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In this paper we propose a unified model of execution that aims to fill the abstraction level gap between
the primitives of models of computation and the ones of an MPSoC. This model targets a composable
MPSoC platform and supports the sequential, Kahn process networks, and dataflow models. Our model
comprises of (1) execution operations implementing the primitives in the models of computation, and
(2) a time model of execution of streaming applications on a composable platform. We implement these
models of computation with the model of execution, and discuss the trade-offs involved. Case studies on
an FPGA prototype of the composable MPSoC demonstrate how the model of execution actually works on
a real platform. Furthermore they indicate that multiple applications modeled in KPN and dataflow run
composably on the platform.
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1. Introduction

In recent years the trend in embedded systems is to execute an
increasing number of applications simultaneously. Applications
are functionally-independent software units that are developed
by possibly different parties. Multi-processor systems on chip
(MPSoCs) [1] are platforms that can offer concurrent execution of
multiple applications. MPSoCs embed a large number of resources,
e.g., processing elements, memories, and user interface peripher-
als, on a single chip.

In embedded systems, many applications are streaming, i.e.,
data-driven, such as audio and video codecs, or networking appli-
cations. They may have soft, firm, or non real-time requirements. A
firm real-time (FRT) application must never miss a deadline,
whereas a soft real-time (SRT) one may occasionally miss a dead-
line, and non real-time (NRT) ones are completely timing relaxed.
Consequently, these three application domains require different
design strategies and models, that could truly express their func-
tionality, implement and verify their timing requirements.

Currently, most applications are still first designed and tested
using an imperative, sequential, model of computation (MoC), typ-
ically C. Multiple applications may execute in parallel on an MPSoC
platform. However, to fully exploit the computation power of an
MPSoC, the parallelism is not restricted to the application level,
but each application is further split in a number of concurrent tasks
[2]. In the literature, various parallel models of computation are
proposed for streaming applications [3]. Each of these models
has its own properties that makes it suitable for various applica-
tion domains [4]. The two important properties of these models
are (i) expressiveness, i.e., the level of computation primitives that
a model of computation offers to express the applications’ func-
tionality, for example, how algorithms that are dependent on the
values of input data could be expressed by the model of computa-
tion; and (ii) analyzability, i.e., how amenable the model is for
accurate timing analysis, for example, in a real-time model, once
started, tasks may execute without any blocking, and therefore, a
worst-case bound for their execution time could be estimated.
Usually, there is a trade-off between the analyzability and the
expressiveness of a model of computation.

The comparison between the relative analyzability and the rel-
ative expressiveness of the most widely used models of computa-
tion (MoCs) for data-driven applications is presented in [5]. Here,
Fig. 1 visualizes the result of this comparison. In general, sequential
models of computation have no restrictions in using the primitives
of programming languages such as C, and therefore they can be
highly expressive in modeling different behavior of applications,
except for parallelism, while the analyzability of the models may
be lost. If the sequential model of computation is restricted to a
subset denoted as Nested Loop Programming (NLP), an initial step
towards an intra-application parallel implementation is made.

An NLP application can be manually or automatically translated
into parallel models of computation [6], such as Kahn Process
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Fig. 1. Relative analyzability vs. expressiveness of the common models of compu-
tation for streaming applications, and the application domains for which each of the
models is suitable.
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Network (KPN) [7], and dataflow [8], and can be used in FRT, SRT,
and NRT application domains. Furthermore, KPN is more expres-
sive than many variants of the dataflow, e.g., Static Dataflow
(SDF), Cyclo-Static-Data-Flow (CSDF), and correspondingly, less
analyzable, which limits KPN to be only applicable for SRT and
NRT application domains. Dataflow has different variants with dif-
ferent level of analyzability and expressiveness. For example CSDF
and SDF suit the FRT and SRT application domains [9]. Thus, by
supporting NLP, KPN, and dataflow models in a platform, a wide
range of analyzability and expressiveness for data-driven applica-
tions is covered.

To reduce implementation cost, applications may share MPSoCs
resources. Such resource sharing cause inter-application interfer-
ence. This results in two problems, (i) the temporal behavior of
the applications is influenced by the interference, and subse-
quently, deadline of RT applications may be missed, or even worse,
an application monopolizes a shared resource, other applications
may get completely blocked, and (ii) it is not possible to verify
an application’s functional and temporal behavior without consid-
ering all (or at least the worst case) interference scenarios with
other applications. Depending on the number of applications, the
number of these scenarios may be large.

Composability is proposed and advocated to provide indepen-
dent execution and to alleviate system-wide, monolithic verifica-
tion [10,11] by avoiding inter-application interference. An MPSoC
is composable if an application’s timing and functionality is not
influenced by the behavior of other applications. Consequently,
applications can be designed, verified and executed in isolation,
without invalidating their designed properties. In these systems,
all the shared resources are designed in such a way that they
may be virtualized to achieve applications isolation. For this pur-
pose, on a shared processor, a composable operating system pro-
vides a virtualization layer between the applications’ interface
and the bare hardware.
Fig. 2. Abstraction levels of an embedded MPSoC.
1.1. Problem statement

The applications executing concurrently on one MPSoC may be
implemented in different models of computation, with each model
having its own primitives with different level of expressiveness, as
discussed above. On the other hand, the MPSoC platform provides
low-level execution primitives, e.g., memory load and store, or in-
ter-processor data transfer. To implement an application, the com-
putation and communication primitives of a model of computation
should be mapped to the execution primitives of the platform.
However, the primitives of the models of computation and the exe-
cution platform are at different levels of abstraction which causes a
gap in the implementation process of applications. Therefore,
intermediate execution operations are needed to map the primi-
tives of different models of computation to the basic primitives
of the platform.

Furthermore, real-time applications require temporal verifica-
tion in order to guarantee that their deadlines are always met.
The performance of a real-time application is relative to the real,
physical world, or, in other words, the deadlines of an application
are relative to physical time. However applications share re-
sources, which means that an application is suspended when an-
other one uses the resource, e.g., when it is swapped out from a
shared processor. As a result, the application executes in a virtual
time that is experienced as continuous. However the physical time
when it actually executes is no longer continuous. Therefore, to
verify the timing properties of an application the following are re-
quired. First, the application timing behavior, in its virtual, contin-
uous time, should be bounded. This should be ensured by the
implementation of the application. Second, a time model that de-
fines the effect of resource sharing between multiple applications,
i.e., maps the virtual time of an application to the physical time, is
required. This time model should be defined by the model of
execution.

To summarize, the problems that we address in this paper are:
(i) the need for an intermediate level of abstraction to fill the gap
between the execution operations of the platform and the primi-
tives of different models of computation, and (ii) the need for a
time model of the execution platform that enables the designers
to develop and verify the applications models, with respect to their
physical timing properties, when multiple applications share re-
sources on the same MPSoC platform. Furthermore, the resulted
system should be composable, to enable independent application
development and verification.

1.2. Contributions

When applications are implemented in different models of
computation, there are two approaches to fill the previously men-
tioned abstraction gap: (i) to define one set of execution operations
for every model of computation, and (ii) to identify a common set
of execution operations (e.g., basic communication primitives)
onto which the operations of all models of computation (e.g.,
read/write, consume/produce) can be implemented. The second
approach is more generic and efficient in the sense that it aims
to minimize the variety of execution operations that should be
realized by the platform. Following this approach, in this paper,
common operation primitives of different models of computation
are defined and implemented in a unified model of execution (MoE).

