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Abstract—Predictable arbitration policies, such as Time Di-
vision Multiplexing (TDM) and Round-Robin (RR), are used
to provide firm real-time guarantees to clients sharing a single
memory resource (DRAM) between the multiple memory clients
in multi-core real-time systems. Traditional centralized imple-
mentations of predictable arbitration policies in a shared memory
bus or interconnect are not scalable in terms of the number of
clients. On the other hand, existing distributed memory intercon-
nects are either globally arbitrated, which do not offer diverse
service according to the heterogeneous client requirements, or
locally arbitrated, which suffers from larger area, power and
latency overhead. Moreover, selecting the right arbitration policy
according to the diverse and dynamic client requirements in re-
usable platforms requires a generic re-configurable architecture
supporting different arbitration policies.

The main contributions in this paper are: (1) We propose
a novel generic, scalable and globally arbitrated memory tree
(GSMT) architecture for distributed implementation of several
predictable arbitration policies. (2) We present an RTL-level
implementation of Accounting and Priority assignment (APA)
logic of GSMT that can be configured with five different ar-
bitration policies typically used for shared memory access in
real-time systems. (3) We compare the performance of GSMT
with different centralized implementations by synthesizing the
designs in a 40 nm process. Our experiments show that with 64
clients GSMT can run up to four times faster than traditional
architectures and have over 51% and 37% reduction in area and
power consumption, respectively.

I. INTRODUCTION

In heterogeneous multi-core platforms for real-time sys-
tems, Dynamic Random Access Memory (DRAM) is typically
used as a shared resource to reduce cost and enable commu-
nication between memory clients, i.e. tasks of an application
running on multiple cores [1], [2]. The number of memory
clients is ever increasing with more applications being inte-
grated in such platforms. Moreover, real-time guarantees on
memory performance in terms of bandwidth and/or latency
need to be provided to these clients to meet the firm real-
time requirements of the applications, which may be quite di-
verse [3]. Current real-time memory controllers [4]–[8] provide
real-time guarantees to the clients and use a predictable arbi-
tration policy in the interconnect in front of them to multiplex
requests from different clients. Several predictable arbitration
policies, such as Time Division Multiplexing (TDM), Round
Robin [9], Frame-Based Static Priority (FBSP) [10], Priority-
Based Scheduler (PBS) [11], [7] and Credit-Controlled Static-
Priority (CCSP) [12], has been proposed accordingly to suit
diverse client requirements. Current interconnect architectures
implementing predictable arbitration policies can be classified
into three categories: centralized (with local arbitration) and
distributed with local and global arbitration, respectively.

Centralized architectures are easy to implement as the
arbitration decision is made locally at a central location using
a single global schedule for all clients. However, they suffer
from poor scalability with respect to the number of clients.
This is because in traditional centralized implementations of
priority-based arbitration policies, such as FBSP and CCSP,
the priorities of all clients are compared using combinatorial
logic consisting of a tree of multiplexers [13]. The main

drawback of this approach is that the critical path of the
multiplexer tree increases with the number of clients, which
reduces the maximum clock frequency at which the logic can
be synthesized [10], [14]. Moreover, the implementation of
slack management in any of the predictable arbitration policies
requires implicit priority resolution as one client needs to be
selected out of many based on the slack management policy,
which again is not scalable using centralized architectures [15].

Distributed memory interconnects with global and local
arbitrations were proposed to address the scalability issue in
shared DRAM access. However, current distributed intercon-
nects with local arbitration [16], [17] suffer from poor perfor-
mance in terms of latency, area usage and power consumption
due to the buffering of memory requests at every arbitration
stage. On the other hand, distributed interconnects with global
TDM arbitration [18]–[20] are not suitable in systems where
the clients have diverse bandwidth and/or latency require-
ments. To summarize, currently there is no scalable distributed
architecture with global arbitration implementing different
predictable arbitration policies and no generic configurable
architecture that can be configured with an arbitration policy
according to the diverse client requirements.

