
Throughput-Constrained Voltage and Frequency Scaling
for Real-time Heterogeneous Multiprocessors

Pengcheng Huang
Swiss Federal Institute of
Technology (ETH) Zurich

Zurich, Switzerland
pengcheng.huang

@tik.ee.ethz.ch

Orlando Moreira
ST-Ericsson

Eindhoven, The Netherlands
orlando.moreira

@stericsson.com

Kees Goossens
Technical University of

Eindhoven
Eindhoven, The Netherlands
k.g.w.goossens@tue.nl

Anca Molnos
Delft University of Technology

Delft, The Netherlands
a.m.molnos@tudelft.nl

ABSTRACT
Voltage and Frequency Scaling (VFS) can effectively reduce
energy consumption at system level. Most work in this
field has focused on deadline-constrained applications with
finite schedule lengths. However, in typical real-time stream-
ing, processing is repeatedly activated by indefinitely long
data streams and operations on successive data instances
are overlapped to achieve a tight throughput. A particu-
lar application domain where such characteristics co-exist
with stringent energy consumption constraints is baseband
processing. Such behavior requires new VFS scheduling
policies. This paper addresses throughput-constrained VFS
problems for real-time streaming with discrete frequency lev-
els on a heterogeneous multiprocessor.

We propose scaling algorithms for two platform types:
with dedicated VFS switches per processor, and with a sin-
gle, global VFS switch. We formulate Local VFS using
Mixed Integer Linear Programming (MILP). For the global
variant, we propose a 3-stage heuristic incorporating MILP.

Experiments on our modem benchmarks show that the
discrete local VFS algorithm achieves energy savings close
to its continuous counterpart, and local VFS is more effec-
tive than global VFS. As an example, for a WLAN receiver,
running on a modem realized as a heterogeneous multipro-
cessor, the continuous local VFS algorithm reduces energy
consumption by 29%, while the discrete local and global al-
gorithms reduce energy by 28% and 16%, respectively, when
compared to a on/off energy saving policy.

1. INTRODUCTION
Hard real-time streaming applications operate on indefi-

nitely long data streams and the schedule overlaps [12] across

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

S
F M C

S S

F

S

F

M

S

F

M

C

S

F

M

C

S

F

M

C

Source
Filtering
De(modulation)
De(coding)
corss iteration data depdendecies

S –
F –
M –
C –
–

Figure 1: Simplified baseband processing.

successive iterations, i.e. operations from different iterations
execute simultaneously on different processors. A primary
real-time concern is the throughput requirement.

An example is Software-Defined Radio (SDR) [17] , where
baseband processing tasks run concurrently on an embed-
ded multiprocessor. The radio is repeatedly activated by a
periodic source and must keep up with its rate. Radios have
three main stages: filtering, (de)modulation and (de)coding,
as shown in Fig. 1 [9]. Iterations are overlapped to meet a
tight throughput requirement, e.g., filtering of a new sam-
ple happens simultaneously with demodulation of a previous
sample. Furthermore, cross-iteration data dependencies ex-
ist, i.e., data produced by one iteration can be required for
the processing of another iteration.

In addition to the real-time requirements, transceivers re-
quire low-energy processing, as they typically run on battery-
operated devices. Voltage and Frequency Scaling (VFS) has
been shown to be effective in reducing energy at system
level by adjusting voltage and frequency [5]. However, VFS
changes the execution times of tasks and thus affects the
schedule. For transceivers, the challenge is to find a sched-
ule that makes use of VFS to save energy, while meeting
strict timing requirements.

There are three difficulties in performing VFS on stream-
ing applications. First, since schedules are typically infinite,
the problem size is by nature infinite. Second, because the
schedule is overlapped, we must account for data dependen-
cies both within and across iterations [16]. Last, we must
handle both throughput and latency constraints.

In this paper, we address throughput-constrained VFS for
hard real-time streaming applications, with discrete voltage-
frequency levels, running on a heterogeneous multiprocessor.

We propose compile-time VFS [5] techniques, where settings
are calculated off-line and applied at run-time according to
a pre-calculated schedule. We neglect transition overheads
when switching between voltage/frequency points, and focus
on the unique features of streaming applications. Ignoring
the transition overhead underestimates energy consumption,
leading to sub-optimality. However, for our reference hard-
ware, and for our target applications, this underestimation is
low. On our reference modem, switching voltage-frequency
levels from maximum to minimum takes 20ns. This is due
to voltage ramping up/down, as frequency changes instantly
by switching PLLs. This means that, pwe transition, the
processor runs 20ns at the low frequency, while consuming
energy at a higher voltage. In our experiments, all algo-
rithms generated solutions with a low number of transitions
per task. (in fact no more than two transitions in a sin-
gle task were used, and a typical transceiver has between 9
and 20 tasks). Even pessimistically assuming consumption
at maximum voltage during the transition, and two transi-
tions per task, the total additional energy consumption per
transition would be lower than 1% of the total energy con-
sumption for our TDSCDMA receiver, and below 5% for our
WLAN receiver, which has a particularly low absolute en-
ergy consumption per iteration when compared with other
standards, due to its much faster rate. Moreover, our tech-
niques can be extended with previous work [4] to account for
transitions, at the cost of extra computational complexity.

