
Run-Time Middleware to Support
Real-Time System Scenarios

Kees Goossens, Martijn Koedam, Shubhendu Sinha, Andrew Nelson, Marc Geilen
Eindhoven University of Technology, Netherlands

Abstract—Systems on Chip (SOC) are powerful multipro-
cessor systems capable of running multiple independent applica-
tions, often with both real-time and non-real-time requirements.
Scenarios exist at two levels: first, combinations of independent
applications, and second, different states of a single application.
Scenarios are dynamic since applications can be started and
stopped independently, and a single application’s behaviour can
depend on its inputs, on different stages in processing, and
so on. In this paper we describe how the CompSOC platform
offers system integrators and application writers the capability
to implement multiple scenarios.

I. INTRODUCTION

Multiprocessor SOCs (MPSOCs) are increasingly common
and being required to perform ever more functionality. This
has lead to mixed time-criticality systems, where applications
with various degrees of timing requirement severity execute on
the same physical hardware resources. Real-time applications
require formal verification that their timing constraints are
met. This effort is hard due to interference of concurrent
applications on shared resources. This is complicated fur-
ther on mixed time-criticality systems where the interfering
application can be a non-real-time application that causes
unpredictable interference.

Temporal isolation is a strategy to reduce this complexity,
by bounding or eliminating the level of interference that real-
time applications experience. The composable and predictable
CompSOC platform [1] enforces strict temporal isolation, en-
suring that concurrently executing Virtual Execution Platforms
(VEPs) cannot interfere with other VEPs by even a single
cycle. The actual (cycle-accurate) execution of an application
executing on one VEP is therefore isolated from and inde-
pendent of applications on other VEPs. CompSOC VEPs are
formally modelled to enable formal verification of real-time
applications executing on them [2].

Applications executing on a VEP can therefore change their
behaviour (scenarios) without affecting applications executing
on other VEPs. Additionally, VEPs, and the applications
running on them, can be started and stopped independently,
enabling dynamic combinations of multiple applications.

In this paper, we describe the CompSOC platform’s run-
time middleware, focussing on our virtual-resource generalisa-
tion. Our technique enables multiple heterogeneous resources,
VEPs, and applications to be managed in a unified manner,
simplifying VEP management and hence scenario configura-
tion. The CompSOC software stack is shown in Figure 1.

II. RELATED WORK

Traditionally, resource abstraction has been achieved with
a Hardware Abstraction Layer (HAL) [3], [4]. A HAL enables

VPs

Processors SDRAMNoC

App.
RT

RTOSApp.
Sys.

libRM

CoMik

VEPVEP

3 4

1,2

HW Drivers

VEP VEP

5 5
libfifo
POSe

DF
App.

Sys.
Man.

Figure 1. CompSOC platform hardware and software stack.

software portability and reuse. However, the HAL Application
Programming Interfaces (APIs) is resource specific. Extensive
work has been done on optimizing resource usage via resource
managers [5]–[8]. We focus on [5] that presented a generic
description of MPSOC run-time management components as
the most related to this work. The MPSOC platform in [5]
is considered as a single resource and the allocation policies
and mechanisms for the platform resources are combined in
a single resource manager. Instead our approach is 1) to
manage all instances of each type of resource with a single
resource manager; 2) to have a uniform API for all different
(hierachical) resource types; 3) to manage entire VEPs and 4)
applications using the same API.

III. THE COMPSOC HARDWARE RESOURCES

SOCs contain multiple types of resources, most of which
are run-time configurable enabling them to be managed at run-
time. The CompSOC platform [1] is a composable and predict-
able tile-based architecture consisting of run-time configurable
processor tiles and Synchronous Dynamic Random Access
Memory (SDRAM) [9] tiles that are connected by a Network
on Chip (NOC) [10]. The CompSOC platform implements
strict temporally isolated VEPs.

The CompSOC platform can be instantiated to have one
or more processor tiles. The CompSOC processor tile consists
of a MicroBlaze processor, a Timer, Interrupt, and Frequency
Unit (TIFU), local scratchpad Static Random Access Memory
(SRAM) memories and Direct Memory Accesss (DMAs), as
illustrated in Figure 2. The TIFU is programmed over an
Fast Simplex Link (FSL) providing the CoMik microkernel
[11] the ability to perform virtualised local tile Dynamic
Voltage and Frequency Scaling (DVFS) and interrupt control.
The tight coupling of the DVFS and interrupt controller with
programmable interrupt timers enables CoMik to switch virtual

978-1-4799-9877-7/15/$31.00 c©2015 IEEE.

