
A Software-Based Technique Enabling Composable Hierarchical

Preemptive Scheduling for Time-Triggered Applications

Ashkan Beyranvand Nejad∗, Anca Molnos†, and Kees Goossens‡
∗A.BeyranvandNejad@tudelft.nl (Delft University of Technology, Delft, The Netherlands)

†Anca.Molnos@cea.fr (CEA-Leti, Grenoble, France)
‡K.G.W.Goossens@tue.nl (Eindhoven University of Technology, Eindhoven, The Netherlands)

Abstract—Many embedded real-time applications are typically
time-triggered and preemptive schedulers are used to execute
tasks of such applications. Orthogonally, composable partitioned
embedded platforms use preemptive time-division multiplexing
mechanism to isolate applications. Existing composable systems
that support two-level scheduling are restricted to cooperative
intra-application schedulers, and thus cannot execute the time-
triggered applications. In this work, we introduce a framework
that allows concurrent, composable execution of such applications
on temporally-partitioned systems. The framework is composed
of an execution platform and a method for timing analysis of
applications running on the platform. The platform realizes a
software-based timed-interrupt virtualization technique on an
existing composable system. Multiple time-triggered applications
may run concurrently using different intra-application preemp-
tive scheduling policies, e.g., fixed-priority and rate-monotonic.
The analysis method formalizes the available processing time for
executing each application on a processor in order to enable
schedulability tests for different policies. Finally, these concepts
are demonstrated by executing a number of applications, first
on an FPGA prototype and second on a Matlab simulation
of the platform. The results indicate a composable and con-
current execution of multiple time-triggered applications using
our proposed framework. Furthermore, the implementation of
the technique has low cost in terms of memory footprint and
execution overhead.

Index Terms—Preemptive hierarchical scheduling, Time-
triggered applications, Composability, Temporal partitioning,
Embedded systems.

I. INTRODUCTION

Nowadays the demand of executing multiple applications

concurrently on embedded system-on-chip (SoC) platforms

is increasing in various industries such as automotive and

consumer electronics. These applications, typically have mixed

time-criticality, i.e., each one has either firm, soft, or non real-

time requirements. A firm real-time application must never

miss a deadline, whereas a soft real-time one may occasionally

miss a deadline, and non real-time ones have no timing

constraints. A large group of such real-time applications are

time-triggered (TT) meaning that they respond to periodic or

aperiodic time events. For example, a control application sends

appropriate commands to its actuators in response to periodic

input data samples from its sensors.

Applications share SoC resources such as processors, inter-

connect, and memory blocks, in order to reduce cost. For even

finer grained resource sharing, each application may consist

of a number of concurrent tasks. Resource sharing makes the

timing of the applications interdependent, which severely com-

· · ·

composable, preemptive inter-application
schedulerO

S
T

im
e

intra-application

scheduler

intra-application

scheduler

intra-application

scheduler

application0 applicationi applicationj

PartitionCPartitionBPartitionA

T
im

e

P
ar

ti
ti

o
n

Fig. 1: Two-level scheduling of multiple applications in a
composable system.

plicates system integration and verification [1] when the appli-

cations have mixed criticality. The state-of-the-art is therefore

to execute applications in isolation. Temporal resource par-

titioning [2] and virtualization [3] are two approaches that

isolate the execution of applications on a single platform,

and consequently simplify their integration and verification.

The goal of temporal partitioning is composability, which is

the property that the (timing) behavior of an application is

isolated from that of other applications. Often composability

is used to denote that the worst-case behavior of an application

is unaffected by other applications, enabling a compositional

computation of worst-case bounds of an application. In this

paper, following [4], [5], [6] we use a stricter definition where

the actual-case behavior of each application is unaffected

by other applications. The starting, finishing, and actual and

worst-case execution times of (tasks of) an application are then

independent of the other applications, allowing compositional

performance verification even for mixed-critical systems. The

scope of our work is to execute multiple applications on a

shared processor. We assume that all other shared resources,

e.g., interconnect [7] and shared memories [8], are arbitrated

composably between applications.

Schedulers arbitrate the access of the applications and their

constituent tasks at each resource such that timing require-

ments are satisfied. Traditionally, in composable systems,

scheduling is implemented at two hierarchical levels, namely

inter- and intra-application, as depicted in Figure 1. The

inter-application scheduler implements composable temporal

partitions each of which is a set of time slots allocated to

one application. The intra-application scheduler has to adopt

a suitable scheduling policy (i.e., cooperative and preemptive)

that fits the application’s model of computation. The time-

triggered applications must use preemptive schedulers. Thus, a

composable system has to support preemptive inter-application

scheduling to execute time-triggered applications, while the

non-time-triggered or non-real-time applications in other par-

titions may use their own cooperative schedulers.

In existing composable systems, typically, only a privileged

real-time operating system (RTOS) implements a preemptive

inter-application scheduler to create a temporal partition for

each application [9], and intra-application schedulers are co-

operative. The reason is that for cooperative schedulers do

not need to access critical resources such as timer interrupts

that affect the system as a whole, compromising composability

rather than just the application. Preemptive schedulers have to

access such resources, and therefore, managing this access to

not violate composability is crucial. For example, in Figure 1,

if the scheduler of the application running in partition A sets an

interrupt to occur in partition B’s time, it would consequently

interfere with the execution of the application running in

partition B.