We also neglect communication. However, our techniques
can be extended to address it by adding communication
tasks to the application graph. However, power models for
such tasks must be provided.

We use Single-Rate Data Flow (SRDF) [7] to model stream-
ing applications. SRDF can efficiently model and analyze
the real-time behavior of a streaming application mapped
onto a multiprocessor platform [9]. We determine VFS po-
lices by generating Static Periodic Schedules (SPS) [9], and
a corresponding static periodic sequence of VFS operat-
ing points for each Voltage-Frequency Switch (VF-switch).
We use SPS to reduce the problem from infinite to finite.
For an SRDF graph, there is always a SPS that achieves
the maximum attainable throughput [9], thus guaranteeing
that opting for SPS does not hinder us from achieving our
throughput requirement. Cross-iteration data dependencies
are modeled in SRDF by edges with delays [9]. Latency
constraints can be modeled as additional precedence con-
straints on a throughput-constrained SRDF, as described in
[9]. Thus, for the remainder of the paper we will talk only
of the throughput constraint, but the reader should keep in
mind that some of our benchmarks, such as WLAN, have
stringent latency constraints that our solution meets, usign
the latency modeling technique.

As the key contribution of this paper, we propose algo-
rithms to perform VFS on streaming applications with infi-
nite schedules, cross-iteration data dependencies, and hard
latency and throughput requirements, assuming discrete VF-
switches. We also show that it is desirable to directly address
throughput-constrained VFS problems instead of adapting
deadline-constrained VFS techniques.

We consider VFS problems for both multiprocessors us-
ing local VF-switches and a single, global VF-switch. This
also allows us to compare energy savings between different
hardware choices. We investigate the problem complexity of
both variants. We solve continuous throughput-constrained

VFS by formulating it as a convex program. Continuous
VFS is not practical, but it provides an upper bound to the
savings that can be obtained by VFS. The Discrete Local
VFS problem is formulated as a Mixed Integer Linear Pro-
gram (MILP), while its global counterpart is solved by a
3-stage heuristic incorporating MILP.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 provides preliminar-
ies regarding SRDF, power modeling, and the target mul-
tiprocessor. Section 4 presents an example to illustrate the
throughput-constrained VFS problem. Section 5 formalizes
the throughput-constrained VFS problem. Sections 6 and 7
address respectively the continuous and discrete VFS vari-
ants with local VF-switches. Section 8 addresses discrete
VFS with a global VF-switch. Section 9 reports and dis-
cusses our experiments. Section 10 concludes the paper.

2. RELATED WORK
There is a considerable amount of work on system level

VFS. Yao et al. [20] proposed the first VFS approach which
dynamically changes supply voltage over a continuous range.
Andrei et al. [4] proposed an approach that optimally solves
the VFS problem for multi-processors with imposed time
constraints. They solve continuous VFS with a (polynomial
complexity) convex program [13], prove the discrete problem
is strongly NP hard and formulate it as a MILP.

Only a few VFS techniques have been proposed for stream-
ing applications. Xu et al [19] considers task mapping and
scheduling, by explicitly constructing pipeline stages from
the task graph and then performing VFS on all pipeline
stages. This approach cannot address general deadline re-
quirements, and optimality cannot be guaranteed for general
task graphs. Liu et al [8] explicitly retime an acyclic task
graph to construct loop kernels and then apply VFS to the
loop kernel with the throughput constraint converted to a
corresponding deadline constraint. It is not clear whether
optimality of energy saving is lost with retiming. Moreover,
this approach cannot optimally handle cross-iteration data
precedences. Wang et al [18] propose a two stage approach
to perform VFS for streaming applications. First, they use
the same graph transformation as proposed in [8]. They
then apply genetic algorithms to search for solutions. Their
approach suffers from the same limitations as [8]. In conclu-
sion, none of the existing work handles general constraints
and cross-iteration data dependencies optimally.

The technique most similar to ours is proposed in [10],
where the VFS algorithm assigns a frequency to each task,
and voltage is scaled continuously through a convex program
with a throughput constraint. The algorithm is extended to
handle discrete frequency levels by rounding up the results to
a limited set of discrete frequencies. There are two problems
with this approach. First, the assumption that frequency
is proportional to dynamic voltage while performing VFS is
unrealistic. Second, the handling of discrete frequency levels
by rounding up the results of a continuous distribution can
lead to a severe loss of energy savings, as we will show.

3. PRELIMINARIES
We now present our target platform, our data flow model

for streaming applications, its timing properties, and the
power model.

3.1 Target Platform

We consider heterogeneous multiprocessors, where both
general purpose and application-specific cores have local mem-
ories and are connected along with peripherals (such as I/O
ports) via a Network-On-Chip.

On our modem, the platform has 3 types of processors:
Embedded Vector Processors (EVPs) [17], Decoders and
ARMs, each of which may have multiple instances,

Formally, the multiprocessor
∏

(Π, F, p) has a processor
set Π = {π0, π1, ...πm}, where πi is the ith processor in
the platform. A set of frequency levels F is available to
all processors. The valuation p stands for the power dissi-
pation associated with a frequency level for each processor
p : Π×F → R+

0 . Two variations of the architecture are con-
sidered. In the first, frequencies and voltages are managed
by a local a VF-switch per processor. In the second, a single
global VF-switch simultaneously shifts the VF level for all
processors.

