
X

A Real-Time Multi-Channel Memory Controller and
Optimal Mapping of Memory Clients to Memory Channels

MANIL DEV GOMONY, Eindhoven University of Technology, The Netherlands

BENNY AKESSON, Czech Technical University in Prague, Czech Republic

KEES GOOSSENS, Eindhoven University of Technology, The Netherlands

Ever increasing demands for main memory bandwidth and memory speed/power trade-off led to the in-
troduction of memories with multiple memory channels, such as Wide IO DRAM. Efficient utilization of a
multi-channel memory as a shared resource in multi-processor real-time systems depends on mapping of
the memory clients to the memory channels according to their requirements on latency, bandwidth, commu-
nication and memory capacity. However, there is currently no real-time memory controller for multi-channel
memories, and there is no methodology to optimally configure multi-channel memories in real-time systems.
As a first work towards this direction, we present two main contributions in this article: 1) A configurable
real-time multi-channel memory controller architecture with a novel method for logical-to-physical address
translation. 2) Two design-time methods to map memory clients to the memory channels, one an optimal
algorithm based on an integer programming formulation of the mapping problem, and the other a fast
heuristic algorithm. We demonstrate the real-time guarantees on bandwidth and latency provided by our
multi-channel memory controller architecture by experimental evaluation. Furthermore, we compare the
performance of the mapping problem formulation in a solver and the heuristic algorithm against two exist-
ing mapping algorithms in terms of computation time and mapping success ratio. We show that an optimal
solution can be found in 2 hours using the solver and in less than 1 second with less than 7%mapping failure
using the heuristic for realistically sized problems. Finally, we demonstrate configuring a Wide IO DRAM in
a High-Definition (HD) video and graphics processing system to emphasize the practical applicability and
effectiveness of this work.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems — Real-Time and Embedded Systems

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Multi-channel memories, Memory controller, Optimal mapping, Heuris-
tic algorithm

ACM Reference Format:

Gomony, M.D., Akesson, B., and Goossens, K., 2014. A Real-Time Multi-Channel Memory Controller and
Optimal Mapping of Memory Clients to Memory Channels. ACM Trans. Embedd. Comput. Syst. X, X, Arti-
cle X (January 2014), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

In heterogeneous multi-processor platforms, main memory (off-chip DRAM) is typi-
cally a shared resource for cost reasons and to enable communication between the

This work was partially funded by projects EU FP7 288008 T-CREST and 288248 Flextiles, CA505
BENEFIC, CA703 OpenES, ARTEMIS-2013-1 621429 EMC2, 621353 DEWI, and by the European social
fund within the framework of realizing the project ”Support of inter-sectoral mobility and quality enhance-
ment of research teams at Czech Technical University in Prague”, CZ.1.07/2.3.00/30.0034.
Corresponding authors address: Gomony, M.D., Faculty of Electrical Engineering, Eindhoven University of
Technology; email: m.d.gomony@tue.nl
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/01-ARTX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:2 M.D.Gomony et al.

processing elements. Such platforms run several applications with firm and soft real-
time requirements [Kollig et al. 2009; van Berkel 2009; Melpignano et al. 2012], and
moreover, the firm real-time applications impose strict worst-case requirements on
main memory performance in terms of bandwidth and/or latency [van der Wolf and
Geuzebroek 2011; Steffens et al. 2008]. These requirements must be guaranteed at
design time to reduce the verification effort, which is made possible using real-time
memory controllers [Paolieri et al. 2013; Akesson and Goossens 2011a; Reineke et al.
2011; Shah et al. 2012; Bayliss and Constantinides 2012; Wu et al. 2013; Li et al.
2014; Kim et al. 2014] that bound the memory access time by employing predictable
arbiters, such as Time Division Multiplexing (TDM) and Round-Robin. Moreover, real-
time memory controllers can be analyzed using shared resource abstractions, such as
the Latency-Rate (LR) server model [Stiliadis and Varma 1998] which can be used in
formal performance analysis based on e.g., network calculus [Cruz 1991] or data-flow
analysis [Sriram and Bhattacharyya 2000].
Memories with multiple physical channels and wide interfaces, such as Wide IO

DRAMs [JEDEC], are essential to meet the main memory power/bandwidth demands
of future real-time systems [Gomony et al. 2012]. In multi-channel memories, a mem-
ory client can be mapped to multiple memory channels by interleaving its memory re-
quests across different memory channels after splitting it into smaller sized requests.
Previous studies on multi-channel memories show that mapping soft real-time mem-
ory clients to multiple memory channels according to their memory request sizes ben-
efit average-case performance [Sancho et al. 2010; Cabarcas et al. 2010; Nikara et al.
2009]. In addition to request sizes, firm real-time memory clients in real-time multi-
processor platforms come with different requirements on memory bandwidth, latency,
communication and memory capacity as well. The bandwidth allocated to firm real-
time memory clients must be minimized to maximize the slack bandwidth that can
be allocated to the soft and non real-time clients in the system, which improves their
average-case performance [Lin and Brandt 2005]. The optimal mapping of the memory
clients to the memory channels for efficient memory bandwidth utilization results in
different granularities at which the memory requests from each of the clients are inter-
leaved in each channel, which requires a configurablememory controller and logical-to-
physical address translation logic. Currently, there is no configurable real-time mem-
ory controller architecture for multi-channel memories and there is no methodology
to map firm real-time memory clients to memory channels, meeting their bandwidth,
latency, communication and memory capacity requirements.
This article presents two of our main contributions: 1) A real-time multi-channel

memory controller architecture, with a new programmable Multi-Channel Interleaver
and a novel method for logical-to-physical address translation that enables interleav-
ing of a memory request in different sizes across any number of memory channels.
2) Two design-time methods to determine the optimal mapping of memory clients
to the memory channels considering their requirements on bandwidth, latency, com-
munication and memory capacity. The first method is an optimal algorithm based
on an integer programming formulation of the mapping problem, and the second a
fast heuristic algorithm. We demonstrate by experimentation that our multi-channel
memory controller satisfies the real-time requirements of the memory clients. Further-
more, we experimentally compare the computation time and mapping success ratio of
the optimization problem formulation in a solver and the heuristic algorithm against
two existing mapping algorithms. Finally, we demonstrate configuring a multi-channel
Wide IO DRAM for a High-Definition (HD) video and graphics processing system using
our approach.
In the remainder of this article, Section 2 reviews the related work, Section 3 gives

an introduction to state-of-the-art real-time memory controllers and the LR server
model. In Section 4, we introduce our proposed multi-channel memory controller ar-
chitecture, including our method for logical-to-physical address translation. The two

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:3

proposed methods to map memory clients to memory channels, the one based on in-
teger programming formulation and the heuristic algorithm are presented in Sec-
tion 5 & 6, respectively. In Section 7, we present both the experimental evaluation
of the multi-channel memory controller architecture and the performance evaluation
of our two mapping methods. Section 8 then presents a case study of configuring a
Wide IO DRAM in an HD video and graphics processing system, and finally we con-
clude in Section 9.

2. RELATED WORK

Among the previous related work, some exploit the benefits of interleaving data across
multiple memory channels. [Aho et al. 2009; Nikara et al. 2009; Zhu et al. 2002; Cabar-
cas et al. 2010] proposed interleaving data across the memory channels such that all
channels are accessed by a single transaction to improve average-case performance.
Similarly, [Casini 2008] proposed splitting the traffic within a logical address region
across multiple memory channels to improve average-case performance by reducing
average latency. Dynamic mechanisms for efficient data placement to reduce average
memory access latency in a system comprising multiple memory controllers is pro-
posed by [Awasthi et al. 2010]. However, all of them focus on the improvement of
average-case performance, and do not consider providing guarantees on bandwidth
and latency to firm real-time applications.
The rest of the related work focus on memory controller architectures and logical-

to-physical address translation for multi-channel memories. [Zhang et al. 2010] pro-
posed a parallel-access mechanism in which two separate DDR Finite State Machines
(FSM) are used to control eight memory channels of a 3D-DRAM. The proposed ar-
chitecture by [Loi and Benini 2010] has every processing element allocated to its
own local DRAM channel with a memory controller, and a custom crossbar is used
to route incoming traffic from other processing elements. The multi-channel NAND
flash memory controller by [Ou et al. 2011] uses a dynamic mapping strategy by using
a mapping table that stores the logical-to-physical address translation, and a crossbar
switch for routing traffic across multiple memory channels. Also, the multi-channel
memory controller architecture by [Bouquet 2000] routes an incoming request to any
of the memory channels using a crossbar. [Zhang et al. 2012] presented an architec-
ture for fine-grained DRAM access of memory chips in a DIMM by grouping them in
logical sub-ranks of different interface widths and accessing them concurrently. How-
ever, neither of the aforementioned memory controller architectures provide any firm
performance guarantees and hence they cannot be used for formal verification of firm
real-time clients. Conversely, even though there are real-time memory controllers that
provide bounds on memory performance [Paolieri et al. 2013; Akesson and Goossens
2011a; Reineke et al. 2011; Shah et al. 2012; Bayliss and Constantinides 2012; Wu
et al. 2013; Li et al. 2014; Kim et al. 2014], they do not consider multi-channel memo-
ries and interleaving memory requests across multiple memory channels, i.e., they do
not support an efficient mapping of memory clients to memory channels, which could
lead to larger design costs.
In our previous work [Gomony et al. 2013], we presented a high-level architecture

of a real-time multi-channel memory controller and an optimal method for mapping
memory clients to memory channels based on an integer programming formulation of
the mapping problem. As an extension of our previous work, in this article, we present
the detailed architecture of the multi-channel memory controller including its exper-
imental evaluation using a SystemC prototype implementation. We extend our opti-
mization problem formulation to determine an optimal frame size for a TDM arbiter.
In addition, we present a fast heuristic algorithm to map memory clients to the chan-
nels including its performance comparison with the optimal method and two existing
mapping algorithms.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:4 M.D.Gomony et al.

3. BACKGROUND

This work relies on existing single-channel real-time memory controllers to bound
the execution time of a memory transaction, and uses the LR server model as the
shared resource abstraction to derive bounds on service provided by predictable ar-
biters. Hence, we introduce them in this section.

