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Process-Variation-Aware Mapping of Best-Effort and Real-Time
Streaming Applications to MPSoCs
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As technology scales, the impact of process variation on the maximum supported frequency (FMAX) of
individual cores in a multiprocessor system-on-chip (MPSoC) becomes more pronounced. Task allocation
without variation-aware performance analysis can greatly compromise performance and lead to a significant
loss in yield, defined as the percentage of manufactured chips satisfying the application timing requirement.
We propose variation-aware task allocation for best-effort and real-time streaming applications modeled as
task graphs. Our solutions are primarily based on the throughput requirement, which is the most important
timing requirement in many real-time streaming applications.

The four main contributions of this work are (1) distinguishing best-effort firm real-time and soft real-time
application classes, which require different optimization criteria, (2) using dataflow graphs, which are well
suited for modeling and analysis of streaming applications, we explicitly model task execution both in terms
of clock cycles (which is independent of variation) and seconds (which does depend on the variation of the
resource), which we connect by an explicit binding, (3) we present two optimization approaches, which give
different improvement results at different costs, (4) we present both exhaustive and heuristic algorithms
that implement the optimization approaches. Our variation-aware mapping algorithms are tested on models
of seven real applications and are compared to mapping methods that are unaware of hardware variation.
Our results demonstrate (1) improvements in the average performance (3% on average) for best-effort
applications, and (2) for firm real-time and soft real-time applications, yield improvements of up to 27% with
an average of 15%, showing the effectiveness of our approaches.
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1. INTRODUCTION

Aggressive technology scaling has enabled the integration of multiple processors
and hardware accelerators on a single silicon chip die, known as a multiprocessor
system-on-chip (MPSoC). The use of such systems is increasingly popular, as they have
high computational power and low power consumption, which are the main require-
ments for many embedded systems. However, scaling the minimum feature sizes in
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deep-submicron technologies has also brought variations in key transistor parameters,
such as channel length and device and interconnect width. This phenomenon, known
as process variation [Unsal et al. 2006], significantly impacts the maximum supported
frequency of individual cores in an MPSoC [Bowman et al. 2002; Eisele et al. 1997].
It is shown [Miranda et al. 2009] that the variation in the longest path delay (the
inverse of FMAX) of a very long instruction word (VLIW) processor, manufactured at
32nm technology, is up to 40%. Moreover, the impact of within-die variation on the
system parameters is increasing as the technology scales, making it a limiting factor
in efficient MPSoC design [Bowman et al. 2002].

Binding application tasks to resources in an MPSoC without considering the impact
of process variation can greatly compromise the average performance and lead to a
significant yield loss. In this work, the yield metric is not the hardware manufacturing
yield, which determines the number of chips that meet the predefined frequency re-
quirements. In our view, yield is defined at the system level and shows the percentage of
manufactured chips that satisfy the application timing requirement. Existing solutions
that propose variation-aware yield-driven task allocation and scheduling [Wang et al.
2007; Chon and Kim 2009; Singhal and Bozorgzadeh 2008; Huang and Xu 2010] use
acyclic task graphs for application modeling and are based on latency requirements.
Acyclic task graphs are not able to capture cyclic data dependencies or the streaming
behavior (i.e., iterative and overlapping execution) of real-time streaming applications
[Stuijk et al. 2007]. In this work, we allow arbitrary task graphs that may include cyclic
data dependencies. Our solutions are primarily based on the throughput requirement,
which is the most important timing requirement in many real-time streaming applica-
tions. However, our approaches can be extended to cover latency requirements [Moreira
and Bekooij 2007].

The four main contributions of this work are (1) as an extension of Mirzoyan et al.
[2012], we differentiate best-effort, firm real-time and soft real-time application classes
which require different optimization criteria. For best-effort and firm real-time appli-
cations, we maximize the average throughput over all manufactured chips and the
yield, respectively. The objective for soft real-time applications is to improve the yield
and/or reduce the average throughput degradation, as the chips with low degradations
can be used in this class of applications. (2) We base our solutions on synchronous
dataflow graphs (SDFG), which are well suited for modeling and analysis of streaming
applications and have multiple efficient techniques for throughput computation [Stuijk
et al. 2007]. The novelty of our SDFG formulation lies in the explicit modeling of soft-
ware execution in terms of clock cycles (which is independent of the variation in the
hardware resource), and in terms of seconds (which does depend on the variation in the
resource), which are linked by an explicit binding. (3) We present two optimization ap-
proaches, single binding and multiple bindings. With the single-binding optimization
approach, the objective is to find a binding at design time that results in an optimized
target function for an application class (e.g., yield for firm real-time applications). With
the multiple-bindings optimization approach, a set of bindings is found and stored at
design time, and based on the variation in each manufactured chip, the binding that
satisfies the application throughput requirement or maximizes the throughput is se-
lected at the runtime configuration stage. (4) We present both exhaustive and heuristic
algorithms that implement the optimization approaches. The exhaustive algorithms
provide optimum results and can be applied to problems of a small to medium size.
The heuristic algorithms provide results close to optimum and are scalable to prob-
lems of a larger size. Our variation-aware mapping algorithms are tested on models
of seven real applications and are compared to mapping methods that are unaware of
the variation in the hardware resources. Our results report (1) improvements in the
average throughput (3% on average) for best-effort applications, (2) for firm real-time
and soft real-time applications, yield improvements of up to 27% with an average of
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15%, (3) reductions of up to 2% in the average throughput degradation for soft real-time
applications, showing the effectiveness of our approaches.

The rest of the article is organized as follows: Section 2 presents related work in the
field. Section 3 introduces formal models of a hardware platform, an application SDFG,
and a binding. In Section 4, we present the single-binding and multiple-bindings opti-
mization approaches for best-effort, firm real-time and soft real-time streaming appli-
cations. Section 5 illustrates the variation-aware exhaustive and heuristic algorithms
that implement the optimization approaches. Section 6 experimentally evaluates our
methods and Section 7 concludes.

2. RELATED WORK

Several techniques have been proposed to minimize process variation at the circuit
and microarchitectural levels at different costs [Unsal et al. 2006; Tschanz et al.
2002]. There has been extensive research in the area of task allocation and schedul-
ing for MPSoC [Braun et al. 2001; Stuijk et al. 2007; Bonfietti et al. 2009, 2010;
Wang et al. 2007; Chon and Kim 2009; Singhal and Bozorgzadeh 2008; Huang and Xu
2010]. Some research [Stuijk et al. 2007; Bonfietti et al. 2010, 2009] proposed methods
to map throughput-constrained applications modeled as SDFGs to resources in an
MPSoC. However, none of them consider the impact of process variation. With
variation-unaware mapping approaches, the impact of process variation cannot be
reflected by having different resources, with different frequencies, as the availability
of a resource with a specific frequency is a matter of probability.