3.2 Data Flow Model
We use SRDF [7] to model real-time streaming applica-

tions. An SRDF application graph G = (V,E, d, t) is a di-
rected graph . Nodes (actors) in V represent actual tasks
and edges in E represent communication channels. Data
is transported in discrete chunks, called tokens. An actor is
enabled by the availability of one token on each of its incom-
ing edges. An enabled actor can fire, consuming/producing
from/to each of its input/output edges a single token. Ac-
tor firings are free from side effects. An iteration of the
graph corresponds to one firing of every actor. Actors in a
SRDF graph can be executed infinitely often. The valuation
d : E → N0 represents the initial token distribution on an
edge. Thus, d(i, j) represents the number of initial tokens
(or delay) on edge (i, j). A SRDF is timed when the execu-
tion time of each actor is given by valuation t : V → R+.

An edge (i, j) together with delay d(i, j) impose a prece-
dence constraint [16], which can be formalized as follows:

s(j, k) ≥ e(i, k − d(i, j)), ∀k ≥ d(i, j) (1)

where s(j, k) and e(i, k−d(i, j)) represent the kth start time
of node j and (k−d(i, j))th end time of node i, respectively.

For a timed SRDF graph G, the throughput of the sys-
tem is given by the inverse of the Maximum Cycle Mean
(MCM) [16] of G, defined as

max
c∈C(G)

 ∑
i∈V (c)

t(i)

/ ∑
e∈E(c)

d(e)

 (2)

where C(G) is the set of cycles in G, V (c) and E(c) are the
sets of actor and edges traversed by cycle c.

To handle infinite schedules, we restrict ourselves to static
periodic schedules, specified by a triple:

SPS = {π(i), s(i), µd}, ∀i ∈ V (3)

where π(i) and s(i) represent the processor where actor i
is mapped and the start time of the first firing of actor i,
respectively, and µd stands for the SPS period. For SPS,
strict periodicity is enforced by requiring that

s(i, k) = s(i, 0) + µd × k, ∀i ∈ V. (4)

An SPS period µd for a SRDF is admissible only when
µd ≥ MCM [9]. Recall Equation 1, for SPS, the precedence

constraint imposed by edge (i, j) becomes:

s(j, k)− e(i, k) ≥ −µd × d(i, j),∀k ≥ d(i, j) (5)

Given a SRDF graph, the precedence constraints intro-
duced by a static ordering can be represented as additional
edges ES in the graph, and ES

⋃
E essentially implies the

static ordering of task firings after scheduling. An exam-
ple of a statically scheduled SRDF and its timing diagram
are shown in Fig. 2. The task graph (Fig. 2(a)) is sched-
uled onto two processors π1 and π2 and the scheduled SRDF
(Fig. 2(b)) is constructed, in which dotted edges represent
ES . Fig. 2(c) shows the overlapped periodic scheduling dia-
gram. Bullets(•) in graphs represent delays on edges.

A C

B

D E

A

B

C

D

E

A B C A

D E

π1 π2

B C A B

D E

...
π1

π2

(a) Task graph (b) Scheduled task graph

(c) Static periodic scheduling diagram

time

Figure 2: SPS for SRDF

3.3 Power And Delay Models
In this paper, we only consider dynamic power, for which

the standard model [5] is used:

Pdynamic = αCv2ddf (6)

where αmodels the circuit switching activity, C is the switched
capacitance and vdd and f are the voltage and frequency
levels, respectively. The voltage and frequency pair (vdd, f)
determines the execution mode of a processor. When per-
forming VFS, vdd scales with f [5], which is given by:

f = K · (vdd − vth)δ

vdd
(7)

where vth is the switching threshold voltage of a transis-
tor, δ reflects the charge velocity saturation imposed by the
technology, and K represents a circuit dependent constant.

4. MOTIVATIONAL EXAMPLE
We demonstrate the influence of infinite overlapped schedul-

ing and cross-iteration data dependencies on VFS by means
of an example, where we estimate the energy consumption
of an application in three cases. In the first, the processors
always run at the highest frequency when active, and are
switched off when not active (consume no energy). In the
second, we adapt an existing deadline-constrained VFS pol-
icy [4] to our example. In the third, we directly address the
infinite SPS, and consider cross-iteration precedence con-
straints when scaling voltage and frequency. For clarity, we
assume throughput-constrained VFS with discrete frequency
levels.

The hardware platform has three processors π1, π2 and
π3, with their relevant parameters detailed in Table 1. Two

voltage-frequency levels are available to each. Power dissipa-
tions are made integer for simplicity sake. The virtual pro-
cessor πvirtual is used to map external non-scalable source
tasks, and only the higher frequency is available to it. The
processors need to execute tasks (S, A, B and C) with prece-
dence relations shown in Fig. 3(a). Task S is the external
source. All others are processing tasks.

All tasks initially execute in the high power/frequency
mode. Fig. 3(b) shows the SPS diagram before VFS. We
convert the minimum throughput requirement to a maxi-
mum period requirement of 40µs. The total energy con-
sumption per period of this schedule is the sum up of en-
ergy dissipation in each frequency level of all tasks Etotal =
2 + 3.2 + 0.6 = 5.8µJ (we assume processors consume no
energy when inactive).

