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ABSTRACT
DRAM vendors provide pessimistic current measures in mem-
ory datasheets to account for worst-case impact of process
variations and to improve their production yield, leading to
unrealistic power consumption estimates. In this paper, we
first demonstrate the possible effects of process variations on
DRAM performance and power consumption by performing
Monte-Carlo simulations on a detailed DRAM cross-section.
We then propose a methodology to empirically determine
the actual impact for any given DRAM memory by assess-
ing its performance characteristics during the DRAM cali-
bration phase at system boot-time, thereby enabling its opti-
mal use at run-time. We further employ our analysis on Mi-
cron’s 2Gb DDR3-1600-x16 memory and show considerable
over-estimation in the datasheet measures and the energy
estimates (up to 28%), by using realistic current measures
for a set of MediaBench applications.

1. INTRODUCTION
DRAM memories account for a significant share of any

system’s power and energy consumption, be it battery-driven
mobile devices [1] or high-performance computing servers [2].
With system power and energy budgets getting tighter, it
becomes absolutely essential to employ highly accurate power
models and energy estimates for every component in the sys-
tem, including processors and DRAMs. Unfortunately, with
the impact of process variations [3, 4] on power consump-
tion scaling significantly at technologies below 90nm, exist-
ing power models are becoming less and less accurate, while
worst-case power estimates are just too pessimistic to use.
Hence, it has become imperative to estimate the expected
impact of process variations on power consumption, for all
system components, for an accurate system power analysis.

In the case of processors, many solutions have been pro-
posed, both by vendors and academia that estimate [5, 6]
and even help mitigate [7,8], the expected performance and
power impact. However, when it comes to DRAMs, vendors
merely sort the memories into discrete speed-bins and fur-
nish one set of worst-case current measures per speed-bin
in datasheets, leading to over-estimation of DRAM power
consumption. With DRAM memories becoming increas-
ingly prominent in a system’s power/energy profile, employ-
ing such worst-case datasheet measures leads to unrealistic
over-dimensioning of the system. This calls for variation-
aware DRAM power-estimation methodologies that address
the pessimism in the datasheets and improve the accuracy
of the power models and energy estimates.
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Figure 1 shows the impact of process-variation observed
by a memory vendor in the production analysis of a lot of
11,000 DDR3 1Gb memories with 533MHz frequency and x8
width, manufactured at 70nm, in batch U6PN8XBS-13G3.

Figure 1: Distribution of Current Consumption

This data shows very large difference between the datasheet
current measures (DS) and the typical (μ) current values
(by a factor of 5σ) of up to 46% and 60% for the low-power
modes (power-down: IDD2P0 and self-refresh: IDD6) and
up to 7% for the activate-read-precharge (IDD1) current [9].
With DRAM memories now being manufactured at tech-
nologies below 50nm, these current variations are only ex-
pected to worsen, and so is the accuracy of the power models
employing the datasheet measures. Unfortunately, such cur-
rent distributions are not provided for all DRAMs, and only
worst-case measures are given in vendor datasheets [10].

Intel in [11,12] and others in [13,14] observed similar power
variation in DRAM memories and suggested different tech-
niques to work around this problem [14–17]. However, there
are no known realistic models or studies that estimate the ac-
tual impact of variation on power consumption of a DRAM
memory, impairing the usage of these proposed solutions.
Existing power models [18–22] choose to ignore the impact
of variations on power consumption due to the lack variation
data, which reflects poorly on their accuracy.

In this paper, we intend to provide an insight into the
possible effects of process variations on DRAM power con-
sumption to help improve the accuracy of DRAM power
models and to enable the optimal use of DRAMs at run-time.
The three important contributions of this work are: (1) We
demonstrate the impact of process variations by performing
Monte-Carlo simulations on a detailed DRAM cross-section
modeled in NGSPICE [24]. (2) We propose a methodology
to empirically determine this impact for any given DRAM
memory, by assessing its actual performance characteristics
during the DRAM calibration phase [9] at system boot-time.
(3) We extend the Monte-Carlo analysis to examine the im-
pact of DRAM architecture parameters, such as capacity,
width and frequency, on variations and current estimates.



