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Abstract—In this work, we propose a design flow for efficient
implementation of embedded feedback control systems targeted
for multi-core platforms. We consider a composable tile-based
architecture as an implementation platform and realise the
proposed design flow onto one instance of this architecture. The
proposed design flow implements the feedback loops in a data-
driven fashion leading to time-varying sampling periods with
short average sampling period. Our design flow is composed
of two phases: (i) representing the timing behaviour imposed
by the platform by a finite and known set of sampling periods,
which is achieved exploiting the composability of the platform,
and (ii) a linear matrix inequality (LMI) based platform-aware
control algorithm that explicitly takes the derived platform timing
characteristics and the shorter average sampling period into ac-
count. Our results show that the platform-aware implementation
outperforms traditional control design flows (i.e., almost 2 times)
in terms of quality of control (QoC).

I. INTRODUCTION

An efficient implementation of embedded control systems
requires considering the trade-off between resource utilisation
and quality of control (QoC) [1]. The resources can be compu-
tation (e.g., processor), communication (e.g., communication
bus) and memory of the embedded implementation platforms.
The QoC can be measured by different system parameters
(e.g., settling time, peak overshoot) depending on high-level
requirements. In general, a shorter sampling period translates
into a higher QoC [2], [3], [4]. However, a shorter sampling
period implies a higher requirement on resources (i.e., higher
computation on processors, larger data on the bus). In this
context, a cost-effective design requires sharing a resource
among multiple applications [5]. Further, resource sharing
generally introduces interferences between applications. For
feedback control systems, such inter-application interference
might cause undesirable delays in the loop which might
degrade the QoC and potentially destabilize the system.

To mitigate inter-application interference, the platforms
need to offer composability such that the applications are
functionally and temporally independent of each other [6].
Using a time-division multiplex (TDM) based policy in the
platform is one possible option to achieve composability. As
an implementation platform, we consider an existing platform
–Composable and Predictable System on Chip (CompSOC)–
that uses a TDM based policy to achieve composability [7]. In
this work, we study an efficient implementation of feedback
control systems onto such composable platforms.

In traditional implementations of control systems, resources
are allocated to the control tasks in such a way that they
are executed periodically assuring uniform sampling periods.
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Fig. 1. Timing diagram of the control loop under consideration using two
control design flows. (a) Baseline design flow, and (b) Platform-aware design
flow.

Such periodic execution eases the control algorithm design and
is addressed by the literature on discrete-time/sampled-data
systems [8]. In this work, we show that such implementation
(ensuring periodic sampling) might not be efficient in terms
of resource utilisation and might be sub-optimal in terms
of QoC for a given resource allocation. We refer to such
implementation as baseline design (see Fig. 1 (a)).

As opposed to the baseline design, we propose a
data-driven implementation of feedback control loops (see
Fig. 1 (b)) allowing the control tasks to be executed as
fast as possible. While such implementation is generally
not suitable for sharing resources with other applications,
the composability of the CompSOC platform allows for
temporal isolation among co-existing applications and lets
one application to run without interference in its allocated
time slots. On the one hand, the proposed data-driven
execution results in a shorter average sampling period. On
the other hand, the control loops encounter variable sampling
periods due to an occasional unavailability of resources (i.e.,
when other applications use them). We utilise the inherent
predictable behaviour of the platform to represent the variation
in sampling periods by a finite and precisely known set of
possible sampling periods. Further, we propose a novel linear
matrix inequality (LMI) based control law that utilises the



platform-specific timing information. We refer to the proposed
design and implementation as platform-aware design. We
show by experimentation that the QoC obtained using the
proposed platform-aware approach is significantly higher than
the one we achieve by the baseline design.

