
Conservative Open-Page Policy for
Mixed Time-Criticality Memory Controllers

Sven Goossens∗, Benny Akesson†, and Kees Goossens∗
∗Eindhoven University of Technology, Eindhoven, The Netherlands

†CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal

Abstract—Complex Systems-on-Chips (SoC) are mixed time-
criticality systems that have to support firm real-time (FRT) and
soft real-time (SRT) applications running in parallel. This is chal-
lenging for critical SoC components, such as memory controllers.
Existing memory controllers focus on either firm real-time or soft
real-time applications. FRT controllers use a close-page policy
that maximizes worst-case performance and ignore opportunities
to exploit locality, since it cannot be guaranteed. Conversely,
SRT controllers try to reduce latency and consequently processor
stalling by speculating on locality. They often use an open-page
policy that sacrifices guaranteed performance, but is beneficial
in the average case.

This paper proposes a conservative open-page policy that
improves average-case performance of a FRT controller in
terms of bandwidth and latency without sacrificing real-time
guarantees. As a result, the memory controller efficiently handles
both FRT and SRT applications. The policy keeps pages open
as long as possible without sacrificing guarantees and captures
locality in this window. Experimental results show that on average
70% of the locality is captured for applications in the CHStone
benchmark, reducing the execution time by 17% compared to a
close-page policy. The effectiveness of the policy is also evaluated
in a multi-application use-case, and we show that the overall
average-case performance improves if there is at least one FRT
or SRT application that exploits locality.

I. INTRODUCTION

Embedded multi-core systems are often used to execute a

variety of different applications. The functionality integrated

in a single system is increasing, driven by power, area and

cost advantages [1], [2]. A consequence of this trend is that

hardware platforms can no longer be tailored for a specific

application class. Instead, generality is needed to satisfy the

diverse requirements of the integrated applications. This is a

challenging problem especially in systems with applications

of mixed time-criticality.

Mixed time-criticality systems combine both firm- and

soft real-time applications. Firm real-time (FRT) applications

require firm guarantees on response times from all SoC

components, such that bounds on the application-level worst-

case execution-time or throughput can be derived [3]. Deadline

misses for these applications result in unacceptable loss of

functionality or severe quality degradation. Conversely, soft

real-time (SRT) applications can tolerate an occasional dead-

line miss, as long as sufficient average-case performance is

provided. Focusing on either the worst- or the average-case

can lead to very different design decisions that mixed time-

criticality systems have to trade-off [4].

Most SoCs use a single SDRAM as their off-chip memory,

which is shared across these different application classes. This

papers focuses on the SDRAM controller. Its performance,

i.e. the provided bandwidth and latency, has a large impact

on the overall SoC performance. Both of these metrics are

inherently difficult to bound because the response time of an

SDRAM can vary significantly based on its state, and is also

input dependent. Modern SDRAMs comprise a hierarchical

structure of banks and rows that have to be opened and closed

explicitly. Their response time is relatively small if consecutive

accesses use the same bank and row, but is large if a different

row has to be accessed, since that requires closing the open

row and subsequently opening the requested row. Locality thus

strongly influences the performance of the memory subsystem.

The potential benefits of exploiting locality are ignored

by FRT controllers, since it cannot be guaranteed. For this

reason, they typically use a close-page policy that maximizes

the worst-case performance. SRT controllers often attempt

to exploit locality by using an open-page policy: they leave

a row open until the next request arrives, and by doing so

speculate that it will access the same row. If that assumption

is wrong, then a latency penalty has to be paid, but if it is

true sufficiently often, then an open-page policy outperforms

a close-page policy [5]. Since offering high average-case

performance is essential for mixed time-criticality systems, it

makes sense to try and exploit locality even in the presence

of FRT applications.

This paper contains the following contributions: 1) A con-

servative open-page policy that can be used in a mixed real-

time (MRT) context. The policy can be applied in any exist-

ing FRT controller, improving its average-case performance

without sacrificing its original real-time guarantees. The main

idea is to allow the command scheduler to exploit locality

that presents itself within the time window that naturally

exists between opening and closing a row. In this window,

the controller can exploit a fraction of the locality available in

the request stream, without increasing the worst-case schedule

length. 2) A generic method that derives a conservative open-

page command schedule based on a close-page schedule.

