
Dynamic Command Scheduling for
Real-Time Memory Controllers

Yonghui Li1, Benny Akesson2 and Kees Goossens1
1Eindhoven University of Technology, 2Czech Technical University in Prague

Abstract—Memory controller design is challenging as real-
time embedded systems feature an increasing diversity of real-
time and non-real-time applications with variable transaction
sizes. To satisfy the requirements of the applications, tight bounds
on the worst-case execution time (WCET) of memory transactions
must be provided to real-time applications, while the lowest
possible average execution time must be given to the rest. Existing
real-time memory controllers cannot efficiently achieve this goal
as they either bound the WCET by sacrificing the average
execution time, or are not scalable to directly support variable
transaction sizes, or both.

In this paper, we propose to use dynamic command schedul-
ing, which is capable of efficiently dealing with transactions with
variable sizes. The three main contributions of this paper are: 1)
a back-end architecture for a real-time memory controller with a
dynamic command scheduling algorithm, 2) a formalization of the
timings of the memory transactions for the proposed architecture
and algorithm, and 3) two techniques to bound the WCET of
transactions with both fixed and variable sizes, respectively. We
experimentally evaluate the proposed memory controller and
compare both the worst-case and average-case execution times of
transactions to a state-of-the-art semi-static approach. The results
demonstrate that dynamic command scheduling outperforms the
semi-static approach by 33.4% in the average case and performs
at least equally well in the worst case. We also show the WCET is
tight for transactions with fixed and variable sizes, respectively.

I. INTRODUCTION

The complexity of real-time system design is growing as
an increasingly diverse mix of real-time and non-real-time ap-
plications are integrated on the same platform. To provide the
necessary computational power at reasonable power consump-
tion, there is a trend towards heterogeneous multi-core systems
where important functions are accelerated in hardware [1]–[3].
The diversity of applications and processing elements in such
systems is reflected in the memory traffic going to the shared
SDRAM, which features an irregular mix of transactions with
variable sizes and heterogeneous requirements. For example,
the memory clients in the NXP DTV SoC [4] have small
and large transaction sizes, as well as different bandwidth and
response time requirements. Memory transactions from real-
time applications require tightly bounded worst-case execution
times (WCET), while the transactions from non-real-time
applications need the lowest possible average execution time to
make the applications responsive. A particular challenge when
bounding the WCET of memory transactions is that the bound
depends on the memory map configuration, which is used
to provide different trade-offs between bandwidth, execution
time, and power consumption, by varying the number of banks
that are used in parallel to serve a transaction [5].

Most existing memory controllers do not fully satisfy
these requirements since they are not designed with real-time
applications in mind and do not provide bounds on WCET
of transactions [6]–[8]. Existing real-time memory controllers
address real-time requirements by using either (semi-)static
command scheduling, but do not provide low average execu-
tion time to memory traffic [9]–[11], or dynamic scheduling,

as they are limited in architecture or analysis to a single
transaction size and memory map configuration [12]–[15].

This paper addresses the problem of providing tight bounds
on the execution time of real-time memory transactions, while
providing low average execution time to non-real-time trans-
actions in systems with variable transaction sizes and different
memory map configurations. The three main contributions
of this paper are: 1) A back-end architecture of a real-
time memory controller with a dynamic command scheduling
algorithm. It accepts transactions with variable sizes and
supports different memory map configurations. This back-end
can be used with existing real-time memory controller front-
ends (transaction schedulers), such as [16]. 2) A formalization
of the timing behavior of the proposed dynamic command
scheduler that captures all the SDRAM timing dependencies
within and between banks. 3) The WCET for transactions with
both fixed and variable sizes under different memory map
configurations is derived in two ways based on the proposed
formalism. The first one is analytical and is easy to use, but
produces a slightly pessimistic WCET. The second way uses
the formalism to derive the worst-case initial state of banks for
a given transaction and then uses an off-line implementation
of the scheduling algorithm to compute a tight WCET.

We experimentally evaluate the proposed architecture and
analysis with fixed and variable transaction sizes, respectively.
The results indicate that the analysis is valid, and the WCET
of transactions is tightly bounded. Moreover, we show that
our dynamic command scheduling outperforms a state-of-the-
art semi-static approach [10] in the average case and performs
equally well in the worst case. The results also show that small
transactions benefit more from dynamic command scheduling
than large ones.

In the remainder of this paper, Section II describes the
related work. The background of SDRAM memories and real-
time memory controllers is given in Section III. Section IV
presents the back-end architecture and the dynamic command
scheduling algorithm. In Section V, the timing behavior of
transactions under our dynamic command scheduling is for-
malized. Section VI provides the WCET bound on the basis
of the proposed formalism. Experimental results are presented
in Section VII, before the paper is concluded in Section VIII.

II. RELATED WORK

Analyzing the impact of using a shared memory on worst-
case execution time of applications receives increasing at-
tention in the real-time community, as multi-core systems
challenge the traditional processor-centric view on systems.
Most of this work focus on commercial-of-the-shelf systems
and consider the system bus and the memory controller as a
poorly documented black box, whose access time is typically
represented by a constant obtained by assumptions or using
measurements [17]–[19]. The work in this paper is comple-
mentary to this effort, as it focuses on the architecture and
scheduling algorithm of an important part of that black box

1

(the memory controller back-end) and provides results that are
required to derive that constant for different transaction sizes
and memory map configurations.

Several types of real-time memory controller designs have
been proposed in the past decade. Static [9] or semi-static [10],
[11] controller designs are used to achieve bounded execution
time. In [9], an application-specific static command schedule is
constructed using a local search method. It requires a known
static sequence of transactions, which is not available with
multiple independent requestors. A semi-static method is pro-
posed in [10] that generates static memory patterns [20], which
are shorter sub-schedules of SDRAM commands, at design
time and schedules them dynamically based on incoming trans-
actions at run time. However, this solution cannot efficiently
handle variable transaction sizes as the patterns are generated
to read or write a fixed amount of data. [11] presents a semi-
static predictable DRAM controller that partitions banks or
sets of banks into virtual private resources with independent
repeatable actual timing behavior. However, since accesses to
virtual resources must have constant duration, this controller
is unable to provide competitive average execution times for
transactions with variable sizes.

Dynamic command scheduling is used because it more
flexibly copes with varied transaction sizes and it does not
require schedules or patterns to be stored in hardware. Several
dynamically scheduled memory controllers have been pro-
posed in the context of high-performance computing, e.g., [6]–
[8]. These controllers aim at maximizing average performance
and do not provide any bounds on execution times, making
them unsuitable for real-time systems. Paolieri et al. [12] pro-
pose an analytical model to bound the execution time of trans-
actions under dynamic command scheduling on a modified
version of the DRAMSim memory simulator [21], although
the modifications to the original scheduling algorithm are not
specified. In addition, the analytical model is limited to a fixed
transaction size and a single memory map configuration. This
also applies to [13], where the worst-case execution time of
transactions with fixed size is analyzed on an FPGA instance
of a dynamically scheduled Altera SDRAM controller using
an on-chip logic analyzer. In [15], a dynamically scheduled
controller is presented that combines the notion of bank
privatization with an open-page policy, which results in both
low worst-case and average-case execution time. However, the
analysis is limited to a single transaction size and memory map
configuration, and the assumption that the number of memory
clients is not greater than the number of memory banks.

In short, current real-time memory controllers do not
efficiently address the dynamic memory traffic in complex
heterogeneous systems because of the limitations either in
architecture, or in the provided analysis with respect to varied
transaction sizes and memory map configurations, or both.
To fill this gap, this paper presents both an architecture of a
dynamically scheduled back-end and a corresponding analysis
that supports different transaction sizes and memory map
configurations. This requires a more elaborate analysis, since
different timing constraints become bottlenecks for different
transaction sizes and memory map configurations, requiring
more of them to be included in the model. Our analysis is
supported by a formal framework in which the correctness of
the results are proven.

III. BACKGROUND

This section presents the required background information
to understand the contents of this paper. The architecture and

basic operations of SDRAM memories are presented, followed
by an explanation of a general real-time memory controller.

A. Introduction to SDRAM Memories

An SDRAM chip compromises a set of banks, which
contains memory elements arranged in rows and columns [22],
as shown in Fig. 1(a). Multiple such chips can be combined to
form a DIMM with one or more ranks, although without loss
of generality, this paper focuses on a single chip configuration,
which is common in the embedded domain. The SDRAM
interface consists of command, address, and data buses. A
single command is transferred per clock cycle, while two data
words are transferred per cycle by a contemporary DDR3
memory. To issue a command, several timing constraints have
to be satisfied as specified by the JEDEC DDR3 standard [23].
Note that although this paper focuses on DDR3 SDRAMs, it
requires only minor adaptations to work with other types of
SDRAMs, such as DDRx, LPDDRx and Wide I/O.

To access a bank, the contents of the required row must be
copied into the row buffer by issuing an Activate (ACT) com-
mand, which takes tRCD cycles. As a result, the required row
is open. Then, a set of Read (RD) or Write (WR) commands are
issued to the open row to transfer bursts of a programmed burst
length (BL) (typically 8 words). The required data becomes
available on the data bus after tRL or tWL cycles when
issuing the RD or WR command, respectively. Before activating
another row in the same bank, the current row must be closed
by issuing a Precharge (PRE) command to write back the
contents to the storage cells. The PRE command can be issued
at least tRAS cycles after the ACT command and tRTP cycles
after the RD command to the same bank. It is either issued via
the command bus or by adding an auto-precharge flag to a RD
or WR command, where precharging is automatically triggered
when all timing constraints are satisfied. A PRE command
following a WR cannot be issued until tWR cycles after the
last data has been written to the bank.