Contributions: The key novelty of our work is the design flow:
First, we show that the platform timing behaviour results in a
finite and known set of possible sampling periods. Next, we
formulate the controller design as an LMI explicitly for these
platform-derived sampling periods. In this process, we identify
the sampling period that is closer to the average sampling
period as a nominal sampling period. While occasional large
sampling periods (due to the resource unavailability) can po-
tentially destabilise the system, the proposed LMI-based design
guarantees closed-loop stability for the platform-derived finite
set of sampling periods. Thus, the design provides a flavour
of an “average-case based control” design and implementation
as opposed to traditional worst-case based design. Since the
worst-case behaviour from a platform generally occurs only
rarely and the system mostly runs near to the average-case
behaviour, the overall efficiency of the proposed design is
higher. We validate our claims by using a large experiment
set and show that our approach provides a QoC that is almost
2 times higher than the traditional (i.e., baseline) design.

This article is organised as follows: Section II explains
the feedback control loops that we consider. The composable
platform and its timing model are described in Section III.
Section IV describes mapping and execution of composable
control applications onto the platform. Section V explains the
proposed control law and the design flow. The experimental
results and conclusions are presented in Sections VI and VII,
respectively.

II. FEEDBACK CONTROL LOOPS

A control application is responsible for regulating a
continuous-time plant (i.e., a system or subsystem in the
physical world) defined by:

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t) (1)

where x(t) is the state of the plant, y(t) is the output of the
plant, and u(t) is the control input that is computed by a
control algorithm or controller. Ac, Bc, and Cc are the so-
called state, input, and output matrices, respectively. These
matrices model the behaviour of the system dynamics.

We are concerned with the regulation problem. That is, the
control objective is to design u(t) such that y(t) → 0 with
time. The time it takes for the system output y(t) to reach and
stay in a closed region (e.g., < 2%) around the reference value
is the settling time of a feedback control loop. We define QoC
(denoted by φ) as inversely proportional to the settling time,

φ =
1

settling time
(2)

Thus, a higher QoC φ implies a shorter settling time.

Input saturation: In a real-life implementation, the control
input is constrained by a maximum value (e.g., voltage, current
limits of the power source). We consider that the input |u(t)| ≤
UMAX . That is, the maximum allowed input signal is UMAX .

A. Embedded implementations

Implementation of feedback control loops involves three
consecutive operations: sensing (T s task), computing (T c task)
and actuating (T a task). These tasks repeat, and the start and
finish times of the k-th instance are given by ts(.) and tf (.),
respectively. The execution times of T sk , T ck and T ak (the k-th
task call) are given by,

esk = tf (T sk )− ts(T sk )

eck = tf (T ck )− ts(T ck )

eak = tf (T ak )− ts(T ak ) (3)

The interval between two consecutive executions of sensing
tasks T sk and T sk+1 is known as the sampling period hk:

hk = ts(T
s
k+1)− ts(T sk ) (4)

Within each sampling period hk, the control operations are
executed sequentially (i.e., T sk → T ck → T ak ). In addition, the
time interval between the starting time of T sk and finishing
time of T ak is known as the sensor-to-actuator delay τk,

τk = tf (T ak )− ts(T sk ) (5)

With the execution time description and definitions of the
control tasks within a sampling period, it is then possible to
derive implementation schemes for the control tasks.

Data-driven implementation: in the data-driven approach, the
control tasks are executed right after the termination of their
preceding tasks. That is,

ts(T
c
k ) = tf (T sk ) + ε

ts(T
a
k ) = tf (T ck ) + ε

ts(T
s
k+1) = tf (T ak ) + ε (6)

where ε is time granularity supported by the embedded plat-
form and considering that all the resources are allocated to the
application. This means that there is no interruption between
the executions. In this work, we take ε to be 1 clock cycle
of the processor. Here, the sampling period hk can vary from
one sampling period to the other, depending on the resource
availability and the execution times of T sk , T ck and T ak (see
Fig. 1 (b)). The advantage of such an implementation is a
shorter average sampling period which can potentially be
translated into higher QoC. However, the sampling period
varies over time resulting in a switched system. Such switching
behaviour can destabilise the overall closed-loop system [9]
and therefore needs to be taken into account in the control
design phase.