3) The conservative open-page policy is implemented in an ex-

isting FRT memory controller, which is used to experimentally

quantify the performance benefits for a set of applications from

the CHStone benchmark. The influence of the controller con-

figuration, i.e. the number of banks each request is interleaved

over and the number of bursts per bank, are also discussed,

both from a FRT and a SRT perspective. The experiments

show improved SRT performance without compromising FRT

guarantees.

The rest of this paper is organized as follows. In Section II,

related work is discussed. Section III gives background on978-3-9815370-0-0/DATE13/ c©2013 EDAA



SDRAM controller architectures. Section IV describes the

conservative open-page policy. The policy is experimentally

evaluated in Section V, followed by conclusions in Section VI.

II. RELATED WORK

Memory controllers targeting SRT applications often apply

sophisticated mechanisms to improve average-case perfor-

mance. Examples include the enhanced exploitation of locality,

prioritizing requests that target open rows [6], [7], grouping

read and write requests to reduce bus turnaround overhead [8],

[9] and even re-enforced learning optimization [10]. To reduce

the likelihood of a page-miss, techniques that specifically focus

on optimizing the moment at which a row is closed have

also been proposed [11]. All these techniques interact with

the command scheduling in complex ways that are effectively

impossible to analyze, which means no useful bounds on

the real-time performance can be derived. This makes it

impossible to use these controllers in a FRT context.

Several SDRAM controllers focusing on FRT applications

have been proposed, all trying to maximize the worst-case

performance. [12] uses a static command schedule computed

at design time, thus allowing exploitation of locality and com-

plete analysis of the provided bandwidth and latency. However,

full knowledge of the applications’ behavior is required at

design time, which is generally not possible. Furthermore, it is

unable to deal with request streams that are input dependent.

The controller proposed in [13] dynamically schedules pre-

computed sequences of SDRAM commands according to a

fixed set of scheduling rules. The sequences obey the SDRAM

timing constraints and have fixed known latencies allowing

the derivation of bounds on the provided bandwidth and

latency. The controller proposed in [14] follows a similar

approach. [15] dynamically schedules commands at run-time

according to a set of rules from which an upper bound on

the execution time of a request can be determined. All of the

above mentioned dynamic FRT controllers use a close-page

policy and thus do not exploit locality across requests.

This paper introduces a conservative open-page policy that

can be used in a FRT memory controller, enabling parts of the

locality to be exploited without degrading worst-case perfor-

mance. This means that the original worst-case analysis and

guarantees are still valid, while the average-case performance

improves. This policy is therefore useful for controllers in a

MRT system.

III. BACKGROUND

An SDRAM memory consists of multiple independent

memory banks, each containing a memory array consisting

of rows and columns. Each element in a column is a memory

word. A write (WR) or read (RD) command results a transfer

of multiple words, called a burst. For a DDR3 memory, the

burst length (BL) is 8 words. Before data can be read or

written, a row has to be opened using an activate (ACT)

command, which places the row in the row-buffer of its

bank. To access a different row, the row-buffer first has to be

precharged before the next row can be activated. Precharging

closes a row and restores it in the memory array. This can be

done by either issuing an explicit-precharge command (PRE),

or by setting the auto-precharge flag while performing the

last RD or WR command to the active row. Using auto-

precharge closes the row as fast as possible. All the banks

share a single data- and command-bus, but in principle they

are independent memories. This allows the use of bank-

parallelism, for example by reading data from bank 0 while

activating bank 1.
The minimum delay between each pair of commands is

determined by a set of timing constraints [16]. For example,

tRC specifies the minimum time between two ACT commands

to the same bank, while tRCD denotes the minimum time

between an ACT and a RD or WR command. tRTP is the

minimum time between a RD and a PRE command and tRP is

the minimum PRE-to-ACT delay. The challenge for a memory

controller is to create a sequence of memory commands or

schedule that satisfies all timing constraints.
Memory requests often have a granularity that is larger than

a single burst. L2 cache lines for example are typically 64 or

128 bytes. This property makes using more than one bank to

serve a single request possible, which enables the use of bank

parallelism to hide (parts of) the latency caused by timing

constraints. The size of requests with which an SDRAM

controller works is called the access granularity (AG). It is

given by the number of banks a request is interleaved over

(BI), multiplied by the number of bursts per bank (BC) and

the memory interface width. A single row stored in a row

buffer is called a page. The combination of banks that a single

request is interleaved over is referred to as a bank-cluster. We

call the combination of BI and BC a controller configuration.

