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Abstract—In time-critical systems such as in avionics, for
safety and timing guarantees, applications are isolated from each
other. Resources are partitioned in time and space creating a
partition per application. Such isolation allows fault containment
and independent development, testing and verification of appli-
cations. Current partitioned systems do not allow dynamically
adding applications. Applications are statically loaded in their
respective partitions. However dynamic loading can be useful or
even necessary for scenarios such as on-board software updates,
dynamic reconfiguration or re-loading applications in case of a
fault. In this paper we propose a software architecture to dynam-
ically create and manage partitions and a method for composable
dynamic loading which ensures that loading applications do not
affect the running applications and vice versa. Furthermore the
loading time is also predictable i.e. the loading time can be
bounded a priori. We achieve this by splitting the loading process
into parts, wherein only a small part which reserves minimum
required resources is executed in the system partition and the
other parts are executed in the allocated application partition
which ensures isolation from other applications. We implement
the software architecture for a SoC prototype on an FPGA board
and demonstrate its composability and predictability properties.

I. INTRODUCTION

Time-critical systems such as in the avionics domain have
strict safety, real-time and fault tolerance constraints. To ensure
these constraints and for fault-containment, applications are
isolated from each other at the cycle-level. That is applications
cannot affect each other even by a single cycle. With temporal
and spatial partitioning, faults in an application cannot affect
the rest of the system and applications can be developed,
tested and verified independently. Without isolation, each
small change to an application, requires the system and all
applications to be re-verified. Allocating dedicated hardware
to achieve isolation has disadvantages of increased cost and
weight, therefore integrated architectures with shared resources
are proposed in avionics with Integrated Modular Avionics
(IMA) [1]. In IMA, resources are partitioned in time and
space to create logical containers for each application. For
commercial deployment, avionics industry has standardized
partitioning with the ARINC 653 API [2] and AIR (ARINC
in Space RTOS) [3] standards.

The aforementioned partitioned systems are static systems,
wherein all applications are integrated at design-time. In stan-
dards such as ARINC653 and AIR, applications are statically
loaded in their respective partitions and the system iterates
through a static Time Division Multiplexed (TDM) schedule
at run time [4]. They do not cope with dynamic aspects such
as adding new applications at run-time or on-board application
software updates or dynamic reconfiguration in case of a fault.

Consider the example of a spacecraft. The operation plan of
a spacecraft can be changed to deal with unexpected events.

To adapt to these changes, it may be necessary to add new
applications or new functionality to the spacecraft system.
Furthermore it may be necessary to replace or modify an exist-
ing malfunctioning software module which requires individual
applications in the spacecraft software to be dynamically
updated. Consider a second example of fault tolerance. After
discovery of a fault in a hardware module, it may be necessary
to re-load all active applications, or in case of lack of resources,
the set of priority applications, on a back-up platform [5].
In such scenarios, dynamic loading is necessary. For these
reasons dynamic loading is also a feature proposed for the
future avionic architectures as argued in [6]. In the scenario
of reloading on occurrence of a fault, it may be necessary to
load multiple applications simultaneously

In the above example scenarios, for safe dynamic updating
or re-loading, it is essential to execute the dynamic loading
without affecting the other running applications. For fault
containment and timing isolation it is also necessary to ensure
that the existing running applications do not affect the loading
process. That is, dynamic loading should be composable. Com-
posable dynamic loading for partitioned systems is challenging
because a) the existing state-of-art partitioned systems [3,4,7,8]
do not support dynamically creating and managing partitions
at run-time and b) existing loading methods [9]-[12] do not
provide timing isolation between the running applications and
the loading process and vice versa.

The proposed state-of-art solutions for dynamic loading for
partitioned systems in literature have only partially addressed
the problem, either by lacking timing isolation completely [5]
or partially [13]. Moreover the existing solutions only consider
loading of one application at a time.

To address composable dynamic loading, this paper has two
contributions. The first contribution is a software architecture
with which new partitions can be dynamically created and
managed at run-time. The second contribution is a method
for dynamic composable loading. We ensure that multiple
simultaneously loading applications do not affect each other
or the running applications and vice versa. Furthermore, our
composable dynamic loading technique is also predictable, i.e.,
the loading process completes in a known bounded time.