In this paper, we propose a framework that allows con-

current, composable execution of time-triggered applications

using preemptive schedulers on temporally-partitioned embed-

ded SoCs. The framework comprises two main parts, (i) the

execution platform and (ii) the timing analysis method.

The execution platform is developed on top of an existing

composable system [9]. Our contribution here is a software-

based technique to virtualize a physical timer interrupt for pre-

emptive inter- and intra-application schedulers. This technique

is scalable compared to a hardware solution that provides one

hardware timer for each application. We develop a system

function and associated data structures on top of an existing

light-weight composable RTOS. Whenever inter- or intra-

application scheduling is performed, this function programs

the timer with the appropriate value for the next timer in-

terrupt. Moreover, this function calls a temporal conversion

routine to map the real time value of the next timer interrupt

to an actual virtual time in the corresponding partition.

The timing analysis method formalizes the time that is

available for executing each application on a processor, and

exemplifies how schedulability tests of the applications in the

case of preemptive fixed-priority intra-application scheduler

are performed.

To demonstrate these concepts, we first execute two real

applications on an FPGA prototype of a composable SoC

platform [9]. With this prototype, we present the real execution

traces of the applications running on a Microblaze processor.

The results indicate concurrent and composable execution

of multiple time-triggered applications using our proposed

framework. Second, we simulate our execution platform in

Matlab and analyze how partition parameters affect applica-

tions’ timing behaviors and schedulability.

The rest of this paper is organized as follows. Section II

presents an overview of the related work. Section III provides

background information needed by Section IV that presents

our approach to implement hierarchical preemptive scheduling.

We explain the implementation details of our technique in

Section V followed by formalization and discussion on the

system and applications timing analysis in Section VI. The

case studies are presented in Section VII. Finally, Section VIII

concludes this paper.

II. RELATED WORK

A large body of work has been published on scheduling and

executing time-triggered real-time applications on embedded

systems [10], [11]. To ensure that the timing requirements of

applications are met some approaches do not allow sharing

resources at inter- and intra-application levels [10], [12], [13].

In this section we discuss existing approaches that include

resource sharing and timing constraints.

Existing approaches employ some form of isolation between

applications to guarantee that the system meets a certain

timing requirements when resources are shared. In this case,

interference between the applications invalidates the timing

requirements. Isolation mechanisms have been proposed at

different levels, from full separation of applications’ critical

resources [12], to cycle-level isolation in shared (critical) re-

sources. Such approaches can be split in two main categories:

those that implement a level of resource partitioning and those

that virtualize the shared resources.

Resource partitioning is defined and implemented at differ-

ent levels in various domains [2]. For example, the ARINC

standard is a specification for time and space partitioning

in safety-critical avionics real-time operating systems [14].

According to ARINC, time is divided into number of slices

denoted as partitions, and every partition is assigned an

application. Other examples that employ temporal resource

partitioning are presented in [15] and [16]. They execute multi-

ple non-time-triggered applications concurrently, ensuring that

they are not affecting each other’s worst-case timing behavior.

The authors of [15] utilize two-level scheduling, TDM inter-

application and cooperative static-order intra-application. The

work in [16] analyzes applications individually to enable rea-

soning about their overall worst-case behavior when executing

them on the same platform. These works offer composability

of worst-case bounds of applications, which makes them suit-

able for systems containing only firm-real-time applications.

Following paradigm introduced in [9], our definition of com-

posability is more restrictive than other resource partitioning

approaches, in that inter-application interference is completely

prohibited at cycle-level. Thus the actual-case performance

of applications is composable, enabling mixed-criticality ap-

plications to be designed, verified, integrated (without re-

verification), and executed on the same platform.

Furthermore, virtualization has received a lot of attention

recently from the embedded systems community [17]. Typi-

cally, in a virtual platform, a hypervisor manages a number of

virtual machines (VMs) that run guest (RT)OSs. The scheduler

of virtual machines may follow different policies and it is

not fully decoupled from the scheduler inside the guest OSs.

Specially in case of real-time OSs, the two scheduling levels

cooperate with each other to ensure the timing requirements of

the time-critical applications are met [18]. In our composable

approach, the function of the hypervisor is realized by an

RTOS that implements inter-application scheduling, while

instead of guest OSs, the applications directly schedule their

own tasks. This approach suits embedded systems as it avoids

lcl mem

Proc
timer

C
C

M

clk DMA

Memory

mem block

mem cntrlr

interconnect (NoC)

Proc
Sh mem

Proc TileN

TileTile0

· · ·

RTOS Layer RTOS Layer

· · · · · · appmapp0 appi

Partition0 Partitioni Partition0 Partitionj
P

la
tf

ro
m

S
W

H
W

P
la

tf
o
rm

Fig. 2: A template for composable embedded SoC platform.

overhead of having guest OSs in terms of execution time and

memory footprint, in the cost of losing high-level services

that an OS could provide to applications. Moreover, many

other VM-based embedded systems exist, especially in the

automotive domain [3], [19], [11]. Among all, the approach

in [3] is the closest to our technique as it also targets time-

triggered applications. It implements two-level scheduling,

where in the first level, the hypervisor allocates a single time

slot to every virtual machine, and at the second level, inside

each virtual machine, a guest RTOS may use a preemptive

scheduler. To the best of our knowledge, none of the existing

work offer a fully composable platform (by our definition of

composability) that executes time-triggered applications.