Wang et al. [2007] introduced a new design metric called performance yield, defined as
the probability of an assigned schedule meeting a predefined performance constraint.
They proposed a variation-aware scheduling algorithm that allocates and schedules
tasks with latency requirements modeled as an acyclic task graph to MPSoC such that
the performance yield is maximized. Resource sharing in task allocation and scheduling
under process variation has been studied by Chon and Kim [2009]. They proposed an
effective statistical static timing analysis technique which schedules and binds tasks in
an acyclic task graph to the resources in an MPSoC in the presence of resource sharing
such that the performance yield is maximized. Singhal and Bozorgzadeh [2008] intro-
duced the problem of stochastically optimal task allocation, which tries to minimize
the overall execution time of tasks in sequence and in parallel under process varia-
tion. Huang and Xu [2010] took into account the spatial correlation characteristics of
systematic within-die variation and presented a scheduling algorithm that schedules
tasks with latency constraints in an acyclic task graph such that the performance yield
is maximized. With their solution, a set of schedules is synthesized offline and based
on the variation in each chip, a runtime scheduler selects the right one such that the
latency constraint is satisfied whenever possible.

All these solutions that account for process variation use acyclic task graphs for
application modeling and are based on latency requirements. Acyclic task graphs are
not able to capture the iterative and overlapping execution of real-time streaming
applications, which are primarily constrained by throughput requirements. Several
real-life streaming applications, such as our H.263 Encoder, MP3 Playback, and Modem
benchmark applications presented in Section 6, include cyclic data dependencies. For
these applications, none of the preceding solutions work, as they cannot capture the
cyclic data dependencies in these applications. In contrast, we allow arbitrary task
graphs that may include cyclic data dependencies. Our solutions are primarily based on
throughput requirements but could be extended to cover latency requirements [Moreira
and Bekooij 2007]. We additionally distinguish best-effort, firm real-time and soft real-
time application classes, which require different optimization criteria. To the best of
our knowledge, this is the first work that addresses the problem of variation-aware
task allocation for cyclic task graphs.
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3. FORMAL MODELS

This section formally defines a hardware multiprocessor platform as a set of resources.
We introduce a set of operating points (maximum supported frequencies) for each
resource to reflect the impact of process variation. We define an SDFG model of an
application, named an unbound graph, where the actors (i.e., tasks of an application)
are characterized by execution times in clock cycles. The unbound graph is unaware of
the binding of application actors to the hardware resources and is hence decoupled from
hardware variation. Later, we introduce an explicit binding of actors to the resources in
a platform and define an SDFG model of an application, named a bound graph, where
application actors are characterized by execution times in seconds. The bound graph is
no longer decoupled from hardware variation and enables us to analyze the impact of
variation on the application performance for different actor to resource bindings.

The presented techniques are general and apply to any system that implements the
models in this section. Examples of such systems are CoMPSoC [Hansson et al. 2009]
and CA-MPSoC [Shabbir et al. 2010]

3.1. Model of a Hardware Platform

We refer to a hardware multiprocessor platform as a set of resources connected to each
other by an interconnection network. For simplicity, we assume a zero-latency network.
However, non-zero-latency networks can be dealt with by modeling the delay for send-
ing data over the connections in the application SDFG, as shown in Stuijk et al. [2007].
We denote the set of resources as R. Each resource is a generic processing element, such
as a processor, DSP, or a hardware accelerator. We assume a multiprocessor platform,
where each resource is in a separate frequency domain and can be operated at any
of its possible operating points. This assumption holds for globally asynchronous and
locally synchronous (GALS) embedded designs.

Manufacturing process variation is classified into inter-die and intra-die variations
[Eisele et al. 1997]. Inter-die variation, also referred to as global variation, acts globally
on the entire chip, resulting in faster and slower chips on a wafer. Therefore, all the
resources on the chip incur identical variation and can be equally faster or equally
slower. Intra-die variation, also known as local variation, affects individual resources on
the chip differently. Due to local variation, there can be faster and slower resources on
a chip. Local variation is overlaid on the global variation. This can result in a relatively
faster resource on a slow chip and vise versa. The probability density functions (PDF)
of the maximum supported frequency of a resource, as a result of global and local
variations, are illustrated in Figure 1. Both of these sources of variation are explicitly
modeled in our framework. We characterize each resource by a nominal operating point
(nominal maximum supported frequency), which is the target frequency specification of
the resource, and what the manufacturing aims for (Definition 3.1). To reflect the impact
of global variation, we introduce a set of global operating points (possible maximum
supported frequencies due to the global variation) (Definition 3.2). These concepts are
illustrated in Figure 1.

Definition 3.1 (Nominal Operating Point). The function ON : R → R+ returns the
nominal operating point of a resource r ∈ R.

Definition 3.2 (Global Operating Points). The function OG : R → P(R+) \ ∅ returns
a non-empty set of all possible global operating points of a resource r ∈ R.

Each global operating point has an occurrence probability which is given in Defini-
tion 3.3. As global variation affects all the resources on the chip identically, any two
resources have the same probability of being equally faster or slower. Note that the
sum of the probabilities of all the global operating points of any resource is 1.
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Fig. 1. Global and local operating points.

Definition 3.3 (Probability of a Global Operating Point). The function PG : R ×
R+ → R+ returns the occurrence probability of a global operating point og ∈ OG(r)
of a resource r ∈ R.

Local (intra-die) variation is modeled by introducing a set of local operating points for
each resource. In Definition 3.4, we first define a set L(r) of local operating points in
respect to the nominal operating point ON(r). The set L(r) is graphically illustrated in
Figure 1. Its elements are shown as discretized frequencies of the PDF of the lo-
cal variation in respect to ON(r) (green dashed distribution). Later, we obtain the local
operating points OL(r, og) with respect to a global operating point og ∈ OG(r) (i.e., local
variation overlaid on a global variation). We do this by adding an offset of (og − ON(r))
to each element of L(r). Figure 1 shows the elements of OL(r, og), which are discretized
frequencies of the local distribution overlaid on a global operating point og (green solid
distribution). The set OL(r, og) is formally defined in Definition 3.5.

Definition 3.4 (Local Operating Points with Respect to ON(r)). The function L: R →
P(R+)\∅ returns a non-empty set of all possible local operating points with respect to
the nominal operating point ON(r), for a resource r ∈ R.

Definition 3.5 (Local Operating Points). The function OL : R × R+ → P(R+) re-
turns the set of all possible local operating points with respect to a global operating
point og ∈ OG(r), for a resource r ∈ R, where OL(r, og) is given as

OL(r, og) =
{∅, if og /∈ OG(r),
{ol ∈ R+|∀l ∈ L(r), ∃ol : ol = l + (og − ON(r))}, otherwise.

(1)

Each local operating point of a resource is associated with an occurrence probability.
The probability of a local operating point with respect to the nominal operating point
(i.e., l ∈ L(r)) is given by Definition 3.6. The probability of a local operating point with
respect to a global operating point (i.e., ol ∈ OL(r, og)) is equal to the probability of l ∈
L(r), where l = ol − (og − ON(r)) (Definition 3.7). Note that the sum of the probabilities
of all local operating points of any resource is 1.

Definition 3.6 (Probability of a Local Operating Point with Respect to ON(r)). The
function P : R × R+ → R+ returns the occurrence probability of a local operating point
l ∈ L(r) with respect to the nominal operating point ON(r), for a resource r ∈ R.

Definition 3.7 (Probability of a Local Operating Point). The function PL : R× R+ ×
R+ → R+ returns the occurrence probability of a local operating point ol ∈ OL(r, og)
with respect to a global operating point og ∈ OG(r), for a resource r ∈ R, where
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PL(r, ol, og) is given as

PL(r, ol, og) =
{

0, if og /∈ OG(r),
P(r, l)|l = ol − (og − ON (r)), otherwise.