Figure 2: DRAM Cross-Section Model

Using these mechanisms, we derive possible current dis-
tributions for DRAM memories of any configuration, and
also determine the actual performance measures and realis-
tic current measures for a given DRAM memory using the
characterization step at system boot-time. The derived per-
formance measures can be used to improve the performance
of the given DRAM memory and the realistic current mea-
sures can be employed in place of the worst-case datasheet
values to obtain variation-aware DRAM power and energy
estimates. We evaluate our proposed solution by deriving
the current distributions for Micron’s 2Gb DDR3-1600-x16
memories [10] based on the the Monte-Carlo analysis, and
employing them with a system-level power model [20,23] to
show significant differences between typical and worst-case
datasheet current measures and the corresponding energy
estimates (up to 28%) for four MediaBench applications [33].

2. RELATED WORK
When it comes to studying the impact of process varia-

tion on power consumption in DRAMs, Intel observed per-
formance degradation and power variation in DRAM memo-
ries in [11,12] and suggested performance throttling to main-
tain an average power budget assuming datasheet estimates
in [15], as a work-around to this problem. M. Gottscho et
al. in [13] also observed variations of around 15% in power
consumption across several 1GB DIMMs from the same ven-
dor and around 20% across different vendors, although they
did not establish the causes for the observed extent of vari-
ations. L. Bathen et al. in [16, 17] employed these obser-
vations by [13], and suggested memory mapping and parti-
tioning solutions to exploit this variability. S. Desai et al.
in [14] on the other hand, performed Monte-Carlo analysis
on a single DRAM cell and basic circuit components and
together with interconnect delay models estimated the vari-
ation impact for an entire DRAM memory. They further
proposed using adaptive body biasing to improve the yield
of DRAMs. Although the variation estimates may be ac-
ceptable for the basic circuit components, such an extrapo-
lation to an entire DRAM is at best a coarse approximation.
Unfortunately, there are no known realistic models or stud-
ies that provide acceptable estimates of the expected impact
of process-variations on DRAM power consumption and no
variation data is made available by DRAM vendors, under-
mining the applicability of the solutions suggested in [14–17].
In this work, we derive realistic estimates of the impact of
variations on DRAM currents to enable use of such solutions.

When it comes to DRAM power estimation, many power
models have been proposed. Among the circuit-level models,
CACTI 5 [22] was proposed for embedded DRAMs, Rambus
presented a circuit-level open-source DRAM power model
in [18] and Weis et al. employed a SPICE based model
in [19] for 3D-stacked DRAMs. At the system-level, Micron
presented a datasheet-based power model in [21] and Chan-
drasekar et al., proposed a transaction-based power model
in [20] that also uses datasheet measures. Unfortunately,
none of these power models consider the impact of process-

variations on power consumption in DRAMs, due to lack of
variation analysis and data. In this work, we provide possi-
ble distributions of the current measures for different DRAM
operations, which can be employed with the datasheet-based
power models, such as [20, 21, 23], to obtain more realistic
DRAM power and energy estimates.

3. DRAM MODELING AND ANALYSIS
In this section, we first describe the baseline DRAM cross-

section model to be used for our NGSPICE simulations.
In these simulations, we observe the timings for different
DRAM operations and verify the functional correctness of
our design. We then perform Monte-Carlo analysis [27] on
this cross-section to derive the variation-impact in DRAMs.

3.1 Baseline DRAM Cross-Section Model
The basic DRAM cell is modeled as a transistor-capacitor

(1T1C) pair and stores a single bit of data in the capacitor as
a charge. As shown in Figure 2, the transistor is controlled
by a local wordline (lwl) at its gate, which connects the ca-
pacitor to the local bitline (lbl) when turned on (activated).
Before reading the data from the memory cell, the bitlines
in the memory array are precharged (set to halfway voltage
level) using an equalization circuit. When connected, the
cell capacitors change the precharged (PRE) voltage levels
on the bitlines very slightly. Hence, a set of primary sense
amplifiers (PSA) (or row buffer) distributed across memory
sub-arrays are used to detect the minute changes and pull
the active bitline voltage all the way to logic level 0 or 1.
Once the bitline voltage is amplified, it also recharges the
capacitors as long as the transistors remain on. The primary
sense amplifiers hold the data till all column accesses to the
same row are completed or till a precharge is issued. In our
architecture, we used the open bitline array structure and
hence differential sense amplifiers (in PSA), which use a ref-
erence bitline from a neighboring inactive array segment to
detect the minute difference in active bitline voltage. When
the Read (RD) command is issued, the data/charge is read
out using column select lines (CSLs) from the row buffer
(PSA). The data is then switched via master datalines from
the PSA to the secondary sense amplifiers (SSA), which con-
nects to the I/O buffers. Once finished, the wordlines can
be switched off, safely restoring the charge in the memory
cells, before starting to precharge (PRE) the bitlines again.