Table 1: Example platform description
Processor Voltage(V) Frequency(MHZ) Power(mW)

π1 1.1 312 200
0.9 156 60

π2 1.1 312 160
0.9 156 50

π3 1.1 312 20
0.9 156 7

πvirtual 1.1 312 0

A

π

T/μs

π2

π1

...

A

B

10μs

(a) Scheduled

task graph
(b) Scheduling Time Diagram

B

Period

C

C

A

π3

20μs

30μs

B

C

A

C

Latency

B

A

B

500 70 110 140

S

40μs

πvirtual S S S S

40 100

Figure 3: Application Example

For comparison purposes, we adapt an existing deadline-
constrained VFS policy [4] to our example. As mentioned,
schedules for real-time streaming applications have infinite
lengths and are often overlapped across successive iterations.
Hence, traditional deadline-constrained VFS policies [4] can-
not be directly applied because they are restricted to one
iteration. To reduce the size of the VFS problem, from in-
finite to finite, we split the infinite schedules into minimum
static periodic regions (blocked schedules) and then apply
deadline-constrained VFS policies to the blocked schedule.
The original period constraint can be converted into a dead-
line constraint for the blocked schedule. In Fig. 4, we show
how to adapt a deadline-constrained discrete VFS algorithm
proposed in [4] for the example shown in Fig. 3. First, since a
blocked schedule is not available from the original schedule,
the SRDF graph (Fig. 3(a)) is retimed. Retiming [22] redis-
tributes the original tokens in a SRDF to improve blocked
schedules. From this we obtain a blocked schedule, that
can execute in a periodic fashion (Fig. 4(a)). Since prece-
dence relations for a blocked schedule can be rearranged
within each block, a Direct Acylic Graph (DAG) (with
zero execution time Begin and End nodes) is constructed
from the original SRDF(for the minimum periodic region
80µs ∼ 120µs in Fig. 4(a)). This DAG is then used as the in-
put for VFS with a deadline constraint of 40µs. In the result,

task A and task C extend execution times to 20µs and 40µs,
respectively. Task B is not scaled. The total energy con-
sumption for one period is E′total = 1.2+3.2+0.54 = 4.94µJ .

A

π

T/μs

π2

π1 ...
A

B

(b) Task graph

(DAG)
(c) Schedule after Deadline constrained VFS

B
C

C

A

π3

B

C

A

C

Latency

B

A

B

B

E 50 70 100 140120 1600

S

πvirtual S S S S

40 80

A

π

T/μs

π2

π1
...

(a) Retimed static schedule

B

Retiming

C

A

π3

B

C

A

C

Latency

B

A

B

500 70 110 140

πvirtual S S S S

40

Blocked

Schedule

80 120

Blocked

Schedule

Figure 4: Transformed deadline-constrained VFS.

However, by directly addressing the infinite SPS and com-
plying to cross-iteration precedence constraints stated in
Equation 5, we can get the optimal scaling results meeting
the period constraint of 40µs. As is shown in Fig. 5, after
scaling, task A and task B have the new execution times as
20µs and 30µs. The total dissipated energy per period is
E′′total = 1.2 + 2.6 + 0.6 = 4.4µJ .

A

π

T/μs

π2

π1 ...

B

Period

C

A

π3

B

C

A

C

Latency

B

A

B

0 60 90 100 120 130 140 160

πvirtual S S S S

40

Figure 5: Throughput-constrained VFS

This example shows that, by directly addressing the through-
put-constrained VFS problem, we obtain extra energy sav-
ings of 4.94µJ−4.4µJ

5.8µJ
= 9.3% compared to an adapted deadline-

constrained VFS algorithm. The fundamental reason is that
in any valid schedule (e.g. a SPS) for streaming applications,
static slack exists across iterations due to the cross-iteration
precedence constraints. Though we can unfold1 the SRDF
to let a deadline-constrained VFS approach handle sched-
ules with multiple iterations to explore more static slack,
the throughput-constrained VFS problem cannot be solved
optimally in this way since cross-iteration static slack still
exists after unfolding. Hence, we need algorithms that di-
rectly address throughput-constrained VFS.

5. PROBLEM FORMULATION
Our VFS techniques assume that task-to-processor map-

ping and static ordering of tasks per processor have already

1Unfolding [12] schedules N iterations of a SRDF graph
together, which often leads to improved blocked schedules.

been performed by a scheduling flow such as the one pro-
posed in [9].

As already discussed, streaming applications are differ-
ent from deadline-constrained applications in 3 aspects: in-
finitely overlapped schedule, cross iteration data dependen-
cies and both throughput and latency constraints. We use
static periodic schedules to reduce the problem size from
infinite to finite. Furthermore, cross-iteration data depen-
dencies are naturally represented by edges with delays in
SRDF, as demonstrated in Equation 5. To cope with dead-
line we explicitly express deadline (latency) constraints in
terms of the throughput constraint in a SRDF model [9] by
performing a graph transformation described in [9].

We now define the Throughput-Constrained VFS (TC-
VFS) problem.