We achieve composable dynamic loading by splitting the
loading process into three steps. The first step is executed
by the system partition, it creates a boot-strap partition by
reserving the minimum required resources, i.e. processor time
slots, memory and a Direct Memory Access(DMA) unit. DMA
unit is necessary to fetch application code and data. The second
step expands the boot-strap partition by reserving the rest of the
resources required by the application and the third step loads
the application code and data. The second and third steps are
executed strictly in the reserved application’s time slots, which



ensures isolation from running applications and vice versa. To
validate our design we implement our software architecture
for a SoC prototype on an FPGA board and demonstrate
composability and predictability with experiments.

In the following section we elaborate the related work.
In Section IIT we explain the platform on top of which we
develop our software architecture. In Section IV we introduce
the software architecture and in Section V we introduce the
composable and predictable loading method. Sections VI and
VII contain the experiments and conclusion respectively.

II. RELATED WORK

We first present a brief overview of solutions in literature
for dynamically updating software at run-time in real-time
systems. In [9] an update task is responsible for dynamic load-
ing in a system which follows priority based Rate-Monotonic
(RM) scheduling. By making the period of the update task
equal to the hyper-period of the existing tasks, they show that
the dynamic update is guaranteed to finish by the second hyper-
period of the system. Work in [11] uses two level hierarchical
scheduling. Earliest Deadline First (EDF) scheduling is used
to schedule multiple servers containing applications and each
server can have a scheduler of its own. For each new applica-
tion to be loaded, if it passes the EDF schedulability test, it is
added to the system by creating a server for it. In this way they
ensure that adding new application does not affect the real-
time guarantees of existing applications. In [10], the dynamic
update is performed in idle time in a system which runs an
RTOS. By performing the update in slack time, the real-time
guarantees of existing applications are not affected, however
no timing guarantees are provided with regards to loading. In
the above mentioned works, although the loading process has
some bounds, timing isolation at the cycle-level in between
the running applications and the loading, is not guaranteed.
Work in [12] targets dynamic loading in networked embedded
systems and presents techniques for efficient loading such as
generating minimal application code size, reducing linking
overhead and de-coupling OS and application development.

We now give an overview of proposed solutions for dy-
namic loading for time-critical partitioned systems. A software
layer proposed in [5] manages dynamic reconfiguration in
ARINC based systems for fault tolerance. The proposed layer
lies between RTOS and ARINC API and it reconfigures the
system to reload partitions on a redundant hardware module
when a fault is detected. Although [5] details the functional
steps involved in reconfiguration, they however do not provide
any timing isolation guarantees. The work in [13] proposes a
software update methodology for AIR based platforms. The
loading process is carried out on a best-effort basis in the
system partition, where the loading process is executed in
the slack time available. Their loading architecture isolates
running applications from the loading process, however the
running applications may affect the loading process, thus the
loading process is not composable. Moreover, with best-effort
loading, the loading time is not predictable. A design-flow
to generate a multi-tile partitioned system prototyped on an
FPGA is proposed in [8], where applications share resources
composably, i.e. they do not affect each other even by a single
cycle. Their system is static, applications are compiled into
the FPGA bitstream. Thus applications cannot be loaded at
run-time. Furthermore, no run-time resource management is
available, which is essential for dynamic loading of applica-
tions.

We extend the partitioned system in [8] by developing

a software architecture to facilitate run-time creation and
management of partitions and a composable and predictable
loading methodology on top of the hardware platform in [8].
However, our method is applicable to any composable plat-
form, e.g. the TTSOC platform [14].

III. PLATFORM OVERVIEW

In this section we explain the hardware platform and
the microkernel, on top of which we construct the software
architecture for composable dynamic loading.

A. Hardware platform

We build the software architecture for composable dynamic
loading on top of the partitioned system architecture proposed
in [8]. The architecture is multi-tile, however the work in this
paper is aimed for loading single-tile applications. A single-
tile hardware platform instance that is used for implementation
in this paper is shown in Figure 1.
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Fig. 1. A single tile composable hardware platform instance.

For each application, the design proposed in [8] creates
partitions which are cycle-level composable, i.e. partitions do
not affect each other, not even by a single cycle. This is
achieved by sharing each resource composably, that is by
partitioning it in space or time. Each partition is exclusively
allocated a set of DMA units and communication memories
(CMEMs). The communication architecture is composable by
making use of a composable Network on Chip (NoC) [15] and
a composable memory controller [16]. Shared memory shown
in Figure 1 can be an off-chip DDR memory or an on-chip
SRAM memory.