The memory arrays are organized in a hierarchical struc-
ture of memory sub-arrays for efficient wiring. A memory
sub-array consists of 256k cells connecting up to 512 cells
per local bitline and per local wordline. 16 memory sub-
arrays connect to one master wordline forming 4Mb blocks.
16 master wordlines and 16 column select lines (CSLs) con-
nect the 256 memory sub-arrays to form 64Mb memory ar-
ray macros. The row and column decoders and the master
wordline drivers are placed per memory array. The N-Set
and P-Set control signal drivers used for activating the pri-
mary sense amplifiers are shared between a set of sub-arrays
in the memory array. The voltage regulators and charge
pumps are shared between the different banks.



3.2 DRAM Cross-Section SPICE Simulations
In our NGSPICE [24] modeling of the DRAM cross-section,

we employed BSIM [27] model cards built on Low Power Pre-
dictive Technology models (LP-PTM) [28], since there are
no openly available technology libraries specific to DRAMs.
As a result, the LP-PTM devices had to be adapted appro-
priately, to ensure functional and timing correctness of the
simulated DRAM cross-section.

We modeled the memory cell architecture (of 6F 2 area),
the equalization circuit, the wordline driver, and the sense
amplifier using the designs suggested in [18], [25] and [26].
The baseline DRAM configuration targets a 1Gb DDR3-
1066 (533MHz) x8 memory with core timings of 7-7-7 cc
(refer Section 4.1) at 45nm. We chose 45nm, since it is the
common technology node employed by vendors for DDR3
memories including Samsung, Micron and Hynix. To ver-
ify our DRAM cross-section, we present the timings and
voltages of the different signals [26] corresponding to basic
DRAM operations (ACT-RD-PRE) in Figure 3.
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Figure 3: Behavior of DRAM Cross-Section

As depicted in the figure, first the equalization circuit (eql)
forces both the true (active) bitline (lblt) and the comple-
mentary (reference) bitline (lblc) to the same reference volt-
age (0.55V). This is followed by the local wordline (lwl) going
high to begin the activation process that switches the rele-
vant transistors on and connects the cell capacitors to the
corresponding local bitlines. Simultaneously, the equaliza-
tion circuit (eql) de-activates to enable sensing of the change
in bitline voltage due to the charge transfer. As the word-
line high reaches the required voltage of 2.8V at around 5ns,
the pre-sensing phase begins to create a minimum voltage
difference (around 200mV) between the reference (lblc) and
active (lblt) bitlines at the PSA. This is followed by the ac-
tivation of the sensing circuit by N-Set and P-Set control
signals, which drives the active bitline (lblt) to logic level 1
(the charge stored in the cell corresponds to 1 here) and the
reference bitline (lblc) to 0 at around 15ns. Both the lblt
and pset signals are driven to the core voltage of 1.1V, while
lblc and nset signals are driven to 0V. This is followed by
the read operation depicted by the rising column select line
(csl) voltage at 18ns. Following this, the charge detected
at all the PSAs in a memory sub-array are transferred via
their respective local datalines to a master dataline, which
is reflected by the current drawn from the NMOS compo-
nents of the PSA (lblc) and the gradual drop in voltage level
of master dataline complement signal (depicted by mdqc).
Once the mdqc drops by around 200mV (in relation to the
core voltage), the data is sensed at the SSA at around 20ns.
Once the read operation finishes, (data received by SSA)
the mdqc (master dataline complement) is precharged back

to its reference voltage (1.1V) at around 24ns and the local
wordline is switched off at around 28ns. After a short delay
to close the transistor and avoid destroying the charge in the
cell, the sensing circuit in PSA is deactivated and the bitline
equalization re-starts at around 33ns. This precharges both
the local bitlines back to reference voltage levels, finishing
at 50ns, as expected for a DDR3-1066 memory [9].