The main contributions in this paper are: (1) We propose
a novel generic, scalable and globally arbitrated memory tree
(GSMT) (shown in Figure 1) for distributed implementation
of several predictable arbitration policies. (2) We present a
generic RTL-level implementation of Accounting and Priority
assignment (APA) logic of GSMT that can be configured to
operate as one of the five different arbitration policies, TDM,
RR, FBSP, PBS and CCSP, which are typically used for shared
memory access in real-time systems. (3) We compare the
performance of GSMT in terms of area, power and maximum
clock frequency with the traditional centralized implementa-
tions by synthesizing the designs in a 40 nm process.
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Fig. 1. High-level architecture of GSMT. Accounting keeps track of eligibility
status of a client to get service. Priority assignment assigns a unique priority
to each client and the fully-pipelined implementation of Priority resolution
grants access to the client with highest priority.

In the remainder of this paper, Section II reviews the
related work and Section III introduces the state-of-the-art real-
time memory controllers and predictable arbitration policies.
In Section IV, we introduce the generic GSMT architecture
and its operation. Section V then introduces our proposed
RTL-level design of configurable GSMT and its configuration
as different arbitration policies. We present our experimental
results in Section VI, and finally we conclude in Section VII.



II. RELATED WORK

Centralized implementations of predictable arbitration poli-
cies consisting of a tree of multiplexer stages for priority
resolution among the clients presented in [12], [13], [15], [21]
are not scalable as the number of logic gates in the critical
path for multiplexing increases with the number of clients,
restricting its maximum synthesizable frequency. Although the
scalability issue is addressed using distributed implementa-
tion with global arbitration using TDM in Network-On-chip
(NoC) [18]–[20], TDM is not suitable when the clients have
diverse bandwidth and latency requirements. For example, the
clients with low latency and bandwidth requirements often
need to be allocated with more than their required bandwidth to
meet their latency requirements, which is not desirable when
the memory bandwidth is scarce. NoC using priority-based
packet switching [22] provides real-time guarantees, but the
buffering of packets in every router stage increases the memory
access latency, area and power consumption [19].

Memory trees with distributed implementation of several
local arbiters consisting of 2-to-1 multiplexer stages connected
in a tree-like structure and each stage having a RR arbiter are
presented in [23], [24], and a similar binary arbitration tree
using a First Come First Serve (FCFS) policy in [17]. In the
hybrid arbitration tree [16], a combination of RR and TDM
arbitration policies were used in which the latency-sensitive
clients are scheduled with TDM and bandwidth-demanding
clients with RR to improve their average-case performance.
However, cascading multiple arbitration stages leads to longer
access latencies as the memory requests might experience the
worst-case interference in each arbitration stage and also larger
area and power usage due to the buffering of memory requests
at every arbitration stage.

To summarize, existing centralized implementation of ar-
bitration policies are not scalable in terms of clock frequency
with number of clients and the distributed implementations
suffer from long latencies and large area and power usage
due to the buffers in the local arbitration stages. On the
other hand, existing distributed memory interconnects using
global TDM arbitration (bufferless) are not suitable for clients
with diverse requirements. Also, there exist no re-configurable
architecture supporting different arbitration policies. In this
paper, we present a generic distributed architecture with global
arbitration (GSMT) for scalable implementation of several
predictable arbitration policies and a configurable RTL-level
design of GSMT that can be configured with five different
arbitration policies.

III. BACKGROUND

We assume real-time memory controllers to be used in
conjunction with our proposed memory tree (GSMT) and
hence, we introduce them in this section. Also, we introduce
the predictable arbitration policies supported by GSMT.

A. Real-time memory controllers

State-of-the-art real-time memory controllers [4]–[8] bound
the execution time of DRAM transactions by fixing the mem-
ory access parameters, such as burst size and page policy, at
design time. For simplicity, we assume a constant execution
time (WCET) for read and write requests by taking the
maximum of both. This is not a restrictive assumption as the
WCET for read and write transactions can be made similar
with negligible loss in the guaranteed bandwidth [25]. Hence,
all the memory requests are scheduled at time intervals of fixed
duration called scheduling interval (SI), which is larger than
or equal to the WCET of the requests.