Memory array

Row Buffer

B
A

N
K

0

B
A

N
K

1

B
A

N
K

2

B
A

N
K

3

Precharge

(PRE)

Activate

(ACT)

WriteRead

(a) SDRAM architecture

ACT RW PREACT

0D 1D 2D 3D

NOPs´
CMD

Bus

Data

Bus

tRRD
tRCD

tCCD
tRL

BL/2

tRAS
tRTP

tRP

tACTmin=tRRD tRWmin=tCCD

RW RW RW PRENOPs´ NOPs´ NOPs´ NOPs´ NOPs´ NOPs´ NOPs´

(b) An example of timing constraints

Fig. 1. SDRAM architecture and an example of timing constraints.

Similarly, multiple banks are accessed by scheduling a
number of commands. For example, the accesses of two banks
are illustrated in Figure 1(b). An ACT command is scheduled
to open the required row in one bank and two consecutive
RD or WR commands (RW) that have sequential addresses
within the same row are scheduled to read or write data. The
minimum time between two RW commands is tCCD. Finally, a
PRE command is issued after the last access to the opened row
of the bank. Another bank is accessed similarly. Particularly, its
ACT command is issued earlier than the RW command to the
first bank to exploit bank parallelism. Next, the four activate

2

window (FAW) and refresh constraints are independent of a
particular bank. These timing constraints are summarized in
Table I, where a 16-bit DDR3-800D memory device with a
capacity of 2 Gb is taken as an example.

TABLE I. TIMING CONSTRAINTS FOR DDR3-800D SDRAM [23].

TC Description Cycles

tCK Clock period 1
tRCD Minimum time between ACT and RD or WR commands to

the same bank
5

tRRD Minimum time between ACT commands to different banks 4
tRAS Minimum time between ACT and PRE commands to the

same bank
15

tFAW Window in which at most four banks may be activated 20
tCCD Minimum time between two RD or two WR commands 4
tWL Write latency. Time after a WR command until first data is

available on the bus
5

tRL Read latency. Time after a RD command until first data is
available on the bus

5

tRTP Minimum time between a RD and a PRE command to the
same bank

4

tRP Precharge period time 5
tWTR Internal WR command to RD command delay 4
tWR Write recovery time. Minimum time after the last data has

been written to a bank until a precharge may be issued
6

tRFC Refresh period time 64
tREFI Refresh interval 3120

B. Real-Time Memory Controllers

A general real-time memory controller is composed of a
front-end and a back-end, as shown in Fig. 2. The front-end
receives transactions from memory clients, such as processors
or hardware accelerators, and buffers them in separate queues
per client. One of these transactions is then selected by
the arbiter according to some policies, such as TDM [24],
Round Robin [12] or Credit-Controlled Static-Priority Arbi-
tration [25], and sent to the back-end.

Req&Resp buffer

Arbiter

SDRAM
Memory

Map

Command

Generator

Command

Scheduler

SDRAM

cmd

Physical

address

Logical

address

Data

Resource

Front-end

SDRAM Back-end
Client 1

Client N

Trans

Req&Resp buffer

Fig. 2. A general real-time SDRAM controller supporting N clients.

In the back-end, the logical address of a transaction is
translated into a physical address (bank, row, and column)
according to the memory map. The configuration of this
memory map determines how a transaction is split over the
memory banks and thus the degree of bank parallelism used
when serving it. This is captured by two critical parameters: the
bank interleaving number (BI) and the burst count (BC) [5]. BI
determines the number of banks that are accessed on behalf
of a transaction while BC represents the number of RD or
WR commands per bank. The product of BI and BC is always
constant for a given transaction size, since it corresponds to a
fixed number of read or write bursts. The command generator
produces the appropriate commands. Finally, the memory is
accessed by the command scheduler issuing these commands
subject to the timing constraints of the memory.

Real-time memory controllers [10]–[13] typically employ
a close-page policy, under which the SDRAM controller
precharges the open row as soon as possible after each bank
access. The advantage is that the time from the precharge to
activate can be (partially) hidden by bank parallelism. The
execution time of a transaction is minimized if it requires
access to a different row than the currently opened one. A
close-page policy minimizes the worst-case execution time.

IV. DYNAMICALLY SCHEDULED BACK-END

This section presents our proposed dynamically scheduled
memory controller back-end. The architecture of the back-
end is described, followed by a specification of the dynamic
scheduling algorithm. Here, we focus on the functional behav-
ior of the architecture and later formalize the timing behavior
in Section V.

A. Back-End Architecture

The back-end of a memory controller receives transactions
scheduled by the front-end, which are read or write requests
with different sizes. Each received transaction is executed
by generating and scheduling commands to one or more
consecutive banks of the memory. The first step towards this
is to determine the BI and BC of the transaction, which are
needed by the command generation. This is implemented by
means of a Lookup Table, as shown in Fig. 3, mapping each
transaction size to a (BI, BC) pair. These are determined at
design time when the memory map configuration is chosen and
they are programmed via a configuration interface (cfg) when
the system is initialized. If there is no (BI, BC) corresponding
to a transaction size in the Lookup Table, the (BI, BC) related
to a larger size (nearest) is used with the additional data being
masked out. A methodology to choose the memory map con-
figuration based on the requirements of bandwidth, execution
time and power consumption has been presented in [5]. Once
the BI and BC are obtained, the Memory Map module in
Fig. 3 translates the logical address of the transaction into the
initial physical address, which consists of the starting bank bs,
row and column. The physical address for every subsequent
command of the transaction can then be calculated based on the
initial physical address. Then, (BI, BC, bs) of the transaction
is inserted into the parameter queue (ParaQueue). This queue
keeps track of the order of transactions in the back-end and is
used by the scheduling algorithm in Section IV-B.

Trans Data

SDRAM

Back-End

Lookup

Table

Command

Generator

BI

BC

Memory

Map

Trans

Size

Logical

Address

Physical

Address

ARR
CMD

CMD Queues
CMD

tCCD

tSwitch

tRRD

tFAW

tRP

tRCD

tRWTP

tRAS

L
o
ca

l
T

C
C

G
lo

b
al

T
C

C

ACT

RD/WR

C
M

D

S
ch

ed
u
le

r

Arbiter8

CMD

8888

BI

BC

Bank 0

Bank 1

Bank 7

cfg

ParaQueue

BI

BC

sb

PQ_remove_head cmdGen

V
tim

in
g

cm
d
T

y
p
e

PQ.head

&

PQ.tail

T
im

in
g

S
el

ec
to

r

Fig. 3. Architecture of the dynamically scheduled SDRAM controller.

Based on (BI, BC) and the physical address, the Command
Generator generates the memory commands to access all
the required banks. BI determines the number of required
ACT commands while BC determines the number of RD or
WR commands per bank access. First, an ACT command is
generated to open a row in a bank, followed by BC number
of generated RD or WR commands to read or write data. In
addition, an auto-precharge flag is attached to the last RD or
WR command to trigger the closing of the opened row. These
commands are sequentially inserted into the command queue
corresponding to the bank. This is repeated for each bank
accessed by the transaction. Note that the command generation

3

for a transaction cannot start until all the ACT commands
of the previous transaction are no longer in the command
queue, i.e., issued to the memory. On the same condition,
the front-end sends a new transaction to the back-end, such
that unnecessary transactions waiting in the front-end instead.
This limits the size of the command queues, while provides
pipelining between transactions.

To account the timing constraints of the commands, tim-
ing counters are used. They are initialized with the timing
specifications given by the JEDEC DDR3 standard [23], and
count down towards zero on every clock signal. As shown
in Fig. 3, the timing constraint counters (TCC) include local
TCC and global TCC. The local TCC considers tRWTP, tRAS,
tRP and tRCD that constrain the command scheduling for
a single bank. tRP counts the time for precharging and is
reset according to tRWTP or tRAS, whichever is larger. The
global TCC considers tCCD, tRRD, tFAW and tSwitch, which
affect all banks. These timing constraints are all specified by
JEDEC, except tRWTP and tSwitch, which are derived from
the specification and are shown in Eq. (1) and (2), respectively.
tRWTP is the time between a RD or WR command and the
precharging to the same bank, while tSwitch gives the time
between two successive RD and/or WR commands. Due to the
double data rate of DDR SDRAM, BL/2 is the time consumed
transferring data associated with a RD or WR command.

tRWTP =

{

tRTP, PRE follows RD

tWL + BL/2 + tWR, PRE follows WR
(1)

tSwitch =

tRL + tCCD + 2tCK− tWL, WR follows RD

tWL + BL/2 + tWTR, RD follows WR

tCCD, other
(2)

When a command of the transaction moves to the head
of its command queue, the command (CMD) scheduler starts
trying to schedule it while satisfying the timing constraints.
As shown in Fig. 3, each Timing Selector has two inputs that
represent whether the timing constraints for ACT and RD or
WR are satisfied in the current clock cycle. An input is valid
only if the timing constraints for scheduling a command are
satisfied. The valid input is selected according to the command
at the head of the queue. Multiple Timing Selectors corre-
sponding to different banks may have a valid output at the same
time when the timing constraints for head commands in their
command queues are satisfied simultaneously, where these
commands are called valid commands. This implies command
scheduling collisions, since only one command can be issued
per cycle. Therefore, it requires an arbiter to choose only one
valid output of the Timing Selectors. In addition, the arbiter
has to guarantee an in-order execution of transactions, which
avoids the architectural and analysis cost of re-ordering. For
this, it uses a scheduling algorithm presented in Section IV-B.
Finally, the chosen command is removed from the head of
its command queue and is passed to the memory. Meanwhile,
both the local and global TCC associated with the scheduled
command are reset. This is shown by the feedback wires from
the output of the arbiter to the TCC in Fig. 3. Additionally, a
refresh command needs to be scheduled every tREFI cycles.
Once triggered, it is scheduled after the data transmission of
the executing transaction to prevent unnecessary interference,
while still ensuring that no refresh command is delayed more
than 9 × tREFI [23]. Refresh is also implemented by timing
counters, which are not depicted in Fig. 3 for simplicity.