3.1. Real-time memory controllers

State-of-the-art real-time memory controllers [Paolieri et al. 2013; Akesson and
Goossens 2011a; Reineke et al. 2011; Shah et al. 2012; Bayliss and Constantinides
2012; Wu et al. 2013; Li et al. 2014; Kim et al. 2014] bound the execution time of a
memory transaction by fixing the memory access parameters of a transaction, such
as burst length and number of read/write commands, at design time. These parame-
ters define the access granularity of the memory controller, which defines the amount
of data read/written from/to the memory per request. For a fixed access granularity,
real-time memory controllers use a fixed memory command schedule according to the
command timing requirements provided by the memory data-sheet, which bounds the
worst-case execution time of a read/write transaction. Also, the worst-case bandwidth
offered by a memory for a fixed access granularity can be computed [Akesson and
Goossens 2011b]. In this article, we refer to a memory transaction of a fixed size as
a service unit, and the time taken to serve such a service unit is a service cycle. The
service cycle for a read and a write transaction can be different and depends on the
memory device and the memory controller.

3.2. LR servers

Latency-Rate (LR) servers [Stiliadis and Varma 1998] is a general model to capture
the worst-case behavior of various scheduling algorithms or arbiters in a simple uni-
fied manner, which helps to formally verify the service provided by a shared resource.
There are many arbiters belonging to the class of LR servers, such as TDM, Round-
Robin and its variants Weighted Round-Robin (WRR) [Katevenis et al. 1991], Deficit
Round-Robin (DRR) [Shreedhar and Varghese 1996], and priority-based arbiters with
a rate-regulator, such as Credit-Controlled Static Priority (CCSP) [Akesson et al. 2008]
and Priority Based Scheduler (PBS) [Steine et al. 2009]. The LR abstraction enables
modeling of many different arbiters, and is compatible with a variety of formal analysis
frameworks, such as data-flow analysis [Sriram and Bhattacharyya 2000] or network
calculus [Cruz 1991].

..N/ρ'..

~N~

A
cc
u
m
u
la
te
d

se
rv
ic
e
u
n
ti
s

Service cycles

Requested service

Provided service

Minimum provided service

ρ'

~Ɵ~

Fig. 1. Example service curves of a LR server showing service latency (Θ) and completion latency (N/ρ′).

Using the LR abstraction, a lower linear bound on the service provided by an arbiter
to a client or requestor can be derived. In this article, we use the term requestor to
denote a memory client that requests access to a memory resource with certain band-
width and latency requirements. Figure 1 shows example service curves of a LR server.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:5

The requested service by a requestor at a time consists of one or more service units,
indicated on the y-axis of the figure. The minimum service provided to the requestor
is the service guaranteed by the LR abstraction, which depends on two parameters,
namely the service latency Θ and the allocated rate ρ′ (bandwidth). The service latency
is intuitively the maximum time before the allocated rate is provided, as seen in the
figure, and depends on the choice of arbiter and its configuration, e.g. allocated rate
and/or priority [Akesson and Goossens 2011b]. After a request consisting of N service
units is scheduled to be served, it receives service at the allocated rate ρ′ and it hence
takes N/ρ′ service cycles to finish serving the request, called the completion latency of

the requestor. The worst-case latency L̂ (in service cycles) of a requestor is the total
time taken by its request of size N service units at the head of its request queue to get
served in the worst-case 1, which is the sum of the service latency and the completion
latency, given by Equation (1). The advantage of this approach is that it can be applied
to other arbiters belonging to the class of LR servers by changing the expression for Θ.

L̂ = Θ+ ⌈N/ρ′⌉ (1)

This work considers a TDM arbiter with continuous slot allocation as an example
of a LR server, but our approach generally applies to other LR servers with linear
expression for Θ, such as a TDM arbiter with distributed slot allocation. As mentioned
before, the service cycle duration for a read and write can be different. Since a re-
questor can issue a read or write request in a TDM slot, we consider a slot size equal
to the maximum of read or write service cycles. Note that it is shown in [Goossens et al.
2013] that the service cycle for read and write transactions can be made equally long
with negligible loss in the guaranteed memory bandwidth. Figures 2(a) & 2(b) show a
TDM frame of size f with requestor R allocated to two slots using continuous and dis-
tributed slot allocation strategies, respectively. Here, R gets a rate ρ′ = 2/6, since two
out of six slots are allocated to R. The service latency (Θ) of R is 4 and 2 for continuous
and distributed TDM, respectively, because of the interference from other requestors
that occupy the remaining set of TDM slots. In terms of rate ρ′ and/or frame size f , the
service latencies of continuous and distributed TDM are given by Θ = f × (1 − ρ′) and
Θ = f/(f × ρ′)− 1, respectively, as shown in [Akesson and Goossens 2011b].

f

ρ' = 2/6x x x x R R

Ɵ

f

Ɵ

x x R x x R

(a) (b)

Fig. 2. Example TDM frame of size f showing service latency (Θ) of requestor R with its slots allocated
using (a) continuous and (b) distributed allocation strategies.

Hence, for a TDM arbiter with a frame size f , the worst-case latency of a requestor
with an allocated rate of ρ′ for continuous and distributed TDM is given by Equa-
tions (2) & (3), respectively, in which both service latency and completion latency are
rounded up to make the bound conservative.

L̂ = ⌈f × (1− ρ′)⌉+ ⌈N/ρ′⌉ (2)

L̂ = f/⌈f × ρ′⌉ − 1 + ⌈N/ρ′⌉ (3)

1For simplicity, we do not consider requestors with multiple outstanding requests, although it can be added
if the characterizations of the arriving traffic is taken into consideration to bound the waiting time in the
queue [Stiliadis and Varma 1998].

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:6 M.D.Gomony et al.

4. MULTI-CHANNEL MEMORY CONTROLLER FOR REAL-TIME SYSTEMS

In this section, we present our proposed real-time multi-channel memory controller ar-
chitecture. We start this section with an analysis of the impact of interleaving memory
requests across multiple memory channels on the guaranteed service provided by ar-
biters belonging to the class of LR servers, which we refer to as LR arbiters. Then, we
present our proposed architecture of multi-channel memory controller which is based
on the conclusions from the analysis, followed by a novel method for logical-to-physical
address translation.

4.1. Multi-channel memories and LR servers

Compared to a single-channel memory, multi-channel memories give us the opportu-
nity to interleave memory requests at different granularities across the memory chan-
nels. When the memory request of a requestor is interleaved across multiple memory
channels with each channel consisting of an LR arbiter, the worst-case latency is the
maximum of the worst-case latencies among all the memory channels to which the re-
quest is interleaved. Using the LR model, the worst-case latency of a requestor with a
required rate (bandwidth) ρ′ increases when the number of channels to which its re-
quest is interleaved increases. This counter-intuitive result is shown in Equation (4),
which shows the worst-case latency for a TDM arbiter in each memory channel, as-
suming the required rate ρ′ and the total number of service units N in a memory
request are distributed evenly across the number of channels to which the request is
interleaved, nCh. It can be seen that the service latency increases with nCh, however,
the completion latency remains constant 2. However, note that the worst-case latency
can be reduced by interleaving a memory request across multiple memory channels
and by allocating a higher rate than requested, i.e., over-allocating rate.

L̂′ =

⌈

f ×
(

1− ρ′

nCh

)

⌉

+

⌈

N/nCh

ρ′/nCh

⌉

=

⌈

f ×
(

1− ρ′

nCh

)

⌉

+

⌈

N

ρ′

⌉

(4)

Interleaving a memory request to more than one memory channel is unavoidable
under the following four conditions: (1) When the latency requirement of a requestor
cannot be met in a single channel even after allocating a 100% bandwidth (ρ′ = 1) to
the requestor. This could happen with larger request sizes as can be seen in Equa-
tion (2), if the request size is large such that even after allocating a 100% bandwidth
(ρ′ = 1) of a channel, it does not meet its latency requirement, it must be interleaved
across multiple channels with an over-allocated rate. (2) When the bandwidth require-
ment of a requestor could not be satisfied with the available bandwidth in a single
memory channel. (3) When the memory capacity requirements cannot be met with the
capacity available in a memory channel. (4) When a requestor needs to communicate
with another requestor whose requests are interleaved across multiple memory chan-
nels for any of the previous three reasons, since communicating requestors must be
mapped to the same channels.
In a real-time system consisting of several memory requestors with different request

sizes and diverse requirements on bandwidth, latency, communication and memory ca-
pacity, the optimal mapping of requestors to the memory channels for minimal band-
width utilization results in different degrees of interleaving across the memory chan-
nels for each requestor. This implies that the existing methods, in which all requestors
are interleaved in the same fashion to the memory channels are not always optimal.
Hence, we need a programmable memory controller architecture that can be config-

2This conclusion is valid for all other LR arbiters as well since they all have the rate term, ρ′, which will
always gets split across channels and the completion latency remains constant. This is evident from their
worst-case latency equations [Akesson and Goossens 2011b].

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:7

ured to interleave memory requests of a requestor to any number of available memory
channels at different granularities.

4.2. Real-time multi-channel memory controller architecture

To enable mapping of memory requests from memory clients to memory channels at
different granularities, our multi-channel memory controller performs Channel Inter-
leaving, by which an incoming memory request is split into several service units of
equal size and routes them to different memory channels. The proposed multi-channel
memory controller, shown in Figure 3, consists of a Multi-Channel Interleaver, and a
Channel Controller in each memory channel. The Channel Controller can be any state-
of-the-art real-time memory controller [Paolieri et al. 2013; Akesson and Goossens
2011a; Reineke et al. 2011; Shah et al. 2012; Bayliss and Constantinides 2012; Wu
et al. 2013; Li et al. 2014; Kim et al. 2014] employing any LR arbiter. We use a Multi-
Stage Crossbar that connects each requestor to every Channel Controller. The Multi-
Channel Interleaver consists of an Atomizer, Channel Selector (CS) and a Sequence
Generator connected to each memory requestor. The Multi-Channel Interleaver has
separate request and response paths for each requestor.

Channel

Controller 2

Channel

Controller 1Multi-Channel Interleaver

Memory

Channel 1

Memory

Channel 2

Arbiter 1

Arbiter 2

Sequence Gen 1

Sequence Gen 2

Sequence Gen 3

Atomizer 1

Atomizer 2

Atomizer 3

CS1

CS2

CS3

1

2

1

3

5

M
u
lt
i-
st
a
g
e

C
r
o
ss
b
a
r

Memory

Client 3

Memory

Client 2

Memory

Client 1

3

4

5

6
6

4

2

Fig. 3. High-level view of real-time multi-channel memory controller architecture showing three memory
clients and two memory channels. The Atomizer splits a memory request in to smaller service units and
the Channel Selector (CS) routes these service units to the different memory channels according to the
configuration in the Sequence Generators.