B. Predictable arbitration policies

In this work, we consider five different arbitration policies,
Time Division Multiplexing (TDM), Round Robin [9], Frame-
Based Static Priority (FBSP) [10], Priority-Based Sched-
uler (PBS) [7], [11] and Credit-Controlled Static-Priority
(CCSP) [12], which have been proposed for shared memory
access in real-time systems.

TDM is a frame-based arbitration policy with a fixed frame
size, f , consisting of one or more TDM slots and each slot is
of size equal to the SI. Each client is statically assigned to one
or more slots and the fraction of number of assigned slots to
the total number of slots in the frame is the rate, ρ, allocated
(corresponds to the fraction of total memory bandwidth). With
the progress of time, the clients are served every SI according
to the static order in the TDM schedule and the frame repeats
itself at the end of every frame. RR is a special case of TDM
where the frame size is equal to the number of clients and
each client is assigned to exactly one slot such that the clients
are served one after the other.

Similar to TDM, FBSP [10] is also frame-based with a
fixed frame size and each client is assigned a budget of slots
corresponding to its rate, ρ. However, unlike in TDM there
is no static assignment of clients to the slots. Instead, each
client is assigned a unique static priority and at every SI, the
(backlogged) client with the highest priority and one or more
budget slots is granted service. When a client is granted service
during an SI, its budget slot count is reduced by one. At the
beginning of every new frame, the budgets of all clients are
reset to their initial values. PBS is a special case of FBSP
where only one of the clients is assigned with the highest
priority [11] and every other client has equal priority.

Unlike frame-based arbitration policies, CCSP [12] does
not use the notion of frames for the replenishment of the
budgets of the clients. Instead, the budget for each client is
replenished continuously, i.e. for every SI. This means that the
replenishment interval in CCSP is a lot less than the frame-
based arbitration policies. The service provided to a client
depends on allocated burstiness (σ), rate (ρ), and its static
priority. To start, a client is credited with initial budget, which
depends on σ. During every SI, the budget level is incremented
at a constant fractional rate ρ and decremented by one when
it is granted service. When the client is not backlogged, it is
only allowed to build up its budget until its initial budget.

In all the arbitration policies that we discussed above, work
conservation, i.e. assigning the unused time slot of a client to
another client with pending request(s), can be implemented
according to a certain slack management policy. For example,
higher priorities can be given to the bandwidth demanding
clients to improve their average-case performance or using the
same static-priority levels in priority-based arbitration policies
in work-conserving mode as well. Note that the budget of the
scheduled client in work conservation mode is not deducted.
One more important aspect of the various arbitration policies
is that each of them comes with different properties. TDM
is suitable for providing temporal isolation among the clients
and RR when all clients need fair treatment. FBSP, PBS
and CCSP are priority-based with different benefits [10] and
suitable when differentiated treatment needs to be provided to
the clients. This means that an arbitration policy need to be
selected according to the requirements of clients running in
the system.

IV. GENERIC SCALABLE MEMORY TREE (GSMT)

Given that we have presented the concept behind real-
time memory controllers and different predictable arbitration



policies, we proceed by introducing our proposed scalable
memory tree (GSMT) in this section. Before we present the
detailed architecture and operation of GSMT, we first discuss
the novel concept by which we achieve scalability, global
arbitration and genericness in GSMT.

Scalability: We propose a distributed implementation, as
shown in Figure 1, with dedicated Accounting and Priority
assignment logic for each client with Priority resolution among
the clients using a tree consisting of 2-to-1 pipelined multi-
plexer stages. The Accounting logic keeps track of the eligi-
bility status of a client to get service, the Priority assignment
logic assigns a unique priority to the client based on whether
or not the client is eligible, and the Priority resolution grants
service to the client with the highest priority. Once a client
is granted service, a feedback signal from the output of the
Priority resolution logic updates the client’s eligibility status
in its Accounting logic. The use of pipelined multiplexer stages
for priority resolution breaks the critical path and enables the
logic to be synthesized at higher clock frequencies.