The abstraction levels of an embedded system are presented in
Fig. 2. At the highest layer, an application belongs to one of the
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domains of FRT, SRT, or NRT. At the second layer, the application is
modeled in one of the models of computation that suits the timing
constraints and is expressive enough to model the behavior of the
application. The application might be split into a number of con-
current tasks manually or automatically by using the existing tools
such as PNGEN [12] and Compaan [13]. The application’s model is
then integrated with models of all the MPSoC resources that are
used by the application and a meta model of the system is made
[14]. Note that the MPSoC resource models include the resource
sharing effects and potential overheads of intermediate software
layers of the platform. This model is analyzed manually or auto-
matically using the existing tools such as SFD3 [15] to partition
and map the application on different processor cores, communica-
tion channels, and memory blocks, such that the timing require-
ments of the application are guaranteed. In Fig. 2, the KPN
application is an example of the applications that are mapped on
multiple processors.

The model of execution is the intermediate layer that fills the
abstraction gap between the application’s model of computation
and the implementation on an MPSoC platform. The model of exe-
cution defines a set of computation, communication and schedul-
ing operations that are required to execute an application
expressed in a model of computation. For this purpose, the model
of execution implements the primitives of the models of computa-
tion and maps those primitives on an execution time model of the
platform.

On every processor tile, the model of execution is realized as a
software wrapper which includes a high-level application pro-
gramming interface (API) that abstract the low-level system calls
of the underlying real-time operating system (RTOS) and a set of
programming templates. For instance, the data transfer between
the memory locations on different tiles are handled by the RTOS
using low-level direct memory access (DMA) send and receive
operations. The model of execution hides these low-level opera-
tions from the applications’ perspective and provides high-level
API for the communication and the synchronization between the
tasks of the applications that are mapped on two different proces-
sor tiles. Moreover, formatting the applications in the program-
ming templates simplifies the implementation of the applications
given in the different models of computation.

The hardware infrastructure of the platform consists of a num-
ber of processor tiles (each including one core and local memory)
and a number of memory tiles communicating via an on-chip
interconnect. Following the asymmetric multiprocessing (AMP)
method [16], an instance of an RTOS runs on each processor tile.
Every instance of the RTOS schedules the applications mapped on
the corresponding processor tile independently. Therefore, here
we focus on execution of applications on one processor tile and
how the inter-/intra-processor communication and synchroniza-
tion between the application’s tasks are implemented with the
model of execution.

In this context, the contributions of this paper are fourfold. First,
we propose a unified execution model that implements all of the
NLP, KPN, and dataflow models of computation. The model of exe-
cution (MoE) is formalized in three steps, (i) the execution opera-
tions implementing the models of computation’ primitives are
introduced, (ii) a time model of applications executing on a com-
posable platform is defined, and (iii) different options of mapping
the execution operations to the time model are defined. Following
that, the second contribution is to implement the models of com-
putation with the model of execution, and to discuss the trade-offs
between different implementation options. Third, we propose an
API that implement the unified model of execution on top an exist-
ing composable platform in [11,17]. Finally, we experimentally
demonstrate that a set of applications modeled in NLP, KPN, and
dataflow run simultaneously, composably on the MPSoC platform.
1.3. Outline

The rest of this paper is organized as follows. Related work is
discussed in Section 2. Section 3 gives an overview of the applica-
tion computation models. The model of execution is proposed and
formalized in Section 4 for NLP, KPN, and dataflow. Section 5 dis-
cusses the trade-offs involved in mapping the models of computa-
tion to the variants of the model of execution. Section 6 presents
the implementation of the model of execution on a composable
MPSoC platform, and the experimental results are presented in
Section 7. Finally, Section 8 concludes this paper.
2. Related work

Existing work falls into four categories: (i) composable systems
on chip, (ii) mapping and implementation of the various models of
computation, specifically the KPN and dataflow, (iii) design strate-
gies for multiple applications execution on MPSoC platforms, (iv)
high level models of computation refinement towards different
models of execution. In what follows, we position our approach
with respect to the existing work in these categories.

Generally, the existing execution models are either tailored to a
single model of computation, or assume no parallel execution of
multiple applications on a processor. Moreover, targeting a com-
posable system distinguishes our approach from the similar exist-
ing work. Various definitions of composability exist [18,9,19]. Our
definition however is more restrictive in that inter-application
interference is completely prohibited at cycle-level. The advantage
is that a mix of FRT, SRT and NRT applications can be easily, inde-
pendently designed, verified, and integrated on the same MPSoC
platform.

Several execution platforms for KPN applications were pro-
posed [9,20–26]. Except the work presented in [9], none of them
targets MPSoC platforms. The authors of [9] propose an MPSoC
platform that supports multiple real-time applications. The system
performance is estimated using the applications individual timing
profiles and a model of the inter-application interference. When
the applications are developed by different parties and not all of
them are available at design time, it is not possible to come up with
such estimation. Thus, this approach is quite restrictive comparing
to our technique that targets a composable system which enables
design, verification and integration of the applications in isolation.
Furthermore, the approaches in [25,26] differ from ours in the
sense that in [25] KPN processes are scheduled and executed on
hardware reconfigurable accelerators, and in [26] not multiple
applications may execute concurrently on the platform.

In case of dataflow models, applications performance can be
accurately analyzed using several dataflow models [27–29]. Thus
dataflow is used to express real-time applications executed on
MPSoCs [19,30]. All these approaches allow the design of real-
time applications, however the analysis requires bounds on the
execution time of each task or preemption in bounded time. This
is not generally the case for non-real-time applications, thus their
integration on a common platform is not straightforward. The
authors of [19] use an MPSoC similar to our platform, and target
a system that permits reasoning about the worst case overall
behavior of applications when they are analyzed in isolation.
This means that the running applications can affect each
other’s timing behavior and the worst case still holds true. This
definition of composability is very similar to the ones in [9,30],
and, as mentioned above our definition is more restrictive than
theirs.

Typically, the programming and implementation models of
embedded applications start from a highly abstract model and
refine the model to less abstract implementation models. For-
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SyDe [31] provides a disciplined mixture of models of computa-
tion for embedded systems designs. ForSyDe starts from a high
level functional description of applications using Haskell as the
modeling language, and refines it step by step to an implemen-
tation model. Thus the approach does not necessarily target an
MPSoC platform. In this approach, the refined implementation
model may be for example another model of computation such
as a KPN, or a dataflow. We can consider its generated model
as an equivalent for our model of execution, however, here we
are explicit about the implementation of the models of computa-
tion with the model of execution and we target only the
KPN and dataflow models. Our model of execution not only
represents the execution operations of these models but also
maps the operations to the time model of the composable
platform.