Besides the basic ACT-RD-PRE operations depicted in
this figure, we also modeled the write and refresh operations
in a similar manner and observed accurate functionality and
timing [26], thus, verifying our modeling of the DRAM cross-
section. We employ this DRAM cross-section to perform
Monte-Carlo analysis to observe the impact of variation on
delay and power consumption in the next section.

3.3 Baseline Monte-Carlo Analysis
In this section, we present the results from Monte-Carlo

analysis on our verified 1Gb DDR3-1066 x8 DRAM cross-
section, described in Section 3.2. Towards this, we vary
global device parameters such as channel length, channel
mobility, and oxide thickness and the local device threshold
voltage (Vth) (primarily the variations in line edge roughness
(LER) [31]), besides the interconnect parameters including
wire width and wire thickness, within pre-defined variation
ranges. We obtained the variability ranges (scaling metric
(σ) in the corresponding Gaussian distributions) for these
parameters from the ITRS technology requirements on De-
sign for Manufacturability [29] and Modeling and Simula-
tion [30] and the variation models of transistors [31,32]. We
also introduce spatial-correlations in the variations among
neighboring transistors, due to expected similarity in the
parametric variations. Using these variability values, we per-
formed Monte-Carlo runs on 1000 circuit instances reflecting
the variations in all the device and interconnect parameters.
From our observations, the variation in the device Vth pa-
rameter had the biggest impact on the circuit delay and
current consumption [31], since it is also directly influenced
by the variations in the global device parameters. As ex-
pected, the active (dynamic) DRAM currents and frequency
increased linearly, while the leakage currents increased expo-
nentially against the variations in the Vth parameter [34,35].
Hence, we analyzed the variations in leakage currents on the
natural logarithmic scale [34] to obtain the σ values of their
distributions corresponding to those of the Vth parameter.

The variations in the local and global device parameters
at 45nm based on [29–32], as used in our simulations are
presented in Table 1. These measures correspond to the
variability introduced in the device parameters per σ change
in their Gaussian distributions. In the table, the σ% value
gives the relative variation to the nominal values (μ) ob-
tained from the PTM models [28], while the σ values corre-
spond to the absolute values of variation.

Table 1: Transistor Process Parameter Variations

Tech Mobility Vth (LER) Length Tox

nm σ (%) σ (V) σ (m) σ (%)

45 8.2 3.0e-9/ 2
√

(w×l) 45e-9×0.03 1.67

Amongst the different characteristic DRAM currents, we
identify the dynamic (active and background) currents as:
IDD0, IDD1, IDD2N , IDD3N , IDD4R, IDD4W , and IDD5, and
the static (leakage) currents as: IDD2P0 and IDD6 (when
the clock is disabled). The different DRAM currents are
described in detail in Section A1 and in [9, 10].

In Table 2, we show the impact of process-variation on the
different currents for a baseline 1Gb DDR3-1066 (533MHz)
x8 DRAM memory. In this table, we present the nominal
measures along with the 1σ, 2σ and 5σ estimates in the
different IDD currents. We also provide σ% value to get
relative variation for the different current measures.



Table 2: Variation Impact on Current Measures
μ σ% +1σ +2σ +5σ

Current mA mA mA mA
IDD0 98.4 2.37 100.7 103.1 110.6
IDD1 104.3 2.32 106.7 109.1 116.9
IDD2N 37.7 4.77 39.5 41.4 47.6
IDD3N 41.5 5.71 43.8 46.3 54.7
IDD4R 118.1 2.96 121.6 125.2 136.6
IDD4W 123.4 2.75 126.7 130.2 141.2
IDD5 146.1 2.15 149.6 153.1 164.2

IDD2P0 8.41 13.69 9.56 10.9 15.9
IDD6 8.04 14.02 9.17 10.5 15.5

As can be noticed from the table, the +5σ estimate is
significantly higher than the nominal (μ) values for the dif-
ferent IDD currents. In Sections A2 and A5, we present the
impact of variation on the timing and power consumption
corresponding to ±1σ variations in device and interconnect
parameters, as observed from the 1000 Monte-Carlo runs.