The choice of BI and BC greatly influences the worst-case

performance of an SDRAM controller [17]. Although there

are many small nuances, in general the worst-case bandwidth

and latency grows with the access granularity. For a constant

access granularity, it is beneficial to interleave over as many

banks as possible to exploit bank-parallelism.
Several row-buffer-management policies or page-policies

exist [5]. A memory controller can choose to precharge the

active row as soon as possible after a request to that row is

finished, which is called a close-page policy. This minimizes

the execution time of the next request once it arrives, if it

wants to access a different row. FRT controllers generally use a

close-page policy with auto-precharges, because they perform

better than open-page policies in the worst case. Alternatively,

a controller could leave the active row open until the address

for the next request is known, which is called an open-page

policy. This policy benefits from locality by amortizing the

latency of activating and precharging a row across multiple

requests. However, if a different row has to be accessed then

the full penalty of precharging the active row and activating

a new row has to be paid. Controllers that use an open-page

policy thus speculate that enough locality is present in the

request stream such that they perform better in the average

case.
Throughout this paper, we use a MT41J64M16 DDR3-1600

module from Micron [18] to demonstrate the proposed policy.

Such a module runs at 800 MHz, has a 2 byte interface width

and a data rate of 2 words per cycle, resulting in a peak

bandwidth of 3.2 GB/s. Note that the method described in

this paper is not specific for this module, but applies to any

type of SDRAM memory.



Time wnd. 
= 4

A
0

N N N N N N N A
1

N

16

tRC (ACT-to-ACT) = 38

tRTP = 6

tRCD
(ACT-to-RD/WR) = 10

26

AP:

ANP:

NANP:

NAP:

R
0

N N N R
0

N N N R
1

N N N R
1

N N N N N N N N N N N N N N N

A
0

N N N N N N N A
1

N R
0

N N N R
0

N N N R
1

N N N R
1

N N N

R
0

N N N R
0

N N N R
1

N N N R
1

N N N

R
0

N N N R
0

N N N R
1

N N N R
1

N N N N N N N

tRP = 10

20

A
0

N N N N N N N A
1

N
AP:

R
0

N N N R
0

N N N R
1

N N N R
1

N N N N N P
0

N N N N N N N P
1

N

tRP = 10

R
0

N N N R
0

N N N R
1

N P
0

N R
1

N N N N N N N

tRP = 10

NAP:

Time-window = 28

Time-window = 10

Time-window = 14

Before applying the heuristic

After applying the heuristic

Fig. 1. Read command schedules for BI 2, BC 2. Each block represents a
command, followed by an optional bank id. The orange commands have auto-
precharge flags. The timing constraints that dictate the length of the schedule
are shown on the arrows.

IV. CONSERVATIVE OPEN-PAGE POLICY

A. Naive implementation

Exploiting locality is beneficial for the average-case perfor-

mance of a memory controller, but speculative open-page poli-

cies reduce the worst-case guaranteed bandwidth and latency,

which is unacceptable for FRT applications. We hence propose

a conservative open-page policy that exploits part of the

available locality without sacrificing worst-case performance.

Starting off with a close-page schedule [19], the core idea is to

allow a page to remain open after an access if it is known that

the next request targets the same row in the same bank-cluster.

If this is the case, then a hit is detected. The auto-precharge

flags, used in the close-page policy at the last read or write

command to each bank, are then omitted, as are the NOPs

that are normally scheduled to satisfy the PRE-to-ACT and

ACT-to-ACT constraints. The next memory access does hence

not have to incorporate any activate commands, and the NOPs

required to satisfy the activate-to-read/write constraint can also

be omitted. This is conservative with respect to the worst-case

guarantees, because the length of an access can only decrease

as a result of this policy. The policy can be applied to all FRT

schedulers, although the implementation effort may vary based

on the implementation of their close-page scheduler.