Moreover, some existing approaches, such as uC-OS/II,

multiplex multiple timed events on a single tick generator,

i.e., a periodic interrupt timer. They offer software-based

virtual timers to time-triggered applications [20], [21]. In these

approaches, the granularity of the virtual timed interrupts is

restricted to the actual RTOS ticks. Whereas in our approach,

we virtualize a single timer interrupt that is used by each ap-

plication. When it has access to the physical timer that access

is exclusive. Every application can set its own timed events

independent of the other applications, and the granularity of

the events is the same as the system clock ticks. Our RTOS

takes care that events of an application are always mapped to

its temporal partitions, and never interfere with other partitions

(and hence behavior) of other applications.

III. BACKGROUND

In this section we provide background information on the

time-triggered applications and the platform that we consider.

A. Time-Triggered Applications

In a time-triggered application, the tasks are periodically

or aperiodically triggered by a timer interrupt. Such ap-

plication, Γ, is represented by a set of tasks as Γ ≡
{τi(Pi, Li, Ci, Di, Ri)}, where Pi is the period in which

the task τi executes for Ci time-units. The task is ready to

execute at its release time which is at Li time-units from the

beginning of its period, and it has to finish its entire work

before its relative (to the beginning of the period) deadline

Di time-units. The task’s priority Ri is set either statically

or dynamically. Smaller values of Ri correspond to higher

priority for tasks. To execute a task τi for Ci time-units and

Fig. 3: Temporal partitioning of a processor by a TDM
scheduler.

to finish before its deadline Di, the following condition must

hold true: (Ci + Li) ≤ Di ≤ Pi.

In this paper we consider fixed-priority (FP) policy to

schedule the tasks inside an application. Such scheduler makes

sure that, at any moment in time, the task with highest

priority among all the released ones executes. For the sake

of simplicity, we consider all the tasks are released at the

beginning of their periods, i.e., Li = 0, and the deadline of

each task is equal to its period, i.e., Di = Pi.

B. Target Platform

The SoC platform consists of a hardware infrastructure

and a software infrastructure. Basically, composability is a

property of the platform, and the hardware and the software

infrastructures implement this property.

1) Hardware platform: The hardware infrastructure is

based on the CompSOC template proposed in [9] and consists

of a number of processor and memory tiles communicating

via a network-on-chip, as depicted in Figure 2. All the shared

resources are arbitrated in such a way that they are virtu-

alized to achieve application isolation and therefore system

composability. Since the focus of this paper is on the processor

scheduling, in this section, we explain only the architecture of

the processor tile that is relevant for this purpose.

A processor tile consists of a processor, a timer, a clock

control module (CCM), set of local memory blocks, shared

memory blocks, and Direct Memory Access (DMA) modules.

The timer keeps track of the system time as the reference of

the real, physical time. The timer is the only block that can

issue an interrupt to the processor. In the existing platform,

this interrupt is only used by the inter-application scheduler to

implement partitions for every application.

2) Software Platform: The software executing on the plat-

form has two layers, namely the application and the RTOS

layer, as in Figure 2. Multiple applications are implemented

at the application layer, and the RTOS layer provides essential

infrastructure to execute the applications and an application

programming interface (API) to access the hardware resources.

For a more detailed discussion on the base-structure of the

RTOS we refer to [4]. Here we assume that the applications

and tasks mapping on the processor tiles are given.

The RTOS realizes cycle-level temporal isolation between

the applications by creating temporal partitions and assigns

each application to one partition, and consequently make

���������� ��������
��������
��������
��������

��������������������������
RTOS codeapplication code

Task Exe. Task Exe.
monitoring
budgetingPTI

scheduling

intra−application

Pro
ce

ss
or

in
t_a

ck

in
te

rr
up

t

Tim
er

constantcalculated

se
t ti

m
er

boundable constant

cntxt_sv cntxt_ld

interval
task-scheduling

task interval task interval

Fig. 4: The general operational time-line of an application in
a task-scheduling interval.

the system composable at application level. A partition is

a set of time slots, namely system slots, which are fixed

time quanta and implemented by a time-division multiplexing

(TDM) scheduler, as illustrated in Figure 3. A system slot is

split into an operating system (OS) and an application slot.

All the slots have to have a fixed duration. The system slots

start with timer interrupts issued at fixed intervals. An OS

slot always takes a constant time duration, and subsequently

the application slots have also constant duration till the next

system interrupt. The RTOS code executes in OS slots, and it

is the only trusted code that is allowed to access the timer for

setting system interrupts.

A partition time is a logically continuous time in which an

application’s tasks, communication, and the intra-application

scheduler execute. A fraction of a partition time in which a

task executes, is denoted as task interval, and the time between

two consecutive task intervals, in which the intra-application

scheduler executes, is denoted as task-scheduling interval, as

illustrated in Figure 3. In a time-triggered application, the task

intervals must be implemented by timer interrupts that are

set by the intra-application scheduler in every task-scheduling

interval.

IV. PREEMPTIVE INTRA-APPLICATION SCHEDULING

In this section, we propose a technique to virtualize a

physical timer for both preemptive inter- and intra-application

schedulers. The existing composable platforms [22] are re-

stricted to support such cooperative scheduling. Basically, in

such systems, the timer interrupt is only used by the TDM

inter-application scheduler. However, to implement preemp-

tive intra-application scheduling, we propose that the RTOS

provides the intra-application scheduler with the infrastructure

to program the timer interrupts. This infrastructure preserves

composability, meaning that the intra-application scheduler is

not allowed to alter the timing properties of the application

slots, i.e., start and end time of the slots.