4. DRAM MEMORY CHARACTERIZATION
In this section, we relate a DRAM’s actual performance

and current measures to the impact of process variations.
Towards this, we first begin by reviewing the process of
speed-binning in DRAMs in Section 4.1. We then propose a
methodology to determine optimal functional measures for
the performance parameters and conservative estimates for
the current measures of a particular DRAM memory during
the calibration phase at system boot-time, in Section 4.2.

4.1 Variation and DRAM Speed-Binning
DRAM memories manufactured in a particular generation

are down-binned into predefined speed-bins based on their
minimum guaranteed frequency and memories within these
speed-bins are classified according to their core-timings [9].
Table 3 presents the speed-bins and the core-timings in clock
cycles (cc) used to classify Micron’s DDR3 memories [10].

Table 3: Micron Speed-Bins and Core-Timings

Speed Freq Fast Core (cc) Slow Core (cc)
Bin (MHz) nCL-nRCD-nRP nCL-nRCD-nRP

800 400 5-5-5(12.5ns) 6-6-6(15ns)
1066 533 7-7-7(13.125ns) 8-8-8(15ns)
1333 666 9-9-9(13.5ns) 10-10-10(15ns)
1600 800 10-10-10(12.5ns) 11-11-11(13.75ns)

In Table 3 in the DDR3-800 speed-bin, the memories are
guaranteed to work at the lower bound (FLB) of 400MHz.
All memories that fall short of the lower bound of the next
speed-bin (and upper bound FUB of the current speed-bin:
≤532MHz), are down-binned into the 400MHz speed-bin,
ignoring the fact that they can operate at higher frequencies.
Besides this frequency-sorted speed-binning, 3 core-timings
(in cc) are used to define a DRAM memory within a speed-
bin [9]: (1) nCL - RD to Data Latency, (2) nRCD - ACT to
RD/WR Latency and (3) nRP - PRE Latency (see Section
A3 for details). However, only two sets of core-timings (fast
and slow) are used to sub-categorize the memories within a
speed-bin. In the case of DDR3-800, the fast memories have
core-timings of 5-5-5 cc and slow memories have core-timings
of 6-6-6 cc. Hence, memories that may achieve core-timings
of 5-5-6 cc are conservatively categorized among the slow 6-
6-6 memories, further ignoring their individual core-timings.

When it comes to providing current measures for these
memories, only one set of worst-case measures per speed-
bin are provided in datasheets [10], thus ignoring the actual
performance characteristics of the DRAM memories com-
pletely. Determining the actual functional FMAX and core-
timings is important to derive the actual performance and
current measures of a particular DRAM memory and we
present a methodology to obtain the same in Section 4.2.

4.2 Conservative Memory Characterization
As discussed in Section 4.1, when reporting the worst-

case current measures in datasheets, DRAM vendors con-
sider only the memories operating near the upper frequency
bound with the fastest core timings of their speed-bins. How-
ever, since slower memories draw less current than the faster
ones, their individual FMAX and core-timings should be de-
termined and used to identify the actual current measures.

In this section, we propose a methodology to determine
the frequency and core-timings of a particular DRAM mem-
ory and to relate them to the corresponding current mea-
sures from the distributions derived in Table 2. Towards
this, we derive a performance metric, Functional Speed (FS),
defined as the product of the sum of the memory’s core-
timings (CL+RCD+RP) and the corresponding clock pe-
riod (1/FMAX), to represent both these performance param-
eters. (Lower the FS, faster the memory and higher the
performance.) The goal of this proposed methodology is
two-fold: (1) to derive the fastest overall DRAM functional
speed (Max FS or lowest common FS) based on core tim-
ings and FMAX, at which the entire DRAM can function,
to improve the DRAM’s performance and (2) to derive the
fastest individual bank functional speed (Min FS or lowest
individual bank FS) at which any individual DRAM bank
may function, to conservatively identify the actual worst-
case current measures, by relating this FS to the current
distributions obtained in Table 2. The relation between the
delays and currents is also shown in Section A5.