Problem 5.1. Throughput-constrained VFS: A SRDF
G(V,E, d, t) with throughput requirement µ−1

d and a hetero-
geneous multiprocessor

∏
(Π, F, p) are given. The multipro-

cessor can be a multi-clock domain platform with local VF-
switches or a single clock domain platform with a global VF-
switch. The frequency levels F can have any arbitrary value
in a fixed range or just have a limited number of discrete val-
ues. All task execution times are given for the base frequency
fb ∈ F . For each task i ∈ V , the clock cycles count can be
calculated as nc(i) = t(i)×fb. A set of external source tasks
VS ⊂ V are not scalable in terms of execution time, and a
subset of the processors, ΠS ⊂ Π (used to map the external
sources), are assumed to consume zero power. Task map-
ping is represented as π : V → Π and static ordering repre-
sented as σ : Π→ αn, where αn = [i1, i2, ..., in] is the set of
actor firing sequences of a processor, and i1, i2, ..., in ∈ V .
Both task mapping and ordering are given a priori. The
problem is finding a static periodic schedule with scaled task
execution times using VFS, such that total energy consump-
tion is minimized under the throughput requirement. The
solution to each VFS variant is a static periodic schedule
of voltage-frequency points for each VF-switch in the system
and a static periodic schedule {π(i), s(i), µd} with scaled task
execution times with period µd.

In this paper, we study three variants of TC-VFS:

Table 2: Problem Variants
Problem Frequency VF-switch

TC-CLVFS Continuous Local
TC-DLVFS Discrete Local
TC-DGVFS Discrete Global

We solve TC-CLVFS as a convex program, TC-DLVFS as
a MILP. For TC-DGVFS, we propose a 3-stage heuristic.

6. CONTINUOUS LOCAL VFS
throughput-constrained Continuous VFS with local VF-

switches was proposed in [10], where it is formulated as a
convex program. However, it assumes that frequency is pro-
portional to dynamic voltage, which is unrealistic. Instead,
we use the frequency and dynamic voltage relation in Equa-
tion 7 and restrict the frequency due to limits of the dynamic
voltages of the system. The VFS problem can still be for-
mulated as a convex program, and an optimal solution can
be found in polynomial time complexity [11].

Problem 6.1. Throughput-Constrained Continuous
Local VFS (TC-CLVFS) is a TC-VFS problem where the
frequency set includes all frequencies within a fixed range
and each processor has its own VF-switch.

The following TC-CLVFS formulation minimizes the total
dynamic energy consumption by finding the optimal execut-
ing frequency for each task. π(i) is processor mapped to
task i, while f(i) and v(i) are its working frequency and
dynamic voltage level, respectively. Function p(π(i), f(i))
indicates the power dissipation of task i running with fre-
quency f(i) on the mapped processor π(i). For each task i,
the number of clock cycles nc(i) remains unchanged while
performing VFS [14]. The execution time of task i is rep-

resented as nc(i)
f(i)

. The optimization has to comply to the

precedence constraints, the voltage-frequency relations and
the constraints on the supported voltages for each proces-
sor on the system. For the non-scalable tasks VS , frequency
level is equal to the base frequency. Since the voltage and
frequency relation we use here is a convex function, the for-
mulated problem is still a convex programming problem.

TC-CLVFS algorithm

minimize
∑
i∈V

p(π(i), f(i))×
nc(i)

f(i)

subject to :

∀(i, j) ∈ E
⋃
ES , s(j)− s(i) ≥ −d(i, j)× µd +

nc(i)
f(i)

∀i ∈ V, 1
f(i)

= K · vdd(i)

(vdd(i)−vth(π(i)))δ
s(i) ≥ 0
vddmin(π(i)) ≤ vdd(i) ≤ vddmax(π(i))

∀i ∈ VS , f(i) = fb

Notice that in the above formulation, only task mapping
and ordering (represented as E

⋃
ES) from a static sched-

ule are enforced, which means that the formulation finds a
new SPS by assigning the start times {s(i)|∀i ∈ V } and ex-

ecution times {nc(i)
f(i)
|∀i ∈ V } to all tasks under precedence

constraints as shown in Equation 5.

7. DISCRETE LOCAL VFS
In the previous section, we showed how continuous local

VFS can be formulated as a convex programming problem,
which can be optimally solved in polynomial time. This
provides a theoretical lower bound on possible energy sav-
ings. However, real platforms can only support a limited
number of discrete frequency and voltage levels. In [10], the
authors round up continuous VFS results to a set of discrete
frequency levels in a real platform, but without guarantee-
ing optimality. In this section we first investigate the prob-
lem complexity of the throughput-constrained discrete VFS
problem with local VF-switches. We can optimally solve
this variant of TC-VFS by formulating a MILP program.

Problem 7.1. Throughput-Constrained Discrete Lo-
cal VFS (TC-DLVFS) is a TC-VFS problem where the
frequency set is finite and discrete, and processors scale op-
erating frequency independently.

Theorem 7.1. Problem 7.1 is NP-hard.

Proof Sketch The Deadline-Constrained Discrete Local VFS
(DC-DLVFS) problem is NP-hard [4]. By showing that DC-
DLVFS can be reduced to a subset of TC-DLVFS in poly-
nomial time, NP-hardness is proved.