B. Scheduling Algorithm

The scheduling algorithm in the back-end decides how a
command is chosen according to the inputs of the arbiter. It
has to solve three critical issues, namely: 1) a single command
must be chosen from a set of multiple valid commands; 2)
transactions must be executed in first-come-first-served (FCFS)
order to avoid reorder buffers; 3) to simplify logical-to-physical
address translation [5], successive banks of a single transaction
have to be accessed in ascending order. These issues are not
independent from each other and we proceed by explaining
how they are addressed by the scheduler. To guarantee the
FCFS, the valid commands of a transaction have higher priority
than those of the following transactions. Moreover, to transfer
data as quickly as possible to/from the memory, valid RD/WR
commands have higher priority than ACT commands. Within
a transaction, the head of a command queue corresponding to
a bank with a lower id has higher priority, forcing banks to be
accessed in ascending order.

The priorities are used to select a command from the
multiple valid commands in every cycle. As shown in Fig. 3,
the inputs of the arbiter include the outputs of the Timing
Selectors, the types (ACT, RD or WR) of each command at the
head of the command queues, and the head and tail elements
of the ParaQueue. These inputs are taken by Algorithm 1 and
represented by Vtiming, cmdType and PQ.head and PQ.tail, re-
spectively. The dimensions of Vtiming and cmdType are equal
to the number of banks (and hence command queues) in the
memory. For an arbitrary command at the head of command
queue i, cmdType[i] contains its type and Vtiming[i] (valid
or invalid) determines whether or not the timing constraints
of the command are satisfied. The outputs of Algorithm 1
are BankID, PQ_remove_head and cmdGen, where BankID
indicates the command queue whose head command can be
scheduled to bank BankID, and PQ_remove_head (true or
false) and cmdGen (true or false) decide whether to remove
the head of the ParaQueue and trigger command generation
for the next transaction.

Algorithm 1 Dynamic command scheduling

1: Inputs: PQ, Vtiming, cmdType
2: Internal state: bankRW, bankAct
3: Initialization: BankID ← null; cmdGen ← true;
4: PQ_remove_head ← false;
5: if bankAct = null then bankAct ← PQ.tail.bs; cmdGen ← false;
6: if bankRW = null then bankRW ← PQ.head.bs;
7: if cmdType[bankRW] = RD/WR and
8: Vtiming[bankRW] = valid then
9: BankID ← bankRW;

10: if last RD/WR of PQ.head transaction then
11: bankRW ← null;
12: PQ_remove_head ← true;
13: else if last RD/WR of PQ.head transaction to bank BankID
14: then bankRW ← bankRW+1;
15: else if bankAct != null
16: if cmdType[bankAct] = ACT and
17: Vtiming[bankAct] = valid then
18: BankID ← bankAct;
19: if last ACT of PQ.tail transaction then
20: bankAct ← null; cmdGen ← true;
21: else bankAct ← bankAct+1;
22: Output: BankID, PQ_remove_head, cmdGen

In Algorithm 1, a RD/WR command is checked whether
it is valid to be scheduled (line 8, 9). Otherwise, an ACT
command is checked (line 17, 18). In this way, it guarantees a
valid RD or WR command has higher priority than a valid ACT

4

command. Two extra variables bankAct and bankRW assist
in achieving the priorities. They provide the identifier of the
banks that can accept an ACT or a RD/WR command, respec-
tively. bankAct is increased by one after an ACT command
is selected (line 22), while bankRW increases by one only if
BC number of RD/WR commands of the current transaction
are scheduled to bank bankRW (line 12). This update scheme
ensures the banks are accessed in ascending order for each
transaction. bankAct and bankRW are initialized with the bs

of the tail and head of PQ, respectively (line 5, 6). Note that
command generation starts for a new transaction only if all
the ACT commands of previous transactions have been issued
(line 21). As a result, only the transaction associated with
PQ.tail has ACT commands in the command queues, and is
used for initializing bankAct. Transactions are hence served
in FCFS order and their corresponding banks are accessed
in ascending order, while priorities ensure that only a single
command is scheduled per cycle. Algorithm 1 thus addresses
all three critical issues mentioned above. Though command
priorities are used, there is no livelock or starvation since
transactions are executed in order.

V. FORMALIZATION OF COMMAND SCHEDULING

In this section, the formalization of dynamic command
scheduling is carried out considering the timing dependencies
for successive bank accesses. Based on the dependencies,
several basic equations are derived to calculate the time at
which a command is issued to a bank (referred to as the
scheduling time). For convenience, the notation in this section
is summarized in Table III as shown in the appendix.

A. Timing dependencies

In dynamic command scheduling, commands are scheduled
sequentially subject to their associated timing constraints,
resulting in scheduling dependencies. This is shown in Fig. 4,
where the dotted and solid arrows represent dependencies
between banks and within a single bank, respectively. The
bank access is tracked by an increasing variable j (j ≥ 0)
that is the bank access number. The scheduling of a command
depends on the previous commands, which are specified by
the input arrows. The parameters near the arrows specify the
number of cycles that the following command has to wait until
the timing constraints are satisfied. For example, the timing
constraints to schedule an ACT command include tRRD, tRP
and tFAW, previously described in Table I. Therefore, the block
of an ACT command (see Fig. 4) has three input arrows that
represent the corresponding timing constraints. The scheduling
of a RD or WR command has to satisfy the timing constraints
tRCD and tSwitch for the first RD or WR command of the
bank access. However, the following RD or WR commands
of the bank access only takes the timing constraint tCCD
into account. Finally, an auto-precharge must consider the
timing constraints tRAS and tRWTP. The timing dependencies
among the commands are illustrated in Fig. 4. Note that refresh
commands are not depicted because their impact on WCET can
be easily analyzed, as presented in Section VI. Moreover, the
effect of REF is negligible in memory interference delay [26],
and it is not a main concern in this paper.

According to Algorithm 1, an ACT command may be
blocked by a RD or WR command from previous bank ac-
cesses since they have higher priorities. Therefore, a command
scheduling conflict may be caused and this collision postpones
the ACT command by one cycle. The collision is depicted
by the filled circle in Fig. 4. The arrow corresponding to

the maximum time dominates the scheduling of a depen-
dent command, since all relevant timing constraints must be
satisfied. The PRE in Fig. 4 does not use the command
bus due to the auto-precharge policy, which cannot cause a
command collision. However, the time at which the auto-
precharge actually happens is necessary to determine when
the bank can be reactivated.

jACT 0

jRW
[0, 1]jBC -

1jBC

jRW
-tCCD

jPRE
tRCD tRWTP

tRAS

1jACT
+

0

1jRW
+

1[0, 1]jBC
+
-

1 1

1

jBC

jRW +
-

+

tCCD
1jPRE
+

tRAS

mPRE
tRP

tRRD

tRP

tRRD

tRRD

tRP

nPRE
tRP

4jACT
- tFAW

3jACT
- tFAWtFAW

1
1jACT
- jBank b

1 jBank b
+

tRWTP

tRWTP

tRWTP

tSwitch

tSwitch

tSwitch

tRCD

1

Fig. 4. Timing dependencies between successive bank accesses.

B. Formalization

Having explained the dependencies between commands in
a bank access according to the DDR3 standard and illustrated
them in Fig. 4, we analyze the execution time of a transaction
by computing the actual scheduling times of commands under
our dynamic scheduling algorithm. The worst-case execution
time is later computed in Section VI.

An arbitrary transaction Ti (∀i > 0) arrives at the interface
of the back end at time ta(Ti) which is defined by Definition 1.
We assume Ti uses BIi and BCi, and the starting bank is bs. A
transaction is executed by scheduling commands to a number
of banks. The bank access number j of accessing bs is given
by Eq. (3). It is the total number of bank accesses by previous
transactions.

Definition 1 (Arrival time). ta(Ti) is defined as the time at
which Ti arrives at the interface of the back-end.

j =

i−1
∑

k=0

BIk (3)

Based on Fig. 4, the timing dependencies of command
scheduling for Ti is illustrated in Fig. 5. It indicates the
command scheduling for Ti depends on that for the previous
transaction (s) Ti′(i

′ ≤ i). For ∀l ∈ [0,BIi−1], the (j+l)th bank
access is implemented by scheduling an ACTj+l and several
RD or WR commands to bank bj+l = bs + l. The RD or WR

commands are denoted by RWk
j+l, where ∀k ∈ [0,BCi − 1].