Global arbitration: The Accounting logic of all clients use
a global scheduling interval of fixed duration determined by
the fixed access duration of the memory controller and the
pipeline depth of the multiplexer stages in Priority resolution.
Since the scheduling decision is made at the Accounting logic
which is at the leaves of the tree, the pipeline registers in the
multiplexer tree are simple latches of width equal the data-path
width unlike the huge buffers at every local arbitration stage
in the existing distributed implementations.

Generalization: Several predictable arbiters can be realized
by configuring the Accounting logic. In TDM, RR, the respon-
sibility of the Accounting logic is to keep track of the current
slot, which essentially is the deciding factor for a client to get
service. In FBSP, PBS, and CCSP the Accounting logic keeps
track of the budget of the client. The priority level assigned to
an eligible client by the Priority assignment logic is based
on the arbiter configuration which guarantees a minimum
bandwidth and/or a maximum latency. In TDM, RR, there can
only be one eligible client at a time, and hence, the highest
priority is assigned to the client that is statically assigned to
the slot. For FBSP, PBS and CCSP, the priority levels that are
computed at design-time to meet a certain bandwidth/latency
requirement [10] are assigned to the eligible clients. Note that
for slack management in work-conserving mode, i.e. when
none of the eligible clients are backlogged, the backlogged
non-eligible clients are assigned with unique priorities which
are lower than their priority levels when they are eligible. The
priority levels in the work-conserving mode depends on the
slack management policy.

A. Detailed architecture

Figure 2 shows the detailed architecture of GSMT in which
the clients are at the leaves of the tree and the memory
controller and DRAM at the root. The Accounting and Priority
Assignment (APA) logic for each client is located in the
network interface (NI) to which the client is attached. The 2-
to-1 multiplexers (Mux) implementing the priority resolution
are interconnected in a tree-like structure with a NI (NId) at
the root of the tree which interfaces with the real-time memory
controller.

The incoming memory requests from a client is split into
equal sized service units at the NI according to the fixed
access size of the memory controller. Each service unit is then
scheduled by the arbitration policy at fixed scheduling intervals
(SI). When a request is scheduled, the request valid (v) signal
is asserted and the data/command (d) and the priority (p) of
the client is transmitted over the bus. When two inputs of the
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Fig. 2. Detailed architecture of GSMT along with the memory controller
and the DRAM shared by four memory clients c1 − c4.

multiplexer stage arrive at the same clock cycle, the one which
carries the highest priority is granted access and the other is
dropped. When a service unit arrives at the root, NId generates
an acknowledgement (a) signal that is sent back to the client,
which removes the request from the head of its request queue
and the current state of the Accounting logic is updated (details
are presented in Section V). The dropped service units are not
removed from their request buffers (no acknowledgement) and
they are re-scheduled during the next SI. For a read request,
the response arrives back at the source on a dedicated response
path. We assume the same clock domain and data-path width
for both GSMT and the memory controller to ensure that
their SIs are of the same duration. Hence, the buffer in the
memory controller will not overflow as the service unit (if
any) scheduled by the tree will be consumed by the memory
during the same SI. On the other hand, it is still possible to
have different data-path widths for the memory tree and the
controller and run them at different speeds by coupling the
GSMT and memory controller as proposed in [19]. Note that
during the periodic DRAM refresh operation by the memory
controller, the service unit arriving at the root is dropped and
rescheduled again.