In the following, we give a MILP formulation for TC-
DLVFS. The goal is to optimally assign the cycles of each
task to each frequency level, which consequently minimizes
the total energy consumption. Energy consumption is given
by the sum of energy dissipations associated with all task-
frequency pairs. We use the variable nc(i, f) to represent the
number of clock cycles that task i spends on frequency level
f (f ∈ F). Again precedence constraints must be respected.
The number of clock cycles variable nc(i, f) must be integers
and the total clock cycle count of each task is constant. For
non-scalable tasks, execution can only be done on the base
frequency fb. Since all the constraints are linear, the pro-

TC-DLVFS algorithm

minimize
∑
i∈V

∑
f∈F

p(π(i), f)×
nc(i, f)

f

subject to :
∀(i, j) ∈ E

⋃
ES ,

s(j)− s(i) ≥ −d(i, j)× µd +
∑
f∈F

nc(i, f)

f

∀i ∈ V, ∀f ∈ F, nc(i, f) ∈ N
∀i ∈ V, s(i) ≥ 0

∀i ∈ V \ VS ,
∑
f∈F

nc(i, f) = nc(i)

∀i ∈ VS , nc(i, fb) = nc(i)

gram is a MILP. MILPs are in general NP-complete [15] and
require non-polynomial time to solve. However, by dropping
the constraint that variable nc(i, f) be integers, we get a
tight approximation algorithm as a linear program, which
can be optimally solved in polynomial time.

8. DISCRETE GLOBAL VFS
In the previous two sections, we solved TC-VFS problem

variants that assume the platform has a dedicated VF-switch
per processor. In many practical multiprocessors, however,
a single global VF-switch is available to the whole multipro-
cessor due to cost and design simplification issues. In this
section, we focus on that variant of the problem.

Problem 8.1. Throughput-Constrained Discrete Glo-
bal VFS (TC-DGVFS) : A TC-DGVFS problem is a TC-
VFS problem where the frequency set consists of a limited
number of discrete values and, at any point in time, active
tasks must run at the same voltage level.

Theorem 8.1. Problem 8.1 is maximal open2.

Proof Sketch The single machine discrete time-cost schedul-
ing problem [6] is maximal open and can be reduced to a
subset of TC-DGVFS, with a single processor. Hence The-
orem 8.1 holds.

With a global VF-switch, tasks running at the same time
on different processors must switch frequency simultane-
ously. The crucial observation here is that we are scaling
parallel blocks at a coarser granularity. By a Parallel Block
(PB), we mean the shortest time interval of a schedule within
which the set of running tasks remains constant. Conse-
quently, the search for a VFS solution can be done in three

2Maximal open [3] problems have unknown complexity but
all harder cases are NP-hard.

stages: (1) find a blocked schedule with the shortest schedule
length; (2) identify PBs in the schedule; (3) perform VFS
for the schedule on PBs. The first stage finds a blocked
schedule with the maximum amount of static slack. This
slack will be used to stretch task executions. In the third
stage, PBs extend their execution times under the original
period constraint to save energy. Since in each block a dif-
ferent number of processors is active, we assign more slack
to blocks where power dissipation is higher.

Lets illustrate this by recalling the example in Section 4.
Our global discrete VFS algorithm works as follows: first,

A

π

T/μs

π2

π1 ...

B

Periodic Region

A

π3

B

C

A

C

B

A

B

50 80 100 120 1600

B

A

C

PB1 PB2

π2

π1

π3

PB1 PB2

C

(b) Minimum Periodic

Region from the

compact SPS (c) Global VFS

Sπvirtual S S S

40

A

π

T/μs

π2

π1 ...

B

Periodic Region

A

π3

B

C

A

C

B

A

B

40 60 70 90 1200

C

(a) Compact SPS

Sπvirtual S S S

30

Figure 6: Throughput-constrained VFS

the original SPS schedule as shown in Fig. 3 is compacted
using a source with a shorter period. The compact sched-
ule (Fig. 6(a)) is then split into minimum periodic regions.
Each region (Fig. 6(b)) is further divided into PBs, which
are then scaled as if each one executes on a single processor
with a deadline constraint (40µs) converted from the orig-
inal throughput requirement. Since the source task is non-
scalable, PBs are scaled such that, after scaling, task S has
the same execution time as in the original application graph
(40µs for our example). Fig. 6(c) shows the scaling results:
PB1 extends its execution to 20µs and PB2 is not scaled.
The reduced energy is E′′′ = 1.2 + 3.2 + 0.54 = 4.94µJ .
Our heuristic for TC-DGVFS is given in pseudo-code be-
low. First, it finds a blocked schedule of parallel blocks
with maximum global static slack at the end, by finding an
SPS for the smallest period the graph (without the external
source) can sustain. Step 1 tries to shrink the source such
that the resulting graph achieves the lower bound MCM of
the SRDF G′ consisting only of processing tasks. Step 2
computes an SPS for the resulting graph . Step 3 identifies
parallel blocks on the compact SPS, and Step 4 determines
timing and power characteristics per block. Step 5 finds a
VF level for each parallel block in the blocked schedule. This
is accomplished by a MILP program (also shown below).

