also applicable to larger designs
that use more cores, where it may be undesirable or infeasible
to perform a full search.

Using our sampling technique, we derive the tables by
sampling the range of SPS period values T between the
minimum period Tmin and maximum period Tmax of the
worst-case graph. The DCP of the application is then solved
for each value of T to find the per-core frequencies that pro-
duce the lowest power consumption while meeting the SPS
period of T . Commonly, only a limited set of discrete DVFS
operating points are available for scaling. To maintain tem-
poral conservativeness in this case, the derived frequencies
(f ∈ R) are rounded up to the nearest available frequency
levels and the period of the SPS derived for this new set of
frequencies. This is achieved using a DCP similar to Code 1,
where T is a variable, f(c) is a constant array of the roun-
ded frequencies and the objective function is minimise(T).

0
10
20
30
40
50
60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
w

er
(m

W
)

Period T (ms)

Samples
DVFS-levels Rounded up

Figure 9: Pareto front from sampling the graph
period range at regular intervals.

per-core
and

pruned

f(1) T

120 1
90 2
.

Frequencies (MHz) SPS period (ms)
(120,120) 1
(90,120) 2
(90,90) 3

.

f(2) T

120 1
90 3
.

Figure 10: Example frequency table derivation.

This DCP is also used to find the SPS Tmin and Tmax by
solving the DCP for f(c) values set to MAX_FREQUENCY and
MIN_FREQUENCY, respectively.

Figure 9 presents the results of sampling the application’s
period range 100 times using the application’s convex pro-
gram to minimise power consumption. The samples can be
seen to be on the same pareto front that was found using
the full search and presented in Figure 8. The number of
samples is configurable, with a higher number finding more
suitable points once the DVFS-levels have been rounded up
to available DVFS-levels.

The resultant rounded frequencies per-core with their as-
sociated SPS period are used to create per-core tables of
frequency and associated SPS period, as illustrated in Fig-
ure 10. These tables are sorted according to the SPS period
from lowest to highest. Multiple SPS periods can have the
same associated frequency on a core. The tables are pruned
to remove these duplicates, retaining only the lowest SPS
period associated with the frequency level.

7. H.263 CASE STUDY
In this section, we proceed to demonstrate how our power

management technique is applied to an H.263 decoder applic-
ation. We demonstrate this using a four core Field Program-

IQ UPVLD
MC

+FRIDCT

Figure 11: HSDFG of the H.263 decoder applica-
tion.

mable Gate Array (FPGA) prototyped CompSOC platform
instance. The H.263 decoder application, as illustrated in
Figure 11, consists of five computational tasks (VLD, IQ,
IDCT, MC+FR and UP) with data dependent task execu-
tion times. Table 1 presents the four task mappings that we
used for our experimentation. These mappings were auto-
matically generated to meet the H.263 decoders resource
requirements, but are not intended to be power optimal or
in anyway particularly suitable for a low-power design.

No.
Cores

Bc VLD IQ IDCT MC
+ FR

UP

1 - 1 1 1 1 1
2 0 1 1 1 2 1
3 2 1 1 3 2 3
4 4 1 1 3 2 4

Table 1: H.263 decoder task to core mappings.

The H.263 decoder requires 99 application graph iterations
to complete a single frame of decoded video. Task execution
times are data dependent and therefore the time taken to
decode a frame depends on the type of frame and also the
video being decoded. We use three videos (bus, tree and
akiyo) to demonstrate our technique. These videos are en-
coded to have an I-frame every twelve frames and P-frames
at other times. I-frames generally take longer to decode than
P-frames. This can be seen in Figure 12 as a “dip” in frame
rate every twelve frames, when the H.263 decoder is executed
at the maximum DVFS level (MAX) and whenever static
(VFS) is used. Static VFS is applied by setting the DVFS
level once during initialisation to the level that meets the
application’s throughput requirement in the worst-case, as
derived by our off-line analysis from Section 6 for a four
frames per second requirement. As can be seen in Figure 12,
the average frame rate for the VFS execution is close to
eight frames per second. This is because the H.263 tasks
are executing at less than the worst-case duration and the
VFS technique is not able to use the dynamic timing slack
to scale the voltage and frequency further.

2
4
6
8

10
12
14
16
18

0 20 40 60 80 100

Fr
am

es
pe

rs
ec

on
d

Frames

MAX
VFS

DVFS

Figure 12: Decoding rates for the tree video (1 core).