Generally five operations are performed in each task-

scheduling interval, in order, (i) save the context of the

preempted task, (ii) trigger the intra-application scheduler, (iii)

program the timer with task interrupt value for the next task

interval, (iv) update the monitoring and budgeting information

of the current application and task, and (v) load the context

of the new task.

Figure 4 shows the task-scheduling and task intervals of a

time-triggered application in its application slot. When enter-

ing the task-scheduling interval, the processor automatically

disables the interrupts till the end of the interval to prevent

handling nested interrupts that may cause losing the context of

the current task or the scheduler. After a new task is scheduled,

the application calls a program timer interrupt (PTI) function.

This function is implemented as a library in the RTOS to

calculate and set the next timer interrupt for the scheduled task

in the current partition time. The PTI function safely accesses

the system timer and the RTOS timing information values.

There are logically two virtual timers active in each par-

tition. One that keeps track of the current application slot,

and the other that implements the task intervals. The first

timer issues system interrupts, and the second one issues task

interrupts. We virtualize one physical timer interrupt in order

to implement these two logical interrupts. This technique is

scalable compared to a hardware solution that provides one

hardware timer for each application, because all the preemp-

tive intra-application schedulers together with inter-application

scheduler use the only hardware timer to implement both

task intervals in partitions and system slots. The PTI function

distinguishes between the logical interrupts and program the

physical timer with the appropriate actual value of the next

earliest interrupt.

V. IMPLEMENTATION

This section presents the detailed implementation of virtu-

alizing the system and applications interrupts. The main idea

behind this technique is that the PTI function updates all the

logically active timer interrupts and program the physical timer

with the value of the earliest one. The earliest interrupt may

be either a system interrupt, or a task interrupt of the running

application. Between these two logical interrupts, precedence

is given to system (inter-application scheduler) interrupts, such

that they always occur at fixed moments in time and the system

composability is not invalidated. The main challenges here are

to accurately calculate the moment when the timer interrupts

should occur, and to keep track of task-scheduling intervals

so that the moment when each application slot starts remains

unchanged.

There is one instance of an operating system control block
(OCB) per processor. The application control blocks (ACBs)
and the task control blocks (TCBs) are created and initialized
for each partition by the RTOS before they start executing
on the processor. The size of the OS slot and the application
slot, denoted as os_slot and app_slot, respectively, are part
of the OCB. Application slots are fixed at run-time for all
applications. Slot sizes are parameters of the RTOS instance
running on a processor.

The task interrupts of a time-triggered application are either
periodic or aperiodic in a partition, hence the interrupts are
not perfectly aligned with system interrupts. As presented in
Table I, the RTOS control blocks are extended with additional
data structures that are required by the PTI function to
calculate the time of next interrupts as follows:

• the size of the task interval is given and denoted as
task_interval.

TABLE I: Additional data structure.

SW Control Blocks Data Structure

OCB

int os slot

int app slot

int app slot left

ACB
int task scheduling interval

int task scheduling interval left

TCB
int task interval

int task interval left

• if a fraction of the scheduled task has already been
executed and preempted before, the remaining time
of the task interval is calculated and denoted as
task_interval_left.

• when the current task interval is finished, the remaining
time of the application slot is calculated and denoted as
app_slot_left.

• the duration of the current task-scheduling interval is cal-
culated and denoted as task_scheduling_interval,
and if a system interrupt is supposed to occur in
the middle of the task-scheduling interval, it does not
preempt the scheduling operations, however, the dura-
tion between the moment of the system interrupt until
the end of the task-scheduling interval is denoted as
task_scheduling_interval_left to be considered
at the beginning of the next application slot that belongs
to this application.

The duration of task-scheduling interval is variable. How-
ever, as illustrated in Figure 4, all the operations in this
interval, after intra-application scheduler, are implemented to
have constant execution time. The PTI function therefore cal-
culates the current task_scheduling_interval by adding
the constant execution time to the time that has elapsed from
the moment of the last task interrupt. Moreover, the task
interval, task_interval, for each task is given by the intra-
application scheduler to be used for calculating the next task
interrupt. The task_interval however is in real world time
and needs to be converted to a virtual moment inside the
partition of the current application. The PTI function calls
conv_rt_to_pt function that implements this conversion
which directly depends on the partition parameters and the
availability of the processor to the partition in the given
task_interval.

Algorithm 1 details the implementation of PTI function
using the data structures presented in Table I. The PTI
function calculates the new value of app_slot_left by
deducting the sum of the next task_interval and the current
task_scheduling_interval from the remaining applica-
tion slot duration. According to the value of app_slot_left,
three different scenarios for the next interrupt are possible, as
illustrated in Figure 5. Following one of these scenarios, as
presented in Algorithm 1, the PTI function sets the timer with
the proper value for the earliest interrupt in the future.

In the first scenario, after c int interrupt has occurred,
the task-scheduling interval can finish its entire operations to
schedule a new task and set the next timer interrupt n int

app int

· · ·
app slot os slot app slot

Scn
. 1

Scn
. 2

Scn
. 3

c int n int

c int n int

n intc int

task interval temp
task interval left

task interval

app slot left
task scheduling interval
task scheduling interval left

Fig. 5: Three possible scenarios of task interrupt in a partition
time.

Algorithm 1: Pseudo code representation of PTI function.