B. Control task model
Considering the data-driven implementation approach, it

is necessary to derive a control task model that explains
the behaviour of system dynamics and control input as time
evolves. The task partitioning can be done in different ways. To
this end, we consider the task partitioning illustrated in Fig. 1
(b) an example to illustrate our approach. It should be noted
that our approach is also applicable to another task partitioning.
As can be seen, the sampling period hk = ts(T

s
k+1)− ts(T sk )

varies from one cycle to the next one. As indicated in Eq. (5)
and using Eq.(6), the sensor-to-actuator delay is defined as

τk = tf (T ak )− ts(T sk ) = ts(T
s
k+1)− ε− ts(T sk ) = hk − ε (7)



As shown in Fig. 1 (b), the control input u(t) is held until
the next update, i.e., during τk,

u(t) = u(tk) = u[k], ts(T
s
k ) ≤ t ≤ tf (T ak ) (8)

Using the model presented in [10], we have

x[k + 1] = Ax[k] +B0(τk)u[k] +B1(τk)u[k − 1] (9)

where

A = eAchk

B0(hk) =

∫ hk−τk

0

eAcsds ·Bc, B1(hk) =

∫ hk

hk−τk
eAcsds ·Bc

In Eq. (9), we assume that u[−1] = 0 for k = 0. We define
new system states z[k] = [ x[k] u[k − 1] ]

T with z[0] =

[ x[0] 0 ]
T obtaining the augmented higher order system

z[k + 1] = Aaug(hk)z[k] +Baug(hk)u[k] (10)

where

Aaug(hk) =

[
A B1(hk)
0 0

]
Baug(hk) =

[
B0(hk)
I

]
(11)

and I is the identity matrix.

C. Control law

The control input u[k] is a state feedback controller of the
following form,

u[k] = Kkz[k] (12)

where Kk is the state feedback gain at the k-th sample. The
closed-loop system using Eq. (10) is given by,

z[k + 1] = (Aaug(hk) +Baug(hk)Kk)z[k] (13)

Switching behaviour: with the control law (12), the closed-
loop system keeps on switching as follows:

(Aaug(h1) +Baug(h1)K1)→ (Aaug(h2) +Baug(h2)K2)

· · · → (Aaug(h3) +Baug(h3)K3) · · · (14)

The above switching behaviour can lead to system insta-
bility. Therefore, the design of Kk must guarantee stability
of the overall system, and provide a higher QoC at the same
time.

III. COMPOSABLE MULTI-CORE PLATFORM

We consider a tile-based architecture that offers configu-
ration with multi-processors (processor tiles), interconnections
(Network-on-Chip (NoC)) and memories (memory tiles) within
the same platform. An example architecture is shown in Fig. 2.
Each processor tile is mainly composed of a MicroBlaze soft-
core processor. The monitor tile is specialized for debugging
purposes. The memory tile contains the external memory
interface and controller, and the NoC provides interconnection
between the tiles. The rest of the parameters in Fig. 2 are
explained in the following.
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Fig. 2. High-level view of the CompSOC platform architecture under
consideration.

A. Virtual processors
In the above platform, composability is achieved by virtu-

alising the processor resource. For this purpose, we use CoMik
(Composable and Predictable Micro-kernel) that creates mul-
tiple virtual processors (VPs) that can be used as dedicated
resources [11]. Each VP’s utilisation of the underlying phys-
ical processor is allocated in a TDM manner. The VPs are
cycle-accurately temporally isolated. That is, the activities on
concurrent virtual processors do not affect each other’s timing
even by a cycle. In the following subsection, we describe how
such cycle-accurate temporal isolation is achieved by CoMik.