Moreover, an auto-precharge PREj+l is implemented after the
access of bank bj+l, and it is specified by an auto-precharge

flag issued together with RW
BCi−1
j+l . For BIi > 4, the scheduling

of some ACT commands also depends on the previous ACT
commands of Ti (not Ti−1) because of the four-activate window
(tFAW). As shown in Fig. 5, i′ = i if and only if BIi > 4.
Definition 2 defines the finishing time of Ti as the time

when the last RD or WR command RW
BCi−1
j+BIi−1 is scheduled

to bs+BIi−1. The starting time of Ti is defined as the earliest
time at which the scheduler tries to schedule its commands.
This is either one cycle after the finishing time of the previous
transaction Ti−1 or two cycles after the arrival time (pipeline
stages for the Lookup Table and Command Generation in
Fig. 3), whichever is larger. Lastly, the difference between
the finishing time and the starting time is referred to as the
execution time of the transaction, defined by Definition 4.

5

Definition 2 (Finishing time). tf(Ti) = t(RW
BCi−1
j+BIi−1)

Definition 3 (Starting time). ts(Ti) = max{ta(Ti)+2, tf(Ti−1)+
1}

Definition 4 (Execution Time). The execution time of Ti is
defined as tET(Ti) = tf(Ti)− ts(Ti) + 1.

0

jRW 1iBC

jRW
-tCCDtRCDtRP tRWTP tRP

[0, 1]iBC -

tRP

tRRD

1

1
iBC

jRW ¢ -

-

tFAW

tRP

tRAS

0

1ij BIRW
+ -

1

1
i

i

BC

j BIRW
-

+ -

0

1jRW
+

1

1
iBC

jRW
-

+

tFAW

tFAW

tSwitch

()i i iT
¢
¢ £

()i i iT
¢¢
¢¢ >

iT

 sBank b

1 sBank b +

1 s iBIBank b + -

tSwitch

tRCD

tRRD

tRWTP

tRWTP

tCCD

1

1

tRAS

tRAS

[0, 1]iBC -

[0, 1]iBC -

tCCD

tCCDtRCD

tRRD

tRRD

tCCD
tCCD

tRP

tRP

tRRD
1jACT
-

mPRE

4jACT
-

nPRE

3jACT
-

qPRE

5ij BIACT
+ -

jACT jPRE

1jACT
+

1ij BIACT
+ -

1jPRE
+

1ij BIPRE
+ -

1

Fig. 5. The timing dependencies of command scheduling for transaction Ti.

For Ti, Eq. (4) computes the scheduling time of ACTj+l

where m (m < j) is the latest bank access number to bank bj+l,
i.e., bm = bj+l. The max function guarantees that all the timing
constraints for scheduling ACTj+l are satisfied. In addition,
the scheduling time of ACTj+l is at least 2 cycles after Ti

arrives, which are consumed by looking up table and command
generation. In case of a command scheduling collision when
ACTj+l is blocked by a RD or WR command, C(j+l) is equal to
1 and 0 otherwise. Similarly, the scheduling time of RWk

j+l is
given by Eq. (5) and (6). Eq. (5) provides the scheduling time
of the first RD or WR command to bank bj+l. It depends on

t(RW
BCi−1
j+l−1), which is the scheduling time of the last RD or WR

to bj+l−1, and the scheduling time of ACTj+l. Note that for l =

0, t(RW
BCi−1
j−1) represents the finishing time of Ti−1 though it

does not use BCi. The scheduling time of the the remaining RD
or WR commands to bank bj+l only depends on the previous
RD or WR command, and is given by Eq. (6). Finally, the
precharging time of the auto-precharge for bank bj+l is given
by Eq. (7). This is the time at which the precharge actually
happens, although it was issued earlier as an auto-precharge
flag appended to the last RD or WR command to the same
bank. For initialization, we assume the transaction T0 finished
long time ago, e.g., tf(T0) = −∞, such that the ACT of the
first transaction T1 is scheduled at 0.

t(ACTj+l) = max{t(ACTj+l−1) + tRRD,

t(PREm) + tRP, ta(Ti) + 2

t(ACTj+l−4) + tFAW}+ C(j+l)

(4)

t(RW0
j+l) = max{t(RW

BCi−1
j+l−1) + tSwitch,

t(ACTj+l) + tRCD}
(5)

t(RWk
j+l) = t(RW0

j+l) + k× tCCD (6)

t(PREj+l) = max{t(ACTj+l) + tRAS,

t(RW
BCi−1
j+l) + tRWTP}

(7)

Based on Eq. (4) to (7), it is possible to determine the
finishing time of Ti by only looking at the finishing time
of Ti−1 and the scheduling time of its ACT commands. As
shown in Fig. 5, only the first RD or WR commands and the
ACT to each bank have dependencies on previous transactions.
The other RD or WR commands can be scheduled with the

dependencies directly or indirectly originating from those
commands. Intuitively, the finishing time of Ti is determined
only by the scheduling time of all its ACT commands, the
finishing time of the previous transaction and JEDEC defined
timings. This intuition is formalized by Lemma 1 and the proof
is included in the appendix.

Lemma 1. For ∀i > 0 and j as given by Eq. (3),

tf(Ti) = max
0≤l≤BIi−1

{

tf(Ti−1) + tSwitch + (BIi × BCi − 1)× tCCD,

t(ACTj+l) + tRCD + ((BIi − l)× BCi − 1)× tCCD}

VI. WORST-CASE EXECUTION TIME

This section analyzes the worst-case execution time of
our proposed dynamic command scheduling algorithm for
an arbitrary transaction Ti. First, the worst-case situation is
discussed, which defines the worst-case scheduling time of the
previous commands targeting the same set of banks as Ti. Next,
the worst-case finishing time of Ti is computed based on the
worst-case situation, the transaction size and the memory map
configuration.

A. Worst-Case Situation

An arbitrary transaction Ti is executed by scheduling its
commands to the memory, where the execution time depends
on the state of the required banks at the beginning of the
execution. However, this initial state is determined by the
previously executed transactions Ti′ (i′ < i) that have accessed
these banks. Due to the diversity of Ti′ in terms of type
(read/write), transaction size, and different required banks, etc.,
it is difficult to determine the worst-case initial state for Ti.
This issue is discussed on the basis of the dependencies in
Eq. (4) to (7) in the following paragraphs.

Definition 4 states that the execution time, tET(Ti), is
maximized if the starting time is minimum while the finishing
time is maximum. According to Definition 3, the starting time
ts(Ti) is determined by its arrival time ta(Ti) and the finishing
time tf(Ti−1) of the previous transaction Ti−1. In the worst-case
situation, Ti has arrived before the finishing of Ti−1. Therefore,
the worst-case starting time of Ti is only one cycle after the
finishing time of Ti−1 and is given by Eq. (8), where the current
bank access number is j, and Ti−1 has BCi−1.

t̂s(Ti) = tf(Ti−1) + 1 = t(RW
BCi−1−1
j−1) + 1 (8)

In order to get the worst-case finishing time of Ti, the
scheduling time of its ACT commands should be maximized
according to Lemma 1. According to Eq. (4), the scheduling
of an ACT command for Ti depends on the previous PRE
to the same bank, the previous ACT commands and the
possible collisions between an ACT command and a RD or WR
command. The worst-case finishing time of Ti is achieved by
maximizing the scheduling time of the previous PRE and ACT
commands as well as assuming there is always a command
collision. The worst-case starting time given by Eq. (8) defines

the finishing time t(RW
BCj−1−1
j−1) of Ti−1. Since we do not know

exactly how Ti−1 was scheduled, we conservatively assume
it was scheduled as late as possible (ALAP) subject to the
timing constraints, ensuring the maximum scheduling time of
the previous commands.

According to ALAP scheduling, the scheduling time of the
previous ACT, RD or WR commands and PRE can be obtained

by calculating backwards from t(RW
BCi−1−1
j−1). It is fixed by

6

Eq. (8) if we assume the execution of Ti starts at the worst-
case starting time t̂s(Ti). Specifically, the time between any
successive commands must be minimum while satisfying the
timing constraints, thereby ensuring an ALAP schedule of the
previous commands. Ti−1 has BIi−1 and BCi−1. As stated in
Table I, the minimum time between two RD or WR commands
is tCCD. Since RD or WR commands targeting the same bank
are scheduled sequentially, the time between the first RD or
WR commands to consecutive banks is BCi−1 × tCCD. An
ACT command is followed by a RD or WR command to
the same bank, and their minimum time interval is tRCD
(see Table I). Therefore, the scheduling time of each ACT
command is obtained through the scheduling time of the
RD or WR commands issued to the same bank. As a result,
the time between two successive ACT commands is at least
BCi−1 × tCCD cycles. In addition, Table I also states that
the minimum time between two ACT commands to different
bank is tRRD. Hence, for ALAP scheduling, the minimum time
interval between two successive ACT commands to different
banks is max{tRRD,BCi−1 × tCCD}.

The minimum time interval between the first RD or WR
commands to consecutive banks can be analyzed accurately
considering the cases of fixed or varied transaction sizes
separately. As shown in Fig. 4, the scheduling of the first RD or
WR command to a bank depends on the ACT command to the
same bank and the final RD or WR command from the previous
bank access. For a fixed transaction size, the ACT command
can dominate in determining the scheduling of the first RD
or WR command to the same bank. For example, if BC is 1
for all the transactions, the minimum time interval between
the first RD or WR command to consecutive banks is tRRD
instead of BCi−1× tCCD. The reason is that tRRD is equal to
or larger than tCCD for DDR3 memories according to JEDEC
standard [23]. However, it is difficult to decide the dominance
for RD or WR command scheduling with varied transaction
sizes because different BI and BC are used. Hence, Eq. (9)
gives the minimum time interval RWInterval between the first
RD or WR commands to consecutive banks for transactions
with fixed size and varied sizes, respectively.