B. Timing behavior

Figure 3 shows an example timing behavior of the GSMT
when there are pending requests to be scheduled in the FIFO
of NI1 and NI3 from clients c1 and c3, respectively (irrelevant
signals are omitted for clarity). At the beginning of the first SI
(red vertical lines), the APA logic in NI1 and NI3 assert the
valid signals, v1 and v3, and the data/command of the requests
are issued on d1 and d3, respectively. We assume that client c1
has higher priority than c3 and their priorities are sent over p1
and p3, respectively (not shown in Figure 3). Since there are no
pending requests in NI2 and NI4, the multiplexers Mux1 and
Mux2 grant access to both requests arriving from NI1 and NI3,
respectively. The requests arrive at Mux3 after a delay of one
clock cycle introduced by the first multiplexer stage. However,
Mux3 grants access to the request arriving from NI1 since it has
the highest priority, and the request from NI3 is dropped. Once
the root NI receives the valid signal on v7, it sends back an
acknowledgement on a7 after one clock cycle delay as shown.
The acknowledgement is sent back to the source NI1 over
a fully-pipelined response path and arrives back at NI1 after
three clock cycles. The request is then removed from the head
of the FIFO in NI1 and the APA status is updated. In the next
SI, NI3 reschedules the dropped request.

It can be seen that for functional correctness, the minimum
SI duration (SImin), must at least be equal to or greater
than the total time when a request is scheduled until its
acknowledgement arrives back at the source NI. This depends
on the number of multiplexer stages in the tree, which in
turn depends on the number of clients in the system. This
constraint is given by SImin ≥ 2 × log2(C), where C is
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the number of memory clients and note that each multiplexer
stage introduces one cycle delay each in the request and
response paths. For a 16-bit IO DDR3-800 memory device,
the WCET for the smallest request size of 16 Bytes is 25
clock cycles [26] assuming a close-page policy [10]. If we
assume that GSMT runs at the same clock frequency as the
memory device, the minimum SI of 12 cycles with up to 64
clients is less than the WCET for the smallest request size.
Hence, the memory bandwidth is not negatively impacted due
to the pipeline delays in GSMT. Moreover, with larger request
sizes and faster memories the WCET increases making this
constraint insignificant. Note that GSMT may not suitable for
SRAMs when the data can be accessed in a single clock cycle.

V. GENERIC APA ARCHITECTURE AND CONFIGURATION

In this section, first we present our proposed generic RTL-
level architecture of the Accounting and Priority assignment
(APA) logic and then show how it can be configured to operate
as either TDM, RR, FBSP, PBS or CCSP, which typically are
used for sharing DRAM resource in real-time systems.

A. APA architecture

The RTL-level architecture of our proposed generic APA
logic is shown in Figure 4. In the NI, the Atomizer splits an
incoming request into smaller requests (corresponding to the
fixed transaction size in real-time memory controller) and the
FIFO buffer stores all pending requests from a memory client.
Work-conserving mode of the arbitration policy is enabled by
setting the register WC to one, which enables the data valid
signal, v, to be asserted whenever there is a request pending
in the FIFO. Work conservation is disabled by setting WC to
zero, which enables asserting v only when a client is eligible
(has enough budget) to get service and is backlogged.
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Fig. 4. Generic APA architecture that can be configured to operate as either
TDM, RR, FBSP, PBS or CCSP.

Algorithm 1 shows the logical operation of the Accounting
and Priority assignment blocks1. In Accounting, the value in

1For clarity in presentation, the pseudo code is split into two procedures,
Accounting and Priority assignment. Accounting is triggered by signals a and
b, whereas Priority assignment is purely combinatorial logic.

register Current credits (CuCr) is incremented by the value
in the register Numerator (Nr) at every SI (line 8). The SI
counter (SIC) asserts a valid signal, v SI, indicating the start of
every new SI. Addition is performed using a full-adder, Adder,
with one of its inputs connected to CuCr and the second input
to Nr when it is in addition (ADD) mode. The Adder is in
the ADD mode by default and the subtract (SUB) mode is
enabled when the acknowledgement (a) signal is valid. Note
that CuCr is updated once every SI, since it is enabled (EN)
when v SI is asserted. As explained in Section III, the building
up of budget in CCSP mode is not allowed when the client is
not backlogged. Hence, when b is not asserted, the value in
CuCr is restricted to the initial budget stored in register Initial
credits (InCr) using the multiplexer logic which selects InCr
when the output of the Adder (A out) is greater than or equal
to the initial budget (lines 3-4). On a valid acknowledgement,
CuCr is decremented by the value in register Denominator (Dr)
(lines 10-11). The RI counter (RIC) is used by frame-based
arbitration policies to replenish budget every replenishment
interval by asserting v RI when CuCr is reset to the value
in RCr (line 6).