Furthermore, PTIDES [32] and Giotto [33] are models of compu-
tation that target real-time applications. PTIDES focuses on the
automotive application domains that include sensors and actuators
and proposes the execution strategy for timed models [34]. It only
supports applications with hard real time requirements, and intro-
duces a local notion of the real, physical time for the applications.
Their definition of the local time is similar to the logical execution
time of applications in [35]. Our model of execution also proposes a
logical (virtual) time for the applications, while each application
time is totally isolated from the others. Giotto is a time-triggered
language for embedded programming that targets embedded con-
trol applications. It achieves time predictability but no composabil-
ity, and the application timing may influence each others’ timing
properties. Giotto does not specify where, how and when the task
are scheduled and executed, an the model is generic to be imple-
mented by different models of execution. Giotto and PTIDES aim
to provide independent programming models (models of computa-
tion) from the underlying platform, and their models are not data-
driven.

Moreover, CASSE [36] proposes a high level execution model for
simulating the applications that are functionally modeled in KPN.
It bridges the gap to system implementation by refining the KPN
model, and enabling transaction-level simulation at different
abstraction levels in the model refinement procedure. In the con-
text of hardware/software co-design, the work presented in [37]
deals with parallel programming models to abstract both hardware
and software interfaces in the case of heterogeneous MPSoC de-
sign. The authors of this work discuss different models of applica-
tion programming interface (API) and how an MPSoC simulation
may benefit from high level models. Unlike these approaches that
aim to simplify the functional simulation of applications, our mod-
el of execution bridges the gap between the actual MPSoC platform
and the model of computation. Using our time model, the design-
ers can verify the requirements of each application in isolation at
design time, and using the operations of the model of execution,
different data-driven models are implemented easily on the actual
MPSoC platform.

3. Models of computation

Traditionally, applications are initially designed using a sequen-
tial model of computation (MoC) in a high level programming lan-
guage, such as C. The Nested Loop Programming (NLP) is a subset of
a sequential MoC. NLP models an application as a number of loops
over single assignment basic functions, as presented in Fig. 3a. NLP
can be automatically transformed into parallel models of computa-
tion [6,13], e.g., KPN and dataflow. The KPN and dataflow models
are networks of autonomous and concurrent nodes, referred to as
processes in KPN and as actors in dataflow terminology [38]. A node
corresponds to one or more function calls in the NLP model of the
application, and it is a functional mapping from input streams to
output streams (corresponding to the function’s arguments). Each
node executes for a possibly infinite number of activations. Nodes
communicate along unidirectional channels by means of data to-
kens that are sent and received in a First-In-First-Out (FIFO) order,
as presented in Fig. 3b. In other words, in the KPN and dataflow
models of computation, the synchronization between a producer
node and a consumer one is done implicitly via the FIFO
operations.

A KPN process body, illustrated in Fig. 3c, consists of a sequence
of read, compute, and write operations. These operations may be
interleaved in any order, and a process may read or write an arbi-
trary number of tokens from or into a FIFO. Although theoretically
the FIFO sizes are infinite, practically, each FIFO is implemented
with a bounded capacity [22]. A process blocks on a read or write
when the FIFOs does not have enough input data or output space,
respectively. A KPN process is activated once and it potentially exe-
cutes for a(n) (in)finite number of iterations, and the process itself
should implement its iterative execution, as illustrated in Fig. 3c
with the main loop inside the body.

A dataflow actor body is a sequence of consume, compute, and
produce operations, in this strict order, as presented in Fig. 3d. A
firing rule specifies, for one actor activation, for each incoming and
outgoing edge, the number of input tokens consumed and the
number of tokens produced, respectively. Once the firing rule is
satisfied, an actor executes its entire body without blocking. The
actors execute for an infinite number of activations as long as their
firing rules are satisfied. In dataflow, each activation of an actor
corresponds to one iteration.

Different variants of dataflow models exist, e.g., Static Dataflow
(SDF), Cyclo-Static Dataflow (CSDF) [27], Variable Rate Dataflow
(VRD) [28], some of which are analyzable, i.e., a worst case timing
of each of its actor can be calculated. This is due to the fact that
after a dataflow actor firing rules are satisfied, the input an output
tokens are ready for the entire execution of it computation without
any blocking, and therefore, a bound on computation time of the
actor can be easily calculated. Assuming that the MPSoC platform
is predictable, the communication time through the interconnect
to access the distributed memory locations in the system can be
also bounded. Therefore, existing formalisms can analyze an appli-
cation and derive an end-to-end latency, throughput, and buffer
sizes for it [29]. Our target platform can execute all three men-
tioned variants of the dataflow, however, in this paper, we focus
on one of the analyzable ones, i.e., CSDF.

KPN and dataflow have different properties that make them
suitable for different application domains. Some variants of the
dataflow are suitable for the FRT domain that demands timing
analysis, since the actors execute their entire body without block-
ing and the communication through FIFOs is predictable (i.e., it is
known at design time how many tokens are produced and con-
sumed by the actors). However, dataflow is not expressive enough
to model dynamic application behavior, e.g., the production and
consumption of a data-dependent number of tokens on a channel.
Such behavior is common in the signal processing domain, e.g.,
variable-length encoding and decoding. KPN is a suitable model
for such dynamic applications, as it allows arbitrary production
and consumption rates and arbitrary interleaving of communica-
tion and computation inside a process. On the other hand, KPN is
not amenable to exact timing analysis required for FRT applica-
tions, because KPN allows arbitrary interleaving of computation
and communication in a process body. As a result the time that
is spent waiting for data in communication can block the execution
of the process body, or data-dependent computation causes unpre-
dictable execution time of the process. However, this unpredict-
able timing behavior may be analyzed statistically to come up
with a probabilistic timing behavior that may cause occasional
deadline misses at run-time [9], which is acceptable for SRT appli-



Fig. 3. Application computation models: (a) a Nested Loop Programmed (NLP) application, (b) an application task graph, (c) a KPN process example code, (d) a dataflow actor
example code.
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cations. Thus KPN can only fit NRT and SRT applications. Essen-
tially, the execution of both KPN and dataflow models on an MPSoC
platform enables our model of execution to support a wide range of
application domains as illustrated in Fig. 1.

The execution operations corresponding to the models of com-
putation are illustrated in Fig. 3c and d. These operations will be
introduced and explained in the next section.

4. Model of execution

A model of execution (MoE) defines a set of operations that
implement specific model(s) of computation, and a time model of
applications executing on the MPSoC platform. An application is
expressed in a model of computation, e.g., KPN, dataflow, which in-
cludes the operations for computation and communication, e.g.,
read, produce. Thus these operations should have equivalents
in the execution model. Moreover, when multiple applications
sharing resources, the model of execution should also define sched-
uling operations and the time at which these operations execute. In
this section, we first define the execution operations of our model
of execution. Following that, we introduce the time model of appli-
cations’ execution on a composable MPSoC, and finally, we discuss
the available design options in scheduling operations.
Table 1
List of the execution operations.

Operation Category Description

C Computation Performs the computational functions
FC Communication Checks if a FIFO has available data or space
FA Communication Accesses the data or space of a FIFO
SA Scheduling Selects an application to be scheduled
ST Scheduling Selects a task to be scheduled
4.1. Execution operations

The execution operations can be categorized as: (i) computa-
tion, (ii) communication, and (iii) scheduling operations. Our uni-
fied model of execution identifies and implements the common
operation primitives required for execution of NLP, KPN and data-
flow in these three categories, as presented in Table 1. The imple-
mentation of the models of computation by our model of
execution, using the execution operations, are represented with a
regular language sequence.1 We first abstract from scheduling and
present the set of execution operations and how our model of execu-
tion implements each of the NLP, KPN and dataflow models. Then,
we detail the scheduling for each of these models.