Input: OCB, current scheduled ACB and TCB.
Output: Sets proper timer interrupt value, and updates all the
data structures presented in Table I.

task scheduling interval = cal task sched interval();
task interval left v = conv rt to pt(task interval left);
app slot left -= (task scheduling interval +
task interval left v);

if (app slot left > 0) then
/* Scenario 1 */
task interval temp = task interval left v;
task interval left = task interval;
task scheduling interval left = 0;

else if (app slot left ≤ 0) then
task interval temp = task interval left v + app slot left;
if (task interval temp < 0) then

/* Scenario 2 */
task interval temp = 0;
task scheduling interval left = -task interval temp;

else
/* Scenario 3 */
task scheduling interval left = 0;
task interval left = task interval left -
task interval temp;

end
app slot left = app slot;

end

/* Set the next timer interrupt. */
set timer interrupt(task interval temp);

at the end of the task interval which is before the periodic
system interrupt. This is because the app_slot_left is
greater than the current task_scheduling_interval plus
the task_interval.

In the second scenario, after c int interrupt has occurred,
the task-scheduling interval cannot finish its entire opera-
tions before the next interrupt n int which is the periodic
system interrupt. This is because the app_slot_left is
less than the current task_scheduling_interval. In this
case, we let the task-scheduling operations to be finished,
and therefore the task-scheduling interval extends over the
OS slot. The OS slot has fixed size and it is designed
in such a way that it can absorb the worst case duration
of the task-scheduling intervals for all the running appli-
cations and its size remains unchanged. The extended time
of the interval over the OS slot, or in other words, the

Fig. 6: An example of slots allocation to an application in a temporally-partitioned system, illustrating the cumulative available
processing time and the (longest) blocking time of the application.

remaining time of the interval from the current application
slot, is calculated in task_scheduling_interval_left.
This remaining time is implemented at the beginning of
the next application slot so that the application does not
experience a shorter task-scheduling interval. If c int hap-
pens exactly at the moment of the periodic system inter-
rupt, then the entire task-scheduling interval is considered
as task_scheduling_interval_left and implemented in
the next application slot that belongs to this application.

In the third scenario, when the current interrupt c int

occurs, the task-scheduling interval can finish its entire
operations, but the scheduled task cannot finish its en-
tire execution in the current slot before the next inter-
rupt n int which is the periodic system interrupt. This
is because the app_slot_left is less than the current
task_scheduling_interval plus the task_interval.
The remaining task time, task_interval_left, is therefore
implemented in the next slot that belongs to this application.

Summary, the proposed software-based technique imple-
ments the PTI function that manages the co-existence of
system interrupts and task interrupts of time-triggered appli-
cations in each partition so that the timing properties of appli-
cation slots remain unchanged and the system composability
is preserved.

VI. TIMING ANALYSIS

Timing analysis of a real-time system is based on response

time, rt, of running applications. The response time of a
time-triggered application is defined per task as the duration
between the task’s release time and the task’s finishing time.
The task τi is schedulable on a system, if and only if rti ≤ Di

in all situations. This condition states that the response time
of a task should be always less than or equal to its relative
deadline. When a processor is shared by multiple tasks, the
response time of a task may increase if there is any higher
priority task that is ready to execute. In the case that the
processor is further shared between multiple applications, such
as in our platform, the response time of all tasks of an
application increase because they are blocked during the slots
of other applications. Besides this, the relative deadline of the
tasks may be logically moved earlier if the exact moment
of a deadline is in the blocking time of the application. In
this case, the task should finish before the end of the last
allocated slot to the application in order to meet its deadline.
As a result, in such systems, the response time analysis takes

into account also the allocation of system slots to applications
(i.e., partition parameters), and consequently the condition of
(rt ≤ D) becomes tighter.

A number of different approaches that address these prob-
lems exist in the literature. Various analysis methods for so
called temporal-partitioning systems are proposed [2], [23],
[24], [25]. These methods are not directly applicable to our
platform, since in contrary to all the existing systems, in
our case, composability implies a fixed operating system
slot overhead before every application slot. This motivates
us to propose, in this section, a response time analysis of
time-triggered applications running on a composable platform.
Using this analysis method, application developers may follow
two design options:

1) (re-)design (legacy) applications to be schedulable on
the composable system.

2) adjust the partition parameters, i.e., slot allocations and
slot sizes, so that the available (legacy) applications, e.g.,
electronic stability control, would be schedulable.

We first formalize the timing properties of the composable
platform. As an example, a TDM inter-application schedule
with the system period of P time-units and M = 6 number
of slots is presented in Figure 6. The size of each slot, which
consists of an application slot, SA, plus the operating system
slot, SO , is S = P

M
time-units. Application j has a partition

with a set of mj = 3 distributed slots (blue blocks) in the
system period.

The cumulative processor time that is exclusively available
for the execution of application j until a time moment, t,
depends directly on the size of its partition. This cumulative
time corresponds to sum of all the allocated slots to the
application j until time t, e.g., the blue slots in our example.
The function that calculates this cumulative time is called
server characteristic function in [26], server supply function
in [23], resource supply bound function in [27], and availabil-

ity function in [25]. Here, we also use the term of availability
function and define it for an application j as follows.