The processor tile in Figure 1 contains a MicroBlaze core,
a soft-core RISC processor. Caches are not used to simplify
composability and predictability. Local memories such as
Instruction Memory (IMEM) and Data Memory (DMEM) are
used. Apart from the Instruction Local Memory Bus (ILMB),
the IMEM is also connected to the Data Local Memory
Bus (DLMB). This is essential, so as to be able to load
application code in IMEM. The processor is connected to the
DMAC(s) by a Processor Local Bus (PLB). The processor is also
connected to a Timer Interrupt Frequency Unit (TIFU) which
enables generating interrupts at programmable intervals. TIFU
assists the microkernel (explained in the next subsection) by
maintaining strict timings in hardware.

Applications on this platform can be bare code or based
on a Model-of-Computation (MoC) such as SDF [17] or
KPN [18]. Applications can also be an RTOS which in turn
hosts other applications. They are single threaded and have
access to DRAM or SRAM via the NoC.



B. Microkernel

To create partitions on the processor, the Composable
Microkernel (CoMiK) [19] is used. CoMik partitions the pro-
cessor in time using Time-Division-Multiplexed (TDM) arbi-
tration. With the help of the TIFU unit, CoMik enforces cycle-
level partitioning. IMEM and DMEM memories are partitioned
in space for instruction, data, stack and heap memory per
partition. CoMik runs for a small fixed slot duration between
every partition. During this slot, it switches the context of the
partition. Care is taken to prevent the jitter from critical regions
and multi-cycle instructions from violating the defined duration
of partitions. In this way each partition on the processor is
isolated in time and space.

IV. SOFTWARE ARCHITECTURE

An essential part of dynamic loading in partitioned sys-
tem is creating new partitions and managing them at run-
time. In this section we propose a software architecture that
facilitates creating and managing partitions at run-time. A
resource management system is necessary that allows reserving
resources at run-time and associating them with a partition.
Resources should be able to be allocated offline (pre-computed
allocations) or online. After the usage, resource reservations
can be released. The management of resources should be done
with a privileged Application Programming Interface (API), so
that applications cannot change their own or other’s resource
allocations. Keeping in mind these requirements, we propose
a Resource Management (RM) framework explained in the
following subsection.

A. Resource Management Framework

The RM framework is based on the following concepts.
A resource Budget Descriptor (BD) describes the share of
a resource usage, required by an application. A BD must
be defined for each resource in the system required by the
application such as the processor, NoC, and the memory. This
share of resource is composably shared (partitioned in time or
space) on the hardware platform as described in Section III.
A Virtual execution Platform (VP) is the set of all resource
budgets required by an application. As a result a VP descriptor
is the collection of all the BDs for the resources required
by an application. Since each VP consists of composably
shared resources, each VP is isolated from other VPs in
time and space during execution. BDs can be arranged in a
hierarchy as shown in Figure 2, which shows some example
BDs of resources. For instance, the processor BD describes the
parameters necessary to create an application partition on the
processor, namely the required number of TDM slots, required
size of stack, heap and the space required to store application
code and data. The NoC BD describes the NoC connections
used by the application. Each connection requires source and
destination node and the throughput and latency requirements
of the connection.

We construct a run-time RM library with a generic API
for all types of resources. Resources are first reserved, then
allocated and when no longer needed, released. The reserve
API requires a BD and returns a Budget Identifier (BID). This
BID can be further used to allocate and release the resource.
The run-time RM library has two components for each type
of resource as shown in Figure 3. The first component is a
Budget Manager which accepts reserve, allocate and release
requests. It contains the online allocation algorithm for the
resource, which is used to find an allocation at run-time. It
also maintains the reservation state of the resource to ensure
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Fig. 2. Structure of a VP descriptor.

correct allocation. For each online or offline request, it first
checks with the state management, if there are no collisions
between the requested allocation and the existing allocations.
If there are no collisions, the requested allocation is reserved in
the software state, but not in the hardware. With the allocate
API, the reserved allocation is programmed in the resource.
The second component is the software Driver which configures
the hardware as per the requested allocation. The release API
first configures the hardware to release the allocated resource
and then accordingly updates the software state by freeing the
allocations.