In Algorithm 1, we present this methodology to derive the
overall DRAM and individual bank functional speeds. We
propose to employ this algorithm once during the memory’s
calibration phase [9] at system boot-time. Currently, this
calibration phase in DRAMs is employed for timing synchro-
nization and skew corrections in DRAM signals, to enable
proper DRAM functionality. We propose to merely add a
performance assessment step to this phase, to obtain realis-
tic performance and current measures for use at run-time.

Algorithm 1 Frequency and Variation Estimation

Require: var check (FLB, FUB)
1: {Comment:

∑
CT = [nCL + nRCD + nRP ]}

2: # Define: CT Min[] = {5,5,5} and CT Max[] = {8,8,8}
3: # Define: F σ = (FUB - FLB)/12 {Here: F σ=11MHz}
4: # Define: Banks = 8
5: CT[i] = CT Max[i] {Initialized}
6: for i = 0 → 2 do
7: {Comment: Representing CL, RCD and RP}
8: for j = 0 → 2 do
9: {Comment: Representing CT range 8cc to 5cc}
10: CT[i] = CT[i] - j - 1
11: for k = 0 → Banks do
12: {Comment: Iterating over all 8 banks}
13: for f =FLB → FUB do
14: {Comment: Checking all frequency levels}
15: if CT check (k, f , CT*) == True then
16: FS Bank[i][j][k] =

∑
CT × 1/f

17: {Comment: Store corresponding f and CT*}
18: f = f + F σ
19: else
20: Break;
21: end if
22: end for{f}
23: {Comment: Stores least FS for bank k for set CT*}
24: end for{k}
25: end for{j}
26: end for{i}
27: Min FS = min (FS Bank[*][*][*])
28: {Comment: Return corresponding f and CT*}
29: Max FS = max (FS Bank[*][*][*])
30: {Comment: Return corresponding f and CT*}

In this algorithm, we begin by identifying the fastest and
slowest core-timings (in clock cycles) in a speed-bin (say
DDR3-800) at the upper frequency bound of this speed-bin
(532MHz). We then propose to start with the slowest set of



memories [8-8-8] (15ns at 532MHz) (in Step 5) and reduce
one core-timing parameter (say nCL) by 1cc (Step 10), while
maintaining the others at 8cc and increasing the memory
frequency in steps along the 13 frequency values in steps of
F σ (here 11MHz between 400MHz and 532MHz, given by
Step 13). With these new core-timing settings, we propose
to execute a core-timings check (CT check), which is based
on JEDEC’s IDD1 Measurement-Loop test [9] (described in
Section A3) over all the 8 banks in the memory (Steps 11 and
15). This CT check comprehensively checks the activation,
reading and precharging operations on a given bank in differ-
ent rows, which tests all the important DRAM timings [9].
If the test completes without any errors, the frequency is
increased by another step F σ (Step 18). If not, the last
explored working frequency gives the lowest FS value for
that bank for the selected set of core-timings (Step 16). We
store this lowest FS value and the corresponding FMAX and
core-timings for reference. Steps 13 to 22 are repeated for
all the banks and the lowest FS values are obtained for all
the banks with the selected set of core-timings. Now we re-
duce the considered nCL parameter further by 1cc and the
tests are repeated with the new set of core-timings and the
corresponding lowest FS values are noted, till the minimum
functional nCL value is reached. The same procedure is then
employed with the other core-timing parameters (nRCD and
nRP ), assuming the fastest nCL value at which the memory
continued to work. All the corresponding lowest FS values
for the different banks and set of core-timings are stored.
Finally, the lowest FS value obtained for any of the DRAM
banks (Min FS) is used to conservatively identify the actual
worst-case current measures of the memory and the maxi-
mum of the lowest FS values supported by all banks of the
memory (Max FS) and the corresponding core-timings and
Fmax are used to identify the new performance parameters.

Using the current distributions derived in Table 2, and
the distribution of the functional speeds observed in Algo-
rithm 1, in Figure 4, we overlap the two distributions to
obtain the complete performance-power-variation relation in
the ±6σ form. Here, the FS range for DDR3-800 is identified
between 28.2ns (fastest memories {∑CT=15}) at 532 MHz
and 45ns (slowest memories {∑CT=18}) at 400 MHz. The
datasheet current measures are identified at +5σ position at
29.6ns (fastest) and the datasheet performance is identified
at -6σ position at 45ns (slowest). An example of the new
performance parameters is highlighted at Max FS - 1σ po-
sition (fastest overall DRAM FS) at 41ns and an example
of realistic current measures is highlighted at Min FS + 1σ
position (fastest individual bank FS) at 34ns.