Aj(t) =

⌊

t

P

⌋

×Aj(P) +Aj(∆t) (1)

where, Aj(P) = mj×SA is the cumulative available time for
the application j in a system period and, ∆t = t− P ×

⌊

t
P

⌋

is the time duration left until t in the last system period as
depicted in Figure 6. Aj(∆t) depends on how the system slots
are allocated to the application j. In other words, it depends

on when the application is blocked by the execution of other
applications. According to existing theorem [2], when the pro-
cessor allocation to an application is distributed, schedulability
should be tested for every task at all the critical instances, i.e.,
the time when all the tasks are released at the beginning of
a blocking time. Here, we propose a conservative approach
which considers the longest blocking time (lbt) instance of
an allocation. This is the case when all the slots that are not
allocated to the application are consecutive at the beginning of
the system period, as illustrated in Figure 6. In other words,
the longest blocking time instance is when the allocation of
slots to an application is bursty. Given such an allocation,
the longest blocking time for an application j in a period is
calculated with the following equation.

lbtj = P ×
(

1−
mj

M

)

(2)

Therefore, the lower bound on Aj(∆t) is defined as Al
j(∆t)

and it is calculated as follows.

Al
j(∆t) =

{

Al
j(∆t′) ∆t > lbtj

0 otherwise
(3)

where, ∆t′ = (∆t − lbtj), and Al
j(∆t′) is calculated as

follows.

∆t′′ = (∆t′ − S ×

⌊

∆t′

S

⌋

), and S′

A =

⌊

∆t′

S

⌋

× SA

Al
j(∆t′) =

{

S′

A ∆t′′ ≤ SO

S′

A + (∆t′′ − SO) ∆t′′ > SO
(4)

Finally, using the longest blocking time of an application,
a lower bound on the availability function is given with the
following equation.

Al
j(t) =

⌊

t

P

⌋

×Aj(P) +Al
j(∆t) (5)

This lower bound on the availability function may be used
to analyze the timing properties of time-triggered applications
and to perform the schedulability analysis for different task
scheduling policies. As an example, here, we propose a
schedulability analysis for the cases when the preemptive
fixed-priority is used by task schedulers.

The traditional response time analysis method of real-time
applications using the preemptive fixed-priority scheduling
exists for a long time [28]. Following this method, for our
platform, the worst-case response time is calculated as follows.

wcrtnji = Ci +
i−1
∑

k=1

(

⌈

wcrtn−1

ji

Pk

⌉

× Ck)

+

(⌈

wcrtn−1

ji

PS

⌉

× lbtj ×
SA

S

)

+

(⌈

wcrtn−1

ji

S

⌉

× So

)

(6)

In this equation, intuitively, the worst-case response time of
a task is the sum of its workload and the worst-case delay

that it may experience during its execution. The first term,
Ci, is the task’s workload; the second term is the delay due
to executing other tasks of the same application with higher
priority; the third term is the delay due to the longest blocking
times at the beginning of every system period; and the fourth
term is the delay that the task experience due to OS slots. The
third and fourth terms are the result of temporal partitioning.
The equation can be solved iteratively starting with wcrt0ji =

Ci and stopping when wcrtnji = wcrtn−1

ji [28]. Finally, An
application would be schedulable with fixed priority scheduler
if and only if, for all its tasks, the condition of Al

j(wcrtji) <

Al
j(Dji) holds true.

VII. CASE STUDIES

In this section, we present two case studies demonstrating:

1) concurrent, composable execution of multiple time-
triggered applications, using an FPGA prototype of the
platform.

2) timing behavior of applications with different partition
sizes, using a temporal simulation of the platform in
Matlab.

At the end, we report the implementation cost of our technique.

A. FPGA prototype

A VHDL implementation of the CompSOC platform run-
ning with clock frequency of 120 MHz is prototyped on a Xil-
inx ML605 FPGA board. We applied our technique to schedule
two applications with fixed-priority policy on a processor tile.
The first application is a workload of an electronic stability
control (ESC) application having four periodic tasks, and the
second one is a synthetic application having three periodic
tasks.

Figure 7 illustrates the schedule traces of two different runs
measured on the FPGA prototype with the inter-application
TDM and intra-application fixed-priority scheduling of the
applications. The TDM period of the inter-application sched-
uler (i.e., system TDM) has 3 slots. In the first run, the ESC
and the synthetic applications are assigned two and one slots,
respectively, as illustrated in Figure 7a. In the second run, each
application is assigned one slot, and the last slot is allocated to
the idle application, as illustrated in Figure 7b. In the figures,
the vertical gray bars represent the OS slots, and between each
two consecutive bars is an application slot. The colored boxes
illustrate the task-intervals, and the black boxes illustrate the
duration between the start time and finish time of the tasks.

The tasks of the ESC application are scheduled in its
slots fully independent of the synthetic application’s tasks.
In the run illustrated in Figure 7a, the longest blocking time
for the ESC application is one slot and for the synthetic
application is two-slot, i.e., the ones that are allocated to the
ESC application. While, in Figure 7b, the longest blocking
time for the both application is two-slot, namely, the one slot
that is allocated to the application itself, plus the slot of the
idle application. The workload of ESC tasks is much less than
an application slot size and all the tasks could always finish
in the same slots that they start in. This is not the case for
the tasks of the synthetic application. For example, the first
execution of the task 2 starts in the second slot and it finishes

ESC

Syn.

system TDM ESC Syn. ESC

(a) The ESC and the synthetic applications are assigned two and one slots, respectively.
system TDM ESC Syn. IDLE app.

ESC

Syn.

IDLE app.

(b) The ESC and the synthetic applications are each assigned one slot.