A computation operation, C, is defined as the sequence of all
instructions, except the instruction for communication, that imple-
ments the task’s functionality, and it is usually between two con-
secutive communication operations. The communication between
an application’s tasks can be inter- or intra-processor-tile, depend-
ing on the tasks’ mapping on the tiles. In an MPSoC platform with
distributed shared memories, the difference between these two in-
ter-tasks communication scenarios is in the actual memory loca-
tions that the FIFOs’ data structures are implemented. Our model
of execution however abstracts from these two scenarios and pro-
poses general FIFO-based communication method which hides the
details of FIFOs’ implementation from the perspective of the appli-
cations. In this method, a FIFO requires administration and access
operations. A FIFO administration operation is a space- or data-
check denoted with FC . A FIFO buffer access, i.e., placing/retrieving
data into/from the buffer, is represented as FA. FA may be per-
formed only after making sure that space or data exist, via FC .
1 If A and B are two operations, the regular expression language is defined as
fol lows: A� ¼ fAg; ðAþ BÞ ¼ fA;B;ABg, A2 ¼ fAAg, A½1;1Þ ¼ fA;AA;AAA; . . .g, and
A½0;N� ¼ f�;A;AA; . . . ;ANg.
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The NLP model is mapped on the target execution platform as a
simple application with one task and no FIFO. KPN processes and
dataflow actors are each implemented as tasks, and the inter-pro-
cess and inter-actor communication is implemented through FIFO.
A KPN process activation or dataflow actor firing corresponds to a
task iteration in the model of execution. The similarity between
these two models stops here. We define a task’s status as eligible
if it can execute. If a task is not eligible, its status is blocked. A
KPN process is initially eligible by default, i.e., the body of the pro-
cess starts executing, until it gets either blocked on a FIFO read/
write or it is finished. In other words, a KPN process (or its corre-
sponding task) is activated once, and the (in)finite iteration over
its operations can be implemented with a loop inside the process
body. A dataflow actor is eligible if it has enough data and space
in the input and/or output FIFOs, respectively. The task corre-
sponding to an actor is activated when its firing rule is satisfied,
and therefore, it can fire for infinite number of iterations.

For a dataflow actor, the corresponding task’s status is un-
changed for an entire iteration. A KPN process may immediately
start (is eligible), and it blocks whenever it executes areadorwrite
for which there is not enough data and/or space. Once it has started
an iteration, a KPN task is not guaranteed to finish it without block-
ing, thus the task status is not fixed for an entire iteration.

KPN read and write operations require both FIFO check and
FIFO access, whereas the dataflow produce and consume opera-
tions require only FIFO access. Formally, read and write opera-

tions are implemented as F ½1;1ÞC FA (where F1C models that the task
may wait for data/space infinitely), and consume and produce

operations as FA. In the KPN model the read and write operations

may be arbitrarily interleaved with compute, C þ F ½1;1ÞC F ½0;1�A

� �½0;M�
.

Here, Fx
C represents checking a FIFO x times, and

C þ F ½1;1ÞC F ½0;1�A

� �½0;x�
models the finite iterations of a process for x

times, where x 2 ½1;1Þ. In dataflow the execution order is strict,

starts with all consume operation, i.e., F ½0;N�A , continues with the

compute, C, and ends with all produce operation, i.e., F ½0;N�A . These
correspondence of each MoC’s operation with an execution opera-
tion is also illustrated in Figs. 3c and 3d beside the KPN and data-
flow pseudo code lines.

Traditionally, the inter- and intra-application parallelization in
the models of computation implies separate scheduler implemen-
tations for each level of the processor scheduling, i.e., inter-appli-
cation and intra-application scheduling [39]. The inter-
application scheduler selects only the application that executes
next on the processor. The execution operation of inter-application
scheduling is denoted with SA. The intra-application (task) sched-
uler determines the next task of the selected application to exe-
cute. We define ST as the execution operation that selects a task
according to a given policy, e.g., time-division multiplexing
(TDM) and Round-Robin. In KPN any policy can be used to schedule
a task although scheduling an eligible tasks is more reasonable.
Thus scheduling a KPN task can be implemented as an ST operation.
In dataflow the task scheduler has to first find an eligible task, thus

it selects a task, ST , and afterward, a check of each of its FIFOs, F ½0;N�C ,

repeatedly, formally resulting in ðST F ½0;N�C Þ
½1;N�

. If an eligible task is
not found, the idle task is scheduled.

4.2. Time model

To execute applications, the processors of the MPSoC perform
specific operations triggered by clock ticks. The clock ticks is gen-
erated based on the real time which is the wall clock time that re-
fers to the global, real, physical time. Moreover, when multiple
applications sharing a processor, an application’s view on real time,
i.e., when it actually executes, is not continuous. The application is
suspended when another application utilizes the processor. Thus,
an application actual time consist of a number of discrete time
slots. Fig. 4a presents the virtual time of three applications execut-
ing on a shared processor. An application’s view on the set of slots
at which it executes, is continuous and form the virtual time of the
application. In Fig. 4a, every application has its own virtual time-
line.

In the time slot that an application is allowed to utilize the pro-
cessor, the virtual time of the other applications is frozen. There-
fore, the virtual time of an application is completely disjoint
from the virtual time of other applications, on the same processor.
The separation between the virtual time of applications is not en-
ough for a composable system. Composability implies that in a gi-
ven platform the virtual time of every application should always
map uniquely to the fixed moments of the real, physical time, inde-
pendent from the other applications. When an application is
mapped over several processors, it receives virtual time on each
of the processors. The virtual time of the application on one proces-
sor also maps uniquely to the real time, independent from the vir-
tual time of the application on the other processors.

To implement these, in practice the time on each processor is
split in fixed-duration quanta, in a time-division multiplexing
(TDM) fashion [40]. Time quanta are denoted as application slots;
each slot is assigned to (at most) one application. Fig. 4b shows the
TDM slot allocation for our example. The TDM period, which we re-
fer to as the system period, is a repetitive real-time duration that is
formed by a number of consecutive real-time slots. The time nec-
essary to switch between two different consecutive application
slots, is not included in the applications’ virtual time, and is re-
ferred to as the system time. This time overhead is typically negli-
gible comparing to the applications time slot, and therefore it is
not shown in Fig. 4a. However, in a composable system in which
an application’s temporal behavior should be totally independent
of the other applications, the overhead not only should be bounded
but also should be always fixed [40]. In this way, the starting and
finishing time of the applications’ slots are always guaranteed to
be at the same moment in the real time, and therefore, the execu-
tion time of an application is always fixed and independent from
the others.

During its virtual time an application may initiate communica-
tion with other processor- or memory-tiles. Time models for inter-
connects and memory tiles exist in the literature [41,42], hence we
do not discuss them further. However it is important to stress that
the time models of different resources, e.g., processor and intercon-
nect, are independent by design, because the considered MPSoC is
predictable and composable [43]. In such an MPSoC, the time mod-
els of different resources are required to be independent, to ease
the temporal analysis effort. To design a real-time application, all
these models should be taken into account by analysis framework,
as mentioned earlier.