The run-time RM API is classified into two groups. System
API allows to create, modify or destroy VPs. The System API
is only accessible by a privileged application. The User API
allows an application to use a resource within its VP. The
User API validates if the requested resource usage is within
the budget allocated to the application, if it is not, the request
is rejected and an error is returned. The User API is resource

dependent.
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Fig. 3. Structure of the run-time resource management library.

The following sub-section describes the compilation flow
which allows making use of the run-time RM library to
generate dynamically loadable application binaries.

B. Compilation flow

For partitions described using the VP descriptor, the run-
time RM library API can be used to create and manage new
partitions at run-time. Hence we require that alongside the
source code of the application, the description of the required
VP should be provided. The compiler compiles the application
into the Executable Linkable Format (ELF) binary. The
VP descriptor is stored in a dedicated section in the ELF
binary. For dynamic loading the application code needs to be
independent of the location where it is placed in memory. With
absence of Memory Management Unit (MMU) in the hardware
platform, using virtual memory is not possible. Therefore
compilation is done with Position Independent Code(PIC).
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Fig. 4. Compilation flow for dynamic loading.

We assume the application binary is sent through a dedi-
cated communication link into the shared memory of the Sys-
tem on Chip (SoC) at a pre-defined location. After detection
of the application binary the loading process is executed. The
compilation flow is shown in Figure 4.

V. LOADING ARCHITECTURE

In this section we first explain the loading process and
in the following sub-sections we argue the composability and
predictability properties of the loading process.

A. System Application

The System Application (SA) is an application with access
to the RM System API, thus it can create, modify or destroy
VPs. It is also responsible for executing the dynamic loading
process. At the system start-up, a VP is allocated for SA with
one processor TDM slot and one DMA connection to the
shared memory via the NoC. At the start of every SA slot,
the SA checks for ELF binaries in pre-defined locations in
the shared memory, which indicate they need to be loaded. If
an ELF binary arrives after the checking routine of SA, it is
detected at the start of the next SA slot.

We define Loading Time (LT) as the period from the time
an ELF binary is detected by the SA to the time when the
application contained in the ELF begins execution. We split the
loading process in three steps. For each detected ELF binary
the SA initiates the first step. In the first step, the SA creates
a boot-strap VP by reading the VP descriptor section in the
application ELF binary and by reserving the processor and
memory budgets. This step is called Boot-strap VP Creation.
The first step is executed in the SA’s time slot. In the second
step, called Boot-strap VP Expansion, the Boot-strap VP is
expanded by reserving the rest of the required resources as
described by the VP descriptor in the application ELF binary.
In the final step, called Loading Code & Data, the application
code and data are loaded. The second and third steps are
entirely executed only in the application’s VP. All resource
reservations and allocations are done using the RM System
API before the loading process completes.

B. Loading Steps
The details of the loading steps are as follows:

Boot-strap VP Creation. The SA, using its own DMA,
fetches the ELF header and parses it to locate the section
containing the VP descriptor and reads the processor BD. The
processor BD describes the required processor TDM slots,
stack size, heap size and memory required in IMEM and
DMEM. The requested processor TDM slots are reserved and
allocated and are registered with the microkernel. Stack and
heap memory are allocated in DMEM and are associated with
the newly created VP. A DMA is also reserved, as it is essential

to pull in the code and data from the shared memory into
the instruction and data memories in the next step. In this
step, if the reservation of the processor BD or DMA BD fails
due to insufficient available resources, the loading process
is aborted by deallocating and releasing already allocated
resources. Since no TDM slots remain allocated in case of
reservation failure, the subsequent steps do not take place.

Boot-strap VP Expansion. When the microkernel
switches to the allocated TDM slot of the newly created VP,
the VP descriptor is fetched by the boot-strap code, using
the allocated DMA. The boot-strap code is privileged code
that reserves the rest of the required resources such as NoC
connections and space in the shared memory as described
by the VP descriptor using the RM System API. In this
way, the Boot-strap VP is expanded to the full size of the
VP as required by the application. If the reservation of the
resources fail, the boot-strap code deallocates and releases the
resources that it allocated and exits. In the next iteration of
the SA, it detects that the boot-strap code has exited. The SA
then de-allocates the BDs associated with the failed VP, thus
completely removing the Boot-strap VP.