RWInterval =

{

max(tRRD,BCi−1 × tCCD), fixed size
BCi−1 × tCCD, varied sizes

(9)

Fig. 6 illustrates an example of ALAP scheduling for
a DDR3-800D SDRAM. This example assumes the current
transaction Ti has BIi = 4 and BCi = 2 while the previous
write transaction Ti−1 is half the size and uses BIi−1 = 2 and
BCi−1 = 2, both transactions having Bank 0 as their starting
bank. j is the current bank access number. With the fixed
finishing time (t(RW1

j−1)) of Ti−1, the scheduling time of all the
previous commands is computed backwards with the minimum
time interval between them. In this way, some ACT commands
have the same scheduling time as some WR commands,
which indicate command scheduling collisions. However, we
conservatively ignore these collisions so that later scheduling
times of the previous ACT and WR commands are achieved.
Fig. 6 shows the scheduling time of the previous commands
that are scheduled to the banks 0 and 1 required by Ti−1 and
the banks 2 and 3 required by even earlier transactions, e.g.,
Ti−2 and Ti−3. Since Bank 2 is first accessed and then Bank 3
for Ti, the scheduling time of the previous commands to Bank 2
is computed backwards first. It can be recognized as two small
transactions Ti−2 and Ti−3, which require only Bank 2 and
Bank 3, respectively. Hence, the computed scheduling time of
the previous commands guarantees a conservative execution
time bound for later transactions.

ALAP scheduling is formalized to provide the scheduling
time of previous commands. We assume Ti has BIi and BCi,
and its starting bank is bs, while Ti−1 has BIi−1 and BCi−1.
First, we assume the starting bank of Ti−1 is bs as well, because
the scheduling time of the previous commands targeting the
banks that are not required by Ti can be ignored. Second, in
worst-case, there must be bs + BIi−1 − 1 ∈ [bs, bs + BIi − 1],
which represents the finishing bank of Ti−1. It indicates Ti−1
finished at a bank that is required by Ti. With the minimum
time interval between commands, for ∀l ∈ [0,BIi − 1] and
∀k ∈ [0,BCi−1 − 1], the scheduling time of the previous RD
or WR commands for bank bs + l is given by Eq. (10). In
case BIi−1 < BIi, Eq. (11) is used to compute the scheduling
time of RD or WR commands targeting a bank bs + l (l ∈
[BIi−1,BIi − 1]) that is not required by Ti−1, e.g., Bank 2 and
3 in Fig. 6.

t̂(RWk
j−1−∆l) =t̂s(Ti)− 1− (BCi−1 − 1− k)× tCCD

−∆l× RWInterval
(10)

∆l =

{

BIi−1 − 1− l, l ≤ BIi−1 − 1

l, otherwise
(11)

Due to the timing constraint tFAW, we just need the
scheduling time of the four ACT commands that were sched-
uled previously. Based on the fixed finishing time of Ti−1, the
scheduling time of its last ACT command is obtained since
the minimum time interval between an ACT command and the
first RD or WR command to the same bank is tRCD. Thus,
with the minimum time interval between ACT commands,
the scheduling time of the previous four ACT commands is
calculated by Eq. (12). Based on Eq. (7), the time of the
previous PRE is obtained by using the worst-case scheduling
time for RD or WR and ACT commands from Eq. (10) and (12),
respectively. It is given by Eq. (13) based on the observations
of the timing constraints in JEDEC DDR3 standard [23] that:
i) tRWTP is larger for a write transaction than for a read
transaction, and hence: ii) there is tRWTP > tRAS − tRCD
for a write transaction.

t̂(ACTj−1−∆l) = t̂s(Ti)− 1− tRCD− (BCi−1 − 1)× tCCD

−∆l× max{tRRD,BCi−1 × tCCD}
(12)

t̂(PREj−1−∆l) = max{̂t(ACTj−1−∆l) + tRAS,

t̂(RW
BCi−1−1
j−1−∆l) + tRWTP}

= t̂s(Ti)− 1 + tRWTP−∆l× RWInterval

(13)

Hence, the worst-case situation for Ti is that Ti−1 is a
write transaction and the scheduling time of its WR/ACT/PRE
command is given by Eq. (10), (12) and (13), respectively,
which only depend on the worst-case starting time, transaction
size (through BIi−1 and BCi−1 given by the memory map) and
JEDEC specified timing constraints.

B. Analytical Worst-Case Finishing Time

Lemma 1 states that the finishing time of Ti is determined
by the finishing time of the previous transaction Ti−1 and
the scheduling time t(ACTj+l) (∀l ∈ [0,BIi − 1]) of the ACT
commands for Ti. Therefore, the worst-case finishing time
t̂f(Ti) is obtained by using t̂f(Ti−1) and t̂(ACTj+l). By fixing the
worst-case starting time of Ti, t̂f(Ti−1) is obtained by Eq. (8),
as is t̂f(Ti−1) = t̂s(Ti) − 1. Regarding t̂(ACTj+l), it can be
expressed by the worst-case scheduling time of the previous
ACT commands and the PRE commands, given by Eq. (12)

7

3 NOP´3 NOP´3 NOP´3 NOP´3 NOP´

3 NOP´
1

1jWR -

0

1jWR -1jACT -

1

2jWR -

0

2jWR -2jACT -
3 NOP´

1

3jWR -

0

3jWR -
3 NOP´

3jACT -

1

4jWR -

0

4jWR -4jACT -

 0Bank

 1Bank

 2Bank

 3Bank

RWInterval

{ }1max BC tCCD, tRRDi- ´

CMD

Bus

tCCD

4 NOP´

1

1jWR -

0

1jWR -

1

2jWR -

1jACT -

0

2jWR -

1

3jWR -

2jACT -

0

3jWR -

1

4jWR -

3jACT -

0

4jWR -4jACT -

4 NOP´

4 NOP´

4 NOP´ 3 NOP´

3 NOP´ 3 NOP´4 NOP´

Fig. 6. An example of As-Late-As-Possible (ALAP) scheduling with DDR3-800D SDRAM for Ti that has BIi = 4 and BCi = 2. The previous transaction
Ti−1 uses BIi−1 = 2 and BCi−1 = 2. The starting bank for both Ti-1 and Ti is Bank 0. Ti−2 and Ti−3 have BIi−2 = BIi−3 = 1 and BCi−2 = BCi−3 = 2,
while their starting bank is Bank 2 and Bank 3, respectively.

and (13), respectively. Eq. (4) indicates that t(ACTj+l) is
determined by t(ACTj+l−1), t(PREj−(BIi−l)) and t(ACTj+l−4).
As a result, t̂(ACTj+l) can be obtained by using t̂(PREj−(BIi−l))
and t̂(ACTj+l−4). In addition, t̂(ACTj+l) can be iteratively
expressed by t̂(PREj−1−(BIi−l)) and t̂(ACTj+l−5) because they

determine t̂(ACTj+l−1) according to Eq. (4). Eq. (13) provides
t̂(PREj−(BIi−l)), while Eq. (12) provides t̂(ACTj+l−4) if l < 4.

In order to simplify the expression, Lemma 2 gives t̂f(Ti) with
BIi ≤ 4 (ensuring l < 4) and the assumption that Ti−1 is a write
transaction. The proof is presented in the appendix. However,
it is not difficult to extend Lemma 2 to support BIi > 4.

Lemma 2. For ∀i > 0 and ∆l as given by Eq. (11),

t̂f(Ti) = max
0≤l≤l′≤BIi−1

{

t̂s(Ti)− 1 + tRWTP−∆l× RWInterval

+ tRP + (l′ − l)× tRRD + tRCD

+ ((BIi − l′)× BCi − 1)× tCCD +

l′
∑

h=l

C(j + h),

t̂s(Ti)− 1 + tSwitch + (BIi × BCi − 1)× tCCD}

Lemma 2 indicates that the worst-case finishing time t̂f(Ti)
is determined by the variables l, l′, BIi−1, BCi−1, BIi and
BCi, which may be changed from transaction to transaction.
However, the expressions in the max{} of t̂f(Ti), shown in
Lemma 2, can be simplified since they are linearly increasing
or decreasing with those variables. The maximum expression
is obtained with BIi−1 = BCi−1 = 1, l = 0 and l′ = 0 or
l′ = BIi − 1. Consequently, we can use Theorem 1 to show
the worst-case finishing time of Ti, which is determined by
its starting time, its size and the memory map configuration
(through BIi and BCi), and JEDEC defined timing constraints.
Intuitively, it indicates the worst-case situation for Ti is that
its starting bank (l = 0) is the finishing bank of the previous
write transaction Ti−1. As a result, there is no collision for the
first ACT of Ti. The proof is given in the appendix.