4.3. Mapping the execution operations to the time model

Considering the time model proposed in Section 4.2, the execu-
tion operations may be performed by the processor in system or
application time. In the system time, in which the applications
may be switched, the application scheduling operation executes.
However, after an application is scheduled, the task scheduler
can be also called in the system time to select the task to execute
in the application’s coming time. Formally, the operations that can
execute in this time, consist of SA, and possibly, ST , and FC .

Moreover, an application’s operations should execute in its own
time (application time), where the operations consist of computa-
tion, C, and FIFO access, FA, and possibly the task selection, ST , and
FIFO check, FC .



Fig. 4. (a) Processor allocation to multiple applications, and their virtual execution time vs. the system’s real time. (b) The processor time allocated to the applications
according to a TDM policy.

Table 3
Trade-offs summary.
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The possibility of performing task scheduling in application or
system time results in different options of implementing the mod-
els of computation, i.e., KPN and dataflow, with the model of exe-
cution. Using the regular expression language, the sequence of
operations for executing applications modeled in different models
of computation is presented in Table 2. For KPN and dataflow we
detail the cases in which the task (intra-application) scheduler is
performed in: (i) system time, and (ii) application virtual time.
The underlined operations in the table indicate the body of tasks,
i.e., KPN processes or dataflow actors.

The execution model of KPN with tasks scheduled in system
time, KPN (i), follows directly from the models of the task and
the task scheduler. In this case in each system time the application
and task are selected, SAST , and in each application slot the task is

executed, C þ F ½1;1ÞC F ½0;1�A

� �½0;M�
.

The execution model for KPN with tasks scheduled in the appli-
cation time, KPN (ii), is more complex. In the application time, task
selection has to be repeated whenever a task has finished, or, the
task is either blocked or preempted. In detail, after a task is initially
selected, i.e., ST in Table 2, the task may compute, C, or read or
write. In case of read or write, the FIFO has to be first checked,
FC . If the check fails, the current task is blocked, thus instead of
polling for FIFO data or space, another task is selected, i.e., it starts
from the beginning by executing another ST . Otherwise, the check
returns successfully and the FIFO buffer is accessed, FA. After this
access, another FIFO may be read or written, thus the procedure
Table 2
Implementation of the models of computation with the unified model of execution
when task scheduling is either in (i) system or (ii) application time.

Model of computation System time Application virtual time

NLP SA C
KPN (i) SAST C þ F ½1;1ÞC F ½0;1�A

� �½1;M�
KPN (ii) SA

ST ðC þ F ½1;1ÞC F ½0;1�A

� �½0;M�� �½0;1Þ

Dataflow (i) SAðST F ½0;N�C Þ
½1;N�

ðF½0;N�A CF ½0;N�A Þ
½0;1�

Dataflow (ii) SA
ðST F ½0;N�C Þ

½1;N�
ðF½0;N�A CF½0;N�A Þ

½0;1�
� �½0;1Þ
may be repeated. Furthermore, after a task iteration finishes or
the task is preempted, another task is selected according the same
algorithm above.

The execution model for dataflow is a composition of F ½0;N�A CF ½0;N�A ,
as the task body, and ðST F ½0;N�C Þ

½0;N�
, as the task scheduling, The latter

may be placed in system time, Dataflow (i), or in application time,
Dataflow (ii). If the task scheduler cannot find an eligible task, in

Dataflow (i), it schedules the idle task, ðF ½0;N�A CF ½0;N�A Þ
0
, and in Data-

flow (ii), it continues polling for an eligible task, ðST F ½0;N�C Þ
½0;N�

ðF ½0;N�A CF ½0;N�A Þ
0
.

The different options in implementation of the models of com-
putation with model of execution results in different design
choices for applications designers. In the next section we discuss
the trade-offs in choosing each option, and how an application
may benefit from each.
5. Trade-offs in implementation of models of computation with
the model of execution

A designer has many choices to implement an application on a
platform. Two important ones are: (i) which model of computation
to use and (ii) where to execute the task scheduling. Table 3 sum-
Model of
computation

System-time scheduling Application-time
scheduling

NLP FRT, SRT, NRT FRT, SRT, NRT
KPN SRT, NRT SRT, NRT

variable status during an
iteration

variable status during an
iteration

preemptive cooperative
non-work conserving work conserving
strictly verified scheduler any scheduler

CSDF FRT, SRT, NRT FRT, SRT, NRT
preemptive cooperative
constant status during an
iteration

constant status during an
iteration

non-work conserving work conserving
strictly verified scheduler any scheduler
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marizes the trade-offs between the possible combinations of these
two choices for NLP, KPN and dataflow models.

Some dataflow variants (e.g., CSDF) are analyzable, since the
status of a task is constant during an iteration and it can be deter-
mined by checking the firing rules. This constant status is also vis-
ible in the implementation of the dataflow with the model of
execution in Table 2, where no FC operation exists in a dataflow
task’s body to cause unpredictable blocking time on a communica-
tion. Therefore, the operations in the dataflow task body and
scheduler execute for a bounded number of repetitions (½0;N�),
and provided that each operation finishes in bounded time, the
model of execution corresponding to dataflow is predictable and
subsequently amenable to temporal analysis.

In KPN implementation, an infinite number of FC executions is
possible (½0;1�), as presented in Table 2, which make the exact
timing analysis of the KPN impossible. Thus KPN does not suit
FRT applications, but only SRT and NRT applications. However,
KPN can model dynamic behavior of applications, since the order
of reads and writes and the number of tokens accessed are arbi-
trary. Moreover the status of a KPN task is not available before giv-
ing the control to that task, leaving room for less scheduling
optimizations.

In case the task scheduler is executed in the system time, all
scheduling decisions are taken exclusively in this time. When a
task finishes or it is blocked before its slot ends, the remaining time
is wasted. Thus this approach is non-work-conserving, potentially
leading to a lower processor utilization. When executed in the
application time, a new task may be scheduled immediately after
a blocked or finished task. Therefore the entire application time
can be utilized, i.e., this method is work-conserving. Moreover, a
task scheduling policy is supported only under the condition that
it is thoroughly verified and characterized, as the worst case execu-
tion time of the operations in system time should be tightly
bounded. While this is a requirement for a real-time application,
it is not necessary for non-real-time applications, where it can limit
the available options. The limitation of task scheduling in applica-
tion time on our current platform is that applications do not have
access to timers and interrupts, unless these are virtualized. Hence
on a platform that does not offer such virtual resources the sched-
uler policy has to be cooperative, i.e., cannot preempt tasks.
6. Implementation of the model of execution

Our model of execution is implemented on a composable
MPSoC platform, in a form of software wrapper. In this section,
we first describe the principles and basic building blocks of the
existing target platform. Following that, we present the details of
the additions that we made to this platform such that it imple-
ments the model of execution.

6.1. Background

Our target MPSoC platform consists of a hardware and a soft-
ware infrastructure. Basically, the composability is a property of
the platform, and the hardware and the software infrastructure
implement this property. Here, we present the existing composable
hardware and software platform [11,17] on top of which we pro-
pose the implementation that supports our model of execution.