Our distributed power management (DVFS) technique
uses the dynamic timing slack to reduce the DVFS level
further until the video is decoded at its required rate of
four frames per second. Our power manager is invoked once
per frame, i.e. every 99 application graph iterations. In
Figure 13, the decoded rate occasionally dips below four
frames per second, but the decoder does not miss any frame

deadlines as our technique only decreases the DVFS level
whenever the application progress is sufficiently ahead of the
requirement to complete the decoding of the following frame
even if it takes the worst case amount of time to decode, as
is shown in Figure 13.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 5 10 15 20 25Fr
am

es
ah

ea
d

of
re

qu
ire

m
en

t

Time (s)

1 core
2 cores
3 cores
4 cores

Figure 13: Buffered frames for the tree video.

The amount in advance of the requirement that our power
management technique will produce output, and hence the
amount of buffering that may be required, depends on the
actual task execution time in comparison to the worst case
off-line analysis. In Figure 13, it can be seen that the H.263
decoder ran up to approximately two frames in advance of
the timing requirement. The amount of available memory for
buffering can limit the amount the application can run ahead
of schedule and hence the amount of application slack that is
available for power management. The available memory for
buffering is therefore a limitation of our power management
technique with the effect being application and platform
specific. In the case of the H.263 decoder, buffering two
video frames is achievable in the Dynamic Random Access
Memory (DRAM) of the CompSOC platform.

0
20
40
60
80

100
120
140
160
180

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Po
w

er
(m

W
)

Number of Cores

MAX
VFS
DVFS

akiyotreebuswcet

Figure 14: Reported H.263 decoder power consump-
tion from the CompSOC FPGA prototype.

Figure 14 presents the power consumption and Figure 15
presents application throughput reported by the FPGA pro-
totype of the CompSOC platform for all power management,
application mapping and video input combinations. For this
experimentation we add an additional video input called
“wcet” that causes the H.263 decoder’s tasks to always ex-
ecute with their WCET. Figure 14 shows that both VFS and
DVFS offer a significant power consumption improvement,
over executing the application at the maximum DVFS-level,
and that our DVFS technique offers an improvement over
static VFS.

Figure 15 shows that this frame rate was met for all of
the tested combinations. The static VFS is unable to use

0

5

10

15

20

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Fr
am

es
pe

rs
ec

on
d

Number of Cores

requirement
MAX
VFS
DVFS

akiyotreebuswcet

Figure 15: Reported H.263 decoder throughput
from the CompSOC FPGA prototype.

4

4.01

4.02

4.03

4.04

4.05

4.06

1 2 3 4

Fr
am

es
pe

rs
ec

on
d

Number of Cores

wcet
bus
tree
akiyo

Figure 16: Frame rates achieved for the range of
mappings and decoded videos using DVFS.

the dynamic timing slack and runs faster than required,
whereas our DVFS technique uses almost all of the available
application-level timing slack. This can be clearly seen in
Figure 16 where our DVFS technique uses the application-
level slack to within 1.25% above the application’s timing
requirement, over a 25 second time frame.

0

5

10

15

20

25

30

1 2 3 4

Po
w

er
(m

W
)

Number of Cores

VFS
wcet DVFS
bus DVFS
tree DVFS

akiyo DVFS

Figure 17: Power consumption due to our static and
dynamic techniques.

Our DVFS power management technique is not guaranteed
to outperform static VFS, as can be seen in Figure 17 for
the four core mapping of the wcet video. This is because
the wcet video does not have any variation in task execution
times. The dynamic timing variations due to communication
via the NoC does not produce enough application-level slack
to offset the relatively small but additional computation
required by our DVFS technique. Nevertheless, by using the
available dynamic timing slack that the static VFS technique

is unable to use, our DVFS technique achieves up to a 79.5%
power reduction in comparison to using static VFS levels
alone. This reduction can be seen in Figure 17 for the two
core mapping of the akiyo video.

The more application-level timing slack an application has,
the more effective our DVFS technique can be. This depends
on many factors from hardware platform dimensioning, to
dynamic task algorithm variations. Our power management
technique uses low computational complexity table look-up,
providing a low threshold of available application-level slack
to produce power savings in comparison with static VFS
alone. Nevertheless, we acknowledge that absolute numbers
on power savings are for specific applications and platform
configurations, or in other words, “your mileage may vary”.

8. CONCLUSIONS
In this paper, we have shown how distributed power man-

agement of real-time applications can be achieved on a GALS
MPSoC. We described our run-time power management
technique that uses a static off-line worst-case analysis of
a combined application and platform HSDFG to conservat-
ively perform DVFS. Using an H.263 decoder application
with various mappings on a CompSOC platform instance, we
demonstrated our distributed run-time power management
technique in comparison with what is achieved with using
the static analysis alone to derive static VFS levels. Our
distributed run-time power-management technique achieved
up to a 79.5% decrease in power consumption, in comparison
with using static VFS-levels alone.

Acknowledgements This work was partially funded by pro-
jects CATRENE CA505 BENEFIC, CA703 OpenES, CT217
RESIST; ARTEMIS 621429 EMC2 and 621353 DEWI.