In the formulation above, nc(i, f) is the number of clock
cycles parallel block i spent on frequency f , while ppb(i, f)
is its power dissipation at frequency f . Stage 5. is identi-
cal to performing VFS for chained applications on a single
processor. Since sources are non-scalable, the set of parallel
blocks with the same spread source ς, PBς , must sum up to

Pseudo-code: TC-DGVFS algorithm

- -Find a compact SPS
- -Let G′ denote a copy of the original graph G,

where t(i) = 0, ∀i ∈ VS ∈ G′
1: While MCM(G) ≥MCM(G′) do

For each i ∈ VS
t(i) =

t(i)
SD

(SD ≥ 1)
Endfor
SD++

Endwhile
2: Compute a new SPS for the updated graph G

- -Identify parallel blocks PB
3: For any time t ∈ BS (blocked schedule from the SPS)

If Parallelism at t 6= parallelism at t+ ∆t (∆t→ 0)
Register parallel block at t in PB

Endif
Endfor

4: For each parallel block j ∈ PB (parallel block set)
For each frequency level f ∈ F
- -power dissipations of all tasks i ∈ j
ppb(j, f) =

∑
i∈j

p(i, f)

Endfor
Endfor

- -VFS for identified parallel blocks from a BS
5: VFS for PB, formulated as MILP program

VFS-stage algorithm (step5 in TC-DGVFS algorithm)

minimize
∑
i∈PB

∑
f∈F

ppb(i, f)×
nc(i, f)

f

subject to :∑
i∈PB

∑
f∈F

nc(i, f)

f
≤ µd

∀ς ∈ VS , ∀i ∈ PBς ,
∑
f∈F

nc(i, f)

f
=
nc(ς)

fb

∀i ∈ PB, ∀f ∈ F, nc(i, f) ∈ N

the original execution time of source ς after scaling.

9. EXPERIMENTS AND RESULTS
We conducted experiments using four radio applications:

WLAN, TDSCDMA, AM Radio and ChannelEq. The first
two are taken from [9], and both include throughput and
latency requirements (modeled in the graphs). The radios
are scheduled onto the modem platform. For WLAN and
TDSCDMA, only 45% of the processor cycles are available
to each, as these applications share processors using a TDM
scheduler. The effect of the TDM scheduler on the response
of each task is modeled in data flow with the method pro-
posed in [9]. The technology dependent parameters of the
processors correspond to a 45 nm process. Energy consump-
tion comparisons assume that if VFS is not applied, proces-
sors switch off when inactive with zero consumption and
consume at the highest frequency when active. We used
two solvers. For TC-CLVFS (a convex program), we use
LINGO [2]. For MILP we used GLPK [1].

We evaluate our VFS techniques for all four radios. The
results are shown in Table 3 and Fig. 7. We run all 3 vari-
ants. The discrete algorithms use 5 frequency levels. The
set of frequency levels is a geometric series with a common

ratio of 2.

Table 3: Results for radio applications

Application
Energy Reduction (%)

TC-CLVFS TC-DLVFS TC-DGVFS

WLAN 29 28 16
TDSCDMA 37 36 20
AM Radio 10 6 1
ChannelEq 15 10 4

Figure 7: Comparison of TC-VFS algorithms

For WLAN and TDSCDMA, the results show that our
algorithms significantly reduce energy consumptions. For
WLAN, the TC-CLVFS algorithm saves 29% energy, while
the TC-DLVFS and TC-DGVFS algorithms save 28% and
16%, respectively. The energy reductions for these applica-
tions are due to large amounts of static slack. The results
for AM Radio and ChannelEq show that, for applications
with tight schedules (i.e. few static slack), energy saving
differences among algorithms can be significant. For AM
Radio, the TC-CLVFS algorithm saves 10% energy, while
the TC-DLVFS and TC-DGVFS algorithms save 6% and
1%, respectively. When there is few static slack, the contin-
uous algorithm goes through a stage when energy reduces
dramatically due to the convex relation between power and
frequency, while the discrete local algorithm has to assign
most of the clock cycles to the highest frequency level, which
saves energy poorly. Moreover, the performance of our dis-
crete global algorithm further depends on how much global
static slack exists in a compact schedule (recall Section 8).
Since AM Radio works mainly in a chained fashion under
a tight schedule, the discrete global algorithm cannot effi-
ciently use static slack compared to the discrete local algo-
rithm. Thus, local VF-switches have clear advantages.

The second set of experiments (Table 4) compares our
TC-DLVFS algorithm versus the technique proposed in [10],
which uses discrete frequency levels by rounding up the re-
sults of a continuous VFS algorithm, i.e., the frequency per
task is conservatively rounded up to its closest available fre-
quency.

Table 4: Comparison with rounding up

Application
Energy Consumption (10−6J)

NO-VFS Round-up TC-DLVFS

WLAN 1.15 1.14 0.83
TDSCDMA 24.81 16.51 15.91

The results show that the rounding heuristic can cause
severe loss of savings. For WLAN, it almost saves no energy
(1%) while our optimal TC-DLVFS algorithm reduces it by
28%. This is because many frequency levels obtained by
the TC-CLVFS algorithm are between the highest two fre-
quency levels, which the heuristic rounds to the highest fre-
quency. For TDSCDMA, the heuristic and our TC-DLVFS

algorithm save energy consumption by 33% and 36%, re-
spectively. This supports our claim that directly address-
ing discrete frequencies by our TC-DLVFS algorithm can in
some cases improve results substantially.