B. Cycle accurate temporal isolation
CoMik’s TDM scheduling is regulated by a periodic in-

terrupt that indicates a virtual processor (state) context swap.
Fig. 3 illustrates how CoMik performs VPs context swap. In
this example, an interrupt arrives at time I. This interrupt
cannot be handled immediately since the processor is unin-
terruptible for a duration of U. This causes a jitter of time J.
U is variable depending on the critical region or multi-cycle
instruction and thus, J is also variable. Next, control is passed
to CoMik’s interrupt routine that performs the VPs context
swap. The context of the previous VP is stored. This includes
storing the state of the physical processor’s registers etc on
the stack. Subsequently, the next VP is scheduled. As shown
in Fig. 3, the context swapping takes time T (i.e., transition).
T can be variable due to variation in scheduling time. Clearly,
the start of the next VP depends on J and T. To achieve cycle-
accurate isolation, we split the TDM period into a fix duration
CoMik slot of length ω cycles and partition (or VP) slot of
length ψ cycles. The CoMik slot starts at the time the context
change interrupt is raised and lasts for a fixed duration such
that

max(J) +max(T ) +R ≤ ω (15)

where R is 2 cycles to take into account the instruction fetch
and decode stages of the pipeline, enabling the VP to start
where it left off. A definitive upper bound max(T ) can be
derived for the duration of the transition time. The jitter bound
max(J) is a design decision that restricts the maximum length
of the partition-level critical region. This jitter bound should
last minimally long enough to accommodate the processor’s
longest multi-cycle instruction. Increasing max(J) also in-
creases the necessary duration of the CoMik slot ω. The
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processor utilisation at the application-level is given by

ψ

ψ + ω
(16)

which indicates that a longer ω is not desired to achieve higher
utilisation. The trade-off is between a longer worst-case critical
region and the decreasing CoMik slot overhead.

C. Application scheduling
An application is executed in the allocated partition slot (or

VP) and is paused every time a new CoMik slot starts. The
execution is only resumed in the next partition slot assigned for
the same application. In Fig. 4 this situation is illustrated by
dividing a TDM period into three partitions and CoMik slots,
where two partition slots are assigned for one application. The
execution of an application is swapped between its partition
slot, the next CoMik slot and possibly other application’s
partition slot. This further results in two time domains. The
global-time or wall-time that counts for every single clock
cycle of execution in the platform, and the partition-time that
counts for every single clock cycle that has taken place within
a partition slot. In the platform, we have specific timers for
both time domains. This eases applications development with
timing requirements.

D. Platform timing model
With the above platform description, we consider a TDM

table consisting of N partition slots with N ≥ 1. Each partition
slot has a length of ψ clock cycles and further, each CoMik
slot has a length of ω clock cycles. The total length of a TDM
table is given by N×(ψ+ω), and with a set of applications Λ
where 0 < |Λ| ≤ N , the resource allocated to an application
λ ∈ Λ is given by the function S(λ) : Λ→ N.

Fig. 4 shows the partition slots allocation in either dis-
tributed (i.e., slots can be separated by other partition or CoMik
slots) or contiguous (i.e., one after the other separated by one
CoMik slot) ways for two applications Λ = {λ1, λ2} with
N = 3. In this example, S(λ1) = 2 and S(λ2) = 1. That
is, two partition slots are allocated to application λ1 and one
partition slot is allocated to application λ2. Since each partition
slot has ψ clock cycles, λ1 is executed on S(λ1)·ψ clock cycles
in each TDM period. A general expression of the allocated
resource (as a fraction of the total resource) to an application
is given by,

S(λ) · ψ
N × (ψ + ω)

, ∀λ ∈ Λ (17)

In summary, the virtualisation capability of the platform
enables the development and execution of applications by

scheduling them into customisable partition slots. This will
allow the application designer to take into account the timing
properties of the platform (e.g., slot lengths and resource
allocation) in order to independently develop the application
on this platform and ensuring that it will not interfere with
other applications. Such composable nature of the platform
further allows multiple design teams to develop and verify
their applications independently. Next, we describe how we
design and implement our proposed platform-aware controller
on this composable platform.

IV. COMPOSABLE EMBEDDED CONTROL SYSTEMS

Since the platform allows for independent development
by functional and temporal separation, we focus only on the
control application λc ∈ Λ. We consider a representative
single-input single-output (SISO) plant dynamics for illus-
tration. We implement the control system onto the platform
with two synchronous processor tiles, one memory tile, one
monitor tile, and the NoC (see Fig. 2). For the proposed data-
driven implementation, we use the task partitioning illustrated
in Fig. 1 (b). The tasks T a and T s are mapped onto one
processor tile. The task T c is mapped onto another processor
tile. As already described, the timing plays a crucial role in
the design of the control law and next, we derive the timing
behaviour experienced by the control loop.