Theorem 1 (Variable transaction size). Ti−1 is write rather
than read. BIi ≤ 4.

t̂f(Ti) = max{(BIi × BCi − 1)× tCCD,

(BIi − 1)× (tRRD + 1) + (BCi − 1)× tCCD}

+ t̂s(Ti)− 1 + tRWTP + tRP + tRCD

Theorem 1 provides too pessimistic worst-case execution
time bound for systems when all transactions have fixed size

and hence all have the same BI and BC. As a result, BIi−1 =
BIi = BI and BCi−1 = BCi = BC. Similarly, t̂f(Ti) is obtained
with l′ = BI− 1 and l = 0, or l′ = l = BI− 1 for transactions
with fixed size. This is shown in Theorem 2, of which the
proof is shown in the appendix.

Theorem 2 (Fixed transaction size). Ti−1 is write rather than
read. BIi ≤ 4.

t̂f(Ti) =max{tRWTP + tRP + (BI× BC− 1)× tCCD

− (BI− 1)× max{tRRD,BC× tCCD}+ tRCD

+ max{1, (BI− 1)× (tRRD− BC× tCCD) + BI},

tSwitch + (BI× BC− 1)× tCCD}+ t̂s(Ti)− 1

Note that Theorem 1 and 2 are based on the previous
write transaction Ti−1. However, if Ti−1 is read, they give
conservative t̂f(Ti). Moreover, they are also easy to be extended
for BIi > 4 as discussed previously. Finally, the worst-case
execution time of Ti can be obtained according to Definition 4
where the worst-case finishing time is presented by Theorem 1
and 2 for transactions with variable and fixed size, respectively.

C. Scheduled Worst-Case Finishing Time

The bounds derived in Section VI-B have the benefit of
being simple equations that bound the WCET by just inserting
the timings of the particular memory device and the chosen
memory map configuration for a transaction. However, they
are somewhat pessimistic since they conservatively assume that
there is a command collision for every ACT command. Here,
we present a second approach that builds on the presented
formalism and ALAP schedule to overcome this limitation and
derive a tighter bound.

The idea is to derive the worst-case initial bank state for
a transaction based on the ALAP scheduling as presented in
Section VI-A, followed by actually scheduling the commands
of the transaction. This has the advantage of only accounting
for the actual number of command collisions and knowing
exactly how many cycles the WCET increases due to the
collisions in case the scheduling of the ACT commands is a
bottleneck. The drawback of the approach is that it is no longer
a simple equation, but requires a software implementation of
the scheduling algorithm. To this end, the formalization of
the timing behavior of the proposed scheduling algorithm,
previously presented in Section V, has been implemented as
an open-source off-line scheduling tool [27]. For the remainder
of this paper, we will refer to this approach as the scheduled
WCET and the bounds obtained in Section VI-B as the
analytical WCET. Both of them can be obtained from our tool.

8

We have now presented two techniques to compute the
worst-case execution time of transactions with the proposed
dynamically scheduled back-end. Note that refresh command
cannot be scheduled until the current transaction has finished
and is hence not included in the execution time. However, it
requires at most tRWTP + tRP + tRFC cycles to complete.
When the back-end is combined with a predictable memory
controller front-end, such as [16], this result can be used to
obtain the total response time of transactions under a particular
transaction scheduling policy.

VII. EXPERIMENTAL RESULTS

This section experimentally evaluates our dynamically
scheduled back-end and its corresponding analysis. A front-
end based on round-robin is used. However, our back-end is
flexible for front-end with any scheduling policies. The ex-
perimental setup is presented, followed by three experiments.
The first one shows that the formalization accurately describes
the timing behavior of the back-end. The last two experiments
show the WCET and average execution time results of trans-
actions with fixed size and variable sizes, respectively, and
compare our approach to a state-of-the-art approach.

A. Experimental Setup

The dynamically scheduled back-end is implemented as a
cycle-accurate SystemC model. To provide predictable mem-
ory access to multiple clients, the memory controller front-
end in [16] is used, fitted with a round robin arbiter as the
transaction scheduler. The experiments use a combination of
real application traces and synthetic traffic. The application
traces are generated by running applications from the Media-
Bench benchmark suite [28] on the SimpleScalar 3.0 processor
simulator [29] using separate data and instruction caches, each
with a size of 16 KB. The L2 cache is a unified 128 KB cache
where the cache-line size varies depending on the experiment.
Synthetic traffic is generated using a normal distribution with
very low variance, resulting in near-periodic traffic inspired
by e.g. some hardware accelerators and display controllers in
the multimedia domain. For each transaction size in the exper-
iments, we have chosen the memory map configuration that
provides the lowest execution time. The configured (BI, BC)
for transaction sizes of 16 B, 32 B, 64 B and 128 B are hence
(1, 1), (2, 1), (4, 1) and (4, 2), respectively [5]. Experiments
have been done with three JEDEC-compliant DDR3 SDRAMs,
DDR3-800D, DDR3-1600G, DDR3-2133K, all with interface
widths of 16 bits and a capacity of 2 Gb [23]. Due to
space limitations, this section focuses on results for DDR3-
800D, making the presented results conservative, as benefits of
dynamic command scheduling are larger for faster memories.
However, the WCET results of all these DDR3 memories with
fixed and varied transaction sizes are summarized in Table IV
and V, respectively, available in the appendix.

B. Experimental Validation of the Formalization

The purpose of our first experiment is to validate the
formalization of the timing behavior of the dynamically sched-
uled controller by verifying that the scheduling time of each
command is equivalent to the SystemC implementation. To
this end, the open-source off-line scheduling tool [27] that
implements the formalism has been provided with the same
inputs as the SystemC implementation for all experiments
in this paper, covering a wide range of read and write
transactions with different transaction sizes and inter-arrival
times under different memory map configurations. The results

of this experiment is that all commands of all transactions
are scheduled identically, indicating that the formalization
accurately captures the implementation. This is important since
the formalization forms the base for both the analytical and the
scheduled WCET bounds.

C. Fixed Transaction Size

This experiment evaluates our approach for transactions
with fixed transactions size. Four memory clients are used,
corresponding to four processors executing different Media-
bench applications (gsmdecode, epic, unepic and jpegencode).
For each application, the total number of transactions (TransN)
and the ratio of read transactions (RRatio) are illustrated in
Table II. The processors execute through a partitioned L2 cache
and thus have the same cache-line size, enabling Theorem 2 to
be used to bound the WCET. The experiment is executed for
three different cache-line sizes of 32 B, 64 B and 128 B with
different memory map configurations, respectively. The results
are compared to the semi-static approach in [10], the only other
approach that supports different memory map configurations.

TABLE II. CHARACTERIZATION OF MEMORY TRAFFIC.

Size
gsmdecode epic unepic jpegencode

TransN RRatio TransN RRatio TransN RRatio TransN RRatio

32 19734 64.4% 182957 69.7% 129145 61.0% 173995 87.4%
64 10104 64.3% 96984 69.3% 67664 61.0% 92905 87.8%

128 5216 64.1% 55644 69.8% 36540 60.9% 55192 89.1%

Fig. 7 illustrates the WCET for the DDR3-800D SDRAM
using different fixed cache-line sizes. We can observe that:
1) the maximum measured WCET from the experiments is
equal to the scheduled WCET bound. This indicates that the
proposed formalization provides an exact WCET bound; 2)
the scheduled WCET is never larger than the bound provided
by the semi-static approach. This suggests our dynamic com-
mand scheduling performs at least as well as the semi-static
scheduling in the worst case; 3) the analytical WCET given
by Theorem 2 is equal to or slightly larger than the scheduled
WCET. This difference is because Theorem 2 conservatively
assumes that every ACT command results in a command
collision, which may not actually be the case and some (all) of
the collisions may not result in an increased execution time,
because the ACT command is not always dominating in the
computation of the finishing time (see Lemma 1). However,
the maximum difference is BI cycles.

0

5

10

15

20

25

30

35

40

45

32 B 64 B 128 B

E
x
ec

u
ti

o
n

 T
im

e
(c

y
cl

e
s)

WCET (measured)

WCET (scheduled)

WCET (analytical)

WCET (semi-static)

Average ET (dynamic)

Average ET (semi-static)

Fig. 7. WCET and average ET of dynamic command scheduling and semi-
static scheduling for fixed transaction size.

The average ET of dynamic command scheduling and
semi-static scheduling are also shown in Fig. 7. For each
transaction size, dynamic command scheduling achieves lower
average ET. This is because dynamic command scheduling
monitors the actual state of the required banks and can issue
commands earlier for a transaction that requires a different
set of banks from that of the previous transaction. Semi-static
scheduling [10] uses pre-computed schedules that assume

9

worst-case initial bank state for every transaction. Fig. 7 also
shows that smaller transactions benefit more from dynamic
command scheduling. For example, 32 B transactions gain
33.4% while 128 B transactions only gain 2.3%. The reason is
that smaller transactions require fewer banks, which increases
the probability that the following transaction accesses an
independent set of banks and can thus be scheduled earlier.

D. Varied Transaction Size

The last experiment evaluates our approach with variable
transaction sizes. The setup is loosely inspired by a High-
Definition video and graphics processing system featuring
a CPU, hardware accelerators and peripherals with variable
transaction sizes. The CPU executes the jpegdecode application
from MediaBench through a cache with a 64 B cache-line
size, while the other components are represented by synthetic
traffic generators with transaction sizes of 16 B, 32 B and
128 B, respectively. The total number of transactions is 153963
and the read ratio is 50% for the synthetic traffic and 62.9%
for the jpegdecode trace. Theorem 1 is used to provide the
analytical WCET. Note that we cannot fairly compare our
approach to other approaches in this experiment, as no other
memory controller provides an analysis that supports variable
transaction sizes and different memory map configurations.