Algorithm 1 Accounting and Priority assignment logic

Input signals: Acknowledgement (a), Backlogged (b)
Output signal: Priority (p)
1: procedure ACCOUNTING(a, b)
2: if v SI then
3: if ((!b) & (A out ≥ InCr)) then
4: CuCr← InCr
5: else if v RI then
6: CuCr← RCr
7: else
8: CuCr← CuCr + Nr
9: end if
10: else if ((a) & (A out ≥ LB)) then
11: CuCr← CuCr - Dr
12: end if
13: end procedure

14: procedure PRIORITY ASSIGNMENT(A out)
15: if LB ≤ A out ≤ UB then
16: p← SP
17: else
18: p← SPO
19: end if
20: return p
21: end procedure

The Priority assignment logic selects a priority level stored
in the register Static priority (SP) when the value of the Adder
output, A out, falls in between the values stored in registers
Lower bound (LB) and Upper bound (UB) (lines 15-16). A
different priority level with a constant offset as configured
in the register SP offset (SPO) is selected (lines 17-18) in
work conservation mode, i.e, when the client is not eligible
to get service in the current SI. The value of the offset needs
to be selected according to the slack management policy as
discussed in Section III. When a client is scheduled in work-
conserving mode, its budget is not deducted. Hence, its current
budget level is checked against the sufficient budget limit in
LB before enabling CuCr (line 10). Note that in FBSP and
CCSP, all non-eligible clients, i.e. with budget less than LB,
are in work-conserving mode by definition, and TDM do not
have the notion of budget for the clients.

B. APA configurations

A summary of the different programmable registers and
counters in APA and the initial values need to be configured
to implement the different arbitration policies are shown in
Table I, which we will discuss in detail in this section.

TDM and RR: When configured in TDM or RR mode, the
Accounting logic keeps track of the progress of the current



TABLE I. APA PROGRAMMABLE REGISTERS/COUNTERS AND THEIR

CONFIGURATION FOR DIFFERENT ARBITRATION POLICIES

Arbiter
Register TDM FBSP CCSP
InCr f f · ρ σ · dr
CuCr 0 f · ρ σ · dr
RCr 0 f · ρ Not used
Nr 1 0 nr
Dr 0 1 dr
SP Unique for

each client
Unique for
each client

Unique for
each client

SPO SP + Offset SP + Offset SP + Offset
UB End position in

TDM frame
> f · ρ High value

LB Start position
in TDM frame

1 nr − dr

SIC SI SI SI
RIC f · SI f · SI Not used

frame in terms of number of slots and the Priority assignment
logic sets the highest priority for a client during its allocated
slot(s) in the frame. In Accounting, CuCr is initialized to zero
and is incremented by one every SI by configuring Nr with
a value of one, which basically counts the progress of the
current frame. To identify the start of a new frame, the RIC
is configured to assert v RI every frame. This resets the value
in CuCr to zero by loading the value from RCr which needs
to be initialized to zero to restart counting the slots for the
new frame. In TDM or RR, there is no budgeting required,
and hence, the value in Dr is initialized to zero so that ack
does not affect the value in CuCr as it switches the Adder to
SUB mode. In Priority selection, LB needs to be configured
with the starting slot number of the client in the frame and
UB with the ending slot number according to the continuous
number of slots allocated to the client in the frame. We need
to assign unique priorities to each client such that there is no
conflict of priorities when SPO is selected. Here, the actual
SP does not matter as it is unique. Note that InCr is not used
in TDM mode but it is configured to the maximum value of
f to ensure that CuCr is not updated from InCr.