A. Timing properties of feedback loops

We are interested in characterising the exact timing be-
haviour the control application λc will experience in the
platform with the above implementation. Based on the platform
properties, we obtain a finite set of possible sampling periods
hk and subsequently, we utilise them in the design of the
control law (detailed in the next section). Towards this, we
first define the application execution time

e = es + δsc + ec + δca + ea (18)

where es, ea and ec are the execution times of T s, T a and T c,
respectively. δsc and δca are the delays (e.g., communication
time over NoC) given by other operations in the sensor-
to-computing and computing-to-actuator paths. Further, we
consider the application execution time e < ψ. That is, we
choose the partition slot ψ to be longer than the application
execution. The application runs within its allocated partition
slots which are scheduled within a TDM period, and the
resulting sampling periods depend on the resource allocation
(i.e., S(λc), distributed/contiguous allocation).

Distributed resource allocation: with distributed resource
allocation (see Fig. 4), there is a maximum of N + 1 possible
sampling periods independent of the number of slots allocated
to the application. The possible sampling periods are

h1 = e

hi = e+ (i−N + 1)ψ + (i− 1)ω (19)

where 2 ≤ i ≤ N + 1. As illustrated in Fig. 5, the addition
of multiple slots (i.e., partition and CoMik slots) in between
the execution of the application introduces timing cases that
are related to the amount of partitions slots N . For instance,
an application with distributed allocated resources and N = 3
might have h1 = e, h2 = e + ω, h3 = e + 2ω + ψ, and
h4 = e+ 3ω + 2ψ sampling period cases.
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Contiguous resource allocation: contiguous resource alloca-
tion (see Fig. 4) results in a reduced subset of sampling periods
of the distributed resource allocation. In the following, we
derive the possible sampling periods for this case.

Case I: (h1 = e): Fig. 6 (a) illustrates the scenario where the
feedback loop is executed within a partition slot.

Case II (h2 = e + ω): For S(λc) > 1, the execution of the
control loop might spread over two partition slots resulting in
h2 = e+ω due to the interruption by the CoMik slot. Fig. 6 (b)
illustrates this scenario.

Case III (h3 = e + (N − S(λc))ψ + (N − S(λc) + 1)ω):
Fig. 6 (c) illustrates the scenario when the execution of a
feedback loop is spread over two TDM periods.

In this work, we consider a contiguous resource allocation.
Therefore, as illustrated above, the sampling period hk of λc
switches between the elements set H = {h1, h2, h3}. For a
given platform configuration, the set H is known at the design
time.

B. Average sampling period

With contiguous resource allocation described in Sec-
tion IV-A, the ratio between the frequencies of occurrence h1,
h2 and h3 is approximately given by,

h1 : h2 : h3 =
S(λc)ψ

e
− S(λc) : S(λc)− 1 : 1 (20)

That is, S(λc) implies that the control loop can be executed
S(λc)ψ

e times in a TDM period of duration N(ψ + ω) cycles.
Since S(λc) partition slots are available, h2 can occur a
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Fig. 6. The timing diagram of the control tasks with contiguous slot
allocation. (a) Case I (b) Case II and (c) Case III.

maximum of S(λc) − 1 times while h3 occurs only once.
Thus, the control loop runs with h1 sampling period for
S(λc)ψ

e − S(λc) times. Thus, the average sampling period is
given by,

havg =
(S(λc)ψ

e − S(λc))h1 + (S(λc)− 1)h2 + h3
S(λc)ψ

e

(21)

From Equation (20), it is clear that h1 occurs more
frequently compared to h2 and h3. Since h1 is significantly
shorter than h2 and h3, havg of the closed-loop system is closer
to h1. We consider h1 as the nominal sampling period that we
further use in the design of the platform-aware controller. We
utilise the above platform-derived behaviour in the design of
the controller.