( ) p
f realistic current measures is highlighted at Min FS + 1
osition (fastest individual bank FS) at 34ns.

Figure 4: FS Vs. Current Consumption

From this analysis, we derive new conservative perfor-
mance parameters and realistic current measures for a DRAM,
for its optimal run-time usage and power management.

5. RESULTS AND ANALYSIS
In this section, we apply our variation study on differ-

ent DRAM system configurations. Towards this, we first
repeat the Monte-Carlo Analysis with modified system pa-
rameters, such as capacity, frequency and data-bus width in
Section 5.1. We then apply the results on a 2Gb DDR3-
1600 (800MHz) x16 memory from Micron in Section 5.2 and
present the μ and σ% estimates for current measures for this
memory. Finally, in Section 5.3, we employ these results on
a set of MediaBench applications [33], and show up to 28%
difference in energy estimates by using more realistic μ+2σ
current estimates instead of the datasheet (DS) measures.

5.1 System Parameters Impact on Variation
DRAM vendors sort the memories by three system param-

eters: frequency, capacity and width. In this experiment, we
repeat the Monte-Carlo simulations to analyze the impact
on μ and σ% for the different currents when these system pa-
rameters change. Our baseline configuration targeted 1Gb
DDR3-533MHz x8 memories. In this experiment, we alter
the system parameters individually to simulate different con-
figurations. Accordingly, we change: (1) the frequency to
800MHz and simulate a 1Gb-800MHz-x8 memory, (2) the
capacity to 2Gb and simulate a 2Gb-533MHz-x8 memory,
and (3) the data-width to x16 to simulate a 1Gb-533MHz-
x16 memory and observe the impact on μ and σ% in Table 4.

Table 4: System Parameters Vs. Current Measures

Baseline Freq Capacity Width
Config 1Gb-533-x8 1Gb-800-x8 2Gb-533-x8 1Gb-533-x16
IDD μ σ μ σ μ σ μ σ
Type mA % mA % mA % mA %
IDD0 98.4 2.4 112 2.6 99.3 2.5 98.4 2.37
IDD1 104 2.3 118 2.2 105 2.5 113 2.22
IDD2N 37.7 4.8 42.7 4.5 46.5 6.1 37.7 4.77
IDD3N 41.5 5.7 56.7 4.5 49.9 5.3 41.5 5.71
IDD4R 118 2.9 153 3.5 127 3.3 208 3.14
IDD4W 123 2.7 159 4.1 132 3.7 213 2.6
IDD5 146 2.1 161 2.4 184 2.2 146 2.15
IDD2P0 8.4 13.7 8.4 13.7 16.6 16.1 8.4 13.7
IDD6 8 14 8 14 13.7 19.9 8 14

As shown in the results, when increasing the frequency
from 533MHz to 800MHz, all currents except the leakage
currents scale up linearly due to their dependency on the
clock. When increasing the memory density, all currents
scale up linearly due to the doubling of the number of mem-
ory cells and primary sense amplifiers. However, when the
data-width is doubled, while retaining the same page-size
(1KB), only the currents reflecting data transfer, viz., IDD1,
IDD4R and IDD4W are affected, since only the number of
data bits accessed during the column accesses increases.

5.2 Reverse Engineering Datasheet Values
In Section 5.1, we presented the impact of three system pa-

rameters on DRAM currents. However, since more than one
parameter can be different between two DRAM memories,
to estimate this impact, one should combine the influence
of each of the concerned system parameters, from the ob-
servations in Table 4. We present the impact of all possible
combinations in the appendix Section A4, since these are
merely derived from the results in Table 4.

When applying this analysis on a 2Gb DDR3-800MHz x16
memory from Micron [10], all the three system parameters
change at once. Accordingly, we estimate the possible cur-
rent distributions in Table 5. As observed from the results
in Table 5, the nominal estimates for the active currents
are up to 30% lower (for IDD3N ) than the datasheet (DS)
measures, while those for the leakage currents are up to 86%
lower (for IDD6). These large differences in the current mea-
sures highlight the pessimism in the datasheets.