9. REFERENCES
[1] S. Albers. Energy-efficient algorithms. Communications

of the ACM, 53(5):86–96, 2010.

[2] S. Albers et al. Speed scaling on parallel processors. In
Proc. of the Nineteenth Annu. ACM Symp. on Parallel
Algorithms and Architectures, pages 289–298, 2007.

[3] A. Alimonda et al. A feedback-based approach to
DVFS in data-flow applications. Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, 28(11):1691–1704, 2009.

[4] L. Benini et al. A survey of design techniques for
system-level dynamic power management. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions
on, 8(3):299–316, 2000.

[5] T. D. Burd and R. W. Brodersen. Energy efficient
CMOS microprocessor design. In System Sciences,
1995. Proc. of the Twenty-Eighth Hawaii Int. Conf. on,
pages 288–297, 1995.

[6] M. Damavandpeyma et al. Throughput-constrained
DVFS for scenario-aware dataflow graphs. In
Real-Time and Embedded Technology and Applicat.
Symp. (RTAS), 2013 IEEE 19th, pages 175–184, 2013.

[7] P. de Langen. Energy Reduction Techniques for Caches
and Multiprocessors. PhD thesis, Delft University of
Technology, oct 2009.

[8] P. de Langen and B. Juurlink. Leakage-aware
multiprocessor scheduling. Journal of Signal Processing
Systems, 57(1):73–88, 2009.

[9] D. Dolev et al. Hex: scaling honeycombs is easier than
scaling clock trees. In Proc. of the 25th ACM Symp. on
Parallelism in algorithms and architectures, pages
164–175, 2013.

[10] K. Goossens et al. Virtual execution platforms for
mixed-time-criticality systems: The CompSOC
architecture and design flow. ACM SIGBED Review,
10(3):23–34, 2013.

[11] K. Govil et al. Comparing algorithm for dynamic
speed-setting of a low-power CPU. In Proc. of the 1st
Annu. Int. Conf. on Mobile computing and networking,
pages 13–25, 1995.

[12] M. Grant and S. Boyd. Cvx: Matlab software for dcp.
http://cvxr.com/cvx, mar.

[13] M. Grant and S. Boyd. Graph implementations for
nonsmooth convex programs. In Recent Advances in
Learning and Control, pages 95–110. Springer.

[14] P. Huang et al. Energy efficient DVFS scheduling for
mixed-criticality systems. In Embedded Software
(EMSOFT), 2014 Int. Conf. on, pages 1–10, 2014.

[15] S. Irani and K. R. Pruhs. Algorithmic problems in
power management. ACM SIGACT News, 36(2):63–76,
2005.

[16] P. Juang et al. Coordinated, distributed, formal energy
management of chip multiprocessors. In Low Power
Electronics and Design, 2005. ISLPED’05. Proc. of the
2005 Int. Symp. on, pages 127–130, 2005.

[17] P. Kumar and L. Thiele. p-yds algorithm: An optimal
extension of YDS algorithm to minimize expected
energy for real-time jobs. In Embedded Software
(EMSOFT), 2014 Int. Conf. on, pages 1–10, 2014.

[18] T.-W. Lam et al. Energy efficient deadline scheduling
in two processor systems. In Algorithms and
Computation, pages 476–487. Springer, 2007.

[19] T.-W. Lam et al. Competitive non-migratory
scheduling for flow time and energy. In Proc. of the
twentieth Annu. Symp. on Parallelism in algorithms
and architectures, pages 256–264, 2008.

[20] C. Lenzen et al. Clock synchronization with bounded
global and local skew. In Foundations of Comput.
Science, 2008. FOCS’08. IEEE 49th Annu. IEEE
Symp. on, pages 509–518, 2008.

[21] O. Moreira et al. Buffer sizing for rate-optimal
single-rate data-flow scheduling revisited. IEEE Trans.
Comput., pages 188–201, 2010.

[22] A. Nelson et al. Power minimisation for real-time
dataflow applications. In DSD, pages 117–124, 2011.

[23] A. Nelson et al. Dataflow formalisation of real-time
streaming applications on a composable and
predictable multi-processor SOC. Journal of Systems
Architecture, 2015.

[24] M. Perner et al. Byzantine self-stabilizing clock
distribution with HEX: Implementation, simulation,
clock multiplication. In DEPEND 2013, The Sixth Int.
Conf. on Dependability, pages 6–15, 2013.

[25] K. Pruhs et al. Speed scaling of tasks with precedence
constraints. Theory of Computing Systems, 43(1):67–80,
2008.

[26] F. Yao et al. A scheduling model for reduced CPU
energy. In Foundations of Comput. Science, pages
374–382, 1995.