V. PLATFORM-AWARE CONTROLLER DESIGN

We have a system whose sampling period switches between
elements of a known and finite set H = {h1, h2, h3} (derived
from the analysis in Section IV-A). In this section, we present
a platform-aware design method that utilises this platform-
derived timing behaviour in the design of the controller to
improve the QoC of the control application λc ∈ Λ. In view
of the switched systems in Eq. (13), we consider three discrete-
time switching (sub)systems,

z[k + 1] = Akz[k] (22)

where Ak = (Aaug(hk) +Baug(hk)Kk), ∀hk ∈ H .



A. Background: CQLF

Ak are stable which implies that z[k] → 0 as k → ∞.
Discrete-time LTI systems (22) are stable iff all eigenvalues
of matrix Ak lie inside the unit circle (or magnitude less than
unity).

Theorem 5.1: (Discrete-time Lyapunov equation [12]) Let
Ak ∈ Rn×n. If there exist P = PT > 0, Q = QT > 0
satisfying ATi PAi − P = −Q, then Ak is stable.

Theorem 5.2: ([9], [13]) Consider Ak to be discrete-time
LTI systems of the form (22). V (z) = zTPz is the Common
Quadratic Lyapunov Function (CQLF) of the systems Ak if
there exist P = PT > 0, Q = QT > 0 and P is the
simultaneous solution of the discrete-time Lyapunov equations,

ATk PAk − P = −Q < 0 (23)

The existence of a CQLF is the necessary and the sufficient
condition for the stability of the system with switching sub-
systems (22).

B. LMI based design

As already mentioned, we choose h1 as a nominal sampling
period hn. We design the controller gain Kn corresponding to
hn = h1 such that the closed-loop system Acl,n in Eq.(24) is
stable with higher QoC.

z[k + 1] = (Aaug(hn) +Baug(hn)Kn)z[k] = Acl,nz[k] (24)

The design of Kn can be done with a traditional design method
such as Linear Quadratic Regulator (LQR) or a pole-placement
technique [8]. The sampling period hk can be other than hn.
For h2, h3 ∈ H , we design feedback gains K2 and K3 such
that the overall switching behaviour is stable (see Fig. 7).

Theorem 5.3: (Design of Kk for k = 2, 3 )1 Consider the
subsystems shown in Eq. (22). If there exist Y = Y T > 0 and
Z such that the following LMIs hold,[

Y Y AT∗ + ZTk B
T
∗

A∗Y +B∗Zk Y

]
> 0 (25)

A−1
cl,nY − Y ATcl,n > 0 (26)

where A∗ = Aaug(hk), B∗ = Baug(hk) for hk = h2, h3,
then the systems in Eq. (22) have a CQLF with the following
feedback gain

Kk = ZkY
−1, k = 2, 3. (27)

In summary, we apply gains Kn, K2 and K3 for the
sampling periods h1, h2 and h3 respectively. If the system
runs with only nominal sampling period hn, the closed-loop
system provides a high QoC –which can be achieved by
optimal design of Kn– with state-of-the-art design methods.
Theorem 5.3 for designing Kk guarantees that the closed-
loop system will be stable in the presence of the switching
between the hk, hn ∈ H . Since the system runs with hn more
frequently, the QoC φpa only degrades by a small margin
(which is shown in the experimental results).

1Proof omitted for space reasons.
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C. Platform-aware design flow

Since the QoC is dependent on the choice of poles that is
used to design the gain Kn for the nominal sampling period,
we need to find the poles for which (i) |u[k]| ≤ UMAX , and
(ii) solution exists for K2 and K3 in Theorem 5.3. Further,
since we are interested in improving QoC, we choose the poles
(among those which satisfy (i) and (ii)) for which we achieve
the shortest settling time and the maximum QoC φpa as per
Eq 2. Fig. 7 shows the control design flow for the proposed
platform-aware approach. Toward this, we first discretize the
design space for poles and obtain a set of possible optimal
poles. For each of them, we apply the above design flow.