Fig. 1 shows an example of the 4 different read schedules

that are used in this policy: 1) AP: activates and precharges

a page. The schedule is used if a closed page is accessed,

and the next request needs another page. This is the schedule

that is always used by a close-page policy. 2) ANP: contains

an activate, but no precharge. A transition from the AP or

NAP schedule to this schedule is made if the next access is

a page-hit and it is detected in time. 3) NANP: A schedule

that contains only RD or WR commands and is used if the

previous and next request are both page-hits. 4) NAP: This

schedule is used if the previous request was a hit, but the next

request is a miss.

Fig. 1 shows that for BI 2, BC 2, a read request needs 38

cycles in the close-page policy, of which only 16 cycles are

used to transfer data. The average overhead caused by opening

and closing a page in all configurations up to a granularity of

64 bytes is 70% and 76% for reads and writes, respectively.

This shows that, if locality is exploited, it has a large impact

on the efficiency with which the memory is used.

To detect hits, the memory controller inspects the address of

the next request that is scheduled by the resource arbiter. This

address has to be known before the first precharge would be

executed in the AP or NAP schedules. If the target address for

the next access is not known by that time, the controller has

to assume a miss to prevent sacrificing worst-case guarantees.

This implies that there is a limited time window in which

locality can be exploited. The size of this window depends on

the time required to activate a row, plus the time required to

access all bursts from the first bank in the bank-cluster. The

larger the burst count, the more time exists between the start

of an access and the decision moment.

Similarly, there also exists an address window in which

locality can be exploited, the size of which depends on the

number of banks in a bank-cluster. When more banks are

clustered, there are more row buffers to hold active data which

means the effective page size is larger. The address range in

which the next access is considered a hit is therefore also

larger.

B. Increasing the time-window size

The size of the time-window has to be as large as possible

to maximize the exploited locality. To maximize the window

size, the precharge decision must thus be made as late as

possible. For this purpose, we propose to replace the auto-

precharge flags with explicit precharges that happen later in

the schedule. To maintain the same worst-case guarantees, we

do not allow the schedule to increase in length as a result of

the replacement. A small heuristic is used that generates the

modified schedule, based on an existing schedule that uses

auto-precharges. After applying the heuristic, the size of the

time-window is larger than or equal to the original window

size, with no influence on the schedule length. Therefore, it is

always recommended to apply this heuristic when using the

policy.

The heuristic attempts to increase the size of the window by

prioritizing the replacement of the first auto-precharge in the

schedule over those that happen later. The PRE commands are

placed as close to the maximum window length as possible.

By doing so, the heuristic reduces the chance of placing the

PRE command for an early bank needlessly close to the end

of the schedule, which could be the only spot where a PRE

command for a later bank is allowed to be placed.

The heuristic works as follows:

1) Find the first auto-precharge for which one of the follow-

ing conditions holds: a) the RD/WR-to-PRE constraint

only allows the corresponding explicit PRE command

beyond the end of the original schedule, or b) all the

cycles in which the explicit PRE command is allowed are

already used by other commands in the original schedule.

2) The first auto-precharge that meets this requirement sets

the maximum size for the time-window that can be used

conservatively. All other precharges should ideally be

placed after this command. If all auto-precharges can

be replaced, then the heuristic tries to put the first PRE

command BI-cycles from the end of the schedule to leave

enough space for the PRE commands for the other banks

in the bank-cluster.



TABLE I
TIME-WINDOW SIZES USING THE CONSERVATIVE OPEN-PAGE POLICY AND

THE AMOUNT OF CYCLES CONTRIBUTED BY THE HEURISTIC FOR THE

SCHEDULES CONTAINING PRECHARGES.

BI 1 1 2 1 2 4
BC 1 2 1 4 2 1
AG [bytes] 16 32 32 64 64 64
AP-RD [cc] 28 (+18) 28 (+14) 15 (+5) 28 (+4) 28 (+14) 15 (+5)
AP-WR [cc] 34 (+24) 28 (+14) 15 (+5) 46 (+24) 38 (+24) 15 (+5)
NAP-RD [cc] 14 (+14) 10 (+ 6) 4 (+4) 18 (+6) 10 (+6) 6 (+6)
NAP-WR [cc] 24 (+24) 28 (+24) 24 (+24) 36 (+24) 28 (+24) 12 (+12)

3) Try replacing the first auto-precharge in the schedule by

an explicit precharge, by finding a cycle that does not

violate timing constraints if the PRE command would be

put there. First the cycles after the unmovable precharge

are checked, working towards the end of the schedule. If

no suitable location can be found due to timing constraint

violations or because there is no space, the cycles before

the unmovable precharge are checked, working towards

the start of the schedule. This reduces the window-size

the heuristic attempts to create. The RD/WR-to-PRE

constraint limits the number of possible locations for the

precharge command in this search direction.