System
Clock

core
MicroBlazeTIFU dmem

imemILMB

cmem

dmamem

DLMB

DMA

Tile Clock
Processor Tile

clk

DAXI

DTL
DTL DTL

FSL

clk

Figure 2. CompSOC processor tile.

processor contexts, including application frequency, following
a Time Division Multiplexed (TDM) schedule.

The processor tile also contains local scratchpad memories
for instructions (imem) and data (dmem) with single-cycle
access via local memory busses (I/DLMB). These memories
are virtualised by allocating dedicated regions of memory
to the virtual processors. Inter-tile communication is carried
out using DMAs. Each DMA has a dedicated dual-ported
single-cycle access memory (dmamem) shared with the local
processor. The DMAs are programmed by the processor on the
Data AXI (DAXI) bus to read/write data from/to the dmamem,
from/to distributed shared memories via the NOC. For direct
tile-to-tile communication, each processor tile has dual-ported
communication memories (cmems) that are connected to both
the DLMB and the NOC. To achieve composability, DMAs,
dmamems and cmems are dedicated virtual platform resources,
i.e. not shared between virtual platforms.

The scratchpad memories are relatively small (up to a few
hundred KB). To store more data, the CompSOC platform
supports shared SRAM and SDRAM memory tiles attached
to the NOC. They are composably shared using either a
composable arbitration scheme, such as TDM, or a predictable
arbitration scheme, such as Round Robin (RR) or Credit
Controlled Static Priority (CCSP), with delay blocks [12]. The
SDRAM memory controller back-end, and the memory arbiters
and delay blocks are run-time configurable [9].

The CompSOC platform uses the predictable and com-
posable dAElite [10] NOC. The NOC offers point-to-point
connections with latency and bandwidth guarantees [13].
Connections (“virtual wires”) are implemented with run-time
programmable TDM arbitration of physical NOC wires.

IV. VIRTUAL-RESOURCE MANAGEMENT

The CompSOC platform has various virtualisable resources
where the dimensioning of the arbitration is run-time con-
figurable. A processor can be divided in multiple smaller
virtual processors, the NOC wires in multiple virtual wires
(connections), and SRAM and SDRAM memories can be
divided spatially (memory regions) as well temporally (access
bandwidth). Although the specific nature of the configuration
may differ between resources, CompSOC platform provides a
generalised configuration interface, as illustrated in Figure 3a.

V. BUDGETS AND VIRTUAL RESOURCES

Virtual-resource requirements are expressed as a Budget
Descriptor (BD) that captures the requirement as a specific
configuration of the resource, e.g. arbiter settings such as

reserve release

start stop

program reset

BD BID

fail
VR budget

VR ready

VR running

VR reserved

(a) System RM API

G
et

S
ta

tu
s

S
et

Fr
eq

.
G

et
Fr

eq
.

G
et

Ti
m

e

S
en

d

G
et

S
ta

tu
s

R
ec

ei
ve

V. Proc.DMA

(b) Application RM API
Figure 3. States (blue) and transition API calls (green & red). VR (yellow)

CCSP priorities for the memory controller, TDM slots for
NOC, memory controller, or microkernel, range of memory
locations for any of the memories, or energy or power budget
of a processor [14]. Given a BD the reserve API call makes
a resource reservation, locking out other requesters from
reserving overlapping resource configurations. A reservation
request may therefore fail due to the required resources having
been locked earlier by others. Of course, other reservation
attempts with different BDs may be made. A successful budget
reservation returns a Budget Identifier (BID) that refers to
the record of the reservation, and the virtual resource is in
the reserved state. A successful reservation that is no longer
needed can be cancelled using the release API call.

The virtual resource is put in the ready state using the
program API call with the BID as the argument. This instan-
tiates the logical reservation by programming the budget on
the physical resource using the resource driver. The virtual
resource enters the running state after the start API call, which
indicates that the virtual resource is functionally operational,
e.g. a NOC connection accepts data. The performance of a
resource is guaranteed according to its BD until it is stopped.