FBSP and PBS: In FBSP and PBS modes, the Accounting
logic keeps track of the current budget of a client in terms of
number of slots in a frame of size f, and the Priority assignment
logic sets a higher priority for the client on the priority lines
as long as sufficient budget is available. At the start of every
frame, CuCr is initialized with f · ρ, which corresponds to
the number of slots allocated to the client in a frame, i.e,
maximum budget. The current budget needs to be decremented
by one whenever a service unit gets scheduled i.e, successfully
arrives at the root NI, and hence, Dr is configured with one. To
replenish the budget at the start of every new frame, the RIC
enables the multiplexer logic to update the initial budget from
RCr to CuCr at the end of every frame. Note that Nr is set to
zero as it is not used for budget replenishment. SP needs to
be configured with the priority (determined at design-time to
meet the bandwidth and/or latency requirements) of the client
and SPO with a constant offset. Note that SP is used while
within budget and otherwise SPO is used, which ensures that
the allocated bandwidth is guaranteed to the clients before the
slack bandwidth is distributed among them. LB needs to be
configured with a value of one and UB with a value greater
than f · ρ such that the priority in SP is selected for a number
of service units equal to f ·ρ in a frame. Note that InCr is not
used in FBSP mode but it is set to a maximum value of f · ρ
to avoid initialization of CuCr from InCr.

CCSP: In CCSP mode, the Accounting logic keeps track
of the current budget level of a client based on a continuous
replenishment policy and the Priority assignment logic sets a
higher priority for the client on the priority lines based on its
current budget. Each client is initialized with an initial budget

of σ · dr in CuCr and InCr. The budget stored in CuCr is
replenished by incrementing at a rate of nr, configured in Nr,
every SI and depleted by subtracting dr, configured in Dr,
when an acknowledgement arrives back, where nr and dr are
integers used to represent the allocated rate, ρ = nr/dr. In the
Priority assignment logic, SP and SPO are configured with the
client’s priority level and with a constant offset, respectively.
LB is set to dr as dr − nr is the minimum budget required
to select SP and nr needs to be added to it since A out is
CuCr+nr at the beginning of every SI which determines the
priority level. UB needs to be set to a sufficiently large value
such that it is larger than the maximum budget that can ever
built up which is bounded in [12] .

To summarize, the APA logic in GSMT schedules requests
exactly the same way as in the centralized implementations
and the existing analyses [10] can hence be used for the
computation of worst-case latency of a memory transaction for
the demonstrated arbitration policies. However, the constant
pipeline delay introduced by the number of multiplexer stages
in the tree, discussed in Section IV-B, needs to be added to
the worst-case latency.

VI. EXPERIMENTS

In this section, we present our experimental setup, verifi-
cation of functional correctness of GSMT and its performance
comparison with respect to centralized implementations of two
different arbitration policies.

Our experimental setup consists of the RTL-level imple-
mentation of GSMT and centralized implementations of two
different arbitration policies, TDM [25] and CCSP [10], with
a 32-bit data-path. We used Cadence Encounter RTL compiler
and the 40 nm nominal Vt CMOS standard cell technology
library from TSMC with the worst-case process corner for
logic synthesis to determine the power and area usage and the
maximum synthesizable frequency of the designs.

We ensured the functional correctness of GSMT by com-
paring the scheduling decisions made by the FPGA imple-
mentation of GSMT (with 16 clients) at every scheduling
interval with the C++ models of centralized implementations of
TDM, FBSP, and CCSP. Note that the other arbitration policies
are special cases of these three arbiters and do not require
additional verification. We used synthetic traffic generators for
the clients to generate random traffic to cover both backlogged
and non-backlogged conditions and verified the functionality
(for several thousands of scheduling decisions) in both work-
conserving and non-work-conserving modes of all the three
arbitration policies. We found that all scheduling decisions
made by both GSMT and the centralized implementations
were the same, and hence, we conclude that GSMT correctly
implements the different arbitration policies.