4) Once a suitable location for the precharge is found,

the auto-precharge flag can be removed and the PRE

command can be inserted into the schedule. If no suitable

location is found or if the first precharge in the schedule

is now explicit, then stop, otherwise repeat step 3 with

the (new) first auto-precharge.

Applying the heuristic to the example in Fig. 1 increases the

time-window size from 14 cycles to 28 cycles in the AP

schedule, and from 4 to 10 cycles in the NAP schedule. The

results for the other configurations up to an access granularity

of 64 bytes are shown in Table I. Postponing the precharge-

decision by increasing the number of bursts per bank increases

the size of the time-window, so to maximize the window the

largest possible burst size at a specific access granularity has

to be used. The effects this has on performance are discussed

in Section V-B3.

V. EXPERIMENTS

The CHStone benchmark [20] is used to evaluate the

proposed policy. For each application in the benchmark, a

memory-trace file was generated by running it on a Sim-

pleScalar 3.0 processor simulator [21]. The simulator was

slightly modified to record the time and address of each L2

cache miss which results in a trace file containing all requests

that go to the SDRAM. The traces are generated using the out-

of-order execution engine (sim-outorder) with default settings

except for the cache configuration. We use a unified 128 KB

L2 cache with 64 byte cache lines, 512 sets and an associativity

of 4. Each request in the trace thus corresponds to a cache

miss of 64 bytes. Eight out of the twelve applications in the

benchmark are used, the four applications that are left out use

64-bit floating-point operations that are not supported by the

SimpleScalar compiler. The average requested bandwidth and

the number of requests in each trace can be found in Table II.

Three factors determine the number of page-hits for an ap-

plication. 1) Spatial locality within an application. The address

of a request is decoded to a row, column and bank address.

If a request targets the same row and bank as its predecessor,

TABLE II
TRACE CHARACTERISTICS

Trace adpcm aes bf gsm jpeg mips motion sha
Avg. bandwidth [MB/s] 846 878 253 1910 100 1577 2426 236
Number of requests 645 742 873 644 1685 541 617 791

then it is a potential hit, otherwise it is a guaranteed miss.

2) Temporal locality: requests have to arrives at the memory

controller before the time-window closes. 3) Interference from

requests by other applications. In the following sections, the

consequences of each of these factors are evaluated for the

proposed policy.

A. Spatial locality

To set a baseline for the experiments, we first pre-process

the traces to determine the spatial locality, i.e. the fraction

of consecutive requests that target the same page. We assume

that requests are not reordered, such that requests from a single

application are always processed by the memory controller in

the order of arrival. Reordering of requests is used by SRT

controllers to improve efficiency and page-hits, but it is not

used by firm real-time controller since it increases the analysis

complexity and/or causes an unacceptable loss of worst-case

performance.

Which bits from the address are used to determine the bank

and row addresses depends on the controller configuration;

the more banks a request is interleaved over, the larger the

combined row-buffer size of each bank-clusters is. This means

that the likelihood of two consecutive requests targeting the

same bank-cluster increases with a growing BI, resulting in

more hits.

Fig. 2 shows the spatial locality per trace for the three

different memory configurations that offer a 64-byte access

granularity. The graph shows that at least 57% of the requests

in each trace can potentially benefit from an open-page policy,

with a variation of at most 8% caused by the different

configurations.

0

20

40

60

80

100

adpcm aes bf gsm jpeg mips motion sha

N
o

rm
a
li
z
e
d

 s
p

a
ti

a
l 
lo

c
a
li
ty

 [
%

]

Fig. 2. Spatial locality per trace for three controller configurations, from left
to right: (BI 1, BC 4), (BI 2, BC 2) and (BI 4, BC 1).