To release a resource reservation of a running virtual
resource, it must first return to the quiescent ready state, by
calling the stop API call. This ensures that all operational
activity that is normally performed in the running state has
ceased, e.g. all data has finished crossing a NOC connection,
a DMA has no data in flight, and a memory controller pipeline
is empty. The resource reservation can be de-programmed with
the reset API call that takes a ready virtual resource to the
reserved state. The resource reservation can be changed to a
new BD with the rereserve API call, or be released.

A. Hierarchical Budgets and Hierarchical Virtual Resources

Each kind of resource (processor, DMA, NOC, imem,
dmem, cmem, dmamem, and distributed memory) has its own
driver to program it and a resource manager to administrate the
virtual resources mapped on it. All resources of the same type
are managed by a single resource manager, except processor
tiles that each have their own, for performance reasons.

A processor tile contains multiple resources, namely pro-
cessor, DMAs, imems, dmems, cmems, and dmamems, and
the resource management API allows hierarchical resource
reservations. A processor tile BD contains BDs for the subre-
sources, and will hierarchically reserve, program, and start the
subresources. If reservation fails for any resource, the hierarch-
ical resource as whole fails. Stopping, resetting, and releasing
work similarly. In fact, since a VEP is a set of virtual resources,
e.g. multiple processor tiles, NOC connections, SDRAMs and
SRAMs, it too is implemented as a hierarchical BD. Thus the
same API shown in Figure 3a is used to manage 1) individual
resources, 2) hierarchical resources such as processor tiles, as
well as 3) entire VEPs. As shown in Figure 1, 1 and 2 are
used by the system application, 3 by system manager to the
system application.

B. Application Virtual-Resource Management API

Once a virtual resource has been created and an application
is running on it (explain in the next section), the application
can use the virtual resource, e.g. compute, communicate, and
store/retrieve data. However, through the virtual-resource ap-
plication API the application can change the state of the virtual
resource, such as gettting and setting processor frequency and
timers, or send and receive data using a DMA, or configure
SDRAM memory controller patterns. The user API is specific
to a virtual resource type, see e.g. Figure 3b.

Only the system application can create and modify virtual
resources, i.e. VEPs, using the system resource management
APIs shown as red arrows in Figure 1. Applications live within
a VEP and can modify its state (the green arrows in Figure 1),
but not its size, to ensure strong isolation of applications.

C. Application Management API

Once a VEP has been created, an application must be
started in it. As discussed in more detail in the next section,
this follows a process similar to creating a virtual resource
namely: reserving, i.e. (optional) checking if the code and data
of the application fits in the reserved VEP. Then programming,
i.e. loading code and data of the Real-Time Operating System
(RTOS) and application, followed by booting / configuring
the RTOS or application. Then starting, i.e. executing the
application. Since these steps are the same as those of a single
(hierarchical) virtual resource, the system application uses the
resource management API (arrow labelled 4 in Figure 1) to
manage applications to start and stop in their VEP. In fact,
work by Kramer [15] on dynamic change management for
distributed applications inspired our virtual-resource and ap-
plication management API, especially the notion of quiescent
state (our virtual-resource ready state).

VI. SYSTEM SCENARIOS

System scenarios incorporate both the combinations of
independent VEP that can be instantiated concurrently and
also the different states of the software that executes on the
VEP. User software is mapped onto VEPs enabling cycle-
accurately composable execution of concurrent software that
is mapped onto other VEPs. The software within the VEP can
have multiple execution scenarios, e.g. due to data dependent
behaviour, and dynamically switch between them. In this
section, we describe in detail how the CompSOC platform
supports run-time configuration of system scenarios.

A. CompSOC Middleware

Software support for run-time scenario configuration is
enabled by the scenario middleware. The CompSOC platform’s
software stack is illustrated in Figure 1. The system manager is
an application that runs in its own small VEP on a single tile.
It decides what applications run when and in which VEPs, and
instructs the system application to effectuate these decisions.
The system application runs in its own VEP consisting of a
small virtual processor on each processor tile, and uses DMAs
and NOC connections to synchronise its distributed opera-
tion. The system applications use the resource-management
library (libRM) on each processor tile to configure virtual
resources. libRM implements the virtual-resource management
APIs described in the previous section. As described there, the
interactions between system manager and application manager,
and application manager and libRM, and application manager
and applications all use the same API. Individual virtual
resources, hierarchical virtual resources, entire VEPs, as well
as applications are all managed uniformly, proving that our
resource management is versatile and generic.