Loading Code & Data. After the completion of VP
expansion, application code and data are fetched from the
application binary and loaded in IMEM and DMEM in the al-
located ranges, respectively. Position Independent Code (PIC)
is used so that the application code only has relative jumps.
Therefore the application code is independent of its location in
IMEM. The function calls, that point outside the scope of the
application, such as OS and debug APIs, are accessed using a
Virtual Function Table. It holds an array of pointers to (virtual)
functions. In this step, these pointers are set to point to the right
functions. To correctly access data, independent of its storage
location, the compiler creates a Global Offset Table (GOT),
which contains the relative offsets to all global variables. The
global variables are then accessed through indirect addressing
using this table. The GOT is accessed using the GOT pointer
(register 120 in Microblaze). After loading the application data
in the allocated memory in DMEM, the GOT pointer and the
table entries are updated to the new addresses.

The above loading steps are illustrated in an example
shown in Figure 5. The figure shows the time line of a
processor during loading. In the example, the processor is
partitioned into TDM frames of four application slots. Between
every application slot, a microkernel slot runs. The durations
of the application slot (t4) and the microkernel slot (¢;;) are
fixed and constant. Application A is an application that runs
in slot 1. The ELF binary of application B happens to arrive
just after the completion of the SA routine which checks ELF
binaries. Therefore the ELF binary of application B will be
detected in the SA slot of the next TDM frame. In fact this
corresponds to the worst case period for an ELF binary to be
detected and it is equal to the length of one TDM frame. At
the start of the next frame, binaries of applications B and C
are detected. Their Boot-strap VP creation steps are executed
in slot 0. Slot 2 is allocated to application B and slot 3 to
application C. In their respective application slots, the Boot-
strap VPs are expanded by reserving the requested resources.
After that the application code and data is loaded. The loading
times for both applications are indicated.

The proposed loading process divides the loading time into
four parts. These four parts are indicated in Figure 5. T is the
SA’s slot duration during which the first step of loading, i.e.
Boot-strap VP Creation is executed for all the detected ELF
binaries. Ty is the waiting time until the first allocated slot
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arrives. T is the time it takes to execute the second step of
loading, i.e. Boot-strap VP Expansion and T7, is the time it
takes to load application code and data. Thus the loading time
(LT) for an application is

LT =Tc+Tw+Tg+ T}, (D)

In the following sub-sections we shall explain how LT is
composable and predictable and the TDM design constraints
for it to be composable.

C. Composability

To ensure composable loading, each of the four parts of
the loading time (LT), viz. T, Tw,Tr and T, should be
independent from execution of other running applications or
other simultaneous loadings.

Tc is made composable by always spending a fixed time
on it, for all possible loading scenarios. This fixed duration is
set to the duration of the SA’s time slot and the SA is assigned
the first TDM slot. In this way all application binaries that have
to be loaded, are handled in the same TDM frame, in which
they are detected. This defines the minimum duration of the
SA TDM slot. For simplicity, we assume the TDM schedule
consists of TDM slots of equal duration. Thus, the duration
of the TDM slot in the system should be at least equal to the
total time required to create the Boot-strap VPs for maximum
number of applications that can be loaded simultaneously. In a
processor partitioned in n TDM slots, the maximum number of
applications that can be loaded is (n—1), since the SA occupies
one TDM slot. We can divide the Boot-strap VP creation step
in three parts. Let T, be the worst-case time taken to parse
the ELF binary to load the VP descriptor, T be the worst-
case time it takes to allocate all the memory sections (stack,
heap, space in IMEM and DMEM) and T’, be the worst-case
overhead spent in the RM API to reserve and allocate the Boot-
strap VP in the system. The worst case time bounds for 7, and
T}y exists due to the predictable nature of the loading process
as explained in the next subsection. The RM API is designed to
have a bounded overhead. Hence for composability the TDM
time slot duration ¢4 has to meet the following constraint.

tAZ(n—l)X(Ta—i-TB—‘rTW) 2)

Ty is the waiting time, until the first allocated processor
TDM slot arrives, hence it depends on the allocated TDM
slot(s). For TDM slot allocations which are decided at design-
time, the duration of 7Ty can be computed and it will be the
same for every possible loading. Thus it is independent of
all the running applications or other simultaneous loadings,
therefore it is composable. If however, the processor TDM slot

An example of application loading with the proposed loading process.
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allocation is decided at run-time, then the SA can allocate the
requested number of TDM slots, as per the availability of free
TDM slots. In this case, the Ty, is not of a fixed duration,
thus it would not be composable, however it has an upper
bound which can be computed. Therefore it will be predictable.
The maximum duration of 7Ty in a system with n slots will
be when the application is assigned the last TDM slot in the
TDM frame. Therefore, after completion of the SA TDM slot,
the waiting time until the last TDM slot arrives is (n — 2)
TDM slots. During this waiting period, (n — 1) microkernel
slots occur. Hence the maximum duration of Ty is given by
Twmaz = (0 — 2)ta + (n — 1)tps. In this paper we assume
TDM allocations are done at design-time.