B. Conservative open-page policy evaluation

The conservative open-page policy is implemented in a

transaction-level SystemC model of the memory controller

described in [13]. The controller uses a set of command

schedules called patterns that are generated at design time.

At run-time these patterns are issued based on the incoming

request type. There are different pattern types, two of which

are used for read and write accesses. Two other patterns are



L2 cache-
miss trace

SimpleScalar Trace traffic 
player

NoC interconnect

64-byte requests

Mux

Memory 
controller

Design-time 
tooling

Pattern set DDR3-1600 
x16 module

Memory timing 
constraints

arbiter

BI, BC

Trace traffic 
player

Trace traffic 
player

Trace traffic 
player

Fig. 3. Experimental setup

inserted if needed to account for bus-turnaround time when

switching the data direction.

To enable the conservative open-page policy, the controller

is made aware of the open row in each bank-cluster. Based on

this information, one of the four schedule modes (AP, NAP,

ANP or NANP) is selected for each incoming request and the

appropriate pattern for that mode is issued. All experiments are

performed using the three 64-byte controller configurations.

First the results for BI 2, BC 2 are shown, and then the effect

of the configuration is discussed.

The controller is connected to a multiplexer such that it

can be shared amongst multiple master ports. We use a setup

with four master ports, each of which is connected to a trace-

based traffic player by means of a NoC, as shown in Fig. 3.

The traffic players emulate a processor running at 1400 MHz,

which means that each cycle in the trace corresponds to

0.71 ns. A player allows a maximum of four outstanding read-

requests before it stalls, and further assume that all requests are

independent. Note that a real processor could potentially stall

due to dependencies, but that it is not uncommon for multiple

cache misses to arrive at a memory controller in a relatively

short interval [22], and that techniques exist to improve the

available memory parallelism [23].

1) Single-application performance: In the first experiment,

only one of the four trace players is active, running each of

the application traces independently. We run the application

two times, first using a close-page policy and then using the

conservative open-page policy. The results of these experi-

ments are shown in Fig. 4. We first determine the fraction of

requests containing spatial locality that is captured within the

time-window. In a single application use-case, 70% of those

requests results in a hit on average, which is shown by the

(striped) bars in the figure.

Next, we look at the execution-time difference as a measure

for the SRT performance gains. Here, results vary wildly based

on which application is used: the execution time of JPEG

is reduced by only 1%, while that of MOTION is reduced

by 33%. This difference can be explained by looking at the

memory load of the applications in Table II. The high load of

MOTION implies that it is memory bounded, and thus sensitive

to changes of memory response times. Conversely, JPEG has

a low load, which means it spends most of its time processing

and memory response time was only a small fraction of the

total execution time to begin with. The average execution-time

reduction across all applications is 17%, so we conclude that

our proposed technique works well, and that the benefit for an

application scales with how memory intensive it is.

0

10

20

30

40

50

60

70

80

90

100

adpcm aes bf gsm jpeg mips motion sha multi−

tdm−1

multi−

tdm−2

E
x

p
lo

it
e

d
 s

p
a

ti
a

l 
lo

c
a

li
ty

 (
s

tr
ip

e
d

 b
a

rs
) 

[%
]

0

10

20

30

40

50

60

70

80

90

100

E
x

e
c

u
ti

o
n

 t
im

e
 r

e
d

u
c

ti
o

n
 (

s
o

li
d

 b
a

rs
) 

[%
]

Fig. 4. The striped bars show the fraction of the spatial locality captured
by the conservative open-page policy (higher is better). The solid bars show
the execution time reduction achieved by the conservative open-page policy,
normalized to the close-page execution time. The solid bar for the two multi-
application experiments show the total execution time reduction of the running
applications, normalized to the largest close-page execution time across the
two experiments. All experiments in the graph use BI 2, BC 2.

2) Multi-application performance: In the second experi-

ment, four applications run simultaneously on four separate

trace players and compete for the memory resource. This ex-

periment shows the effect of multi-application interference on

locality exploitation. Two high and two low-load applications

are used (MIPS, MOTION, JPEG and BF). Work-conserving

Time-division multiplexing (TDM) is used as the arbitration

scheme, which means that unclaimed slots from one appli-

cation can be used by another application if it has a request

available. In the MULTI-TDM-1 experiment, each application

gets one out of four slots in the TDM table, which means

that it can at least get a quarter of the memory bandwidth.