D. Baseline design flow

The baseline design uses the periodic sampling period
and the control gain K is designed using a pole-placement
technique. In this case, we choose the poles for which (i)
|u[k]| ≤ UMAX (ii) we achieve the shortest settling time and
the maximum QoC φbl as per Eq 2. Overall design flow is
illustrated in Fig. 8. Similar to the platform-aware design flow,
we first discretise the design space for poles and for each of
them, we apply the above design flow.

VI. EXPERIMENTAL RESULTS

We illustrate the applicability of our proposed platform-
aware design flow considering an automotive cruise control
system [14]. The purpose of the system is to maintain a
constant vehicle speed despite external disturbances. This
is achieved by comparing the desired speed, and adjusting
the engine throttle angle according to a control law. The
continuous-time system model (according to Eq. 1) of this
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Fig. 8. Baseline design flow, where u max(.) stands for the maximum control
input for a certain set of poles.

cruise control system is given by,

ẋ(t) = Ac

[
x1(t)
x2(t)
x3(t)

]
+Bcu(t)

Ac =

[
0.00 1.00 0.00
0.00 0.00 1.00
−6.04 −5.28 −0.23

]
, Bc =

[
0.00
0.00
2.47

]

y(t) = Cc

[
x1(t)
x2(t)
x3(t)

]
, Cc = [ 1.00 0.00 0.00 ] (28)

where we consider a control objective to drive the vehicle’s
speed x1(t) to 0 as fast as possible (i.e., short settling time
and higher QoC φ). The control tasks are implemented on the
platform as described in Section IV. That is, two processor
tiles were used to map the control tasks at a clock frequency
of 120 MHz. The duration of one clock cycle is

ε =
1

120 MHz
≈ 8.3 ns (29)

Each TDM period was defined as N = 10 (i.e., 10 partition
slots plus 10 CoMik slots), where partition and CoMik slots
lengths were chosen in such a way, that ψ

ψ+ω gives above 90%
resource utilisation within a TDM period:

ω = 4096 cycles ≈ 34.13 µs
ψ = 10ω = 40960 cycles ≈ 341.33 µs (30)

With the above system description and platform character-
istics, we experimentally found that the execution of the con-
trol application is e ≈ 110 µs. We simulated both the platform-
aware and baseline design flows. For both design flows, we use
an identical input signal saturation UMAX = 108. As already
described, we discretise the design space for poles. To keep
the size of the design space reasonable, each pole value varied
0.05 units within the range of 0 and 1 discrete values. In total,
this choice gave as 11931 poles combinations. These poles are
used for the nominal sampling period in the platform-aware
design, and the baseline design. We conducted three different
experiments for both design flows.

• Exp. 1 (S(λc) = 1): one partition slot is allocated for
the control application which gives a 10% of partition
slots usage within a TDM period.

TABLE I. SAMPLING PERIODS hk , SETTLING TIME (ST ), AND QOC
(φpa) OF λc ∈ Λ FOR DIFFERENT S(λc) ALLOCATIONS.

Exp. h1 h2 h3 ST φpa = 1/ST

1 110 µs - 3.53 ms 28.8 ms 34.72 1/s
2 110 µs 155.46 µs 3.15 ms 27.5 ms 36.36 1/s
3 110 µs 155.46 µs 2.03 ms 26.8 ms 37.31 1/s

Time [ms]

0 20 40 60 80 100

y
(t

)

0

10

20

30

40

50

60

Exp.1

Exp.2

Exp.3

Fig. 9. Simulation of the cruise control system response (y(t)) for the three
experiments conducted following the platform-aware design flow.

• Exp. 2 (S(λc) = 2): two partition slots were allocated
for the control application which gives a 20% of
partition slots usage within a TDM period.

• Exp. 3 (S(λc) = 5): five partition slots were allocated
for the control application which gives a 50% of
partition slots usage within a TDM period.