Finally, we evaluate the effects of the number of voltage
levels on our discrete local and global VFS algorithms. We
use 1 to 5 frequency levels, where 1 level means no VFS and
n levels means that the highest n frequency levels in the
system are used. Fig. 8 shows the results for both WLAN
and TDSCDMA. We can see that energy consumption is
reduced dramatically from 1 to 3 frequency levels, and con-
tinues to decrease slightly after that. This is due to the con-
vex relation between energy consumption and frequency [21].
Energy consumption increases dramatically fast when fre-
quency is high, thus the majority of energy savings are done
through the initial stages of scaling down frequency.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

N
o

rm
al

iz
ed

 E
n

er
g

y
 (

%
)

Number of Frequency levels

Discrete VFS policies for WLAN

WLAN-TC-DLVFS
WLAN-TC-DGVFS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

N
o

rm
al

iz
ed

 E
n

er
g

y
 (

%
)

Number of Frequency levels

Discrete VFS policies for TDSCDMA

TDSCDMA-TC-DLVFS
TDSCDMA-TC-DGVFS

Figure 8: Impact of #discrete frequency levels

10. CONCLUSION
Throughput-constrained VFS problems are different from

deadline-constrained VFS in that they have to deal with infi-
nite schedules, cross-iteration dependencies and both dead-
line and throughput constraints. We studied throughput-
constrained VFS variants, evaluating the impacts of contin-
uous or discrete frequency levels, and of local VF-switches
per processor against a global VF-switch. We demonstrated
that convex programming and mixed integer linear program-
ming can be used to solve these problems. We studied the
complexity of the problem variants, concluding that the dis-
crete local variant is NP-hard, and that the discrete global
variant has maximal open complexity.

The experiments we conducted on transceivers running on
our reference modem architecture showed that our proposed
VFS algorithms can effectively reduce energy consumptions,
up to 28% for discrete local VFS, and 16% for discrete global
VFS when compared to a on/off energy saving policy. We
have also established that there is in some cases a consider-
able advantage in terms of energy savings, when using local
VF-switches instead of a global VF-switch.

As future work, we intend to focus on addressing VFS
for data flow graphs with conditional behavior, such as the
Mode-Controlled graphs proposed in [9], and on optimizing
VFS for self-timed task synchronization, instead of relying
on fully static schedules.

11. REFERENCES
[1] Glpk. http://www.gnu.org/software/glpk/.

[2] Lingo. http://www.lindo.com/index.php.

[3] M. Aloulou, M. Y. Kovalyov, and M. Portmann.
Evaluating flexible solutions in single machine
scheduling via objective function maximization: the

study of computational complexity. RAIRO -
Operations Research, 2007.

[4] A. Andrei et al. Overhead-conscious voltage selection
for dynamic and leakage energy reduction of
time-constrained systems. In DATE. IEEE, 2004.

[5] A. P. Chandrakasan et al. Low Power Digital CMOS
Design. Kluwer, 1995.

[6] Y. He, Q. Wei, and T. C. Cheng. Single-machine
scheduling with trade-off between number of tardy
jobs and compression cost. Journal of Scheduling,
October 2007.

[7] E. Lee and D. Messerschmitt. Synchronous data flow:
Describing signal processing algorithm for parallel
computation. In COMPCON, 1987.

[8] H. Liu, Z. Shao, M. Wang, and P. Chen.
Overhead-aware system-level joint energy and
performance optimization for streaming applications
on multiprocessor systems-on-chip. ECRTS ’08.

[9] O. Moreira. Temporal Analsis and Scheduling of Hard
Real-Time Radios on a Multi-processor. PhD thesis,
Eindhoven University, Netherlands, 2012.

[10] A. Nelson et al. Power minimisation for real-time
dataflow applications. In EUROMICRO DSD, 2011.

[11] Y. Nesterov et al. Interior-Point Polynomial
Algorithms in Convex Programming. Studies in
Applied and Numerical Mathematics. Society for
Industrial and Applied Mathematics, 1987.

[12] K. Parhi and D. Messerschmitt. Static rate-optimal
scheduling of iterative data-flow programs via
optimum unfolding. IEEE Trans. Comput., Feb. 1991.

[13] R. Rockafellar. Convex analysis. Princeton
Mathematical Series. Princeton University Press, 1997.

[14] K. Seth et al. Fast: Frequency-aware static timing
analysis. ACM TECS, Feb. 2006.

[15] S. Sinha. Mathematical Programming: Theory and
Methods. Elsevier Science Ltd, 2006.

[16] S. Sriram and S. Bhattacharyya. Embedded
multiprocessors. Marcel Dekker, 2000.

[17] K. van Berkel et al. Vector processing as an enabler
for software-defined radio in handheld devices.
EURASIP J. Appl. Signal Process., January 2005.

[18] Y. Wang et al. Overhead-aware energy optimization
for real-time streaming applications on multiprocessor
system-on-chip. ACM TODAES, 2011.

[19] R. Xu, R. Melhem, and D. Mosse. Energy-aware
scheduling for streaming applications on chip
multiprocessors. RTSS, 2007.

[20] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced cpu energy. In Symp. on
Foundations of Computer Science. IEEE, 1995.

[21] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling
and voltage selection for energy minimization. In Proc.
DAC. ACM, 2002.

[22] V. Zivojnovic and R. Schoenen. On retiming of
multirate dsp algorithms. In Proc. IEEE Conference
on Acoustics, Speech and Signal Processing, 1996.