Fig. 7: Schedule trace of the applications running on an FPGA prototype.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18 20

D
if
fe

re
n
c
e
 i
n
 r

e
s
p
o
n
s
e
-t

im
e

(x
1
0
0
0
 c

y
c
le

s
)

Iteration

ESC.task1
ESC.task2
ESC.task3
ESC.task4
Syn.task1
Syn.task2
Syn.task3

Fig. 8: The difference between response-time of the tasks in
two runs, where the processor allocation to ESC application
is changed.

in the fifth slot, and consequently, the response time of the
task is more than the case that it runs on a dedicated system.

To illustrate the composability of the system, we compare
the response time of the tasks in the two runs, as illustrated
in Figure 8. The response times of ESC tasks are increased in
the second run because the ESC application is allocated one
less slot than the first run. As it is also expected from Eq. 2,
the longest blocking time of the ESC application in the second
run is greater than in the first run, and therefore, its tasks start
executing later (farther to its release time) and subsequently
finish later. In spite of the variations in the timing behavior
of the ESC tasks in these two runs, the response times of
the synthetic tasks are remained unchanged. This observation
shows that the timing properties of an application are not
affected when the behavior of other applications is modified,
and therefore, the applications are independent and the system
is composable.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Applications

R
e
s
p
o
n
s
iv

e
n
e
s
s

Dedicated sys.
Partitioned sys./Bursty alloc.
Partitioned sys./Distributed alloc.

Fig. 9: Average responsiveness of randomly generated appli-
cations.

B. Matlab Simulation

Based on the availability function introduced in Eq. 1,
an instance of the platform is implemented in Matlab to
simulate the timing behavior of a number of applications.
For this purpose, 20 applications each consists of five tasks
are generated randomly with a modified version (to generate
random periodic tasks) of TORSCHE toolbox [29]. Each
application is schedulable on a dedicated system in which the
application owns the processor exclusively. Here, we consider
a system TDM with period of 12 slots. Starting with the
minimum partition size of one slot, in each run, we increase
the size of the partition with one slot resulting in performing
12 different runs.

To investigate the variations in timing behavior, we define
the responsiveness of a task as (response-time

period
). This gives us a

normalized metric to compare the timing behavior of the tasks
in our randomly generated applications with different timing
properties, i.e, deadline and period. When the responsiveness

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Partition size

R
e
s
p
o
n
s
iv

e
n
e
s
s

Analysis
Dedicated sys.
Partitioned sys./Bursty alloc.
Partitioned sys./Distributed alloc.

(a) Application 3.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Partition size

R
e
s
p
o
n
s
iv

e
n
e
s
s

Analysis
Dedicated sys.
Partitioned sys./Bursty alloc.
Partitioned sys./Distributed alloc.

(b) Application 6.

Fig. 10: Average responsiveness of two randomly generated
applications.

of a task is greater than one, the task has already missed its
deadline.

Figure 9 illustrates the responsiveness of the applications in
three different cases. The first case demonstrates the average of
the worst-case responsiveness of the tasks in each application
when executing on a dedicated system. For the other two cases
we present the min-max bar and the average of the tasks’
responsiveness in each application when executing on a parti-
tioned system in the 12 different runs. In the second case the
slot allocations to the partitions are bursty, while in the third
case the allocations are as evenly distributed as possible. As
expected, the results indicate that the average responsiveness
of the tasks for all applications in both partitioned scenarios
are always higher than the dedicated system scenario. The
responsiveness in bursty allocations is also higher than the dis-
tributed allocations, since the applications experience longer
bursty blocking time. Finally, we can observe that in this set
of applications, 80% of the applications could not meet their
timing requirements on the partitioned system regardless of
their partition size as the maximum responsiveness of (at least
one of) their tasks (is) are greater than one.

Figure 10 illustrates the responsiveness of the tasks of two
applications, namely Application 3 & 6, when executing with
different partition sizes. According to the Matlab simulation
results, Application 3 is schedulable on the partitioned system
as the maximum responsiveness of the its tasks are smaller
than one in all runs, as illustrated in Figure 10a. While,
Application 6 is not schedulable in the run with the partition
size of one, as illustrated in Figure 10b. However, using Eq. 6,
the results of the worst-case responsiveness analysis of the
both applications indicate that none of them are schedulable
with the smallest partition size. In Figure 10, the differences
between the maximum responsiveness results of bursty allo-
cations obtained from the Matlab simulation and the analysis
results are because of not long enough simulation time during
which the worst-case blocking situation between the tasks of
the application could not occur. Moreover, as expected, by
increasing the size of the applications’ partitions the average
responsiveness of the tasks is decreased.

C. Implementation Cost

The implementation cost consist of run-time overhead and
memory footprint. In our experiments, the maximum task-
scheduling interval takes 2000 cycles, during which the execu-
tion time of PTI function is 200 cycles, and the OS overhead
per slot, i.e., OS slot size, is 4600 cycles. These mean that the
task-scheduling interval corresponds to less than 17 microsec-
onds, PTI function executes for less than 2 microseconds, and
the OS overhead is 38.24 microseconds, running at 120 MHz,.
The application slot is set to 100000 cycles which takes 833
microseconds. Practically, these overheads are acceptable, as a
significant number of real-time applications typically require
response time in the order of milliseconds.

The memory footprint of our light weight RTOS is around
13 KByte, on top up which, our technique only adds a very
small implementation overhead of about 300 Byte for the PTI
function. The additional data structures cost (12+(m+n)∗8)
bytes, where m is the number of applications and n is the total
number of tasks. In our experiments, this overhead consists of
84 bytes in the local data memory of the tile.