A detailed architecture of the Channel Selector showing both request and response
paths is shown in Figure 4. In the request path, the Atomizer first splits an incoming
memory request into a number of service units, and then the Sequence Generator
routes them to the respective memory channels. The Sequence Generator performs
logical-to-physical address translation (explained in the next section) for each of the
service units before routing them to the memory channels. The buffers at each output
of the Channel Selector ensures non-blocking delivery of service units (write data) to
the differentmemory channels (assuming no input buffers in the Channel Controllers).
The service units routed to the different memory channels may get served at different
time instants, and hence the (read) responses from the memory channels may arrive
at different times and even out-of-order. Hence, the incoming responses are buffered in
the response path until all of the responses from the different channels have arrived,

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:8 M.D.Gomony et al.

Address

translator

Sequence

generator

Buffer

Request path

Response path

addr

data

From

atomizer

To

atomizer

To

channel 1

From

channel 1

To

channel 2

From

channel 2

Buffer

Fig. 4. Detailed architecture of the Channel Selector, showing request and response paths. The Sequence
Generator routes the service units to the respective memory channels to which they are mapped after per-
forming the logical-to-physical address translation. The responses from different channels are buffered in
the response path before forwarding the complete response to the Atomizer.

and then the Atomizer forwards the complete response to the requestor. Hence, the size
of the output and input buffers (for write data and read response, respectively) should
be equal to the maximum number of outstanding transactions of a requestor times its
request size (assuming same transaction size for all requests from a requestor). Since,
the Sequence Generators, Arbiters and Atomizers can be configured at design-time,
this architecture enables all possible connections of a requestor to any of the memory
channels with any level of interleaving, and different rate allocated to each requestor
in each channel.

4.3. Logical-to-physical address translation

As discussed before, an optimal mapping of requestors to memory channels could re-
sult in each channel allocated a different number of requestors and different memory
capacities allocated to the requestors in different memory channels. Hence, the ser-
vice units of a memory request can end up in different physical addresses in each
channel when interleaved across multiple memory channels. However, the application
programmer must be able to view the entire memory space (including all memory chan-
nels) as a single continuous logical address space to avoid explicit data partitioning and
data movement while writing the application program. In other words, the application
programmer need not worry about the number of memory channels in the system and
how memory requests are interleaved across them.
Consider an example scenario consisting of a requestor R1 with a capacity require-

ment of 512 B (we consider a small capacity requirement for ease of presentation)
and request size of 256 B interleaved across two memory channels, Channel 1 and
Channel 2. Figures 5a and 5b illustrate the logical and physical views of the memory,
respectively. Assuming a service unit size of 64 B, every request from the requestor
consists of four service units. Figure 5b shows the physical memory map of the two
memory channels, each having an address space of 1 GB. Two service units (SU1,
SU2) of request Q1 are allocated to Channel 1, and the remaining two (SU3, SU4)
are allocated to Channel 2. Request Q2 is also shown in the figure and is allocated in
the same fashion. To access an incoming memory request, say Q2 starting at logical
address 0x10010200, the address needs to be translated to the corresponding physical
addresses 0x10000180 and 0x10000080 in Channel 1 and Channel 2, respectively. To
reduce complexity in the logical-to-physical address conversion and to keep the lookup

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:9

table size to a minimum, we propose a method to compute the logical address in each
channel, expressed by Equation (5). Note that Request size is in service units.

0x10000000

SU4

SU3

SU2

SU1

SU8

SU7

SU6

SU5

SU6

SU5

SU2

SU1

SU8

SU7

SU4

SU3

0x10000000

0x10010100

0x10010200

0x1FFFFFFE

R
eq
u
es
to
r
R
1

0x10000000

0x10000100

0x10000180

0x17FFFFFF

0x10000080

0x17FFFFFF

Q
1

(a) Logical view (b) Physical view

Q
1

BaseAddrApp

BaseAddrCh2

BaseAddrCh1

Q
2

Q
2

Q
1

Q
2

Used region

Channel 1

Used region

Unused region

Unused region

Unused region

Channel 2

Fig. 5. Example memory map showing requestor R1 allocated to two memory channels, with every request
Q1 and Q2 interleaved across the two memory channels.

ReqAddrCh = (ReqAddrApp −BaseAddrApp)≫ log2(Request size/NChn
) +BaseAddrChn

(5)
The logical address offset between the requested logical address, ReqAddrApp, and

the logical base address of the application, BaseAddrApp, is computed first, and then
added to the physical base address of the application in the corresponding channel,
BaseAddrChn

. When a request is interleaved across multiple channels, the logical ad-
dress offset is divided by the ratio of service units allocated to each memory channel.
This is because the memory capacity allocated to a requestor in each channel is pro-
portional to the number of service units of its request allocated to the channel. For a
fast and simple hardware implementation, division is performed using a logical shift
operation. We hence require the number of service units allocated to each channel and
request sizes (in service units) to be power of two 3.
The logical base address of an application, BaseAddrApp, is generated by the appli-

cation compiler/linker, while the number of service units allocated to each channel,
NChn

, is decided by the one of our two mapping methods, presented in Section 5 & 6.
We generate the base addresses for all the requestors mapped to each of the channels,
BaseAddrCh, based on the memory capacity allocated to them.
Given that we have presented the multi-channel memory controller architecture

that can be programmed with any mapping, we proceed with our two methods to map
memory clients to the memory channels in the next two sections.

5. OPTIMAL METHOD FOR MAPPING MEMORY REQUESTORS TO MEMORY CHANNELS

This section presents an optimal method for mapping memory clients to memory chan-
nels based on an integer programming formulation of the mapping problem. First, we
present a formal definition of our system and then a generic optimization problem
formulation, which applies to any arbiter belonging to the class of LR servers.

5.1. System model

The set of memory channels is defined as c ∈ C, with each channel having a total
memory capacity (in Bytes) given by Bch(c). The access granularity (in Bytes) of each

3The request sizes of most of the real-world memory requestors, such as CPUs, DSPs, LCD & DMA con-
trollers are in the order of power of two [Steffens et al. 2008; Texas Instruments Inc.].

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:10 M.D.Gomony et al.

memory channel is given by AG, with a service cycle (in ns) given by SCns 4. For each
memory channel c ∈ C, the worst-case bandwidth (in MB/s) can be computed for a fixed
access granularity AG (e.g. see [Akesson and Goossens 2011b]), and is given by bch(c).
Consider a set of requestors denoted by r ∈ R, each with a worst-case latency re-

quirement (in ns) given by Lns(r), minimum bandwidth requirement (in MB/s) given
by b̌(r), and a total memory capacity requirement (in Bytes) given by B̌(r). Note that
the minimum rate required by a requestor can be computed as the ratio of its mini-
mum bandwidth requirement b̌(r) and the worst-case bandwidth of a channel bch(c).
The worst-case latency of a requestor (in service cycles) in each channel c ∈ C is given
by L̂c(r), and is defined as:

∀r ∈ R : L̂c(r) = ⌊Lns(r)/SCns(c)⌋ (6)

The request size (in Bytes) of requests from a requestor r ∈ R is given by s(r). We
assume a constant request size for all requests from a single requestor since it typi-
cally holds for the real-time requestors under consideration, such as CPUs, hardware
accelerators, DMA and LCD controllers. The number of service units in each request
is given by q(r) and is defined by Equation (7). Since the request sizes, s(r), and access
granularity of a memory device,AG, is in the order of power of two, q(r) will be a power
of two.

∀r ∈ R : q(r) = s(r)/AG (7)

Each requestor r ∈ R has an associated group number given by g(r), which rep-
resents the communication dependency with other requestors, or in other words, re-
questors that need to communicate through shared memory are assigned the same
group number. In the next section, we define the optimization problem statement and
formulate it as an integer programming problem. A summary of the memory system
and requestor parameters and their corresponding notations are given in Table I & II,
respectively.

Table I. Memory system parameters

Parameter name Notation
Set of memory channels C

Memory capacity (in Bytes)
of each memory channel

Bch(c)

Access granularity (in Bytes)
of each memory channel

AG

Service cycle duration (in ns) SCns

Worst-case bandwidth (in
MB/s) of each memory
channel

bch(c)

Table II. Requestor parameters

Parameter name Notation
Set of requestors R
Worst-case latency requirement (in ns) Lns(r)
Minimum bandwidth requirement (in MB/s) b̌(r)
Total memory capacity requirement (in Bytes) B̌(r)

Worst-case latency (in service cycles) in each
channel

L̂c(r)

Request size (in Bytes) s(r)
Request size (in service units) q(r)
Group number g(r)

5.2. Optimization problem formulation

In this section, we present the formulation of the mapping problem as an integer pro-
gramming problem. As mentioned before, we need to minimize the bandwidth allo-
cated to firm real-time requestors to maximize the slack bandwidth, which improves
the average-case performance of soft real-time requestors in the system. Hence, we de-
fine our optimization problem as follows: Find the mapping of requestors to the memory
channels, the number of service units allocated to those channels,Nc, and a rate, ρ′c, for
each requestor r ∈ R in each memory channel c ∈ C, such that all requestor require-
ments are satisfied and the sum of rates allocated to all requestors is minimized. The
optimization problem is defined as:

4For simplicity, we assume the same access granularity in all memory channels.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:11

Minimize:
∑

c∈C

∑

r∈R

ρ′c(r) (8)

Such that the following seven constraints are satisfied:

Constraint 1: The worst-case latency of each requestor r ∈ R after allocation L̂′(r)

must be less than or equal to its worst-case latency requirement L̂(r), and is defined as:

∀r ∈ R : L̂′(r) ≤ L̂(r) (9)

The service units of every request of a requestor are allocated across the memory
channels such that each requestor has a (Θ, ρ′) pair per channel. The worst-case la-

tency of a requestor r ∈ R in each channel c ∈ C is then given by L̂c
′
(r), and is defined

by Equation (10) 5, where Θc(r) is the service latency of a requestor in each channel.