This potentially leads to fine-grained interleaving of requests

from different applications, which destroys locality that was

present in the original memory trace. This effect is visible in

Fig. 4: only 25% of the potential locality is captured which

is significantly lower than the average captured locality in the

single application case. Consequently the total execution-time

reduction is also relatively small. The individual execution

time reduction of the applications ranges from 0 to 3.5%.

To retain more of the locality in the request stream, the

arbiter in the MULTI-TDM-2 experiment is modified: each

application gets two consecutive slots in a TDM table having

eight slots in total. This has implications on the worst-case

response time resulting in a trade-off between FRT and SRT

performance; where in the first TDM-schedule there were at

most three interfering slots, in the second there are at most six

interfering slots. Giving an application two consecutive slots

has a large impact on the fraction of exploited locality: 54% of

it captured, more than 2 times as much as in the MULTI-TDM-

1 experiment, resulting in a total execution-time reduction of

7%. The individual execution times drop between 2.6% (JPEG)

and 27% (MIPS). We can conclude that successfully applying

the conservative open-page policy in a multi-application use-

case is possible, under the condition that the arbiter allows at

least part of the consecutive requests from an application to

be scheduled consecutively.

3) Controller configuration influence: The controller con-

figuration has a large impact on the worst-case guaranteed

bandwidth and latency, as shown in [17]. The configurations

that we consider all have a granularity of 64 bytes: interleaving

over either 1, 2 or 4 banks, while doing 4, 2 or 1 burst per bank,



TABLE III
RESULTS FOR EXPERIMENT 3.

Banks Interleaving 1 2 4
Burst Count 4 2 1

Average exploited locality [%] 78.7 70.6 70.1
Average exec. time reduction [%] 16.1 17.2 17.0

Worst-case bandwidth [MB/s] 901 1050 1144

respectively. Table III shows that the worst-case bandwidth

delivered by those configurations increases with BI, with a

21% difference between BI 1 and BI 4. Fig. 2 shows a trend

in the same direction; the higher BI, the higher the spatial

locality. A trend in the opposite direction is visible for the

window size (see Table I). This leads to the observation that

for an increasing BI, both worst-case bandwidth and spatial

locality increase, but the size of the time-window decreases.

Table III shows the average fraction of exploited locality

and the average execution time for the eight benchmark

applications. The conservative open-page policy captures the

largest fraction of potential locality in the configuration with

the largest window-size (BI 1, BC 4). However, the execution-

time reduction is largest for the (BI 2, BC 2) configuration. In

absolute numbers, the average execution time for (BI 2, BC 2)

is only 0.3% smaller than that of (BI 1, BC 4). We conclude

that the performance differences across configurations are so

small that they are insignificant, so the selection of a config-

uration can be made based on the real-time guarantees that

it offers to FRT applications without significantly impacting

SRT performance.

4) MRT performance: A MRT workload is tested in the

final experiment. Two traffic players are active in this exper-

iment: the first one runs each of the benchmark applications

and is configured to block immediately when a request is

issued, unblocking once the response arrives. This means the

application does not benefit from any of its own locality. This

models what happens in case an in-order processor is used to

execute the application. The second trace player runs a FRT

video task that we model using a synthetic traffic stream. It

requires a bandwidth of 270 MB/s, which is the combined read

and write rate required to transport 60 frames of 1024·786 pix-

els from and to the memory, assuming 3 bytes/pixel. A high

degree of locality is available in this application stream and

we assume all of its requests are independent, i.e. the IP

running the application is fully pipelined. The objective of this

experiment is twofold: it allows us to experimentally verify

that the real-time constraints of the FRT task are still satisfied,

and it also quantifies the impact of the locality exploitation by

the pipelined FRT application on the execution time of the

non-pipelined SRT application.

Compared to a close-page policy, the average execution time

of the benchmark applications is reduced by 7.9% using the

conservative open-page, while still satisfying the constraints of

the FRT application. Using the policy, the controller manages

to serve the FRT application faster, allowing more time to be

spent on the SRT application which hence benefits indirectly.

The MOTION benchmark again benefits most (13.4%), while

JPEG shows the smallest improvement (1.9%). We conclude

that if there is at least one application that exploits locality,

then all the other applications that share the memory can

benefit and the overall average-case performance increases.