6.1.1. Hardware infrastructure
The hardware infrastructure comprises processor and memory

tiles interconnected via a Network-on-Chip (NoC) [41]. Fig. 5
shows an architecture template of the hardware infrastructure. A
processor tile consists of a processor, a timer, local memory, shared
memory, and Direct Memory Access (DMA) modules [42]. The
timer always run at the maximum possible frequency of the sys-
tem and keeps track of the system time as the reference of the real,
physical time for the applications. A memory tile consists of a
memory controller and a memory block.

Ideally the instructions and data of each task executing on a tile
should reside in the local memory of the tile to minimize the data
access latency. FIFOs are implemented in software and memory
mapped. When the tasks of one application are mapped on differ-
ent processor tiles, for inter-processor communication, the DMAs
are used by the low-level API provided in native communication li-
brary of the RTOS to access remote memories (to either another
tile, or an individual memory tile) [40]. This is implemented inside
the model of execution, hence hidden from the applications. As we
will see later in this section, the application designer operates with
FIFO identification numbers when implementing inter-task com-
munication. The mapping of the FIFO on memory and/or intercon-
nect is not visible at this level.

All the shared resources are designed in such a way that they
are virtualized to achieve application isolation and therefore sys-
tem composability. The DMA and memory controller prevent a
memory access of one application to block the processor and mem-
ory for an unknown time, and consequently violate the compos-
ability. The timer is the only one that can issue an interrupt to
the processor in order to implement the fixed time slot durations.
The NoC provides predictable and composable communication
mechanism for the applications traffic, where the physical commu-
nication links are shared between them.

6.1.2. Software infrastructure
Following the asymmetric multiprocessing (AMP) method [16],

an instance of a real-time operating system (RTOS) runs on each
processor tile, as illustrated in Fig. 6. The main components of
the RTOS are data structures, inter- and intra application schedul-
ers, and the native communication libraries as presented in Fig. 6.
The RTOS manages the data structure of the applications and their
tasks in two types of control blocks, namely (i) application control
block (ACBs), and (ii) task control blocks (TCBs). The control blocks
are created and initialized before the applications start executing
on the processor.

The RTOS provides an interface to the MPSoC resources, mean-
ing that (i) it implements the virtual time of the application on top
of the system’s real time, i.e., it keeps track of the system time and
application time slots of our model of execution, (ii) it schedules
applications (and tasks) on the processor, and (iii) it offers an
Application Programming Interface (API) that implements the
low-level operations and facilitates the model of execution to ac-
cess the MPSoC’s resources, e.g., communication channels, memo-
ries, peripherals.

To implement the processor’s TDM, the RTOS programs the
timer to issue an interrupt in intervals of application slot’s dura-
tion. The system time between two consecutive application slots,
is known as ‘‘OS slot’’ in which the RTOS performs context switch-
ing and application scheduling, and it also monitors the applica-
tions’ behavior, handles timer interrupts, and may execute task
scheduling. The detailed operational time-line of the RTOS is pre-
sented in Fig. 7.



Fig. 6. The architecture of the MPSoC platform, with details of the software infrastructure.

1040 A. Beyranvand Nejad et al. / Journal of Systems Architecture 59 (2013) 1032–1046
The two hierarchical levels of scheduling, i.e., inter-application
and intra-application (task) scheduling, are implemented each in
different RTOS components, presented in Fig. 6. The RTOS provides
only a safe API to the task scheduler implemented in an applica-
tion, and totally isolates the scheduler from the underlying hard-
ware. Consequently, the task scheduler cannot interface with the
hardware interrupts, and therefore, it cannot implement preemp-
tive scheduling policies. The low-level API is as follows:

(i) os_get_current_task () to get the ID of the current task.
(ii) os_set_next_task (task_id) to set the next task of the

current application to be scheduled.

The native communication API directly accesses the communi-
cation resources of the tile, i.e., local memory, shared memory, and
DMA. They internally implement software FIFOs with data buffers
to store a number of tokens and read and write counters, and it
keeps this administration data structure of each FIFO in a FIFO con-
trol block (FCB). The FCBs are managed according to the C-HEAP
protocol [44] based on which the RTOS implements two FIFO oper-
ation primitives, as follows.

(i) claim_fifo_data/space () to acquire a data/space avail-
able in a FIFO.

(ii) release_fifo_space/data () to release the space/data
of already consumed tokens.

Here we only discussed the API that is important for implemen-
tation of our model of execution, and the rest of the API are similar
with what a conventional RTOS would offer. For more detailed dis-
cussion on the base-structure of the RTOS realization, we refer to
[17].

6.1.3. Applications mapping
In the RTOS terminology, an application consists of a set of tasks

that execute an infinite number of iterations, communicating via
Fig. 7. A composable RTOS
FIFOs. These tasks realize the body of NLP threads, KPN processes
and dataflow actors in our model of execution. The given real-time
streaming applications are parallelized manually or automatically
using the existing tools such as PNGen [12] and Compaan [13] into
a number of concurrent tasks implemented with either KPN or
CSDF models.

To ensure that the required performance and timing constraints
of an FRT application are guaranteed, the application has to be ana-
lyzed at design time. For this purpose, a complete analyzable mod-
el of the whole system is required. This system model integrates
the time models of all the resources, e.g., DMAs and interconnect,
used by the application, with the model of computation that imple-
ments the application [14]. The system model is then analyzed
manually or automatically using the existing tools, such as SDF3
[15]. The analysis results may be used to (i) generate different par-
tition and static mapping of the applications on the target MPSoC,
and (ii) properly size the FIFOs for deadlock free execution and a
given target performance of application.

In summary, in this work, we assume that a given real-time
streaming application is implemented with KPN or CSDF models
of computation and partitioned into a set of tasks which are
mapped on one or more processor tiles. This process can be done
manually or automatically, using existing tools. The focus of our
work is then to provide an interface for the realization of the model
of execution in between the existing RTOS and the given mapping
of the applications, as illustrated in Fig. 2.

6.2. Implementation

Our unified model of execution is implemented on top of the
existing RTOS layer of the software infrastructure. On every proces-
sor tile, the implementation of the model of execution is a software
wrapper that consists of high-level scheduling and communication
API and programming templates, as shown in Fig. 6.

In the rest of this section, we first describe the high-level API.
The API is directly used by the applications and they abstract the
operational time-line.



Fig. 8. The unified task template for NLP, KPN, and dataflow.

Fig. 9. An example dataflow task implemented with task template of the model of
execution.
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low-level execution primitives of the RTOS; for example, a unified
API is provided for the inter-task communication regardless of the
mapping of tasks. Second, we present a unified programming tem-
plate for the tasks, firing rules, and task schedulers. To implement
the applications given in NLP, KPN, and CSDF models of computa-
tion, developers has to format them in these templates.

6.2.1. Application programming interfaces
In this section, we first discuss the scheduling operations and

then the communication operations, for the KPN and the dataflow
models of computation.

The scheduling operation in the KPN model boils down to
selecting the next tasks according to a given policy, e.g., round ro-
bin. For this purpose, the low-level API described earlier in this sec-
tion are exposed to the applications by the model of execution.