∀c ∈ C, r ∈ R : L̂c
′
(r) = Θc(r) + ⌈Nc(r)/ρ

′
c(r)⌉ (10)

The worst-case latency of a requestor r ∈ R is then the maximum of the worst-case
latencies among all the memory channels, which is defined as:

∀c ∈ C, r ∈ R : L̂′(r) = max
c∈C

L̂c
′
(r) (11)

Themax function is removed to enable formulation as an integer programming prob-
lem, and Constraint 1 is then defined as:

∀c ∈ C, r ∈ R : L̂(r) − L̂c
′
(r) ≥ 0 (12)

Constraint 2: The sum of rates allocated to all requestors in each memory channel
c ∈ C must not be greater than 1, i.e., 100%, defined as:

∀c ∈ C :
∑

r∈R

ρ′c(r) ≤ 1 (13)

Constraint 3: The sum of rates allocated to each requestor r ∈ R across all memory
channels should be greater than or equal to its minimum required rate, defined by
Equation (14).

∀r ∈ R :
∑

c∈C

ρ′c(r) ≥
b̌(r)

bch(c)
(14)

Constraint 4: The sum of service units Nc(r) of each requestor r ∈ R allocated across
all memory channels must be equal to the total number of service units q(r) in every
request from the requestor, defined as:

∀r ∈ R :
∑

c∈C

Nc(r) = q(r) (15)

Constraint 5: The number of service units Nc(r) of each requestor r ∈ R allocated
to each memory channel c ∈ C must be a power of two. To formulate this as a linear
constraint, we define two decision variables bc(r) and N ′

c(r) for each requestor in every
channel. bc(r) is a binary decision variable defined by Equation (16) andN ′

c(r) can take
a value in the range 0.. log2[q(r)]. Constraint 5 is then defined by Equation (17)

bc(r) =

{

1, if Nc(r) > 0.

0, otherwise.
(16)

5For simplicity in presentation, we do not add the fixed delay which depends on the number of pipeline
stages in the RTL implementation of the multi-channel memory controller architecture.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:12 M.D.Gomony et al.

∀c ∈ C, r ∈ R : Nc(r) = 2N
′

c(r) × bc(r) (17)

Constraint 6: Each pair of communicating requestors, i.e. with the same group num-
ber g(r), must be allocated to the same set of memory channels, and the number of
service units of the requestors allocated in each channel must be proportional for data
alignment since they may have different request sizes. To understand this, consider two
communicating requestors R1 and R2, each with a request size of eight and four service
units, respectively, interleaved across two memory channels. Assume that R1 issues a
memory write request Q1 and R2 reads the data with two read requests P1 and P2.
In this case, four service units of request Q1 and two service units of requests P1 and
P2 must be allocated to each memory channel, as shown in Figure 6, so that the ratio
Request size/NChn

remains same for both requestors and results in coherent address
translation according to Equation (5) 6.

SU6

SU5

SU2

SU1
SU8

SU7

SU4

SU3

Q
1

Q
1

Used region

Channel 1

Unused region

Unused region

Channel 2

P
2

P
1

P
2

P
1

Fig. 6. Physical memory maps of two memory channels showing request Q1 of size eight service units
aligned with requests P1 and P2 of size 4 service units each.

For two communicating requestors ri and rj , the constraint is defined by Equa-
tion (18). The decision variable N ′

c(r) is the same as defined under Constraint 5. This
constraint ensures that for every non-zero number of service units of ri allocated to
a memory channel, Nc(ri), a corresponding number of service units in the order of

power-of-two of requestor rj , 2
N ′

c(rj) is allocated to the same channel, and vice versa.
Also, it ensures that N ′

c(ri) and N ′
c(rj) are selected such that Nc(ri) and Nc(rj) are

proportional. To understand this, consider our example with R1 and R2 as ri and rj ,
respectively. Assume that Constraint 5 assigns N ′

c(R1) = 2 and N ′
c(R2) = 1 resulting

in Nc(R1) = 4 and Nc(R2) = 2, which satisfies Equation (18) since 4 · 21 = 2 · 22. In
contrast, for any non-proportional assignment by Constraint 5, say N ′

c(R1) = 4 and
N ′

c(R2) = 1, Equation (18) will not be satisfied since 8 · 21 6= 2 · 24.

∀c ∈ C, ri, rj ∈ R, g(ri) = g(rj) : Nc(ri)× 2N
′

c(rj) = Nc(rj)× 2N
′

c(ri) (18)

Constraint 7: The total memory capacity of all requestors in each channel c ∈ C must
be less than or equal to the channel capacity Bch(c), defined by Equation (19). This
constraint along with Constraint 4 ensures that the sum of the memory capacities
allocated to a requestor in all memory channels is equal to its total memory capacity
requirement.

∀c ∈ C :
∑

r∈R

Nc(r)

q(r)
× B̌(r) ≤ Bch(c) (19)

6This constraint only ensures that the number of service units allocated in each channel are proportional.
Furthermore, the service units of all communicating requestors must be aligned in each memory channel.
As shown in Figure 6, the first four service units SU1-SU4 of R1 must be interleaved across two memory
channels so that the response for the first read request from R2 contains four service units (data) from
the continuous logical address space. To ensure this, the Sequence Generator in the multi-channel memory
controller must be programmed accordingly.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:13

Constraint 8: For every service unit allocated to a memory channel c ∈ C, there must
be a corresponding rate allocated, and vice versa, defined by Equations (20) and (21).
bc(r) is the same as in Constraint 5 and M is a constant with a value larger than
the maximum rate, i.e., M > 1. Equation (20) ensures that when service units are
allocated to a channel (according to Constraint 5), a corresponding rate is allocated
in the channel. Equation (21) ensures that the rate is set to zero when there are no
service units allocated to the channel.

∀r ∈ R, ∀c ∈ C : (1− bc(r)) ×M + ρ′c(r) > 0 (20)

∀r ∈ R, ∀c ∈ C : bc(r) ×M − ρ′c(r) ≥ 0 (21)

In general, our optimization problem formulation can be used for LR servers whose
service latency is linear or can be linearized, such as TDM with continuous and dis-
tributed slot allocation strategies, by using their worst-case latency derivations in Con-
straint 1. However, the problem formulationmight have to be extendedwith additional
constraints which are specific to the arbiter. In this work, we show how to extend our
problem formulation for a continuous TDM arbiter. In the worst-case latency deriva-
tion of continuous TDM (Equation (2)), we can see that for a given frame size, f , the
rate that needs to be allocated depends on the latency requirement of a requestor and
the discretization of rate when it is converted to TDM slots. This means that we need
to make f a decision variable in the optimization problem formulation for an optimal
allocated rate. Moreover, the allocated rate needs to be optimized considering the over-
allocation of bandwidth due to the discretization of rate. To ensure that the allocated
rate, ρ′c(r), is the discretized rate for a given frame size, we define a decision variable,
αc(r), which can take a value between 0 and 1, and the allocated rate is then defined
as ρ′c(r) = (⌈f × αc(r)⌉)/f . In essence, this constraints ρ′c(r) such that it gets a value
which corresponds to an integer number of slots in the TDM table of a given frame
size. Finally, we need to add Constraint 9 to the problem formulation to ensure that
the frame size is sufficiently large to accommodate the number of slots required by all
requestors in each memory channel.
Constraint 9: For a TDM arbiter, the frame size, f , must at least be equal to or greater

than the sum of the number of slots required by the requestors allocated in each memory
channel, defined by Equation (22)

∀c ∈ C : f ≥
∑

r∈R

⌈f × ρ′c(r)⌉ (22)

6. A FAST HEURISTIC ALGORITHM FOR MAPPING REQUESTORS TO MEMORY CHANNELS

The optimal algorithm for mapping requestors to memory channels presented in the
previous section may not be scalable for future systems in terms of algorithm compu-
tation time, as the number of variables and constraints increases with the problem
size. Hence, we devised a fast heuristic algorithm for mapping requestors to mem-
ory channels that minimizes memory bandwidth utilization while considering the re-
questor requirements. Our heuristic algorithm consists of two basic steps: (1) Sorting
requestors: We create a sorted list of requestors (in ascending order of their latency
requirements) after finding the minimum number of channels to which each requestor
needs to be interleaved. By mapping requestors to the memory channels in order from
this list, over-allocation of rate is reduced. (2) Mapping to the memory channels: The
requestors are mapped to memory channels using a first-fit algorithm, which allocates
them one by one from the sorted list to the first available channel(s) with enough
resources (bandwidth and memory capacity) to satisfy the requestor requirements.
During the mapping process, a configuration process is invoked for each requestor to
determine the interleaving granularity and the rate that needs to be allocated in each
channel, since according to Equation (4), a higher rate than the requested rate may

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:14 M.D.Gomony et al.

need to be allocated depending on the latency requirement and the interleaving gran-
ularity. Note that whenever we are computing the allocated rate in this algorithm, we
consider the discretization of rate which happens when it is finally converted to TDM
slots. We proceed by discussing the two steps in detail.