0

10

20

30

40

50

60

16 B 32 B 64 B 128 B

E
x
ec

u
ti

o
n

 T
im

e(
cy

cl
e
s)

WCET (measured)

WCET (scheduled)

WCET (analytical)

Average ET

Fig. 8. WCET and average ET for variable transaction sizes.

Fig. 8 illustrates the WCET of dynamic command schedul-
ing with variable transactions sizes. As shown, the measured
WCET is equal to the scheduled WCET, implying that the
bound is exact. The analytical WCET is again slightly pes-
simistic as it assumes a command collision for every ACT
command. However, the maximum difference is BI cycles. The
average execution time for each transaction size corresponding
to each memory client is also shown in Fig. 8.

VIII. CONCLUSIONS

This paper addresses the problem of providing tight WCET
bounds for memory transactions to real-time memory clients,
while offering competitive average execution time to the rest.
To this end, an architecture and analysis for a dynamically
scheduled memory controller back-end that supports transac-
tions with both fixed and variable sizes, as well as different
memory map configurations is proposed. Based on the analy-
sis, two techniques are presented to bound the WCET. The first
technique is a simple equation that computes the WCET given
the transaction size and memory map configuration, while the
second technique tries to provide a tighter bound by using an
offline implementation of the scheduler to resolve command
collisions. Experimental results show that the first and simpler
method over-estimates the WCET by a few clock cycles, while
the bounds computed using the second method are perfectly
tight. Comparison with a state-of-the-art semi-static scheduling
approach shows that our approach performs equally well in the
worst case, but outperforms it dramatically in the average case.

ACKNOWLEDGMENTS

This work was partially funded by projects EU FP7 288008
T-CREST and 288248 Flextiles, CA505 BENEFIC, CA703
OpenES, ARTEMIS-2013-1 621429 EMC2 and 621353
DEWI, and the European social fund CZ.1.07/2.3.00/30.0034.

REFERENCES

[1] P. Kollig et al., “Heterogeneous multi-core platform for consumer
multimedia applications,” in Proc. DATE, 2009.

[2] C. van Berkel, “Multi-core for mobile phones,” in Proc. DATE, 2009.

[3] L. Benini et al., “P2012: Building an ecosystem for a scalable, modular
and high-efficiency embedded computing accelerator,” in Proc. DATE,
2012.

[4] P. Kollig et al., “Heterogeneous multi-core platform for consumer
multimedia applications,” in Proc. DATE, 2009.

[5] S. Goossens et al., “Memory-map selection for firm real-time memory
controllers,” in Proc. DATE, 2012.

[6] E. Ipek et al., “Self-optimizing memory controllers: A reinforcement
learning approach,” in Proc. ISCA, 2008.

[7] K. Yoongu et al., “Thread cluster memory scheduling,” Micro, IEEE,
vol. 31, no. 1, 2011.

[8] I. Hur et al., “Memory scheduling for modern microprocessors,” ACM
Trans. Comput. Syst., vol. 25, no. 4, 2007.

[9] S. Bayliss et al., “Methodology for designing statically scheduled
application-specific SDRAM controllers using constrained local search,”
in Proc. FPT, 2009.

[10] B. Akesson et al., “Architectures and modeling of predictable memory
controllers for improved system integration,” in Proc. DATE, 2011.

[11] J. Reineke et al., “PRET DRAM controller: Bank privatization for
predictability and temporal isolation,” in Proc. CODES+ISSS, 2011.

[12] M. Paolieri et al., “Timing effects of DDR memory systems in hard
real-time multicore architectures: Issues and solutions,” ACM Trans.
Embed. Comput. Syst., vol. 12, no. 1, 2013.

[13] H. Shah et al., “Bounding WCET of applications using SDRAM with
priority based budget scheduling in MPSoCs,” in Proc. DATE, 2012.

[14] H. Choi et al., “Memory access pattern-aware DRAM performance
model for multi-core systems,” in Proc. ISPASS, 2011.

[15] Z. P. Wu et al., “Worst case analysis of DRAM latency in multi-
requestor systems,” in Proc. RTSS, 2013.

[16] B. Akesson et al., “Composable resource sharing based on latency-rate
servers,” in Proc. DSD, 2009.

[17] H. Yun et al., “Memory access control in multiprocessor for real-time
systems with mixed criticality,” in Proc. ECRTS, 2012.

[18] D. Dasari et al., “Response time analysis of COTS-based multicores
considering the contention on the shared memory bus,” in Proc.
TrustCom, 2011.

[19] S. Schliecker et al., “Bounding the shared resource load for the
performance analysis of multiprocessor systems,” in Proc. DATE, 2010.

[20] B. Akesson et al., “Classification and analysis of predictable memory
patterns,” in Proc. RTCSA, 2010.

[21] D. Wang et al., “DRAMsim: a memory system simulator,” SIGARCH
Comput. Archit. News, vol. 33, 2005.

[22] B. Jacob et al., Memory systems: cache, DRAM, disk. Morgan
Kaufmann Pub, 2007.

[23] DDR3 SDRAM Specification, Jesd79-3e ed., JEDEC Solid State Tech-
nology Association, 2010.

[24] S. Goossens et al., “Conservative open-page policy for mixed time-
criticality memory controllers,” in Proc. DATE, 2013.

[25] B. Akesson et al., “Real-time scheduling using credit-controlled static-
priority arbitration,” in Proc. RTCSA, 2008.

[26] H. Kim et al., “Bounding memory interference delay in COTS-based
multi-core systems,” in Proc. RTAS, 2014.

[27] Y. Li et al., “RTMemController: Open-source WCET and
ACET analysis tool for real-time memory controllers.”
http://www.es.ele.tue.nl/rtmemcontroller/, 2014.

[28] C. Lee et al., “MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems,” in Proc. MICRO, 1997.

[29] T. Austin et al., “SimpleScalar: An infrastructure for computer system
modeling,” Computer, vol. 35, no. 2, 2002.

10

APPENDIX

TABLE III. SUMMARY OF NOTATION.

Variables Descriptions

Ti The ith transaction received by the back-end
j The number of the current bank access in the back-end
BIi, BCi The bank interleaving number (BI) and burst count (BC) used by Ti

bj The bank number that is targeted by the jth bank access

ACTj The ACT command for the jth bank access targeting bank bj

t(ACTj) The scheduling time of ACTj

C(j) The extra cycle for scheduling ACTj because of a collision

RWk
j The kth (∀k ∈ [0, BCi]) RD or WR command of the jth bank access

targeting bank bj

t(RWk
j) The scheduling time of RWk

j

PREj The PRE command for the jth bank access targeting bank bj

t(PREj) The precharge time of PREj

ts(Ti) The starting time of Ti

t̂s(Ti) The worst-case starting time of Ti

tf(Ti) The finishing time of Ti

t̂f(Ti) The worst-case finishing time of Ti

tET(Ti) The execution time of Ti

A. Proof of Lemma 1

Proof: With the definition of finishing time (Definition 2),
tf(Ti) can be obtained from Eq. (6), which provides the
scheduling time of the last RD or WR command. Eq. (6) also
indicates that the scheduling of a RD or WR command only
depends on the previous RD or WR command targeting the
same bank, except the first one that is determined by the ACT
command to the same bank and the final RD or WR command
of the previous transaction.

Eq. (5) gives the scheduling time of the first RD or WR.
Hence, through substitutions, the finishing time of Ti can be
expressed by the scheduling times of the ACT commands and
the finishing time tf(Ti−1), which is the scheduling time of the
last RD or WR command for Ti−1. In addition, tSwitch is equal
to tCCD for the switching from one bank to another that is
accessed by the same transaction. As a result, for computing
the scheduling time for RD or WR commands belonging to the
same transaction, tCCD is used by Eq. (5) instead of tSwitch.

For ∀l ∈ [0,BIi− 1], tf(Ti) is expressed by Eq. (14), which
is obtained by iteratively using Eq. (5) and (6). It indicates
that tf(Ti) only depends on the scheduling time of its ACT
commands, the finishing time of Ti−1 and JEDEC-specified
timing constraints, which are constant.

tf(Ti) = t(RW
BCi−1
j+BIi−1)

= t(RW0
j+BIi−1) + (BCi − 1)× tCCD

= max{t(ACTj+BIi−1) + tRCD, t(RW
BCi−1
j+BIi−2) + tCCD}

+ (BCi − 1)× tCCD

= ...