(2)

Given that each resource is characterized by a set of local operating points, there are
multiple combinations of local operating points for the overall number of resources. We
refer to an instance of local operating points for the overall number of resources as a
chip operating point. The set of all possible chip operating points with respect to a global
operating point og ∈ OG(r) is obtained by the Cartesian product of the individual sets
of local operating points of resources (Definition 3.8) and is an N-dimensional vector
for N resources. The set of all possible chip operating points across all possible global
operating points is derived from the union of the individual C(og) sets for all og ∈ OG(r).
This set is defined in Definition 3.9. The probability that a set of resources has a certain
chip operating point is given by Definition 3.10, where both probability components of
local and global operating points are multiplied.

Definition 3.8 (Chip Operating Points with Respect to a Global Operating Point).
The function C : R+ → P(R+) returns the set of all possible chip operating points with
respect to a global operating point og ∈ OG(r), for a set R of resources, where C(og) is
given as

C(og) =
∏
r∈R

OL(r, og). (3)

Definition 3.9 (Chip Operating Points). The set OC of all possible chip operating
points for a set R of resources is given as

OC =
⋃

og∈OG(r)

C(og). (4)

Definition 3.10 (Probability of a Chip Operating Point). The function PC : OC →
R+ gives the occurrence probability of a chip operating point oc ∈ OC, where PC(oc) is
given as

PC(oc) = PG(r, og) ·
∏
r∈R
ol∈oc

PL(r, ol, og). (5)

To illustrate the presented concepts, consider a platform comprising of two resources.
Each resource r is given by a nominal operating point ON(r) (in cycles/second), a set
OG(r) of two global operating points with associated probabilities PG(r, og), and a
set L(r) of two local operating points with respect to ON(r) with probabilities P(r, l)
(Table I). The local operating points OL(r, og), with respect to each global operating
point og ∈ OG, are derived from Definition 3.5 and are shown in Table II. The table
also illustrates the occurrence probabilities PL(r, ol, og) of the local operating points,
which are obtained from Definition 3.7. The chip operating points and the occurrence
probability of each chip operating point are derived from Definitions 3.8, 3.9, and 3.10
and are given in Table III.

3.2. Model of an Unbound Graph

We model best-effort and real-time streaming applications by means of synchronous
dataflow graphs (SDFG). The motivation behind this choice is that an SDFG model
provides a good compromise between expressiveness, modeling ease, analysis potential,
and implementation efficiency. With an SDFG model, an application is captured by a
directed graph, where the nodes (called actors) represent computations (tasks) that
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Table I. A Platform Comprising of Two Resources: Each with
Two Global and Two Local Operating Points

Resource ON(r) OG(r) PG(r, og) L(r) P(r, l)

r1 10 8 0.5 7 0.7
12 0.5 10 0.3

r2 10 8 0.5 7 0.7
12 0.5 10 0.3

Table II. Local Operating Points and Their Occurrence Probabilities

Resource OL(r, 8) OL(r, 12) PL(r, ol, 8) PL(r, ol, 12)

r1 5 9 0.7 0.7
8 12 0.3 0.3

r2 5 9 0.7 0.7
8 12 0.3 0.3

Table III. Chip Operating Points and Their Occurrence Probabilities

C(8) (5 5) (5 8) (8 5) (8 8)
C(12) (9 9) (9 12) (12 9) (12 12)
C (5 5) (5 8) (8 5) (8 8) (9 9) (9 12) (12 9) (12 12)
PC(oc) 0.245 0.105 0.105 0.045 0.245 0.105 0.105 0.045

communicate with each other by sending streams of data elements over their edges.
We denote the set of all actors as A, where each actor requires a number of clock
cycles to finish its execution (Definition 3.11). This is similar to the constructs used in
domain-specific languages for streaming applications, such as StreamIt [Amarasinghe
et al. 2005]. Note that actors are nonblocking pieces of code. Therefore, execution times
in cycles can be determined on a processor in isolation, and no complete mapping of the
application to the hardware platform is necessary. For real-time applications, execution
cycles can be derived using worst-case execution-time (WCET) estimation tools, such
those in Wilhelm et al. [2008]. For best-effort applications, typical execution times can
be obtained by simulations. Note that the number of clock cycles required for an actor’s
execution can be different for each resource if the platform is heterogeneous.

Definition 3.11 (Execution Time in Cycles). The function EC : A × R → N returns
the number of cycles required to execute an actor a ∈ A on a resource r ∈ R.

Definition 3.12 defines a model of an SDFG that is unaware of the binding of actors
to resources. Each actor in the graph is characterized by a number of execution times
in clock cycles of the resource for the resources to which it can be bound.

Definition 3.12 (Unbound Graph). An unbound graph gu is a 4-tuple 〈A, D, Init,
EC〉 with a set Aof actors, a set D = A× Aof dependency edges, a function Init : D → N
that gives the number of initial tokens for an edge d ∈ D, and the function EC : A× R
that gives the execution times in clock cycles of actors A on a number of resources in
the set R.

Figure 2 illustrates an example SDFG model of an H.263 Encoder application. It
consists of five actors which are connected to each other by means of seven dependency
edges. Dependency edges d3, d6, and d7 contain initial tokens, illustrated by black
dots in the figure. The execution of an actor is called a firing. When an actor fires,
it removes a number of tokens from all its input ports, and at the end of the firing
(after its execution), it produces a number of tokens on each output port. The set of
actor firings that restores the initial configuration of the graph is termed an iteration.
During a single iteration of the graph, each actor can fire a number of times. This is
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Fig. 2. Example SDFG model of an H.263 Encoder.

given by the repetition vector of the graph (Definition 3.13). The repetition vector of
the SDFG shown in Figure 2 is equal to (1, 99, 1, 1, 99) for actors (a1, a2, a3, a4, a5),
respectively.

Definition 3.13 (Repetition Vector). The function γ : A → N returns the number of
times each actor a ∈ A fires during a single iteration.

3.3. Model of a Bound Graph

Each actor can be bound to a number of resources from the set R. The set of resources
an actor can be bound to is given by Definition 3.14.

Definition 3.14 (Possible Bindings of an Actor). The function BP : A → P(R) \ ∅
returns the set of resources to which an actor a ∈ A can be bounded.

For a set Aof actors and a set R of resources, there can be multiple bindings of actors
to resources. The set of all possible actor to resource bindings can be obtained by the
Cartesian product of the individual sets of possible bindings of actors (Definition 3.15).

Definition 3.15 (Binding). The set B of all possible actor to resource bindings is
given as

B =
∏
a∈A

BP(a). (6)

For each binding, the execution time of an actor in clock cycles is known. The execu-
tion time of an actor in seconds on a resource for a specific operating point is given by
Definition 3.16.

Definition 3.16 (Execution Time in Seconds). The function ET : A× R → Q returns
the execution time in seconds of an actor a ∈ A on a resource r ∈ R that has a local
operating point ol ∈ OL(r, og), and is given as

ET(a, r) = EC(a, r)
OL(r, og)

. (7)

For a specific chip operating point and a specific binding of actors to resources, a
model of a bound SDFG can be generated (Definition 3.17).

Definition 3.17 (Bound Graph). A bound graph gb is a 3-tuple 〈gu, b, oc〉 with an
unbound graph gu, a binding b ∈ B of actors A to resources R, and a chip operating
point oc ∈ OC.