6.1. Sorting requestors

As we concluded in Section 4.1, we need to minimize the number of channels to which
a requestor is interleaved to minimize the allocated bandwidth. Since we use a first-fit
algorithm for mapping requestors to memory channels, the last ones are more prone to
be interleaved across multiple memory channels during the mapping process, because
the available bandwidth and memory capacity in the channels keep reducing.We must
hence start mapping the requestors that might end up having a larger over-allocation
of rate if interleaved across multiple channels.
When a requestor is interleaved across a number of memory channels, nCh, as ex-

pressed by Equation (4), the amount of over-allocation of the required rate increases
when its latency requirement is lower and the request size, N , is larger. Hence, we
map requestors with lower latency requirement and larger request sizes first. Since it
is hard to sort the requestors based on two parameters, i.e. request size and latency
requirement, we perform a simple two-step sorting approach:

(1) We find the minimum number of channels to which each requestor must be in-
terleaved to meet their latency requirements. If the request size of a requestor is
large such that its latency requirement, L̂, cannot be satisfied in a single mem-
ory channel even after allocating a rate of 100%, it must fundamentally be inter-
leaved across multiple memory channels. The minimum number of channels, ˇnCh,
to which the request needs to be interleaved is given by:

ˇnCh = 2(⌈log2
(q/L̂)⌉) (23)

In the above equation, q/L̂ is rounded to the upper power-of-two since we need to
allocate service units in the order of power-of-two for logical-to-physical address
translation according to our method presented in Section 4.3. When the request
size and the number of service units in each memory channel is a power-of-two,
the number of channels to which the request is interleaved must also be a power-
of-two to meet the worst-case latency requirement of the requestor. Consider an
example scenario in which q = 8 service units and L̂ = 3 service cycles. In this case,
⌈q/L̂⌉ = 3 and with an allocation of the service units of 4, 2 and 2 in each memory
channel, respectively, the latency requirement of 3 service cannot be met. Hence,
we need 4 memory channels to successfully map with 2 service units allocated to
each memory channel. This means that our heuristic distributes the number of
service units, and thereby also the rate, to all memory channels equally when a
requestor is interleaved across multiple memory channels. Note that the optimal
method presented in Section 5 does not have the restriction of interleaving to the
number of channels in the order of power-of-two.
We make a list of communicating requestor groups with each group consisting of
at least one requestor requiring more than one memory channel, i.e. ˇnCh > 1. Note
that a requestor groupmay consist of a single requestor which do not have any com-
munication requirements. We need to map these requestors first because ˇnCh > 1
indicates a lower latency and a larger request size, which must be mapped first to
avoid a larger over-allocation of rate. We do not sort this list based on the result
of q

L̂
; moreover, we allocate each requestor group from this list to different mem-

ory channels. This is because, we find ˇnCh for each requestor after allocating 100%
of bandwidth available in each channel, and hence, a requestor with ˇnCh > 1 uses

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:15

most of the bandwidth of the ˇnCh memory channels. This means two requestor
groups belonging to this list cannot be mapped to the same set of channels.

(2) The remaining requestor groups with requestors requiring ˇnCh = 1 are sorted (us-
ing a quick-sorting algorithm) according to the ascending order of the average of
the worst-case latency requirements of the requestors in each group. This is be-
cause the amount of over-allocation of rate increases as the latency requirements
get tighter according to Equation (4).

Finally, we combine the above two lists in-order to make a single list consisting of
sorted groups of requestors. Mapping of requestors from this sorted list to the memory
channels is presented in the next section.

6.2. Mapping to memory channels

The requestor groups are picked one by one from the sorted list in order and a con-
figuration process, shown in Algorithm 1, is used to find the number of service units,
i.e. interleaving granularity, and the rate that must be allocated in each channel for
the number of channels, ˇnCh, to which each requestor in the group needs to be inter-
leaved. The interleaving granularity,N , in every channel is determined by dividing the
request size by the number of channels to which the request needs to be interleaved
(line 2). Note that N will always be in the order of power-of-two since q and ˇnCh are
always power-of-two. For the interleaving granularity in each channel, N, the new rate
ρ′new is recomputed such that it satisfies the latency requirement L̂ by solving Equa-
tion (2). Since the ceiling functions from the latency equation are removed, we added 2
to make the computation conservative. The rate required by the requestor in the chan-
nel is then maximum of its required rate and the newly computed rate (line 4). The
required rate is divided equally across the number of channels to which the requestor
needs to be interleaved, since we distribute the number of service units evenly among
the channels. Finally, the allocated rate, ρ′, is computed considering discretization of
the required rate (line 5).

Algorithm 1 Find interleaving granularity and allocated rate of a requestor.

Input: Min. number of channels interleaved ˇnCh, request size q, worst-case latency L̂
and bandwidth b̌ requirements, worst-case bandwidth of a memory channel bch, TDM
frame size f .
Output: Number of service units N and rate ρ′ allocated to each channel.

1: procedure CONFIGURE(ˇnCh, q, L̂, b
ch, f, b̌)

2: N ← q
ˇnCh

3: ρ′new ←
(f−L̂+2)+

√
(f−L̂+2)2+4·f ·N
2·f

4: ρ′req ← max
(

b̌
bch· ˇnCh

, ρ′new

)

5: ρ′ ← ⌈f×ρ′

req⌉

f

6: return N , ρ′

7: end procedure

Finally, the requestor is assigned to the number of channels among the set of chan-
nels that satisfy its memory capacity and bandwidth requirement using a first-fit al-
gorithm. Note that the memory capacity requirement is divided equally among the
channels to which the requestor is interleaved. When a requestor needs to be inter-
leaved across multiple memory channels, the algorithm searches among channel com-
binations of the specific number of required channels. If there are no such number of
channels that can satisfy the requirements, ˇnCh is increased to the next power of two.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:16 M.D.Gomony et al.

The configuration process is invoked again to determine the new interleaving gran-
ularity and the allocated rate in each channel, and the mapping of requestors to the
memory channels is repeated. To determine the optimal frame size, the whole mapping
process is repeated with different frame sizes, from the lowest value of one to a suffi-
ciently large value. Finally, the successful mapping with the lowest total allocated rate
is selected which satisfies the condition that the sum of rates allocated to all requestors
in each channel is less than or equal to one.

6.3. Algorithm computational complexity and optimality

For a system consisting of R requestors and C memory channels, finding the mini-
mum number of channels for all requestors takes R time units, sorting the requestor
groups using a quick sort algorithm R2 time units (number of groups will be equal
to the number of requestors in the worst-case), and mapping each requestor in R
to a memory channel after searching for resource availability in C memory chan-
nels with all (log2(C) + 1) possible values of ˇnCh (i.e. different power-of-two combi-
nations with C channels) R×C × (log2(C) + 1). In total, our heuristic algorithm takes
R + R2 + F × R × C × (log2(C) + 1) time units, since the mapping process needs to be
repeated until an upper bound F of frame size. Since the number of requestors will typ-
ically be larger than the number of memory channels, i.e. R ≥ C, the time complexity
of our heuristic algorithm can be expressed as O(F ×R2 × log2(R)).
Our heuristic algorithm always interleaves to a number of memory channels in the

order of power-of-two. Hence, we divide the request size, and thereby also the rate,
equally when a requestor is interleaved across multiple memory channels, which is
optimal for requestors with tight latency requirement as we have seen in Section 6.1.
However, when the latency requirement of a requestor is relaxed, its request can be
split in different powers-of-two and allocated to different channels with different rates
(according to its bandwidth requirement) at the same time meeting its latency re-
quirement. We do not consider extending the heuristic to support interleaving across
a number of memory channels that is not in the order of power-of-two for two reasons:
(1) This work primarily focuses on mapping of firm real-time requestors with tight la-
tency requirements. (2) When request sizes are not evenly distributed across memory
channels, the complexity of the mapping process increases since we need to check the
bandwidth and memory capacity availability in all possible combinations of memory
channels. We evaluate the impact of this restriction on the mapping success ratio of
our heuristic algorithm in the experimental section presented next.

7. EXPERIMENTS

We present two different experiments in this section: First, in Section 7.1, we demon-
strate the real-time guarantees provided by our multi-channel memory controller pre-
viously presented in Section 4. Then in Section 7.2, we show the performance compar-
ison between our two proposed methods for mapping memory requestors to memory
channels, optimal and heuristic algorithm presented in Sections 5 and 6, respectively,
and two existing mapping algorithms.

7.1. Multi-channel memory controller architecture evaluation

First, we present our experimental setup and then we proceed with a discussion of the
simulation results.

7.1.1. Experimental setup. We implemented a cycle-accurate SystemC model of
the multi-channel memory controller architecture using Predator [Akesson and
Goossens 2011a] as real-time channel controllers attached to a Wide IO 200 MHz
DRAM [JEDEC] memory model with each channel consisting of 4 banks and a data
bus of 128-bits wide. TDM arbiters with continuous slot allocations, previously dis-
cussed in Section 3.2, are used as the LR arbiter in the channel controllers.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:17

To demonstrate the guarantees provided by the multi-channel memory controller on
worst-case latency and bandwidth, we consider two requestors: one with low latency
requirements (R1) and the other with large worst-case bandwidth requirements (R2),
which corresponds to real-time low-latency and streaming clients [van der Wolf and
Geuzebroek 2011], respectively. We used the mpeg2 decode application from the Me-
diaBench [Lee et al. 1997] benchmark suite applications as R1. To emulate R1, we
used a SystemC traffic generator that can elastically replay transaction-level traces
of memory requests of the application. The memory request traces are generated by
running the application on a SimpleScalar out-of-order simulator [SimpleScalar] with
a unified 64 KB and 128 KB L1 and L2 caches, respectively, 64 byte cache lines, 512
sets and an associativity of 4. With this configuration, each request in the trace thus
corresponds to a cache miss of 64 B. To measure the actual round-trip latency from
the point at which a request is issued until the final response is arrived back at the
requestor without the impact of self-interference 7, we have configured the traffic gen-
erator with maximum one outstanding transaction such that R1 issues memory (read)
requests of size 64 B one at a time (for each cache-miss) and the successive requests are
blocked until the response of last issued request has arrived. For R2, we used a syn-
thetic memory request generator, which generates requests of size 64 B according to a
normal distribution with a sufficiently low mean to request more bandwidth than the
requestor is allocated to ensure that the requestor is always backlogged. The synthetic
requestor generates a mix of both read and write requests.
For the Wide IO SDR 200 MHz device, we selected an access granularity of 32 B in

each channel that provides a worst-case bandwidth of 484.1 MB/s per channel (com-
puted according to the analysis in [Akesson and Goossens 2011b]). We selected the
service unit size equal to the access granularity of 32 B, which takes 13 clock cycles
to read and write to the memory (service cycle), and we choose this as the TDM slot
size. We selected this service unit size since it is smaller than the request size (of 64 B)
which gives us the flexibility of interleaving the memory requests across channels.
Bandwidth is computed by logging the time stamp at which each service unit is

scheduled by the channel controller, and then counting the requests served by a chan-
nel controller. When a request is interleaved across multiple memory channels, we
compute the bandwidth in each channel individually and sum them up to find the
total provided bandwidth. To measure latency of a transaction, we find the time dif-
ference between the time at which a read request arrives at the request buffer of the
multi-channel memory controller until the complete response arrives back.
We measured the latency and bandwidth of R1 and R2, respectively, for different

cases (discussed in the next section) and compared against the analytically computed
worst-case bounds. The worst-case bandwidth of a requestor is computed as a frac-
tion of the worst-case bandwidth provided by a channel using the fraction of TDM
slots (rate) allocated to the requestor. We computed the worst-case latency bound us-
ing Equation (2), and also included the overhead due to the number of registers in the
critical path or pipeline stages (9 clock cycles) in the hardware and one refresh dura-
tion (130 ns for Wide IO DRAM). We add only one refresh duration to the latency of a
transaction, since only one refresh operation can occur in a single TDM wheel consid-
ering the much larger refresh interval of 7.8 µs for the WIDE IO 200MHz 2 Gb device
compared to the TDM frame size of 6 (= 390 ns), which we used in our experiments.