In the case of the dataflow model, the scheduling operation
does not only select a task but also checks if the firing rules are
met. The model of execution provides high-level API to express
and check firing rules. To express a firing rule of a task, the appli-
cation has to be able to set the number of tokens, known as rate,
required for every iteration. The following API is proposed to set
the consumption and production rate of a task’s FIFOs:

(i) os_set_fifo_consumption_rate (fifo_id, rate)
(ii) os_set_fifo_production_rate (fifo_id, rate)

To check the firing rules of a task, the following API is proposed:

(i) os_check_firing_rules (task_id)

Internally, the function above goes over all the FIFOs associated to a
task and, using the lower level API introduced earlier in this section,
checks for required data/space in the FIFOs.

A KPN task may communicate with other tasks during its execu-
tion, hence it accesses a variable number of tokens from different
FIFOs. For this purpose, the following API is proposed:

(i) os_get_fifo_data (fifo_id, number_of_tokens,
data_in)

(ii) os_set_fifo_data (fifo_id, number_of_tokens,
data_out)

Internally, the functions above utilize the native communication li-
brary of the RTOS to read/consume and write/produce data tokens
from and to a FIFO. The communication API may be called anywhere
in a KPN task body and the calls are blocking. In case that tasks are
scheduled in application-time, when a task is blocked at a FIFO
read/write, the task scheduler is immediately called and the current
task is preempted.

A dataflow task (actor) requires a different communication
scheme. First, all the task’s FIFOs are checked (according to the fir-
ing rule), then if the communication is resolved, i.e., sufficient data
and space are available, the task may start. We propose to wrap a
dataflow task in a layer that first implements the FIFO check and
access using low-level communication API then it calls the task
computation. This wrapper is detailed in the next section. As a re-
sult, the task does not directly see its FIFOs; it is passed the data
and buffer address that is needs for the current iteration. After
the task computation ends, the output tokens are released by the
wrapper.

6.2.2. Programming templates
The model of execution proposes specific programming tem-

plates for developers to implement the task computation, task fir-
ing rules, and task scheduler. Here, we describe these templates for
the CSDF, KPN, and NLP models of computation.
Fig. 8 presents the template for tasks’ body. In case that the task
implements a dataflow actor, the arguments are the pointers to the
input data and output space tokens and the number of each itera-
tion (cycle). Since NLP and KPN processes perform the FIFO access
operations dynamically in the body of the tasks and there is no no-
tion of cycle in these models, the token pointers and cycle number
arguments are set to NULL and 0, respectively. For examples, Figs. 9
and 10 show how the dataflow actor and KPN process, that are pre-
sented in Figs. 3c and d, are implemented by the task template.
Note that FIFO identification numbers (ids) that are used inside
the dataflow actor and the KPN process are the local ids of the
FIFOs, and the RTOS is initialized properly by the designer in order
to link the FIFOs’ local ids with the appropriate FCBs according to
the application task graph.

A dataflow task should be accompanied with a set of firing
rules, that may change from one task iteration to the other. To
implement a firing rules function we proposed the template pre-
sented in Fig. 11. The firing rules function of a tasks is called auto-
matically by the model of execution wrapper after each iteration of
the task. As a result, the firing rules are updated for the next task
iteration.

A unified task scheduler template is proposed to implement the
cooperative policies, e.g., round robin, regardless of the applica-
tion’s model of computation. The template is illustrated in



Fig. 10. An example KPN task implemented with task template of the model of
execution.

Fig. 11. The unified firing rule implementation template for dataflow actors.

Fig. 12. The unified task scheduler template.

Fig. 13. The dataflow task wrapper implementing the model of execution.

Fig. 14. The KPN (NLP) task wrapper implementing the model of execution.
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Fig. 12. The required parameters for different scheduling policies
may be set by the application designer and are passed by the RTOS
to the scheduler via scheduler_arg. The application designer
may use the scheduling API to implement any desired policy.

The implementations of the templates for tasks, firing rules, and
schedulers, should be called by the model of execution according
to its representations in Table 2 to realize the dataflow actors
and KPN processes. For this purpose, the templates are wrapped
in different set of sequential operations for each model of compu-
tation. Fig. 13 presents the model of execution wrapper for the
dataflow actors. Similarly, KPN processes (or NLP) are wrapped
as presented in Fig. 14, where there is no explicit native FIFO oper-
ation. Note that in case of application-time scheduling the task
scheduler is called inside the kpn_process, or more precisely inside
os_get/set_fifo_data, if a FIFO access is blocked.
7. Case study

In this section we present experiments that execute multiple
applications on our target MPSoC platform for two purposes: (i)
to investigate the performance of applications implemented with
different models of computation, and (ii) to study the system com-
posability. The first investigation provides insights to the perfor-
mance trade-offs (as in Table 3) in executing the different
representations of one model of computation with our model of
execution, as presented in Table 2. The second study justifies that
the implementation of our model of execution does not violates
the system composability.

The target platform has two processing tiles and one memory
tile, communicating via an on-chip interconnect. The MPSoC is
implemented on a Virtex 6 FPGA, available on Xilinx ML605 emu-
lation board. For our experiments we set-up different usecases. A
usecase is a number of applications executing concurrently the
MPSoC platform. Here, we assume the applications are already par-
allelized, and the static mapping of tasks on specific processor tiles
are given. The applications that we use are as follows: (i) a simple
and (ii) a complex synthetic application, (iii) H.246 video decoder,
and (iv) JPEG decoder. The simple synthetic application and the
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Fig. 15. (a) Two use case of a simple synthetic mapped on (i) one processor tile, and
(ii) two processor tiles; finishing time for 10 iterations of (b) 1-tile use case, and (c)
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JPEG are modeled with dataflow. The complex synthetic applica-
tion is modeled with KPN and dataflow, and the H.264 is modeled
with all models of computation, i.e., NLP, KPN and dataflow. For
each usecase we implement two different scenarios, (i) OS-time
task scheduling, and (ii) application-time task scheduling. Here,
we consider the finishing time of an application as the metric for
the application’s performance. In every scenario, we make sure
that application execution always starts at the same point in time.
Therefore, smaller finishing time indicates better performance. In
our experiments, we use the application performance as the crite-
ria to study an application’s execution behavior when it is imple-
mented with different models of computation in each scenario.

7.1. Performance

In this section, we present the results of executing applications
in different usecases on the MPSoC platform for the following two
purposes, (i) to demonstrate how the implementations of the mod-
el of execution in Table 2 actually execute on the platform, and (ii)
to give a real example of the performance trade-offs in implement-
ing different models of computation with the model of execution,
as discussed in Section 5.

For the first purpose we build a simple synthetic application
that allows us to gain basic insights into how the model of execu-
tion behaves. Here we exemplify the application performance
along the following design options: (i) OS- versus application-time
scheduling, (ii) the processor belongs exclusively to the application
versus the processor is shared, (iii) a sequential versus a parallel
application execution. The last two are general points of interest
for application design in any MPSoC platform, and the first is a de-
gree of freedom existing in our platform.