The throughput of an SDFG is traditionally computed by means of maximum cy-
cle mean analysis (MCM) on the equivalent homogeneous SDFG (HSDFG) (Defini-
tion 3.18). This implies that a conversion from SDFG to HSDFG is required [Sriram
and Bhattacharyya 2000].
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Table IV. Optimization Criteria for Application Classes

Best-effort Firm real-time Soft real-time

Average throughput
√

– –
Yield –

√ √
Average throughput degradation – –

√

Definition 3.18 (Throughput of a Bound Graph). The throughput of a bound graph
gb is defined as T (gu, b, oc) = 1/MCM(gb′), where MCM(gb′) is the maximum cycle
mean over all cycles in the equivalent HSDFG gb′. The cycle mean of each cycle c
equals the sum of the execution times of actors in the cycle divided by the number of
initial tokens on the cycle.

MCM(gb′) = max
c∈Cgb

∑
a∈c

ET(a)/Init(c). (8)

4. OPTIMIZATION PROBLEMS

In this section, we describe the requirements of best-effort, firm real-time and soft real-
time applications, and define an optimization problem for each of them. For best-effort
applications, we maximize the average throughput over all manufactured chips. The
optimization objective for firm real-time applications is to maximize the yield, which is
the percentage of manufactured chips that satisfy the application minimum throughput
requirement, denoted treq. For soft real-time applications, we maximize the yield and/or
reduce the average throughput degradation, as the chips with a low degradation in the
throughput can be used in this class of applications. The optimization criteria for the
different application classes are summarized in Table IV.

For the different application classes, we present optimization approaches of sin-
gle binding and multiple bindings. With the single-binding optimization approach,
the objective is to find a binding at design time that results in an optimized objective
function for an application class (e.g., yield for firm real-time applications). With the
multiple-bindings optimization approach, a set of bindings are found and stored at
design time, and based on the variation in each manufactured chip, the right binding
that satisfies the application throughput requirement or maximizes the throughput is
selected at the runtime configuration stage.

4.1. Single Binding

With the single-binding optimization approach, a single binding is selected at design
time such that the objective function for an application class (e.g., yield for firm real-
time applications) is optimized. With this approach, all manufactured chips, which have
different chip operating points (variation) in the resources, have an identical binding.
We proceed by presenting the optimization criteria for the different application classes
and defining the single-binding optimization problem for each of them.

4.1.1. Best-Effort Applications. Best-effort applications do not have real-time perfor-
mance requirements. Although there are no timing requirements set on the appli-
cations of this class, high performance is preferred by the user. Our optimization ob-
jective for best-effort applications is hence to maximize the average throughput of all
manufactured chips.

For a given binding b ∈ B, the different chips that have different chip operating
points (variation) can have different throughputs. Figure 3 depicts the throughput
T (gb) = T (gu, b, oc) of the bound graph gb for the different chip operating points
oc ∈ OC, given a fixed binding b ∈ B. With the single-binding optimization approach,
the objective is to find a binding that maximizes the average throughput tavg over all
chip operating points (i.e., average throughput over all manufactured chips). This is
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Fig. 3. Throughput against chip operating point for a fixed binding. The average throughput over all chip
operating points is shown by the dotted line.

illustrated in Figure 3. Note that each chip operating point oc ∈ OC shown on the x-axis
in Figure 3 is a vector defining the local operating points of a chip. Therefore, the x-axis
does not assume any increasing or decreasing ordering of oc ∈ OC. Furthermore, the
figures presented in this section do not represent realistic applications but are given
for illustrative purposes. For clarity, the throughput T (gb) = T (gu, b, oc) is shown as a
continuous curve but is discrete in reality.

The average throughput of a binding b ∈ B over all chip operating points oc ∈ OC,
where each chip operating point has a probability weight PC(oc), is given by
Definition 4.1.

Definition 4.1 (Average Throughput). Given an unbound graph gu and a binding
b ∈ B, the function Tavg gives the probability-weighted average throughput over all
chip operating points oc ∈ OC.

Tavg(b) =
∑

oc∈OC

T (gu, b, oc) · PC(oc). (9)

The objective of the single-binding optimization approach for best-effort applications
is formulated as given a set A of actors and a set R of resources, find a binding bout ∈ B
of actors to resources such that the average throughput tavg = Tavg(bout) is maximized.

4.1.2. Firm Real-Time Applications. In firm real-time applications, violations of the tim-
ing requirements are not allowed. Examples of such applications are software de-
fined radio, air traffic control, robotics, and military systems. The manufactured chips
that have lower than the required performance cannot be used in such systems. Hav-
ing higher than the required performance is not important as long as the perfor-
mance requirement is satisfied. The optimization for this class of applications aims
at maximizing the yield, which is the percentage of chips that satisfy the throughput
requirement.

With the single-binding optimization approach for firm real-time applications, the
objective is to find a binding that maximizes the yield. In our modeling framework,
the yield of a binding b ∈ B over all chip operating points oc ∈ OC, where each chip
operating point has a probability weight PC(oc), is given by Definition 4.2. The yield
computation of a binding is graphically illustrated in Figure 4.

Definition 4.2 (Yield of a Binding). Given an unbound graph gu and a binding b ∈
B, the function Y gives the percentage of chips satisfying the requirement treq over all
chip operating points oc ∈ OC.

Y (b) =
∑

oc∈OC

{
PC(oc), if T (gu, b, oc) ≥ treq,

0, otherwise.
(10)
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Fig. 4. Throughput against chip operating point for a fixed binding. Yield is given by the number of oc points
(with associated probabilities) above treq.

Fig. 5. Throughput against chip operating point for a fixed binding. Two bindings b1 and b2 are shown,
where b2 has higher average throughput but lower yield than b1.

Figure 5 shows two bindings b1 and b2, where b2 has a higher average throughput
(better for best-effort applications) but a lower yield (worse for hard real-time applica-
tions) than b1. This suggests the benefits of having different optimization criteria for
best-effort and firm real-time application classes.

The objective of the single-binding optimization approach for firm real-time applica-
tions is formulated as given a set A of actors and a set R of resources, find a binding
bout ∈ B of actors to resources such that the yield ymax = Y (bout) is maximized.

4.1.3. Soft Real-Time Applications. Soft real-time applications are characterized by less
stringent timing requirements. In such applications, missing a deadline causes only a
performance degradation, often evaluated through some quality of service parameter.
In addition, such applications are often dynamic in nature, where the average-case ex-
ecution is more frequent and much shorter than the worst-case execution. Examples of
such applications are multimedia systems, monitoring apparatuses, virtual reality, and
interactive computer games. The optimization objective for this class of applications
is to improve the yield but also reduce the average throughput degradation (deviation
from the requirement) over all chips. Reducing the average throughput degradation is
essential, as the chips with a low degradation can be used in this class of applications.

With the single-binding optimization approach, the objective is to find a binding that
results in a maximized yield and/or a minimized average throughput degradation over
all chip operating points (i.e., over all manufactured chips). Depending on the particular
(yield, average throughput degradation) value pair, one binding may be preferred over
another. Consider the following example. A binding that has a lower yield but also a
lower average throughput degradation may be preferred over another binding with a
higher yield. The trade-off between the yield and the average throughput degradation
is captured in a cost function that guides the binding selection process (Definition 4.3).
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Fig. 6. Throughput against chip operating point for a fixed binding. Selecting a binding with the lowest cost
function CFsrt is equivalent to minimizing the shaded area below treq.