7.1.2. Simulation results. We need to evaluate the guarantees on latency and bandwidth
provided by our multi-channel memory controller to R1 and R2, respectively, under
different interleaving schemes. Hence, we perform experiments by configuring the Se-
quence Generators in the Channel Selectors for the following four different cases of in-

7To be consistent with our system model that provides guarantees on end-to-end latency for a complete
transaction without self-interference.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:18 M.D.Gomony et al.

terleaving: 1) Neither requestor is interleaved across memory channels. 2) Only R1 is
interleaved across two memory channels. 3) Only R2 is interleaved across two memory
channels. 4) Both requestors are interleaved across memory channels. Figures 7 & 8
show both TDM slot allocation and the simulation result for Cases 3 & 4, respectively.
Due to similarity in results, we do not show Cases 1 & 2. The simulation results show
both measured latency of R1 and bandwidth of R2 during the first 200 µs of the simu-
lation with their respective worst-case bounds.

R 1 R 2 R 2 R 2 R 2 R 2 R2 R2 R2 R2 R2 NA

Channel 1 allocation Channel 2 allocation

R 1 R 2 R 2 R 2 R 2 R 2 R1 R2 R2 R2 R2 R2

Channel 1 allocation Channel 2 allocation

0 50 100 150 200
0

200

400

600

800

1000

Latency bound

Bandwidth bound

Time (µsec)

B
a

n
d

w
id

th
 (

M
B

/s
)

0 50 100 150 200
0

200

400

600

800

1000

1200

L
a

te
n

c
y
 (

n
s
)

0 50 100 150 200
0

200

400

600

800

1000

1200

Fig. 7. Case 3: R2 is interleaved across two
memory channels with a rate of 5/6 in each
channel, and R1 is interleaved to one memory
channel with a rate of 1/6.

0 50 100 150 200
0

200

400

600

800

1000
Latency bound

Bandwidth bound

Time (µsec)
B

a
n
d
w

id
th

 (
M

B
/s

)

0 50 100 150 200
0

200

400

600

800

L
a
te

n
c
y
 (

n
s
)

0 50 100 150 200
0

200

400

600

800

Fig. 8. Case 4: Both requestors R1 and R2 are
interleaved across the two memory channels
with a rate of 1/6 and 5/6, respectively, in each
channel.

In all four cases and for the complete duration of simulation, we observed that the
guaranteed latency bound is only about 15% higher than the maximum of the mea-
sured latencies (depicted by crosses) of all of the requests and the measured bandwidth
(depicted by circles) is 0% off from the guaranteed bandwidth bound as expected. This
is because the worst-case latency bound is computed according to the abstract LR
model, which provides a pessimistic bound. However, the worst-case guaranteed band-
width is a tight bound, since it is computed considering the actual DRAM command
timing constraints including refresh. Refresh is periodic and its impact on bandwidth
can be estimated accurately [Akesson and Goossens 2011b]. Note that R2 is constantly
backlogged to measure the guaranteed bandwidth. This shows that the analysis tech-
nique that we use in this work gives good bounds. Comparing Figures 7 & 8, it can be
seen that the average latency of R1 is lower by about 50% after interleaving across two
memory channels since it gets twice the rate. However, the guaranteed latency bound
is lower by about 30% only, as the completion latency is reduced by half but the service
latency remains the same, according to Equation (4).
To summarize, we have demonstrated that the bounds on bandwidth and latency

given to the requestors are conservative and we have verified the conservativeness
for much longer simulation traces than shown in the figures. Also, we have seen that
the worst-case latency and/or bandwidth bounds varies according to the number of
service units allocated in each memory channel and the allocated rate. Hence, our con-
figurable multi-channel memory controller enables configuring the memory subsystem
for efficient utilization according to the latency and/or bandwidth requirements by the
memory requestors.

7.2. Optimal, heuristic and existing mapping algorithms - performance comparison

In this section, we evaluate the mapping success ratio of our two proposed mapping
algorithms, optimal and heuristic (presented in Sections 5 & 6, respectively), and two
existing mapping algorithms, First-fit and Interleave-all. The First-fit is a basic bin-

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:19

packing algorithm that picks one requestor at a time and maps to one of the first mem-
ory channels that has enough resources (bandwidth and memory capacity) available to
meet the requestor requirements. The First-fit algorithm does not interleave memory
requests across multiple memory channels, and hence, we used this algorithm to eval-
uate the benefits of interleaving across multiple memory channels, since our heuristic
algorithm is based on first-fit which interleaves memory requestors across memory
channels. The Interleave-all algorithm maps every requestor to all memory channels
available by distributing the number of service units and rate evenly among all chan-
nels. This is the traditional method for mapping in multi-channel memories and has
the advantage that only a single Channel Controller is required for all the memory
channels [Xilinx Inc.]. With these algorithms, we span the extreme ends of the design
space from no interleaving to full interleaving, and that our solution is configurable
within this space. Furthermore, we compare the computation time of our optimal and
heuristic algorithms in this section.

7.2.1. Experimental setup. The experimental setup consists of the optimization problem
model implemented in the CPLEX optimization tool [CPLEX], implementation of our
proposed heuristic, the First-fit and Interleave-all algorithms in C++, for a TDM ar-
biter, and a synthetic use-case generator. For a fair comparison with the heuristic, the
First-fit and Interleave-all algorithms are also run with different TDM frame sizes to
determine the optimal frame size with the lowest over-allocation of rate (considering
discretization of rate) and which satisfies the condition that the sum of rates allocated
to all requestors in each channel is less than or equal to one. For the implementation of
the optimization problem for a TDM arbiter in CPLEX, we substitute its worst-case la-
tency expression given by Equation (2) in Equation (12) of Constraint 1. Since CPLEX
do not support decision variables in the denominator, such as ρ′ in Equation (2), we
multiply the equation by ρ′ and the constraint hence becomes quadratic, as expressed
by Equation (24), making it a Quadratic Constrained Quadratic Problem (QCQP). The
two ceiling functions had to be removed to make the problem linear, and hence the
service latency and the completion latency are approximated as f × (1− ρ′c(r)) + 1 and
Nc(r)/ρ

′
c(r) + 1, respectively, to make the computation conservative.

∀c ∈ C, r ∈ R : f × ρ′c(r)
2 − ρ′c(r) × (f − L̂(r) + 2)−Nc(r) ≥ 0 (24)

To compare the performance of the optimal method and the heuristic under differ-
ent scenarios, we used a synthetic use-case generator, which generates memory re-
questors according to a normal distribution function with latency requirements in the
range 1-10 µs, bandwidth requirements 1-1000 MB/s and request sizes 64-512 B. We
selected these ranges since they cover the following different traffic classes of real
memory requestors: requestors with low average latency requirements, such as LCD
controllers and CPUs [Stevens 2010], requestors with medium latency requirements,
such as H.264 video decoders [Aho et al. 2009], and requestors with relaxed latencies,
which includes a wide variety of requestors with low and high bandwidth require-
ments, e.g., graphics processing [Stevens 2010], input processors [Steffens et al. 2008].
We do not considermemory capacity requirements since we did not have sufficient data
to define the range for the different traffic classes. We considered a 4-channel Wide IO
200 MHz DRAM with an access granularity of 64 B and a worst-case bandwidth of
966.9 MB/s per channel (as in the previous section) for mapping the requestors.

7.2.2. Mapping success ratio. Using the heuristic, First-fit and Interleave-all algo-
rithms, we performed mapping with 200 different use-cases 8, which are feasible ac-
cording to the optimal algorithm, with different number of requestors (5-25) with dif-
ferent requirements in each use-case. In all algorithms, we set an upper bound of 100
for the frame size considering the long computation time of the optimal algorithm, but

8We had to limit the use-cases to 200 due to the long computation time of the optimal algorithm.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:20 M.D.Gomony et al.

we assume that this is sufficiently large for our use-cases. The mapping success ratio
of the heuristic, First-fit and Interleave-all algorithms, normalized to the success ratio
of the optimal method is shown in Figure 9. It can be seen that our proposed heuristic
algorithm has the highest mapping success ratio of 93%, followed by the First-fit 81%
and Interleave-all with 67%. Our heuristic algorithm failed to find a valid mapping for
about 7% of the use-cases consisting mainly of requestors with relaxed latency require-
ments. The mapping failed for those use-cases when the total required bandwidth by
all requestors is more than 95% of the maximum bandwidth capacity of all channels.
As we have already seen in Section 6.3, our heuristic algorithm distributes the rate
evenly across the channels to which a requestor is interleaved. Since the heuristic al-
gorithm does mapping based on a first-fit algorithm, it could fail for one of the last
requestors to be mapped (with relaxed latency requirements) which could be allocated
with different rates in different channels according to the slack bandwidth available
in each channel in order to meet its bandwidth requirement. For all use-cases we con-
sidered, our heuristic algorithm allocated requestors with tight latency requirements
to the same number of channels as the optimal algorithm and hence both of have the
same amount of over-allocation of bandwidth.

0

20

40

60

80

100

Heuristic First-fit Interleave-all

M
a

p
p

in
g

 s
u

cc
e

ss
 r

a
ti

o
 (

%
)

Fig. 9. Mapping success ratio of the heuristic,
First-fit and Interleave-all algorithms normal-
ized to the optimal method.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96B
a

n
d

w
id

th
o

v
e

r-
a

ll
o

ca
ti

o
n

 (
%

)

Use case #

Fig. 10. Bandwidth over-allocation of the
Interleave-all algorithm with respect to the
optimal algorithm for different use-cases.