We repeatedly synthesized the designs of GSMT and cen-
tral implementation of TDM and CCSP2 for different number
of clients, i.e. 4, 8, 16, 32 and 64 to determine the maximum
synthesizable frequency. Table II shows the area, power and
maximum clock frequency of the GSMT and the centralized
implementation of TDM, and CCSP arbitration policies. In
general, it can be seen that the maximum clock frequency,
fmax, of centralized TDM and CCSP do not scale with the
number of clients. With 64 clients, GSMT can be run up to
a clock frequency of 1.2 GHz, whereas CCSP and TDM are
limited to 0.3 GHz.

In general, the area and power consumption of all different
designs increase linearly with the number of clients due to the

2We selected frame-based (TDM) and priority-based (CCSP) arbiters to
compare GSMT with different types of hardware implementations.



TABLE II. AREA, POWER AND MAXIMUM CLOCK FREQUENCY (fmax)
OF GSMT AND CENTRALIZED IMPLEMENTATIONS OF TDM AND CCSP

Area (mm2) Power (mW ) fmax (MHz)
# Clients TDM CCSP GSMT TDM CCSP GSMT TDM CCSP GSMT

4 0.016 0.020 0.017 5.19 5.35 4.55 588 526 1250
8 0.029 0.036 0.035 7.88 8.07 9.77 500 435 1250
16 0.061 0.077 0.070 16.13 14.94 20.20 435 357 1250
32 0.107 0.172 0.141 17.46 25.36 41.07 333 333 1250
64 0.203 0.417 0.282 35.60 63.18 82.81 333 303 1250

additional logic added. The area usage of centralized CCSP
increases significantly with increasing number of clients due
to the extra registers added to break the critical path, resulting
in a low fmax. The fmax for centralized TDM scales down
as well with increasing number of clients due to the critical
path in the priority resolution of work-conserving mode. On
the other hand, GSMT has better scalability in fmax with
the number of clients since its critical path in the APA logic
remains constant irrespective of the number of clients as it
is dedicated for each client. However, it is worthwhile to note
that GSMT consumes more power compared to the centralized
implementations in most cases. This is primarily due to the
addition of extra priority lines in the bus and the dedicated
APA logic for each client. One limitation of GSMT is that it
can support only TDM with continuous slot allocation strategy,
whereas the centralized implementation of TDM using a Look-
up-Table (LUT) can support distributed allocations [10].

To efficiently compare the centralized designs and GSMT
in terms of frequency, area and power consumption, we
define two cost-efficiency metrics, bandwidth/area and band-
width/power. Bandwidth is computed by multiplying data-path
width (in Bytes) with the clock frequency (fmax). (Figure 5
shows the ratio of bandwidth (Bytes/s) to area usage (mm2)
and bandwidth (Bytes/s) to power consumption (mW ) of
centralized CCSP and TDM normalized to GSMT. It can be
seen that for all configurations of clients, GSMT has over
51% and 37% performance gain in terms of area and power
consumption, respectively, compared to traditional centralized
implementations of CCSP and TDM. Hence, we can conclude
that GSMT is suitable when there are a large number of
memory clients in the system that requires the arbiter to be
clocked at higher speed.
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Fig. 5. Bandwidth/Area and Bandwidth/Power performance of centralized
CCSP and TDM arbiters normalized to GSMT.

VII. CONCLUSIONS

Sharing DRAM between multiple memory clients in a real-
time system requires implementation of predictable arbitration
policies. Traditional centralized implementations of predictable
arbitration policies are not scalable in terms of clock frequency
with increasing number of clients due to the long critical path
in the logic for priority resolution among the clients. On the
other hand, existing distributed implementations either cannot
provide differential treatment to the clients or have poor per-
formance in terms of area, power consumption and latency. In
this paper, we presented a novel generic scalable memory tree,
GSMT, for distributed implementation of several predictable

arbitration policies. Moreover, we presented a configurable
RTL-level design of GSMT that can be configured to operate as
five different arbitration policies proposed for shared memory
access in real-time systems. Our experimental results show that
GSMT outperforms the centralized implementations by more
than four times in terms of clock speed and over 51% and
37% in terms of area and power consumption, respectively.
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