Fig. 7. Throughput against chip operating point for a fixed binding. Two bindings b1 and b2 are shown,
where b2 has higher yield but also a higher average throughput degradation than b1.

The optimization problem for soft real-time applications is formulated based on the
cost function and aims at minimizing it. This is graphically illustrated in Figure 6.

Definition 4.3 (Soft Real-Time Cost Function). Given an unbound graph gu and a
binding b ∈ B, the function CFsrt gives the probability-weighted sum of throughput
degradation over all chip operating points oc ∈ OC.

CFsrt(b) =
∑

oc∈OC

{
(treq − T (gu, b, oc)) · PC(oc), if T (gu, b, oc) < treq,

0, otherwise.
(11)

Figure 7 shows two bindings b1 and b2, where b2 has a higher yield (better for firm
real-time applications) but also a much higher average throughput degradation (worse
for soft real-time applications) than b1. This example suggests the benefits of having
different optimization criteria for firm and soft real-time applications.

The objective of the single-binding optimization approach for soft real-time applica-
tions is formulated as given a set A of actors and a set R of resources, find a binding
bout ∈ B of actors to resources such that the cost function CFsrt(bout) is minimized.

4.2. Multiple Bindings (Runtime Configuration)

With the multiple-bindings optimization approach, a binding for each chip operating
point is selected at design time. Therefore, a set of bindings are found and stored at de-
sign time. Based on the chip operating point (variation) of each manufactured chip, the
right binding that satisfies the application throughput requirement or maximizes the
throughput is then selected at the runtime configuration stage. The runtime binding se-
lection for each chip is done only once at the system initial configuration stage through
the operating system and is not detrimental to real-time deadlines. Per-chip binding
selection always provides better or equal results compared to the case where a single
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binding is present for all chips. The downside of the approach is that multiple bindings
are stored for the configuration stage and diverse application instances are present for
the same product, which can complicate the processes of software maintenance and
upgrading.

The objective of the multiple-bindings optimization for best-effort applications is to
find a binding for each chip operating point oc ∈ OC such that the throughput of the
bound graph at that chip operating point is maximized. For firm real-time applica-
tions, a binding for each chip operating point is selected that satisfies the throughput
requirement of the bound graph at that chip operating point. If there is no binding
that satisfies the requirement, then the chips with that particular chip operating point
cannot be used, reducing the yield. For soft real-time applications, the objective is to
find a binding for each chip operating point such that the throughput requirement is
satisfied. If there is no binding that satisfies the requirement, then a binding is selected
that provides the lowest throughput degradation.

5. IMPLEMENTATION ALGORITHMS

As shown in Section 4, to implement any of the optimization problems, various bindings
of application actors to resources have to be explored. In this section, we present two
algorithms for the evaluation of bindings, an exhaustive and a heuristic algorithms.
With the exhaustive approach, we evaluate all binding possibilities (as given by Def-
inition 3.15) to find a binding for all chips (single-binding optimization) or a binding
per chip (multiple-bindings optimization). This approach enables us to find the opti-
mum solution. However, it is too computationally expensive for problems of a large
size (i.e., large number of actors and resources). To overcome this limitation, we also
implemented a heuristic algorithm that prunes the search space and obtains results
close to the optimum.

The exhaustive and the heuristic algorithms presented in this section are given
for the class of firm real-time application and therefore aim at maximizing the yield.
The algorithms for best-effort and soft real-time applications are similar to the ones
presented and are not given in this section. The differences in the algorithms are
explained where necessary.

5.1. Exhaustive Algorithm

The exhaustive algorithm for the single-binding optimization problem for firm real-time
applications is shown in Algorithm 1. As input, the algorithm requires an application
graph gu with an associated throughput requirement treq and a set R of resources. Each
resource is given by a nominal operating point ON(r), a set OG(r) of global operating
points with associated probabilities PG(r, og), and a set L(r) of local operating points at
ON(r) with associated probabilities P(r, l). As can be seen, the algorithm exhaustively
evaluates the yield (Definition 4.2) of all possible bindings, and returns the binding
bout that results in the highest yield ymax = Y (bout). The algorithms for best-effort
and soft real-time applications use the functions Tavg(b) (Definition 4.1) and CFsrt(b)
(Definition 4.3) to exhaustively find a binding with the highest average throughput or
the lowest cost function for soft real-time applications.

Algorithm 2 illustrates the exhaustive algorithm for the multiple-bindings optimiza-
tion problem for firm real-time applications. As shown, for each chip operating point
oc ∈ OC, the algorithm exhaustively evaluates all possible bindings to find a binding
that satisfies the requirement treq. The first binding that satisfies the requirement treq
is stored for each chip operating point. It is possible that no binding can satisfy treq
for a particular oc ∈ OC, resulting in a reduced yield. The algorithm returns a set
Bout of bindings that includes a binding for each individual oc ∈ OC and an estimated
yield ymax for all chips. For best-effort applications, the algorithm exhaustively evalu-
ates all possible bindings for each chip operating point oc ∈ OC to find a binding with a
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ALGORITHM 1: Single-Binding Exhaustive Algorithm for Firm Real-Time Applications
Require: gu, treq, R, ON(r), OG(r) PG(r, og), L(r), P(r, l)
1: ymax ← 0
2: for all b ∈ B do
3: if Y (b) > ymax then
4: bout ← b
5: ymax ← Y (b)
6: end if
7: end for
8: return bout, ymax

ALGORITHM 2: Multiple-Binding Exhaustive Algorithm for Firm Real-Time Applications
Require: gu, treq, R, ON(r), OG(r) PG(r, og), L(r), P(r, l)
1: ymax ← 0, Bout ← ∅
2: for all oc ∈ OC do
3: for all b ∈ B do
4: if T (gu, b, oc) ≥ treq then
5: Bout ← Bout ∪ {b} //save b for current oc
6: ymax ← ymax + PC(oc)
7: BREAK
8: end if
9: end for
10: end for
11: return Bout, ymax

maximized throughput. Note that the break statement on Line 7 in Algorithm 2 does not
apply for the best-effort optimization algorithm, as all bindings for each chip operating
point have to be explored. For soft real-time applications, the algorithm exhaustively
selects a binding for each chip operating point oc ∈ OC such that the requirement treq
is satisfied, or otherwise the lowest throughput degradation is obtained.

The exhaustive algorithms enable us to find the optimum solution. The limitation of
the exhaustive algorithms is that they are too computationally expensive for problems
of a large size (i.e., large number of actors and resources). The total number of bindings
to evaluate for throughput for each oc ∈ OC is |R||A|, where |R| is the number of
resources and |A| is the number of actors belonging to an application. To address this
problem, we proceed by presenting a heuristic algorithm that prunes the search space
to reduce computation time while still obtaining results close to the optimum.

5.2. Heuristic Algorithm

With the heuristic algorithm, only a small number of bindings from the total number of
possibilities are explored. The bindings that are evaluated by the heuristic algorithm
are generated by a two-phase procedure, initial resource allocation and allocation op-
timization. In the initial resource allocation, an initial binding of application actors to
resources is derived. This initial binding later undergoes an optimization stage where
the allocation of each actor is reconsidered to either improve the yield (the average
throughput or the cost function for soft real-time applications) for the single-binding
optimization problem or the throughput for each chip for the multiple-bindings opti-
mization problem.