Tg indicates the Boot-strap VP Expansion step. Since it
is entirely executed in the application’s time slot, it is free
from interference from other applications or other simulta-
neous loadings and vice versa. However, during reservation,
resources are locked and if the resource reservations for
a VP do not finish within the same application slot, then
other applications that try to reserve resources may experience
interference. Therefore for the Boot-strap VP Expansion step
to be composable, reservation for all the resources required
to expand the application VP should finish within one appli-
cation slot. Hence for all applications that have to be loaded,
constraint 3 should be satisfied, where R is the set of BDs that
are reserved and allocated in the Boot-strap VP Expansion step
(i.e. all BDs required by the application, except the BDs of the
processor and the DMA) and ¢, is the time taken to reserve
and allocate the BD 7.

ta> > tr (©)
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T}, involves loading the application code and data which is
also done entirely in the application’s time slots. Additionally
the loading is done using the composable communication
architecture(composable NoC with composable Memory con-
troller), as a result the communication is composable. After
VP expansion, DMA and allocated memory ranges in CMEM,
IMEM and DMEM are exclusively owned by the application
VP. This ensures independence from other applications and
also this loading step does not affect other VPs. In this way,
T}, is composable.

Therefore we may conclude that the loading process is
composable provided that the TDM slot duration meets Con-
straints 2 and 3.

D. Predictability
For the loading process to be predictable, it should finish
in known time bound. To have a computable bound for the



loading process the necessary requirements are, 1) the applica-
tion binary should be of finite size, 2) the resource allocation
algorithms should have a finite Worst-Case Execution Time
(WCET), 3) platform resources such as processor, DMA, NoC,
Memory should give guaranteed performance. We assume
requirement 1 always holds. With regards to requirement 2,
for the processor TDM slot allocation, in this paper, the TDM
slots are allocated at design time. For memory allocation, we
employ a naive predictable memory allocator. The memory is
divided into a number of blocks of a fixed size. The allocator
iterates through the list of memory blocks and allocates the first
free contiguous blocks of memory that fit the requirement. The
WCET for the memory allocator is when the allocator has to
iterate through the complete list of blocks.

With regards to requirement 3, the platform in [8] is pre-
dictable. The processor is shared using TDM schedule, which
ensures guaranteed share of processor. Since each application
is exclusively allocated a DMA, it gets the full share. The
communication time in the NoC is also predictable and the
worst case bound can be computed with the dataflow model
presented in [20]. The shared memory has a composable and
a predictable front-end and the time to serve memory read or
write request can be computed using the Latency-rate Server
model as described in [16]. By combining the dataflow model
presented in [20] and the Latency-rate Server model in [16],
it is possible to get a worst-case bound for the loading time.
Presenting the detailed derivation of such a worst-case bound
is out of the scope of this paper.

In equation 1, T is of known fixed duration. With fixed
TDM slot allocations at design-time, Ty is known. Due to
the predictable nature of the loading process, Tg and 77,
take constant time. As a result, the loading process for an
application finishes in a constant time and this constant loading
time for the application, is the same irrespective of when
the loading process is initiated. This is demonstrated by the
experiments explained in Section VI-D.

VI. EXPERIMENTS

We shall first explain the experimental setup in the next
subsection. Then for composable dynamic loading we derive
the TDM slot duration that will satisfy Constraints 2 and 3.
Then we explain the experiments conducted to demonstrate
composability and predictability.

A. Experimental Setup

The hardware platform instance used in our experimental
setup is shown in Figure 1. We implemented the hardware
platform instance on a Xilinx ML605 FPGA board. The
MicroBlaze soft-core processor has an instruction memory
(IMEM) and a data memory (DMEM) of 256KB each. The
platform consists of 3 sets of DMAs and communication
memories (CMEMs). The CMEMs are of 16KB each. The
platform runs on a clock of 120MHz frequency.