The simple synthetic application is composed of two tasks, i.e., a
producer and a consumer, communicating via a FIFO. We imple-
mented the dataflow model of this application. We set-up two use-
cases, as illustrated in Fig. 15a. In the first usecase the application
is mapped on one processing tile, and in the second usecase, the
producer task is mapped on processor tile 0 and the consumer task
is mapped on tile 2.

Fig. 15b and c present the performance of the application in the
two usecases, when the application’s share of the processor is
changed from 100% to 50%. For each set-up, we perform the exper-
iments once with OS-time task scheduling and once with applica-
tion-time task scheduling. Here, the processor time slots allocated
to the applications are set to 100 k cycles. In the experiment, we
investigate a range of task computation workloads.

In both usecases, when the task finishes before the application
slot ends, the application performs better if the tasks are scheduled
in application-time than in OS-time. This is due to the fact that
when a task does not utilize the whole slot, in OS-time scheduling,
the remaining application time is wasted. However, in application-
time, the task scheduler immediately schedules the next task. The
difference between the results of OS-time and application-time in
the Fig. 15b and c for each scenario, shows the wasted application
time by the OS-time scheduling.

Even though we expect that the communication overhead in-
creases in usecase 2, comparing to usecase 1, the results in
Fig. 15c indicate better application performance in usecase 2, in
overall. The reason is that, in usecase 2 the application time is
not shared between the tasks on each processor, and each task
owns the whole application time exclusively.

As it can be observed in Fig. 15c, the finishing time graph for the
application-time scheduling scenario, when the application has
100% of the processor time, is linear, because, in this case, the fin-
ishing time is only dependent on the tasks’ workloads which have
been increased in regular steps of 10� 107 cycles. Unlike this case,
the finishing time graph is not perfectly linear, when the applica-
tion has 50% of the processor time, because the waiting time
caused by the fact that the application on the second tile is
swapped out of the processor, can also affect the finishing time.
In this case, the consumer task cannot start processing the data
and it should wait until it gets the next application slot. The wait-
ing time directly depends on how the TDM slots of an application
on two processors are aligned. If the 50% slots allocated to the tasks
on each processor are aligned perfectly, meaning that once the data
is produced, the consumer reads it, the results would be perfectly
linear as in the case of Fig. 15b. Otherwise, if data arrives on the
other processor tile when the application has just lost the first pro-
cessor, the consumer task should wait for the next coming slot to
start processing. This is not the case when the application has
100% of the processor in which the tasks can start processing once
data/space is available. This TDM misalignment effect also explains
why in some cases, in Fig. 15c, we observe shorter finishing time
for the case when the application has 50% of the processor, even
if the task workload increases. When designing a real-time applica-
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tion, the worst-case TDM slots miss-alignment is taken into ac-
count to estimate the bounds on timing properties of the
applications.

In order to investigate the trade-offs in implementing different
models of computation with the model of execution (Table 2), we
set-up a usecase which consists of two applications, namely, a syn-
thetic one, and H.264 video decoder, as illustrated in Fig. 16a. The
synthetic application is a five-task application implemented with
KPN and dataflow models; each task has the same computation
workload. The H.264 decoder is initially modeled in NLP, which
is then parallelized in six tasks, in two models of computation,
for KPN and for dataflow. We execute these applications concur-
rently using the round-robin task scheduling policy in OS-time
and application-time. Here, we investigating the trade-offs in-
volved in performance of the applications when an important sys-
tem property, i.e., slot size, is changed. The results indicate
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Fig. 16. (a) Synthetic and H.264 application on a 2-Tile MPSoC Platform; finishing
time for 20 iterations of (b) the synthetic application, and (c) H.264 decoder.
how these design options would affect the applications
performance.

The performance of the synthetic application is illustrated in
Fig. 16b for various application slot sizes. Except for the small slot
sizes, the task scheduling in application time leads to better perfor-
mance, in both KPN and dataflow, because this implementation of
scheduling is work-conservative and utilizes the entire application
slot. Large application slot sizes leads to a large waste of applica-
tion time in the case of OS-time scheduling. As expected, for small
slot sizes the overhead caused by the frequent context switch be-
tween slots leads to poor performance in general. Here, for data-
flow the performance differences between OS- and application-
time scheduling are minor.

In the case of KPN, OS-time scheduling performs poorly regard-
less of the slot sizes, because the status of a task is not known
when the task is selected and when the task is blocked the entire
application slot is wasted.
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Fig. 16c illustrates the performance of the H.264 modeled in
NLP, KPN and dataflow. NLP performs better than dataflow with
OS-time scheduling for large application slot sizes, because the
wasted time in each dataflow task exceeds the benefits of paralle-
lizing the application. Similar to the synthetic application, in H.264
application-time scheduling leads to better performance, small slot
sizes have large overhead, and the KPN with system time schedul-
ing has the worst performance.
7.2. Composability

To verify the composability of the system when multiple appli-
cations execute on the platform, we set up a usecase with H.264
and JPEG applications as illustrated in Fig. 17a. We present two
scenarios for this usecase when the task scheduling implementa-
tion is changed for one of the applications and for the other one
is kept unchanged.

First, we execute the H.264 with the task scheduling in applica-
tion-time, while the JPEG executes once with task scheduling in
OS-time and another with application-time task scheduling.
Fig. 17b presents the finishing time difference between the results
of the experiments. The JPEG application shows no finishing time
difference in two experiments, indicating that the timing proper-
ties of JPEG are unchanged, when the H.264 changes.

Second, we perform the two experiments while the H.264 exe-
cutes once with task scheduling in OS-time and another with
application-time task scheduling, for the case when the JPEG task
scheduling is kept unchanged in OS-time. As expected, Fig. 17c pre-
sents the same results of no change in timing properties for the
two executions of the H.264.

The experiments indicate that the timing properties of the
applications are not affected when the behavior of other applica-
tions are modified, and therefore, the applications are independent.
In other words, the system is composable.
8. Conclusions

In this paper we propose a unified model of execution to imple-
ment data-driven applications on a composable MPSoC platform.
The applications can be realized in three different models of com-
putation, e.g., Nested Loop Programmed (NLP), Kahn Process Net-
work (KPN), and dataflow. The model of execution fills the gap
between the MPSoC platform and the primitives of different mod-
els of computation. The execution model is formalized by, (i) defin-
ing the execution operations corresponding to the MoCs’
primitives, (ii) proposing a time model of applications executing
on a composable platform, and (iii) presenting different options
of mapping the execution operations to the time model. The mod-
els of computation are mapped to the unified model of execution,
and the trade-offs in different mapping options are discussed.

We implement the unified model of execution on top an exist-
ing composable MPSoC platform prototyped in FPGA. Using the
proposed model, we experimentally investigate the applications
performance and study the system composability by setting-up
four usecases. In the first two usecases, we use a simple synthetic
application, modeled in dataflow, to demonstrate how the imple-
mentations of the model of execution actually execute on the real
platform. H.264 video decoder, modeled as NLP, KPN and dataflow,
and a complex synthetic application, modeled as KPN and dataflow
are used in the third usecase to give a real example of the perfor-
mance trade-offs in implementing different models of computation
with the model of execution. Finally, a usecase of H.264 and JPEG
decoder demonstrates that the system composability holds true
when a timing behavior of the applications are independent, at cy-
cle level.
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