In the initial resource allocation, the actors whose execution times are likely to have
a large impact on the throughput of an application, referred to as critical actors, are
considered first. The criticality of an actor a ∈ A is estimated by the product of its
repetition vector γ (a) (Definition 3.13) and average execution time (Definition 3.11) in
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a number of cycles over all the resources (Definition 5.1). This is an approximate way
of determining the criticality, as it intuitively estimates the average computational
demand of an actor. Note that depending on the topology of an SDFG, an actor a with
the highest CA(a), as given by Definition 5.1, may not necessarily be on the critical
cycle of the graph and therefore may not have the largest impact on the throughput of
the graph. For an exact estimation of criticality, all the cycles in the equivalent HSDFG
can be analyzed. This can be computationally expensive, making it unsuitable for the
heuristic algorithm. The criticality estimation presented in Definition 5.1 is sufficient
for the initial resource allocation, since the allocation optimization stage reconsiders
the allocation of each actor, compensating for infrequent mispredictions.

Definition 5.1 (Actor Criticality). The function CA : A → Q returns the criticality
of an actor a ∈ A and is defined as

∀a ∈ A. CA(a) = γ (a) · 1
|R|

∑
r∈R

EC(a, r). (12)

When allocating the actors to resources, the initial resource allocation tries to balance
the load (in terms of execution time in seconds during an iteration) on the resources.
The load of a resource is computed by the sum of products of the repetition vectors and
the execution times in seconds of the actors bound to the resource (Definition 5.2).

Definition 5.2 (Resource Load). The function LR : R → Q returns the load of a re-
source r ∈ R and is defined as

∀r ∈ R. LR(r) =
∑
a∈A

a bound to r

γ (a) · ET(a, r). (13)

Algorithm 3 shows the heuristic algorithm for the single-binding optimization prob-
lem for firm real-time applications. In the first part of the algorithm (Lines 3–10), initial

ALGORITHM 3: Single-Binding Heuristic Algorithm for Firm Real-Time Applications
Require: gu, treq, R, ON(r), OG(r) PG(r, og), L(r), P(r, l)
1: ymax ← 0
2: //Initial resource allocation
3: ∀r ∈ R. LR(r) ← 0
4: Sort A in decreasing CA(a)
5: Sort R in decreasing ON(r)
6: for all a ∈ A do
7: Sort R in increasing LR(r)
8: Bind a to first r
9: Update LR(r)
10: end for //initial binding b retrieved
11:
12: //Allocation optimization
13: for all a ∈ A do
14: for all r ∈ R do
15: if Y (b) > ymax then
16: bout ← b
17: ymax ← Y (b)
18: end if
19: Bind a to r //new binding b retrieved
20: end for
21: end for
22: return bout, ymax
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resource allocation is performed. The actors, sorted in decreasing order of criticality,
are allocated to the resources such that the load on the resources is balanced. Each
time an actor is to be bound to a resource, the resource with the lowest load is selected.
If the resources are not yet allocated, an actor is bound to the resource with the highest
nominal operating point (Definition 3.1). This is done to ensure that the actors with a
high criticality are allocated to resources with a high computational power (resources
with high nominal operating points are faster on average). In the second part of the
algorithm (Lines 13–21), allocation optimization is performed. The allocation of each
actor in increasing order of criticality is reconsidered. Each time the allocation of an
actor is changed, the new binding is evaluated for yield. The algorithm returns a bind-
ing bout that has the highest yield ymax = Y (bout) among the bindings that have been
explored. For best-effort and soft real-time applications, functions Tavg(b) and CFsrt(b)
are used instead of Y (b) (Lines 15–18) to find a binding with an improved average
throughput and a reduced cost function for soft real-time applications.

The heuristic algorithm for the multiple-binding optimization problem for firm real-
time applications is illustrated in Algorithm 4. For each chip operating point oc ∈ OC,
the algorithm performs initial resource allocation and allocation optimization such
that a binding is found that satisfies the requirement treq. In initial resource allocation
(for each oc ∈ OC), when the resources are not yet allocated, an actor is bound to the
resource with the highest operating point based on the current chip operating point.
This ensures that the actors with a high criticality are allocated to fast resources for
each chip operating point. After initial resource allocation, allocation optimization is

ALGORITHM 4: Multiple-Binding Heuristic Algorithm for Firm Real-Time Applications
Require: gu, treq, R, ON(r), OG(r) PG(r, og), L(r), P(r, l)
1: ymax ← 0, Bout ← ∅
2: Sort A in decreasing CA(a)
3: for all oc ∈ OC do
4: //Initial resource allocation
5: ∀r ∈ R. LR(r) ← 0
6: Sort R in decreasing speed based on oc
7: for all a ∈ A do
8: Sort R in increasing LR(r)
9: Bind a to first r
10: Update LR(r)
11: end for //initial binding b retrieved
12:
13: //Allocation optimization
14: for all a ∈ A do
15: if T (gu, b, oc) ≥ treq then
16: Bout ← Bout ∪ {b} //save b for current oc
17: ymax ← ymax + PC(oc)
18: BREAK
19: end if
20: for all r ∈ R do
21: Bind a to r //new binding b retrieved
22: if T (gu, b, oc) > treq then
23: BREAK
24: end if
25: end for
26: end for
27: end for
28: return Bout, ymax

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 61, Publication date: January 2014.



Process-Variation-Aware Mapping to MPSoCs 61:17

Table V. Application SDFG Overview

SDFG Nr. actors Nr. cycles

H.263 Decoder 4 0
H.263 Encoder 5 1
MP3 Playback 4 1
Sample Rate 6 0
Modem 16 5
MP3 Decoder 14 0
Satellite Receiver 22 0

performed (Lines 14–26). The allocation of each actor in increasing order of criticality
is reconsidered. Each time the allocation of an actor is changed, the new binding is
evaluated for throughput. The optimization for each oc ∈ OC stops when a binding is
found that satisfies the requirement treq. The algorithm returns a set Bout of bindings
that includes a binding for each individual oc ∈ OC and an estimated yield ymax for
all chips. For best-effort applications, the initial resource allocation and allocation
optimization are performed for each chip operating point to find a binding with a
maximized throughput. For soft real-time applications, a binding is found for each chip
operating point such that the requirement treq is satisfied, otherwise, the throughput
degradation is minimized.

With the heuristic algorithm, the number of bindings to evaluate for throughput for
each oc ∈ OC is |A| · (|R| − 1). Given a large problem, |A| · (|R| − 1) is considerably lower
than the total number |R||A| of bindings explored by the exhaustive algorithm, that is,
|A| · (|R| − 1) << |R||A|. For example, one of our test applications that has 16 actors is
allocated to three resources. With the exhaustive algorithm, it takes 316 = 43,046,721
bindings to evaluate for throughput for each chip operating point oc ∈ OC, while only
16 · 2 = 32 bindings are explored for each oc ∈ OC by the heuristic algorithm.

6. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup and present the results of our exper-
iments. We demonstrate the improvements in the average throughput and the yield and
the reductions in the average throughput degradation achieved by our variation-aware
mapping algorithms over mapping approaches that are unaware of hardware variation.
Additionally, we analyze how well the heuristic algorithms perform, compared to the
optimum results provided by the exhaustive algorithms.