Applications: For the experiments we choose three ap-
plications with different criticalities. Tick is a hard real-time
application, which produces ticks at defined periodic intervals
which are used to monitor various sensor and telemetry data.
MP3-decoder is an example of a soft real-time application.
Susan [21] is an example of a non real-time image processing
application used for edge detection. We implemented these
applications in C and compiled them using the MicroBlaze
GCC toolchain. The resulting memory specifications of these
applications are shown in Table I. Each application has fixed
processor TDM slot assignment encoded in the application

binaries. Tick is allocated slot 1, Susan is allocated slot 2 and
MP3-decoder slot 3. SA runs in slot 0.

TABLE 1. MEMORY SPECIFICATION OF APPLICATIONS.
Application ELF binary | Program Program Stack | Heap
size Code data
Tick 2.7KB 0.5KB 44B 512B 0B
Susan 35KB 26KB 7KB 2KB 1KB
MP3-decoder 72KB 30KB 41KB 8KB 1KB

B. TDM Design

For executing the considered applications we need 3 TDM
slots and for executing the SA an additional slot is needed.
Hence we partition the processor in a TDM frame of four
slots. We next derive the TDM slot duration which satisfy
Constraints 2 and 3.

Constraint 2 requires us to know the timings of T,,, T
and T, for the largest VP in the system. The sizes of BD
structures in our implementation are shown in Table II. The
largest VP in the considered platform consists of 3 DMAs with
3 corresponding NoC connections and 1 tile with 1 processor.
Using the sizes in Table II, we see that the largest VP descriptor
amounts to 1240 bytes. Fetching and parsing the ELF binary
to load the VP descriptor of 1240 bytes takes 5785 cycles
in our system. Thus T,, = 5785. We emulate the worst case
condition to allocate memory, using the allocator explained in
Section V-D on our platform to determine the worst case time
to allocate memory. It takes 1673 cycles. Assuming allocating
stack, heap, space in IMEM and DMEM, each take the worst-
case time, Tg = 4 x 1673 = 6692. The RM API overhead
in our setup to reserve the largest VP is 1448 cycles, thus,
T, = 1448. Therefore according to constraint 2:

ta > (4—1)(5785 + 6692 + 1448)
> 41775

The SA requires some additional time to check for ELF
binaries and to check for Boot-strap VP Expansion failures.
Therefore we choose the duration of application slot to be
65536 cycles which satisfies constraint 1. The microkernel slot
is 4096 cycles.

In Boot-strap expansion step, required resources other than
the processor and memory are reserved and allocated. In the
considered hardware platform, other than the NoC, every other
resource takes a short time(few hundred cycles) for reservation
and allocation. For the NoC, we employ an online allocation
algorithm presented in [22]. The worst case time for finding an
allocation in a 4 x 4 mesh is 6394 cycles as reported in [22].
The NoC in the considered platform is 2 x 1 mesh with even
smaller allocation time. Therefore the chosen t 4 also satisfies
Constraint 3.

TABLE II. SIZES OF BD STRUCTURES.
BD Size (Bytes)
BD_dma 208
BD_noc 140
BD_proc 44
BD_tile 152

C. Composability Experiments

For verifying composability seven independent experiments
were conducted and the loading times were compared. These
seven experiments do not represent all the combinations of
loadings for the considered three applications, however the
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Fig. 6. Processor timeline for composability experiments.

chosen combinations are sufficient to demonstrate that the
loading process is isolated from the existing applications
and other simultaneous loadings and vice versa. Figure 6
shows the processor timeline for each of these experiments.
In each experiment application binaries are sent via the serial
connection into the shared memory of FPGA. To simplify
Figure 6, the timer is started at the detection of the first ELF
binary.

In experiment A, only the 7ick application is run by pre-
loading it, which serves as an existing application. The periodic
interval of tick is set to the duration of one TDM frame, so that
in every frame we have one tick. After start-up code, the first
tick arrives at 4198 cycles, from then onwards we get periodic
ticks every 278528 cycles. In experiment B, while the Tick
application is running, the Susan application is loaded, and in
experiment E, the MP3-Decoder application is loaded while the
Tick application is running. In experiment C only the Susan
application is loaded with no other applications running in
other slots. Similarly, in experiment D, only the MP3-decoder
application is loaded with no other running applications in
other slots. To emulate simultaneous loadings, in experiment F,
both the MP3-decoder and the Susan applications are loaded.
In experiment G, the order is reversed, that is Susan followed
by MP3.