= max
0≤l≤BIi−1

{tf(Ti−1) + tSwitch + (BIi × BCi − 1)× tCCD,

t(ACTj+l) + tRCD + ((BIi − l)× BCi − 1)× tCCD}
(14)

B. Proof of Lemma 2

Proof: According to Lemma 1, the finishing time of
a transaction Ti is determined by the finishing time of the
previous transaction Ti−1 and the scheduling time of all its
ACT commands. We assume Ti has BIi and BCi while Ti−1
has BIi−1 and BCi−1. The current bank access number is j
and the starting bank of Ti is bs. The scheduling time of
ACTj+l (∀l ∈ [0,BIi − 1]) is given by Eq. (4), which depends

on t(ACTj+l−1), t(PREm) and t(ACTj+l−4). m represents the
latest access number for bank bs + l where bm = bs + l.
Therefore, ∀l′ ∈ [l,BIi− 1], we can get Eq. (15) by iteratively
employing Eq. (4) and (14). Intuitively, the scheduling of the
ACT commands which follow ACTj+l has direct or indirect
dependencies on ACTj+l. As a result, the scheduling of these
ACT commands has indirect dependencies on t(PREm) and
t(ACTj+l−4). This intuition is illustrated by Eq. (15). Due to
the JEDEC defined timings are constant, Eq. (15) shows that
the finishing time of Ti is determined by the latest PRE to
the same bank, the previous ACT commands because of the
four activate window constraint in JEDEC standard [23] and
the finishing time of the previous transaction Ti−1. In a word,
Eq. (15) captures the finishing time of a transaction replies
on the initial state of banks at the beginning of its command
scheduling.

tf(Ti) = max
0≤l≤l′≤BIi−1

{

t(PREm) + tRP + (l′ − l)× tRRD + tRCD

+ ((BIi − l′)× BCi − 1)× tCCD +
l′
∑

h=l

C(j + h),

t(ACTj+l−4) + tFAW + (l′ − l)× tRRD + tRCD

+ ((BIi − l′)× BCi − 1)× tCCD +

l′
∑

h=l

C(j + h),

tf(Ti−1) + tSwitch + (BIi × BCi − 1)× tCCD}

(15)

According to Eq. (15), the worst-case finishing time t̂f(Ti)
can be obtained by using t̂(PREm), t̂(ACTj+l−4) and tf(Ti−1).
Firstly, the finishing time of Ti−1 can be obtained from Eq. (8)
and there is tf(Ti−1) = t̂s(Ti)−1. Moreover, Eq. (12) and (13)
provide the worst-case scheduling time of the previous ACT
and PRE commands, respectively. t̂(PREm) is obtained directly
from Eq. (13) while Eq. (12) provides t̂(ACTj+l−4) with BIi ≤
4. Hence, by replacing tf(Ti−1), t(PREm) and t(ACTj+l−4) in
Eq. (15), t̂f(Ti) is described by Eq. (16) which only supports
BIi ≤ 4 for simplicity.

However, for BIi > 4, which induces l ≥ 4, t̂(ACTj+l−4)
can be achieved by Eq. (4), which consists of t̂(PREn) and
t̂(ACTj+l−8). Let n be the latest access number to bank bj+l−4

and t̂(PREn) is given by Eq. (13). Due to l−8 < 0, t̂(ACTj+l−8)
can be obtained from Eq. (12). Therefore, Eq. (16) can be
easily extended to support BIi > 4. However, for simple
expression, it only supports BIi ≤ 4.

t̂f(Ti) = max
0≤l≤l′≤BIi−1

{

t̂s(Ti)− 1 + tRWTP−∆l× RWInterval

+ tRP + (l′ − l)× tRRD + tRCD

+ ((BIi − l′)× BCi − 1)× tCCD +

l′
∑

h=l

C(j + h),

t̂s(Ti)− 1− (BCi−1 − 1)× tCCD + (l′ − l)× tRRD

+ tFAW−∆l× max{tRRD,BCi−1 × tCCD}

+ ((BIi − l′)× BCi − 1)× tCCD +
l′
∑

h=l

C(j + h),

t̂s(Ti)− 1 + tSwitch + (BIi × BCi − 1)× tCCD}

(16)

A write transaction Ti−1 provides a worst-case situation
for whatever transaction Ti rather than a read transaction. The

11

reason is that the prehcarging (PRE) of a bank which accepted
a WR command has to wait longer time than receiving a RD
command because of the timing constraints in JEDEC DDR3
standard [23]. In addition, for DDR3 SDRAM, we can observe
that tRWTP+ tRP+ tRCD > tFAW for a write transaction. As
a result, Eq. (16) is further simplified to Eq. (17) which shows
the result of Lemma 2.

t̂f(Ti) = max
0≤l≤l′≤BIi−1

{

t̂s(Ti)− 1 + tRWTP−∆l× RWInterval

+ tRP + (l′ − l)× tRRD + tRCD

+ ((BIi − l′)× BCi − 1)× tCCD +
l′
∑

h=l

C(j + h),

t̂s(Ti)− 1 + tSwitch + (BIi × BCi − 1)× tCCD}

(17)

C. Proof of Theorem 1

Proof: For variable transaction sizes, RWInterval is
BCi−1 × tCCD according to Eq. (9). As shown in Lemma 2
(see Eq. (17)), the expressions in the max{} of t̂f(Ti) are:
1) linearly decreasing with BIi−1 (hidden in ∆l) and BCi−1
(in RWInterval), respectively, and 2) linearly increasing or
decreasing with l and l′ depending on the constant timings and
BIi and BCi used by Ti. Therefore, the maximum expression
in the max{} is achieved at least with BIi−1 = BCi−1 = 1. As
a result, we can rewrite Eq. (17) and the simplified worst-case
finishing time is given by Eq. (18). It indicates the expressions
in the max{} of t̂f(Ti) in Eq. (18) are linearly decreasing with
l and increasing or decreasing with l′ (determined by BCi).
Therefore, the maximum expression can be obtained only if
l = 0 and l′ = 0 or l′ = BIi − 1. Intuitively, l = 0 indicates
Ti starts with bank 0 which is the finishing bank of Ti−1 that
requires only one bank because BIi−1 = BCi−1 = 1. Therefore,
we assume there is always a command scheduling collision
for the ACT commands except the first one. According to the
timing constraints in JEDEC [23], for the write transaction
Ti−1, there is tSwitch < tRWTP+ tRP+ tRCD with all DDR3
SDRAM memories. Hence, Eq. (19) is obtained and shows the
result of Theorem 1.

t̂f(Ti) =t̂s(Ti)− 1 + max{

tRWTP− l× (tCCD + tRRD) + tRP + tRCD

+ l′ × (tRRD− BCi × tCCD)

+ (BIi × BCi − 1)× tCCD +

l′
∑

h=l

C(j + h),

tSwitch + (BIi × BCi − 1)× tCCD}

(18)

t̂f(Ti) =max{(BIi × BCi − 1)× tCCD,

(BIi − 1)× (tRRD + 1) + (BCi − 1)× tCCD}

+ t̂s(Ti)− 1 + tRWTP + tRP + tRCD

(19)

D. Proof of Theorem 2

Proof: For transactions with fixed size, all of them have
the same BI and BC, i.e. BIi−1 = BIi = BI and BCi−1 = BCi =
BC. Moreover, RWInterval is max(tRRD,BC × tCCD) on the
basis of Eq. (9). Therefore, Lemma 2 (see Eq. (17)) is rewritten
and the worst-case finishing time of Ti is described by Eq. (20).
Hence, the maximum expression in the max{} of t̂f(Ti) can be

obtained only if l′ and l select either 0 or = BI−1, respectively.
In addition, we assume there is always a command scheduling
collision for the ACT commands. Finally, Eq. (20) is further
simplified to Eq. (21), which shows the result of Theorem 2.

t̂f(Ti) = max{tRWTP + tRP + tRCD + (l′ − l)× tRRD

− (BI− 1− l)× max(tRRD,BC× tCCD)

+ ((BI− l′)× BC− 1)× tCCD +

l′
∑

h=l

C(j + h),

tSwitch + (BI× BC− 1)× tCCD}+ t̂s(Ti)− 1

(20)

t̂f(Ti) = max{tRWTP + tRP + (BI× BC− 1)× tCCD

− (BI− 1)× max{tRRD,BC× tCCD}+ tRCD

+ max{1, (BI− 1)× (tRRD− BC× tCCD) + BI},

tSwitch + (BI× BC− 1)× tCCD}+ t̂s(Ti)− 1

(21)

E. WCET Results for Different DDR3 SDRAMs

This section presents additional WCET results for a range
of DDR3 SDRAM memories. Results are provided for DDR3-
800D, DDR3-1600G and DDR3-2133K SDRAMs with an
interface width of 16 bits and a capacity of 2 Gb for several
common transaction sizes, 16 B, 32 B, 64 B, 128 B and 256 B.
The memory map configurations in terms of BI and BC for
each transaction size are chosen to provide the lowest possible
execution time. The scheduled and analytical WCET results of
fixed transaction size are presented in Table IV, while Table V
contains results for systems with variable transaction sizes.
These results can be used as a reference for research on WCET
analysis of applications. Note that many commercial systems
use DIMMs with a 64-bit interface and that the request size
in the first column of the tables has to be multiplied by 4 to
get the correct WCET for these memories.

TABLE IV. WCET (CYCLES) OF DIFFERENT DDR3 SDRAMS WITH

FIXED TRANSACTION SIZE.

Size BI BC
DDR3-800D DDR3-1600G DDR3-2133K

Scheduled Analytical Scheduled Analytical Scheduled Analytical

16 1 1 25 26 40 41 52 53
32 2 1 25 27 40 42 52 54
64 4 1 25 29 40 44 52 56
128 4 2 41 41 46 46 56 57
256 4 4 73 73 78 78 82 82

TABLE V. WCET (CYCLES) OF DIFFERENT DDR3 SDRAMS WITH

VARIED TRANSACTION SIZES.

Size BI BC
DDR3-800D DDR3-1600G DDR3-2133K

Scheduled Analytical Scheduled Analytical Scheduled Analytical

16 1 1 25 25 40 40 52 52
32 2 1 29 30 46 47 59 60
64 4 1 37 40 58 61 73 76
128 4 2 53 53 68 68 80 80
256 4 4 85 85 100 100 112 112

12