6.1. Setup

Our variation-aware mapping algorithms for best-effort, firm real-time, and soft real-
time applications are evaluated on seven real DSP and multimedia applications mod-
eled as SDFGs. From the DSP domain, the set contains a sample rate converter and
modem, and from the multimedia domain, an H.263 Encoder (Figure 2), H.263 Decoder,
MP3 Playback, MP3 Decoder, and satellite receiver. These application SDFGs are the
unbound graphs in our formal framework. An overview of the SDFGs is shown in
Table V. The table reports the number of actors and the number of cycles (feedback
loops) in each application graph. The topologies of the application SDFGs, including
their worst-case execution times in clock cycles, can be found online and are not pre-
sented in this article because of limited space.1 For simplicity, we interpret the same
seven applications as best effort, firm real-time, and soft real-time in our analysis when
demonstrating the different application classes.

1SDF3 example applications. http://www.es.ele.tue.nl/sdf3/download/examples.
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These applications are allocated to an MPSoC with 2–3 homogeneous resources with
a nominal operating point of 500MHz for all resources. The sets of global and local
operating points of resources are obtained by making assumptions on the impact of
global and local variations on the nominal operating point (FMAX) of the resources. As
shown in Eisele et al. [1997], the magnitude of the local variation depends on the logic
depth of a path. As reported in Dighe et al. [2011], at high computing frequencies (in the
order of GHz), the variation is large. In our work, we target embedded systems running
streaming applications, where the typical frequencies are in the order of hundreds of
MHz. Measurements of variation at 45nm technology in the frequency range of interest
is done by Pang and Nikolic [2008]. Furthermore, Bowman et al. [2002] showed that
the local variation reduces the mean of the maximum supported frequency of a core
across all manufactured chips. Therefore, to reflect the impact of the local variation,
we assume a 6% mean reduction of the nominal operating point ON(r) and a standard
deviation of 3.3% (3σ = 10%). For the global variation, we assume a standard deviation
of 3.3% (3σ = 10%) for all resources. These assumptions are supported by Pang and
Nikolic [2008]. To obtain the sets of global and local operating points, we discretize the
FMAX probability density function of a resource into ten and five discrete points for
global and local FMAX PDFs, respectively.

As given in Definition 3.18, the throughput of an SDFG is traditionally computed by
means of MCM analysis on the equivalent HSDFG. This requires a conversion from
the SDFG to an equivalent HSDFG, which can be considerably larger in size (in terms
of the number of actors) than the original SDFG, making the approach inefficient for
SDFG throughput analysis. In our work, we use the SDF3 tool for throughput analysis
[Stuijk et al. 2006b]. To compute the throughput of an SDFG, SDF3 uses state-space
exploration, which works directly on an SDFG and gives results equivalent to MCM
analysis [Ghamarian et al. 2006]. Depending on what features are enabled in SDF3,
the runtime of the tool can vary [Stuijk et al. 2006a]. In our experiments, SDF3 is used
only for throughput analysis, and no additional features are required. This results in
runtimes in the order of seconds per binding and chip operating point.

6.2. Evaluation Results

We compare the results of our optimization algorithms to those of variation-unaware
nominal frequency-based mapping methods, where the binding of actors to resources
is derived based on the nominal operating points of the resources. The purpose of the
experiments is to show the importance of variation-aware mapping for the different
application classes. Our results for the different application classes are presented for
both variation-aware exhaustive and heuristic mapping algorithms. As the exhaustive
mapping algorithms are too computationally expensive for problems of a large size,
they are only applied to a subset of small to medium size applications from Table V.
The heuristic mapping algorithms are evaluated on the complete set of applications,
including the ones that are large in size. For the set of small to medium size applica-
tions, we evaluate how the heuristic mapping algorithms perform, as compared to the
optimum results provided by the exhaustive algorithms.

6.2.1. Firm Real-Time Applications. Figure 8(a) illustrates the yield for the H.263 Decoder,
H.263 Encoder, MP3 Playback, and Sample Rate Converter as a result of variation-
aware exhaustive and nominal frequency-based mapping algorithms for the class of
firm real-time applications. As shown in Table V, these applications have a small to
medium number of actors (6 actors the largest), enabling the use of the exhaustive
mapping algorithms. The exhaustive algorithms for the single-binding and multiple-
bindings optimization approaches are denoted as VA-SBE and VA-MBE, respectively.
For a nominal-frequency-based mapping, there can be multiple bindings of actors to
resources that satisfy the throughput requirement for the nominal operating points
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Fig. 8. Yield of applications using the exhaustive (NCE, VA-SBE and VA-MBE) and heuristic (NCE, VA-SBE
and VA-MBE) mapping algorithms for the class of firm real-time applications.

of the resources. A binding that just satisfies the requirement could potentially result
in a very low yield, as any negative deviation of the nominal operating points of the
resources could lead to a violation. For a fair comparison to the nominal-frequency-
based mapping, we choose a binding that satisfies the throughput requirement and
gives the highest throughput among all other bindings. The exhaustive nominal-
frequency-based mapping is denoted as NCE in Figure 8(a). The figure shows that
VA-SBE improves the result of the variation-unaware NCE mapping for only the MP3
Playback application, providing a 10% higher yield. For the rest of the applications,
NCE results in an identical yield as VA-SBE. Therefore, we observe that the bindings
providing a high throughput for the nominal operating points of the resources typically
result in a high yield under variation. However, as shown with the MP3 Playback appli-
cation, variation-aware mapping is necessary for finding a better solution. As expected,
VA-MBE performs better than VA-SBE, resulting in improvements for all applications.
Yield improvements of up to 27% (MP3 Playback) over the NCE mapping approach are
reported. Figure 8(a) additionally illustrates the average yield for the set of applica-
tions. The variation-unaware NCE mapping results in a 64% average yield, which is
improved to 67% and 83% by VA-SBE and VA-MBE, respectively. These results show
the importance of variation-awareness in the resource allocation process. The runtimes
of the exhaustive VA-SBE and VA-MBE algorithms for the applications in Figure 8(a)
are in the order of hours (the highest) on a dual-core 2.8GHz machine. The nominal-
frequency-based exhaustive NCE algorithm takes around ten minutes at most to finish.

The yield achieved by the variation-aware heuristic and nominal frequency-based
mapping algorithms for the complete set of applications is shown in Figure 8(b). The
nominal-frequency-based mapping, denoted as NCH, is also implemented by the same
heuristic algorithm presented in Section 5. With NCH mapping, application actors are
initially allocated to the resources for the nominal operating points, followed by an al-
location optimization, where the initial allocation is optimized for a higher throughput.
The heuristic NCH mapping for the H.263 Decoder, H.263 Encoder, and MP3 Playback
results in the same yield as the exhaustive NCE mapping illustrated in Figure 8(a).
In contrast, a 10% lower yield is achieved for the Sample Rate Converter. The heuris-
tic mapping algorithm for the single-binding optimization problem (VA-SBH) for the
H.263 Decoder, H.263 Encoder, and MP3 Playback provides the optimum results found
by the computationally expensive VA-SBE exhaustive algorithm, previously shown in
Figure 8(a). For the Sample Rate Converter, VA-SBH results in a 10% lower yield than
the optimum result found by VA-SBE and performs equally to NCH. The heuristic
algorithm for the multiple-binding mapping approach, denoted as VA-MBH, gives the
optimum result for the H.263 Decoder. For the H.263 Encoder, MP3 Playback, and
Sample Rate Converter, VA-MBH results in a 5%, 8%, and 7% lower yield, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 61, Publication date: January 2014.