In the experiments A,B,E,F and G the ticks occur at the
defined periodic intervals even in the presence of loading
applications. This shows that the loading process does not
affect the existing running applications.

The loading time of the Susan application in isolation
(experiment C), is the same as the loading time in experiment
B (loading in presence of the Tick application). Similarly
experiments D and E demonstrate that the loading time of
MP3-decoder application is unaffected by the existing run-
ning application. This demonstrates that the loading time is

unaffected by the existing running application.

Thus we have shown that the loading process do not affect
the existing applications and the existing applications do not
affect the loading process.

The loading time of Susan application in isolation (exper-
iment C) is the same as in the experiments F and G, wherein
simultaneously the Susan and the MP3-decoder applications
are being loaded. Similarly the loading time of the MP3-
decoder application in isolation (experiment D) is the same
as in the experiments F and G. In all of these experiments, we
observe periodic Ticks at the defined interval. The exact same
loading times for the respective applications and the occurrence
of Ticks at defined intervals, in these different experiments,
demonstrates that multiple simultaneous loadings do not affect
each other or the existing application.

The duration of loading steps for each application is shown
in Table III. Due to relatively larger size of MP3-decoder
application, it loads in the fifth TDM frame. Therefore in
Figure 6 the processor timeline jumps to the 5" frame.
Duration of Boot-strap VP Creation step for each of these
applications takes approximately the same duration as the
processor TDM slot allocation is fixed and the memory allo-
cation takes small time as there is enough memory in IMEM
and DMEM (256KB). The Boot-strap Expansion step for all
the three applications happen to be the same, since after
the creation of Boot-strap VP, no additional resources were
necessary. However the BD section in the ELF binary is still
fetched and checked and that consumes 5886 cycles.

D. Predictability Experiments

As explained in Section V-D, due to the predictable nature
of the loading process, the loading time for an application
takes a constant time, which is the same independent of when
the loading process is initiated. To demonstrate this, the MP3-
decoder and Susan applications were loaded in independent

| Kl
1632k



TABLE III. DURATION OF LOADING STEPS FOR EACH APPLICATION.

Application Boot-strap Boot-strap VP | Loading Loading
VP Creation Expansion Code and | Time
Data
Tick 9640 5886 31226 106790
Susan 9633 5886 597630 742826
MP3-decoder 9669 5886 1394984 1609812

experiments. In each experiment, they were sent with a delay
of one TDM frame. For each loading, the detection time,
i.e. the absolute time when the SA detected the application
ELF binary and the completion time, i.e. the absolute time
when the application begins execution were observed for each
experiment. In Figure 7, the numbers below the bar indicate
the detection time of each loading and the numbers above
the bar indicate the completion time of each loading. The
loading time is the difference between the completion time
and detection time. The loading time is shown inside the bar.
As seen in Figure 7, for loadings at different start times, the
loading time remains the same. This experiment verifies that
the loading time for an application is constant and remains the
same irrespective of when the loading process is initiated.
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Fig. 7. Loading times for MP3-decoder and Susan applications when detected
in different TDM Frames.

VII. CONCLUSION

Existing partitioned time-critical systems do not allow to
dynamically add applications at run-time. However for various
scenarios such as on-board software updates and reloading for
fault-tolerance, dynamic loading is essential. In this paper, a
software architecture is presented which allows for dynamic
creation and management of partitions. This is essential for
dynamic loading. Furthermore a loading method was pro-
posed which ensures the loading process is composable and
predictable. With composability, the loading process and the
existing running applications are temporally and spatially inde-
pendent of each other. With predictability the loading process
completes in a known bounded time. For composability, design
constraints for the TDM slot duration are discussed.

Results are achieved by splitting of the loading process into
sub-steps, of which only the basic minimum step is executed
in system time and the rest are executed in the allocated
application time. Extending the current loading architecture
for multi-tile applications is future work. A limitation of
the proposed loading architecture is that the loading time is
coupled with TDM slot allocation of the application. Therefore

a big application with a small share of processor, will load
slowly. This can be improved either by using slack time in the
system application and/or the free available slots for loading,
in which case, the loading will not be composable, however it
can be predictable.
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