VIII. CONCLUSIONS

In this paper we proposed a framework that allows con-
current, composable execution of time-triggered applications.
The framework is composed of a software-based technique
that enables the platform to implement two-level preemptive
inter- and intra-application schedulers, and a timing analysis
method to perform schedulability test. These concepts are
demonstrated by two case studies: (1) to execute multiple time-
triggered applications concurrently, using an FPGA prototype;
(2) to simulate a number of randomly generated applications
in Matlab to investigate the affect of temporal partitioning
on the timing behavior of the applications. The experiments
indicate that the applications are independent and the system
is composable, where the implementation is low cost.

ACKNOWLEDGEMENTS

This work was partially funded by projects EU FP7 288008
T-CREST and 288248 Flextiles, Catrene CA104 Cobra and
CA505 BENEFIC, CA703 OpenES, and NL STW 10346
NEST.

REFERENCES

[1] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 2011.

[2] A. K. Mok, X. A. Feng, and D. Chen, “Resource partition for real-time
systems,” in Proc. of RTAS, 2001.

[3] T. Kerstan, D. Baldin, and S. Groesbrink, “Full virtualization of real-
time systems by temporal partitioning,” in Proc. of OSPERT, 2010.

[4] A. Hansson, M. Ekerhult, A. Molnos, A. Milutinovic, A. Nelson,
J. Ambrose, and K. Goossens, “Design and implementation of an
operating system for composable processor sharing,” Microprocessors
and Microsystems, 2011.

[5] A. Molnos, A. B. Nejad, B. T. Nguyen, S. Cotofana, and K. Goossens,
“Decoupled inter- and intra-application scheduling for composable and
robust embedded MPSoC platforms,” in Proc. of SCOPES, 2012.

[6] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony,
S. Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. Beyran-
vand Nejad, A. Nelson, and S. Sinha, “Virtual execution platforms for
mixed-time-criticality systems: The CompSOC architecture and design
flow,” To appear in ACM SIGBED, 2013.

[7] K. Goossens and A. Hansson, “The Aethereal network on chip after ten
years: goals, evolution, lessons, and future,” in Proc. of DAC, 2010.

[8] B. Akesson and K. Goossens, “Architectures and modeling of predictable
memory controllers for improved system integration,” in Proc. of DATE,
2011.

[9] B. Akesson, A. Molnos, A. Hansson, J. Angelo, and K. Goossens, “Com-
posability and predictability for independent application development,
verification, and execution,” Multiprocessor System-on-Chip: Hardware
Design and Tool Integration, 2010.

[10] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty, “Time-
triggered implementations of mixed-criticality automotive software,” in
Proc. of DATE, 2012.

[11] A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty, “VM-based real-
time services for automotive control applications,” in Proc. of RTCSA,
2010.

[12] H. Kopetz et al., “Compositional design of RT systems: a conceptual
basis for specification of linking interfaces,” Proc. of ISORC, 2003.

[13] A. Wasicek, C. El-Salloum, and H. Kopetz, “A system-on-a-chip plat-
form for mixed-criticality applications,” in Proc. of ISORC, 2010.

[14] J. L. Tokar, “Space & time partitioning with ARINC 653 and pragma
profile,” in Proc. of IRTAW, 2003.

[15] O. Moreira, F. Valente, and M. Bekooij, “Scheduling multiple indepen-
dent hard-real-time jobs on a heterogeneous multiprocessor,” in Proc. of
EMSOFT, 2007.

[16] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and Y. Ha, “Analyzing
composability of applications on MPSoC platforms,” JSA, March 2008.

[17] G. Heiser, “The role of virtualization in embedded systems,” in Proc.
of IIES, 2008, pp. 11–16.

[18] J. Yang, H. Kim, S. Park, C. Hong, and I. Shin, “Implementation of
compositional scheduling framework on virtualization,” SIGBED Rev.,
vol. 8, no. 1, Mar. 2011.

[19] Y. Kinebuchi, M. Sugaya, S. Oikawa, and T. Nakajima, “Task grain
scheduling for hypervisor-based embedded system,” in Proc. of HPCC,
2008.

[20] M. M. H. P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and
J. J. Lukkien, “Virtual timers in hierarchical real-time systems,” in WiP
session of RTSS, 2009.

[21] M. Holenderski, W. Cools, R. J. Bril, and J. J. Lukkien, “Multiplexing
real-time timed events,” in ETFA, 2009.

[22] A. Beyranvand Nejad, A. Molnos, and K. Goossens, “A unified execution
model for data-driven applications on a composable MPSoC,” in Proc.
of DSD, 2011.

[23] X. A. Feng and A. K. Mok, “A model of hierarchical real-time virtual
resources,” in Proc. of RTSS, 2002.

[24] S. Shigero, T. Matsumoto, and H. Kei, “On the schedulability conditions
on partial time slots,” in Proc. of RTCSA, 1999.

[25] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:
response-time analysis and server design,” in Proc. of EMSOFT, 2004.

[26] G. Lipari and E. Bini, “Resource partitioning among real-time applica-
tions,” in Proc. of ECRTS, 2003.

[27] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. of RTSS, 2003.

[28] M. Joseph and P. K. Pandya, “Finding response times in a real-time
system,” Comput. J., vol. 29, no. 5, 1986.

[29] P. Šůcha, M. Kutil, M. Sojka, and Z. Hanzálek, “TORSCHE scheduling
toolbox for Matlab,” in Proc. of CACSD, 2006.