B. Dynamic Bundle Instantiation

An application always runs in a VEP, the BD that specifies
the VEP is therefore always packaged together with the
application’s executables (code, data, and so on, in the form
of ELF files). This combination is called a bundle. When the
system manager detects that a new application is available
(after its bundle has been uploaded at run time to SDRAM, for
example), it decides whether it should run or not. In the next
section we describe this decision process; we first, describe
the bundle instantiation process.

The system manager sends (a pointer to) the bundle to the
application manager which hierarchically reserves, programs,
and starts the VEP, the virtual processor tiles, local tile
memories, DMAs, NOC connections, SDRAM and SRAMs,
etc. All virtual resources need to complete each before the
next phase can start. If any phase fails, the application manager
releases the entire VEP and informs the system manager. After
successful creation of the VEP, virtual processors can compute
using their local memories, can store data in local and remote
virtualised memories, and communicate with each other using
their DMAs.

Next, the application must be started. To reduce the load
on the application manager, this process is performed by a
boot loader that executes in the application VEP, i.e. using the
application’s virtual resources. It contains a number of steps.
1) reserve Optional step to check that the application fits in
the given VEP, as explained in the next section.
2) program For each task on each processor, load its code and
data (ELF) in the processor tile’s imem and dmem, by copying
it from (e.g.) SDRAM. Booting a bespoke scheduler (e.g. static
order or preemptive) or RTOS, e.g. CompSOC’s POSe [2] or
a standard µC OS-III RTOS (www.micrium.com). If the
application uses multiple processor or memory tiles then it
also configures the application communication channels, e.g.
dataflow or Kahn Process Network (KPN) First In First Outs
(FIFOs) [16], using libFIFO.
3) start executing.
VEPs are created and run composability and predictably, i.e.
cause no interference to other applications running their own

VEPs, as described in [17]. Multiple applications can boot
and/or execute at the same time.

C. VEPs Scenarios

Given a set of bundles, i.e. applications with the specific-
ation (BD) of their VEPs, the system manager must decide
which applications to run, i.e. which bundles to load. Clearly,
if different bundles ask for the same virtual resources, they
cannot execute concurrently, and the system manager must
decide one way or another which application has priority. It
is possible for an application to have multiple bundles, with
different VEPs, e.g. a slow small-VEP implementation, and a
fast large-VEP implementation. The system manager can try
the different bundles in some order.

If the set of applications and their combinations is known
at design time, then defining the VEP that each application
receives is a (complex) optimisation problem. Conceptually,
each VEP must receive (e.g.) a set of TDM slots (on all of its
subresources) that do not conflict with any other VEP that must
be able to run concurrently. The dAElite NOC design flow
acomputes the NOC connections this way, optimising over all
application combinations [13], but the rest of the CompSOC
platform flow does not. For now we leave this complex job
to the system designer / integrator, but this static allocation of
virtual resources to applications is also common practice.

If the set of applications is not known at design time,
then the system manager can check if a new bundle’s VEP
does not conflict with an already running application’s VEP,
and instantiate it if it doesn’t. Alternatively, if the running
application is deemed less important, it can be told to stop,
using the application management API. Its VEP can then be
reclaimed and the new bundle loaded. In all of the above
situations, already running applications run composably, i.e.
are either stopped or are not affected by new arrivals.

A final alternative is to resize the VEPs of running and
new applications such that some appropriate combination of
applications can execute. In this case, already running applic-
ations have to adapt to a new, perhaps smaller, VEP. While
applications already know what VEP they run in, by virtue
of a read-only copy of their VEP’s BD (also known as a
device tree), we have not yet investigated how they should
internally reconfigure, should their VEP change. Note that
dynamic reconfiguration of a VEP is likely to be infrequent.
The interference that an application experiences due to other
applications is therefore limited in terms of frequency and
duration, and communicated up front by the system application
through the application management API. The application
should therefore be able to cleanly handle this process ac-
cording to the states and transitions of Figure 3a.