The First-fit algorithm failed for up to 19% of use-cases since it did not interleave
requestors that could have been successfully mapped by interleaving across multiple
channels. Note that we did not include communication requirements for requestors in
the use-cases to be fair against the First-fit algorithm which does not consider commu-
nication groups and including them in reality could further reduce the performance
of the algorithm. The Interleave-all algorithm failed for 33% of the use-cases, since it
over-allocates a much larger amount of bandwidth than required to meet the latency
requirements of requestors with tight latency requirements. Figure 10 shows the over-
allocated bandwidth by the First-fit algorithm (of 100 feasible mappings) with respect
to the heuristic and optimal algorithms.
To summarize, we have seen that our heuristic algorithm outperforms the First-fit

and Interleave-all algorithms in terms of mapping success ratio. Note that the front-
end for First-fit and Interleave-all algorithms could be simple without the need of
Channel Selector. However, the overhead in the worst-case latency due to the Channel
Selector is one clock cycle which is negligible. Moreover, we saw that the traditional
approach of interleaving every memory requestor across all memory channels available
is not an efficient method in real-time multi-processor platforms. In the next section,
we evaluate the trade-off between algorithm computation time and mapping success
ratio of our optimal and heuristic algorithms.

7.2.3. Computation time comparison. The computation time of the optimal algorithm in
CPLEX and the heuristic algorithm with different number of requestors and for differ-
ent number of memory channels are shown in Table III. Note that the solver takes a
significant amount of time to search through all solutions because of the large design
space of the optimization problem. Hence, the time taken by CPLEX shown in this ta-

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:21

ble is for finding the first optimal solution and this is observed from the solutions found
by the tool at different time instants until it terminates normally. We considered up
to 16 memory channels, as it will be a valid multi-channel memory configuration in
the near future [HMC]. It can be seen that, the heuristic algorithm runs much faster
(the First-fit and Interleave-all algorithms also run in less than a second) than the op-
timization tool, and is required to scale to future needs. To summarize, we have seen
that our solver-based method finds an optimal solution within few seconds to about
2 hours for small to medium-size systems. However, large size future systems require
the heuristic algorithm to be analyzed in reasonable time and this comes at a reduction
of approximately 7% in success ratio of the mapping.

Table III. Tool vs Heuristic - computation time

Channels Requestors CPLEX Heuristic

4
25 7 mins
50 25 mins < 1 sec
100 2 hrs

8
25 4 hrs
50 1 day < 1 sec
100 > 2 days

16
25
50 > 3 days < 1 sec
100

8. CASE STUDY: CONFIGURING A WIDE IO DRAM IN A HD VIDEO AND GRAPHICS
PROCESSING SYSTEM

In this section, we present a case study where we use the proposedmulti-channel mem-
ory controller and mapping algorithm to configure a 4-channel Wide IO SDR 200MHz
DRAM [JEDEC] device in a HD video and graphics processing system. First, we derive
memory subsystem requirements for the video processing system, and then show the
configuration of the multi-channel memory controller for the Wide IO memory device.

8.1. HD video and graphics processing system requirements

A HD video (1080p) and graphics processing system with a Unified Memory Archi-
tecture (UMA) is shown in Figure 11. This system is based on the industrial systems
from [Steffens et al. 2008] and [Stevens 2010] combined to create a suitable load for
a modern multi-channel memory. The Input Processor (IP) receives the encoded video
stream, the Video Engine (VE) decodes the video, the GPU performs post-processing
(e.g. video overlay) and finally, the HDLCD Controller (HDLCD) sends the screen re-
fresh. In addition, the host CPU and a Direct Memory Access (DMA) controller require
memory access to perform system-dependent activities in UMAs [Stevens 2010]. For
simplicity, we do not show the DMA block. The GPU and CPU requirements are based
on [Stevens 2010], and the IP requirements on [Steffens et al. 2008]. The VE and
HDLCD requirements are computed considering the requirements for HD video with
a resolution of 1920× 1080, 8 bpp and 30 fps [Bonatto et al. 2011].

Input

Processor (IP)
GPU

Video

Engine (VE)

HDLCD Controller

(HDLCD)

Multi-channel Memory Controller

Multi-channel DRAM

CPU

IPout VEoutVEin
GPUoutGPUin LCDin

Fig. 11. Memory-centric architecture of a HD video and graphics processing system.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:22 M.D.Gomony et al.

The Input Processor (IP) receives an H.264 encoded YUV 4:2:0 video stream with a
resolution of 720×480, 12 bpp, at a frame rate of 30 Hz [Steffens et al. 2008], and writes
to memory (IPout) at 1 MB/s. The VE generates traffic for reading the compressed video
and reference frames for motion compensation (VEin), and decoder output (VEout).
The motion compensation is the most bandwidth demanding traffic, and requires at
least 769.8 MB/s to decode the video samples at a resolution of 1920 × 1080, 8 bpp, at
30 fps [Hongqi et al. 2007; Bonatto et al. 2011]. The bandwidth requirement to output
the decoded video image is 93.3 MB/s. These worst-case bandwidth requirements must
be satisfied to meet the sufficient bandwidth requirements over a frame period. We
consider the transaction size of IP and VE as 128 B.
The bandwidth requirement by the GPU depends on the complexity of the frame to

be processed. Assuming processing requirements of 50 MB/frame in the worst-case,
the GPU needs on average a bandwidth of 1500 MB/s [Stevens 2010]. The GPU traffic
can be split into the pixels read by GPU for processing (GPUin) and the frame being
rendered by the GPU (GPUout). The GPU does not know the complexity of a frame
in advance, and hence it completes processing the frame at its maximum rate and
remains idle until the next frame. We consider GPUout has as a firm requirement
in order to meet the deadline of 16.6 ms for every frame (for 60 Hz screen refresh).
Hence, GPUout needs a bandwidth of at least 248.8 MB/s. Conservatively, we allocate
a bandwidth of 1000 MB/s to GPUin. In total, we allocate a worst-case guaranteed
bandwidth of 1249.8 MB/s to the GPU, which is conservative compared to its average
bandwidth requirement of 1500 MB/s [Stevens 2010]. We assume a GPU cache-line
size of 256 B for the transaction size.
The HDLCD is latency critical [Steffens et al. 2008], and continuously scans the

frame buffer at a constant rate. For an uncompressed 1080p 60 Hz display at 32 bpp,
the HDLCD requires at least 248.8 MB/s to output a frame every 33.3 ms. Note that
each rendered frame is displayed two times by the LCD controller. For a LCD DMA
burst size of 256 B, the latency requirement would be 1028.8 ns, which is equal to 205
clock cycles for a 200 MHz memory device. The CPU is cache-based and has a cache
line size of 64 B [Stevens 2010] . We allocate a bandwidth of 150 MB/s to the latency-
sensitive system-dependent bandwidth requirements by the CPU and DMA [Stevens
2010]. The summary of system requirements are shown in Table IV. The requestors
that need to communicate are assigned the same group number g.

8.2. Configuring the Wide IO DRAM

For the Wide IO SDR 200 MHz device with 4 memory channels, we selected
an access granularity of 64 B in each channel that provides a worst-case band-
width of 966.9 MB/s. This configuration provides sufficient guaranteed bandwidth
of 3867.6 MB/s (4 × 966.9 MB/s) to meet the requirements of all requestors with
2511.7 MB/s considering the 35% slack for over-allocation. We selected a service unit
size equal to the access granularity of 64 B, since it is smaller than most of the request
sizes in Table IV, which allows interleaving of the memory requests across channels.
For the service unit size of 64 B, it takes 13 clock cycles to perform a read or write
operation (service cycle), and hence we choose this as the TDM slot size. Our optimiza-
tion problem formulation in CPLEX took about 10 minutes and the heuristic algorithm
less than a second to find a valid mapping of requestors to the memory channels with
a frame size of 10. Both the methods provided the same mapping result, shown in
Table V.
It can be seen that the requestors GPUout and LCDin are allocated to a single mem-

ory channel. Note that the required rate by each of those requestors is 0.25 and the
rate allocated is 0.5 i.e., 0.5 × 996.9 = 483.4 MB/s, which amounts to an over-allocated
bandwidth of 241.7 MB/s. The over-allocation primarily is due to its tight latency re-
quirement and secondarily due to the discretization of the rate. Hence, interleaving
them across memory channels could result in much larger over-allocation of rate as we

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:23

Table IV. Memory subsystem requirements

Requestor b̌ (MB/s) L̂ (cycles) s (B) g
IPout 1 - 128 1
VEin 769.8 - 128 1
VEout 93.3 - 128 2
GPUin 1000 - 256 2
GPUout 248.8 205 256 3
LCDin 248.8 205 256 3
CPU 150 - 64 4
Total 2511.7

Table V. Mapping of requestors - allocated service units & rates

Requestor Channel 1 Channel 2 Channel 3 Channel 4
N1 ρ′1 N2 ρ′2 N3 ρ′3 N4 ρ′4

IPout 2 0.10 0 0 0 0 0 0
VEin 2 0.80 0 0 0 0 0 0
VEout 0 0 0 0 1 0.10 1 0.10
GPUin 0 0 0 0 2 0.60 2 0.60
GPUout 0 0 4 0.50 0 0 0 0
LCDin 0 0 4 0.50 0 0 0 0
CPU 0 0 0 0 0 0 1 0.20
Total 4 0.90 8 1.00 3 0.70 4 0.90

have described in Section 4.1. GPUin is interleaved across two memory channels, since
its bandwidth requirement of 1 GB/s cannot be satisfied in a single channel. VEout is
also interleaved across the same set of channels as GPUin, since they communicate
and hence belong to the same group. However, over-allocation of rate is not required
for GPUin and VEout because of their relaxed latency requirements, but for the dis-
cretization of their rates. The remaining requestors are not interleaved across memory
channels as their bandwidth and latency requirements are satisfied by mapping to a
single memory channel. From the above discussion, it is clear that the traditional ap-
proach of always interleaving all memory requestors across all memory channels does
not work for this use-case.
To summarize, the requests from the requestors are interleaved across memory

channels at different granularities depending on their latency/bandwidth require-
ments, request sizes and/or communication requirements, for optimal memory band-
width utilization. In total, we have a slack bandwidth of 483.4 MB/s which could be
allocated to soft/non-real time requestors in the system which improves their perfor-
mance. Memory capacity requirements of the requestors generally also impact the in-
terleaving of requests across channels, however, the memory capacity requirements by
these requestors in our use case were not large enough to impact the mapping results.
Hence, it is clear that for optimal memory bandwidth utilization, we need a config-
urable memory controller architecture that enables interleaving of memory requests
across memory channels in different granularities and can be allocated with different
rates in different memory channels.