A. Platform-aware design

As illustrated in Fig. 7, the simulation is started by defining
the platform parameters (i.e., partition and CoMik slot dura-
tions, clock frequency, and TDM period length), the control
input constraint UMAX , the sampling period set H which
is derived from the platform parameters and the resources
allocated to the control application. In the platform-aware
approach, we do not need a periodic sampling period and
therefore the partition slots were assigned contiguously as
shown in Fig. 11. Table I summarises the results obtained for
the three different experiments. The system settling time varies
depending on the allocated resource S(λc). The resulting
sampling periods due to the execution in the platform are
shown and we also show the settling time and QoC φpa for
the specific pole. For 10% resource, the settling time is longer
(28.8ms) than the settling time with 20% and 50% resource
allocation. Intuitively, a higher QoC is expected for a higher
allocated resource. This is because a higher resource allocation
S(λc) implies a shorter average sampling period havg and
the proposed platform-aware approach exploits that knowledge
in the choice of the nominal sampling period. Further, we
simulated the system response which is plotted in Fig. 9, and
show the system response in each experiment. It can be noticed
that a remarkable performance improvement is achieved as
the havg gets shorter (e.g., see Exp.3). The optimal set of
poles found in each experiment were [0.94 0.84 0.94 0.94],
[0.94 0.89 0.94 0.94] and [0.94 0.89 0.94 0.94] for Exp.1,
Exp.2 and Exp.3 respectively.



TABLE II. SAMPLING PERIODS hk , SETTLING TIME (ST ), AND QOC
(φbl) OF λc ∈ Λ FOR DIFFERENT S(λc) ALLOCATIONS.

Exp. h1 h2 h3 ST φbl = 1/ST

1 3.75 ms - - 251.6 ms 3.97 1/s
2 1.87 ms - - 125.8 ms 7.94 1/s
3 750.93 µs - - 51.1 ms 19.56 1/s
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Fig. 10. Simulation of the cruise control system response (y(t)) for the three
experiments conducted following the baseline design flow.

B. Baseline design
In the baseline approach (see Fig. 8), we need periodic sam-

pling. Thus, the partition slots were assigned in a distributed
manner (see Fig. 11) in order to guarantee equal time intervals
between two consecutive sensing operations. Table II sum-
marises the results obtained for the three different experiments.
The resulting sampling periods and the settling time due to the
execution in the platform is shown. The system response for
the three experiments is shown in Fig. 10, where the optimal
poles found in each experiment are [0.94 0.14 0.14 0.14],
[0.94 0.14 0.14 0.14] and [0.94 0.14 0.24 0.49] in Exp.1, Exp.2
and Exp.3 respectively. It should be noticed that a shorter
average sampling period (achieved by higher S(λc)) leads to
a shorter settling time (i.e., higher QoC φbl).

C. Discussion
Intuitively, a higher resource allocation should provide a

higher QoC φ. In the platform-aware design the QoC φpa
varies from φpa ≈ 34 in Exp.1 to φpa ≈ 37 in Exp.3.
Similarly, in the baseline design the QoC increasingly varies
from φbl ≈ 3 in Exp.1 to φbl ≈ 19 in Exp. 3. In all cases,
the platform-aware design outperforms the baseline design.
That is, from the results, registered in Tables I and II, the
platform-aware yields a QoC φpa > (8.7 × φbl) (in Exp. 1),
φpa > (4.5 × φbl) (in Exp. 2) and φpa > (1.9 × φbl) (in
Exp. 3). Clearly, the platform-aware design provides almost
2 times or more QoC compared to the baseline design. It is
further notable from the results that the margin of QoC (i.e.,
φpa−φbl) between baseline and platform-aware is lower with
higher resource allocation.

VII. CONCLUSIONS

In this work, we presented a platform-aware design of
feedback control loops considering a composable multi-core
architecture as an implementation platform. The proposed
method outperformed the traditional one by assuring short
average sampling period. Our results further show how the

TDM period
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Fig. 11. Specific TDM partitioning for three different experiments.(a) Exp.1,
(b) Exp.2, and (c) Exp.3. DA and CA stand for distributed and contiguous
allocation, respectively.

resource allocation is reflected in the achievable QoC in the
feedback control loops. Among the future extensions, we plan
to exploit the periodicity of the platform-derived timing be-
haviour in design and implementation of the feedback control
law.
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