D. Application Scenarios

Applications can be dynamic either because they have to
react to their VEP being resized by the application manager, or
by virtue of their own data-dependent behaviour. CompSOC
allows applications to be written as multiple “unstructured”
C tasks communicating through shared memory, (cyclo-static)
dataflow actor, KPN processes, and as time-triggered jobs. Al-
though none of these explicitly support the notion of scenario,
program phases that are resource-intense versus those that are
not, can often be identified. For example, the H264 video

decoder [18] clearly distinguishes compute-intensive I frames
from easier B and P frames, as well as images that are harder
to compress than other. It uses this information in its energy-
quality trade off. The system manager can use this information
to decide if the application’s VEP can be reduced in size or
needs to be expanded. An API from the application to the
application manager, and models of computation that have
an explicit notion of scenario, such as Finite State Machine
Scenario Aware Dataflow (FSM-SADF) is another possibility
that should be investigated.

VII. CONCLUSION

We have presented an overview of the CompSOC run-time
middleware and how it enables system scenarios in the sense
of dynamically changing the set of concurrent applications,
and dynamic application behaviour. Our resource management
framework uniformly handles (hierarchical) virtual resources,
entire virtual execution platforms (VEP), and user applications.
The system manager application dynamically manages VEPss
at run time using the API.

Acknowledgement Partially funded by FP7 288248 Flextiles, CA505 BE-
NEFIC, CA703 OpenES, ARTEMIS 621429 EMC2, 621353 DEWI.

REFERENCES

[1] K. Goossens et al., “Virtual Execution Platforms for Mixed-time-
criticality Systems: The CompSOC Architecture and Design Flow,”
SIGBED Rev., vol. 10, no. 3, Oct. 2013.

[2] A. Nelson et al., “Dataflow Formalisation of Real-Time Streaming
Applications on a Composable and Predictable Multi-Processor SOC,”
JSA, to appear, 2015.

[3] K. Popovici et al., “Hardware Abstraction Layer,” in Hardware-
dependent Software. Springer 2009.

[4] S. Yoo et al., “Introduction to Hardware Abstraction Layers for SoC,”
in Embedded Software for SoC, A. Jerraya, et al., Eds. Springer 2003.

[5] V. Nollet et al., “A Safari Through the MPSoC Run-Time Management
Jungle,” J. of Signal Proc. Sys., vol. 60, no. 2, 2010.

[6] O. Moreira et al., “Online Resource Management in a Multiprocessor
with a Network-on-chip,” in SAC, 2007.

[7] J. Teich et al., “Invasive Computing: An Overview,” in Multiprocessor
System-on-Chip, M. Hbner and J. Becker, Eds. Springer 2011.

[8] F. Hannig et al.“Resource-aware Programming and Simulation of
MPSoC Architectures Through Extension of X10,” in SCOPES, 2011.

[9] S. Goossens et al., “A Reconfigurable Real-time SDRAM Controller
for Mixed Time-criticality Systems,” in Proc. CODES+ISSS, 2013.

[10] R. Stefan et al. “dAelite: A TDM NoC Supporting QoS, Multicast, and
Fast Connection Set-Up,” IEEE. Trans. on Comp., vol. 63, no. 3, 2014.

[11] A. Nelson et al., “CoMik: A predictable and cycle-accurately compos-
able real-time microkernel,” in DATE, 2014.

[12] B. Akesson et al., “Architectures and modeling of predictable memory
controllers for improved system integration,” in DATE, 2011.

[13] A. Hansson and K. Goossens, “Trade-offs in the configuration of a
network on chip for multiple use-cases,” in NOCS, 2007.

[14] A. Nelson et al., “Composable power management with energy and
power budgets per application,” in SAMOS, 2011.

[15] J. Kramer et al., “The evolving philosophers problem: Dynamic change
management,” IEEE Trans. on Softw. Eng., vol. 16, no. 11, 1990.

[16] A. Nieuwland et al., “C-HEAP: A heterogeneous multi-processor ar-
chitecture template and scalable and flexible protocol for the design of
embedded signal processing systems,” TODAES, vol. 7, no. 3, 2002.

[17] S. Sinha et al., “Composable and Predictable Dynamic Loading for
Time-Critical Partitioned Systems,” in DSD, 2014.

[18] A. Nelson et al., “Power versus quality trade-offs for adaptive real-time
applications,” in ESTIMEDIA, 2012.