9. CONCLUSIONS

Sharedmulti-channel memories in multi-processor platforms for real-time systems are
tedious to configure and verify. As a first work in this direction, we presented a real-
time multi-channel memory controller architecture that can interleave memory re-
quests across multiple memory channels at different granularities. We also presented
an optimal method based on an integer programming problem formulation and a fast
heuristic algorithm to map memory clients to the memory channels and configure the
multi-channel memory controller, while minimizing bandwidth utilization. We show
that for a use-case scenario consisting of 4 memory channels and up to 100 memory
requestors, a solver can find an optimal mapping in 2 hours, and our heuristic tool in
less than 1 second. Also, we show that our heuristic algorithm finds an optimal solu-
tion in less than 1 second with up to 16 memory channels, which clearly outperforms
the solver in terms of scaling for the future needs. This comes at a cost of 7% reduction
in successfully mapped use-cases, which is significantly lower than the failure ratios
19% and 33% of two existing mapping algorithms. Finally, we demonstrated the ef-
fectiveness of our work in a real use-case scenario by configuring a Wide IO DRAM
controller in a HD video processing system.
In this work, we have evaluated the conservativeness of the real-time guarantees

provided to the firm real-time clients. In the future, we would like to evaluate the
average-case performance gain of the soft real-time clients in the system by allocating
them the slack bandwidth after mapping the firm real-time clients.

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

X:24 M.D.Gomony et al.

REFERENCES

E. Aho, J. Nikara, P.A. Tuominen, and K. Kuusilinna. 2009. A case for multi-channel memories in video
recording. In Design, Automation Test in Europe Conference Exhibition (DATE), 2009. 934–939.

B. Akesson and K. Goossens. 2011a. Architectures and modeling of predictable memory controllers for im-
proved system integration. In Design, Automation Test in Europe Conference Exhibition (DATE), 2011.
1–6.

B. Akesson and K. Goossens. 2011b.Memory Controllers for Real-Time Embedded Systems (first edition ed.).
Springer.

B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. 2008. Real-Time Scheduling Using Credit-
Controlled Static-Priority Arbitration. In Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), 2008. 14th IEEE International Conference on. 3–14.

M. Awasthi, D.W. Nellans, K. Sudan, R. Balasubramonian, and A. Davis. 2010. Handling the problems and
opportunities posed by multiple on-chip memory controllers. In Proceedings of the 19th international
conference on Parallel architectures and compilation techniques (PACT ’10). ACM, 319–330.

S. Bayliss and G.A. Constantinides. 2012. Analytical synthesis of bandwidth-efficient SDRAM address gen-
erators. Microprocess. Microsyst. 36, 8 (Nov. 2012), 665–675.

A.C. Bonatto, A.B. Soares, and A.A. Susin. 2011. Multichannel SDRAM controller design for H.264/AVC
video decoder. In Programmable Logic (SPL), 2011 VII Southern Conference on. 137–142.

C. Bouquet. 2000. Optimal Multi-channel Memory Controller System. Patent number: 6643746. (2000).

F. Cabarcas, A. Rico, Y. Etsion, and A. Ramirez. 2010. Interleaving granularity on high bandwidth memory
architecture for CMPs. In Embedded Computer Systems (SAMOS), International Conference on. 250–
257.

P. Casini. 2008. SoC Architecture to Multichannel Memory Management Using Sonics IMT. White paper.
(2008). Sonics, inc.

CPLEX. IBM ILOG CPLEX Optimizer. http://www.ibm.com.

R.L. Cruz. 1991. A calculus for network delay. II. Network analysis. Information Theory, IEEE Transactions
on 37, 1 (1991), 132–141.

M.D. Gomony, B. Akesson, and K. Goossens. 2013. Architecture and optimal configuration of a real-time
multi-channel memory controller. In Design, Automation Test in Europe Conference Exhibition (DATE),
2013. 1307–1312.

M.D. Gomony, C. Weis, B. Akesson, N. Wehn, and K. Goossens. 2012. DRAM selection and configuration for
real-time mobile systems. In Design, Automation Test in Europe Conference Exhibition (DATE). 51–56.

S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. 2013. A Reconfigurable Real-Time SDRAMController
for Mixed Time-Criticality Systems. In Int’l Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2013.

HMC. http://www.hybridmemorycube.org.

H. Hongqi, X. Jiadong, D. Zhemin, and S. Jingnan. 2007. High Efficiency Synchronous DRAM Controller for
H.264 HDTV Encoder. In Signal Processing Systems, 2007 IEEE Workshop on. 373–376.

JEDEC. Wide I/O Single Data Rate Specification. http://www.jedec.org.

M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. 1991. Weighted round-robin cell multiplexing in a
general-purpose ATM switch chip. Selected Areas in Communications, IEEE Journal on 9, 8 (1991),
1265–1279.

H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. 2014. Bounding memory interference
delay in COTS-based multicore systems. In IEEE Real-Time Technology and Applications Symposium
(RTAS 14).

P. Kollig, C. Osborne, and T. Henriksson. 2009. Heterogeneous multi-core platform for consumer multimedia
applications. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’09).
European Design and Automation Association, 1254–1259.

C. Lee, M. Potkonjak, and W.H. Mangione-Smith. 1997. MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems. In Microarchitecture, 1997. Proceedings., Thirtieth Annual
IEEE/ACM International Symposium on. 330–335.

Y. Li, B. Akesson, and K. Goossens. 2014. Dynamic Command Scheduling for Real-TimeMemory Controllers.
In Proc. Euromicro Conference on Real-Time Systems (ECRTS).

C. Lin and S.A. Brandt. 2005. Improving Soft Real-Time Performance Through Better Slack Management.
In Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International. 12 pp.–421.

I. Loi and L. Benini. 2010. An efficient distributed memory interface for many-core platform with 3D stacked
DRAM. In Design, Automation Test in Europe Conference Exhibition (DATE), 2010. 99–104.

D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy, and D. Dutoit. 2012.
Platform 2012, a many-core computing accelerator for embedded SoCs: performance evaluation of visual

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory ChannelsX:25

analytics applications. In Proceedings of the 49th Annual Design Automation Conference (DAC ’12).
ACM, 1137–1142.

J. Nikara, E. Aho, P.A. Tuominen, and K. Kuusilinna. 2009. Performance analysis of multi-channelmemories
in mobile devices. In System-on-Chip (SOC), 2009. International Symposium on. 128–131.

Y. Ou, N. Xiao, and M. Lai. 2011. A Scalable Multi-channel Parallel NAND Flash Memory Controller Archi-
tecture. In Chinagrid Conference (ChinaGrid), 2011 Sixth Annual. 48–53.

M. Paolieri, E. Quiñones, and F. J. Cazorla. 2013. Timing Effects of DDR Memory Systems in Hard Real-
time Multicore Architectures: Issues and Solutions. ACM Trans. Embed. Comput. Syst. 12, 1s, Article
64 (March 2013), 26 pages.

J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. 2011. PRET DRAM controller: bank privatization
for predictability and temporal isolation. In Proceedings of the seventh IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis (CODES+ISSS ’11). ACM, 99–108.

J.C. Sancho, M. Lang, and D.K. Kerbyson. 2010. Analyzing the trade-off between multiple memory con-
trollers and memory channels on multi-core processor performance. In Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on. 1–7.

H. Shah, A. Raabe, and A. Knoll. 2012. Bounding WCET of applications using SDRAM with Priority Based
Budget Scheduling in MPSoCs. In Design, Automation Test in Europe Conference Exhibition (DATE),
2012. 665–670.

M. Shreedhar and G. Varghese. 1996. Efficient fair queuing using deficit round-robin. Networking,
IEEE/ACM Transactions on 4, 3 (1996), 375–385.

SimpleScalar. http://www.simplescalar.com.

S. Sriram and S. S. Bhattacharyya. 2000. Embedded Multiprocessors: Scheduling and Synchronization (1st
ed.). Marcel Dekker, Inc., New York, NY, USA.

L. Steffens, M. Agarwal, and P. Wolf. 2008. Real-Time Analysis for Memory Access in Media Processing SoCs:
A Practical Approach. In Real-Time Systems, 2008. ECRTS ’08. Euromicro Conference on. 255–265.

M. Steine, M. Bekooij, and M. Wiggers. 2009. A Priority-Based Budget Scheduler with Conservative
Dataflow Model. In Digital System Design, Architectures, Methods and Tools, 2009. DSD ’09. 12th Eu-
romicro Conference on. 37–44.

A. Stevens. 2010. QoS for High-Performance and Power-Efficient HD Multimedia. ARM White paper,
http://wwww.arm.com. (2010).

D. Stiliadis and A. Varma. 1998. Latency-rate servers: a general model for analysis of traffic scheduling
algorithms. Networking, IEEE/ACM Transactions on 6, 5 (1998), 611–624.

Texas Instruments Inc. TMS320VC5505/5504 DSP Direct Memory Access (DMA) Controller.
http://www.ti.com.

C. H. (Kees) van Berkel. 2009. Multi-core for mobile phones. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’09). 1260–1265.

P. van der Wolf and J. Geuzebroek. 2011. SoC infrastructures for predictable system integration. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2011. 1–6.

Z.P. Wu, Y. Krish, and R. Pellizzoni. 2013. Worst Case Analysis of DRAM Latency in Multi-requestor Sys-
tems. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th. 372–383.

Xilinx Inc. LogiCORE IP XPS Multi-channel External Memory Controller (XPS MCH EMC).
http://www.xilinx.com.

G. Zhang, H. Wang, X. Chen, S. Huang, and P. Li. 2012. Heterogeneous multi-channel: Fine-grained DRAM
control for both system performance and power efficiency. InDesign Automation Conference (DAC), 2012
49th ACM/EDAC/IEEE. 876–881.

T. Zhang, K. Wang, Y. Feng, Y. Chen, Q. Li, B. Shao, J. Xie, X. Song, L. Duan, Y. Xie, X. Cheng, and Y. Lin.
2010. A 3D SoC design for H.264 application with on-chip DRAM stacking. In 3D Systems Integration
Conference (3DIC), 2010 IEEE International. 1–6.

Z. Zhu, Z. Zhang, and X. Zhang. 2002. Fine-grain priority scheduling on multi-channel memory systems.
In High-Performance Computer Architecture, 2002. Proceedings. Eighth International Symposium on.
107–116.

Received month year; revised month year; accepted month year

ACM Transactions on Embedded Computing Systems, Vol. X, No. X, Article X, Publication date: January 2014.