61:20 D. Mirzoyan et al.

Fig. 9. Normalized average throughput of applications using the exhaustive (NCE, VA-SBE and VA-MBE)
and heuristic (NCH, VA-SBH and VA-MBH) mapping algorithms for the class of best-effort applications.

These results show that the heuristic algorithms provide results close to the optimum
with an average difference of 5%.

Figure 8(b) additionally illustrates the yield improvements achieved by the variation-
aware heuristic mapping algorithms for the Modem, MP3 Decoder, and Satellite
Receiver applications of a large size (22 actors the largest). As shown, for these ap-
plications, the variation-unaware NCH mapping provides the same results as the
variation-aware VA-SBH, strengthening the preceding observation that the bindings
providing a high throughput for the nominal operating points of the resources result
in a high yield under variation. VA-MBH provides improvements in a yield of up to
18% for the large applications. The runtimes of the heuristic VA-SBH and VA-MBH
algorithms for the applications of a large size are in the order of several hours on a
dual-core 2.8GHz machine. The nominal-frequency-based heuristic NCH mapping al-
gorithm takes around 10–15 minutes for these applications. The exhaustive algorithms
for these applications are infeasible and do not finish in reasonable time. These results
shows that the heuristic algorithms can be efficiently applied to problems of a large
size.

6.2.2. Best-Effort Applications. Figure 9 illustrates the normalized average throughput
for the set of applications using the exhaustive NCE, VA-SBE, and VA-MBE (for the
subset of applications), and the heuristic NCH, VA-SBH, and VA-MBH mapping al-
gorithms for the class of best-effort applications. The heuristic mapping algorithms
provide optimum results for all small to medium size applications, except for MP3
Playback, where only a 1% lower average throughput is reported for both VA-SBH
and VA-MBH. Figure 9 shows that VA-SBH improves the average throughput by only
1% for only the MP3 Playback application compared to the nominal-frequency-based
allocation. On average, improvements in the average throughput of 3% are achieved
by the variation-aware VA-MBH mapping algorithm. This shows that for the class of
best-effort applications, variation awareness in the task allocation procedure is not as
effective as for the class of firm real-time applications.

6.2.3. Soft Real-Time Applications. As explained in Section 4, the optimization objec-
tive for soft real-time applications is to improve the yield and/or reduce the average
throughput degradation, as the chips with a low degradation can be used in this class
of applications. The selection of a particular binding with (yield, average throughput
degradation) value pair is accomplished by minimizing the cost function presented in
Section 4.1.3. For the class of soft real-time applications, we illustrate the yield and
the average throughput degradation for the set of applications as a result of nominal-
frequency-based and variation-aware mapping algorithms.
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Fig. 10. Average throughput degradation and yield of applications using the NCH, VA-SBH, and VA-MBH
heuristic mapping algorithms for the class of soft real-time applications.

Fig. 11. Average throughput degradation and yield of applications using the NCH, VA-SBH, and VA-MBH
exhaustive mapping algorithms for the class of soft real-time applications.

Figure 10 presents the results for the complete set of applications obtained by the
heuristic NCH, VA-SBH, and VA-MBH mapping algorithms. It can be seen that the
heuristic VA-SBH and VA-MBH mapping algorithms improve the yield of the variation-
unaware NCH mapping by, on average, 2% and 15%, respectively. At the same time,
Figure 10(b) illustrates reductions in the average throughput degradation of up to 2%
(measured in percents of the throughput requirement) achieved by VA-MBH over NCH
(MP3 Decoder). For the MP3 Playback application, VA-SBH results in a slightly higher
average throughput degradation compared to NCH. However, the yield is improved by
10% over NCH mapping.

To evaluate the effectiveness of the heuristic mapping algorithms for the soft real-
time optimization problem, we present the results of the exhaustive mapping al-
gorithms for the H.263 Decoder, H.263 Encoder, MP3 Playback, and Sample Rate
Converter applications. As in the case of firm real-time optimizations, the heuristic
algorithms targeting soft real-time optimizations provide yield results close to the opti-
mum with an average difference of 5%. The largest difference in the average throughput
degradation from the optimum is obtained for the Sample Rate Converter application,
where only around a 1% higher average throughput degradation is reported by the
VA-SBH heuristic mapping algorithm.

Our experiments for best-effort, firm and soft real-time applications showed that
many of the bindings selected for an application by VA-MBH are identical and that
not more than 20 different bindings are selected for any of the applications. This

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 2s, Article 61, Publication date: January 2014.



61:22 D. Mirzoyan et al.

observation shows the applicability of the multiple-bindings optimization approach, as
it provides significant improvements with a low impact on storage requirements.

With the proposed variation-aware mapping algorithms, we showed noticeable gains
for the different classes of applications. These improvements were obtained for the
particular local and global variation numbers assumed in Section 6.1. These numbers
were selected based on the data available for the 45nm technology node in our frequency
range of interest, as presented in Pang and Nikolic [2008]. The same work presents
measurements of variation at 90nm technology and shows that going from 90nm to
45nm technology results in increased local variation, while global variation reduces
in magnitude. Therefore, we can expect that local variation will further increase at
technology nodes below 45nm. With increased local variation, resources have larger
differences in the operating frequencies on the same chip. Therefore, the per-chip
binding approach (i.e., VA-MB) is expected to give better results for future technology
nodes.

7. CONCLUSIONS AND FUTURE WORK

This article introduces two approaches, single binding and multiple-bindings, for map-
ping real-time streaming applications to MPSoCs for a maximized yield under process
variation. For application modeling, we use dataflow graphs that capture the itera-
tive and overlapping execution of real-time streaming applications and have multiple
efficient techniques for throughput computation. The novelty of our SDF formulation
lies in the explicit modeling of software execution (1) in terms of clock cycles (which is
independent of hardware variation), and (2) in terms of seconds (which does depend on
the hardware variation), which are linked by an explicit binding. We present exhaus-
tive and heuristic algorithms that implement the single-binding and multiple-binding
optimization approaches. Our results show that (1) variation awareness is important
in the resource allocation process, resulting in yield improvements of up to 27% with
an average of 15% over the mapping methods that are unaware of hardware variation.
(2) The heuristic mapping algorithm effectively reduces the exponential complexity
of the exhaustive algorithm while only giving a slight reduction in the yield (5% on
average). (3) The runtime storage requirements for the multiple-bindings optimiza-
tion approach are very low, as only a few bindings are selected and stored for an
application.

From the perspective of the number of bindings that must be evaluated, the scal-
ability problem of the exhaustive mapping algorithms is addressed by the proposed
heuristic algorithm. However, given a large number of resources and local, as well as
global, operating points per resource, the number of chip operating points becomes
very large, resulting in a very large number of throughput evaluations. This limits the
scalability of the proposed mapping algorithms. As future work, we intend to address
this scalability issue. The approaches presented in this work target real-time streaming
applications which are mostly constrained by requirements on throughput. This is why
our optimization approaches are throughput oriented. However, latency requirements
may still be present in such applications. Latency analysis for synchronous dataflow
graphs could be introduced in our framework such that optimizations based on latency
requirements can be implemented. Future work furthermore involves extending our
formal models to include power consumption, thus enabling variation-aware mapping
in the presence of power constraints.
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