VI. CONCLUSION

This paper deals with the problem of mixed time-criticality

workloads in the context of an SDRAM controller. Existing

controllers optimize for either worst-case or average-case per-

formance, but not for the combination of the two. We proposed

a conservative open-page policy that improves the average-

case performance without sacrificing real-time guarantees. It

exploits some of the locality in the request stream, which

reduces the average-case latency. A method to create the

conservative open-page schedules based on an existing close-

page schedule is shown and the influence of the controller

configuration on its performance is evaluated. The execution-

time reduction for single- and multi-application use-cases is

quantified, and we show that it is beneficial for the overall

average-case performance as long as at least one of the

memory clients has multiple requests that can be scheduled

consecutively.

VII. ACKNOWLEDGEMENTS

This work was partially funded by projects EU FP7 288008

T-CREST and 288248 Flextiles, Catrene CA104 COBRA,

ARTEMIS 100202 RECOMP, PT FCT, and NL STW 10346 NEST.

REFERENCES

[1] “International Technology Roadmap for Semiconductors (ITRS) - Sys-
tem Drivers,” 2011, http://www.itrs.net/reports.html.

[2] C. van Berkel, “Multi-core for Mobile Phones,” in Proc. DATE, 2009.
[3] L. Steffens et al., “Real-Time Analysis for Memory Access in Media

Processing SoCs: A Practical Approach,” Proc. ECRTS, 2008.
[4] T. Henzinger and J. Sifakis, “The discipline of embedded systems

design,” Computer, vol. 40, 2007.
[5] B. Jacob et al., Memory systems: cache, DRAM, disk. Morgan

Kaufmann Pub, 2007.
[6] J. Shao and B. Davis, “A burst scheduling access reordering mecha-

nism,” in Proc. HPCA, 2007.
[7] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:

Enhancing both performance and fairness of shared DRAM systems,”
ACM SIGARCH, vol. 36, 2008.

[8] A. Burchard et al., “A real-time streaming memory controller,” in Proc.
DATE, 2005.

[9] S. Heithecker and R. Ernst, “Traffic shaping for an FPGA based SDRAM
controller with complex QoS requirements,” in Proc. DAC, 2005.

[10] E. Ipek et al., “Self-optimizing memory controllers: A reinforcement
learning approach,” in Proc. ISCA, 2008.

[11] J. Dodd, “Adaptive page management,” US Patent 7,076,617.
[12] S. Bayliss and G. Constantinides, “Methodology for designing statically

scheduled application-specific SDRAM controllers using constrained
local search,” in Proc. FPT, 2009.

[13] B. Akesson et al., “Architectures and modeling of predictable memory
controllers for improved system integration,” in Proc. DATE, 2011.

[14] J. Reineke et al., “PRET DRAM Controller: Bank Privatization for
Predictability and Temporal Isolation,” in Proc. CODES+ISSS, 2011.

[15] M. Paolieri et al., “An Analyzable Memory Controller for Hard Real-
Time CMPs,” Embedded Systems Letters, IEEE, vol. 1, no. 4, 2009.

[16] DDR3 SDRAM Specification, JESD79-3E ed., JEDEC, 2010.
[17] S. Goossens et al., “Memory-Map Selection for Firm Real-Time Mem-

ory Controllers,” in Proc. DATE, 2012.
[18] Micron Technology Inc., “DDR3-1600-1Gb SDRAM Datasheet, 02/10

EN edition,” 2006.
[19] B. Akesson et al., “Automatic Generation of Efficient Predictable

Memory Patterns,” in Proc. RTCSA, 2011.
[20] Y. Hara et al., “Proposal and quantitative analysis of the CHStone

benchmark program suite for practical C-based high-level synthesis,”
Journal of Information Processing, vol. 17, 2009.

[21] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for
computer system modeling,” Computer, vol. 35, 2002.

[22] Z. Zhu and Z. Zhang, “A performance comparison of DRAM memory
system optimizations for SMT processors,” in Proc. HPCA, 2005.

[23] V. Pai et al., “Code transformations to improve memory parallelism,” in
Proc. ACM/IEEE international symposium on Microarchitecture, 1999.