Table 5: Datasheet Values Vs. Nominal-Case
DS μ μ vs DS 2σ 2σ vs DS

Current mA (mA) % mA %
IDD0 110 98 -12.2 102.8 -6.96
IDD1 125 112.2 -11.4 117.3 -6.53
IDD2N 42 33.5 -25.4 36.9 -13.8
IDD3N 45 34.6 -30.1 38.7 -16.1
IDD4R 270 232.2 -16.2 247.3 -9.15
IDD4W 280 246.7 -13.5 260 -7.67
IDD5 215 193.6 -11.1 202.1 -6.34

IDD2P0 12 6.62 -81.1 8.77 -36.7
IDD6 12 6.45 -85.9 8.67 -38.4

5.3 Variation Impact on Application Energy
In these experiments, we employed four randomly selected

MediaBench applications [33] including: (1) Ray Tracing,
(2) EPIC Encoder, (3) JPEG Encoder, and (4) GSM De-
coder. These applications were independently executed on
the SimpleScalar simulator [36] with a 16KB L1 D-cache,
16KB L1 I-cache, 128KB L2 cache and 64-byte cache line
configuration. We filtered out the L2 cache misses meant
for the DRAM and forwarded them through a DRAM con-
troller [37], which generated the memory commands. We
also employed the power-down mode conservatively [38] dur-
ing the idle periods. We compare the energy estimates,
when employing the nominal (μ), datasheet (DS) and re-
alistic μ+2σ IDD measures from Table 5, since this covers
more than 85% of the memories in one generation. We used
the IDD measures with the DRAMPower tool [20, 23], to
estimate DRAM energy consumption, depicted in Figure 5.

Figure 5: Application Energy using μ and 2σ vs. DS

As can be noticed, the energy consumption when using
+2σ current estimates is up to 28% lower for the Ray trac-
ing application, compared to using the datasheet estimates.
This difference increases to 58%, if the nominal (μ) mea-
sures are employed. Similarly, considerable differences are
observed for other applications as well, highlighting the sig-
nificance of variation-aware power and energy estimation.

6. CONCLUSION
In this paper, we demonstrated the effects of process vari-

ations on DRAM performance and power consumption. To-
wards this, we defined a detailed circuit-level DRAM cross-
section in NGSPICE and performed Monte-Carlo analysis
to derive the impact on DRAM performance and current
measures. We also presented a methodology that assesses
the performance characteristics of a given DRAM at system
boot-time and conservatively identifies new performance pa-
rameters (in terms of functional speeds, core-timings and
Fmax) and realistic current measures, for use at run-time.
We further extended the Monte-Carlo analysis to review
the impact of system parameters on current consumption
and applied the same on a Micron DDR3 memory, show-
ing significant pessimism in the datasheet measures. In a
nutshell, the contributions of this work can be employed to
improve DRAM performance and obtain variation-aware re-
alistic and accurate power consumption estimates.
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Appendix

A1: DRAM Currents and Power Consumption
In this section, we describe the different DRAM currents,
when and how they are measured, and the state of the
banks and changes to the DRAM settings, when they are
measured. These currents are also described in detail in [9].

(1) IDD0 (One Bank Active-Precharge Current):
Measured across ACT and PRE commands to one bank.
Other banks are retained in the precharged state.

(2) IDD1 (One Bank Active-Read-Precharge Cur-
rent): Measured across ACT, RD and PRE commands to
one bank, while other banks are retained in the precharged
state. This measurement is performed twice, targeting two
different memory locations and toggling of all data bits.

(3) IDD2N (Precharge Standby Current): Measured
when all banks are closed (precharged state).

(4) IDD2P0 (Precharge Power-Down Current - Slow
Exit): Measured during power-down mode, with CKE (Clock
Enable) Low and the DLL locked (slow-exit), while the ex-
ternal clock is On and all banks are closed (precharged).

(5) IDD3N (Active Standby Current): Measured when
all banks are open (active state).

(6) IDD4R (Burst Read Current): Measured during
Read (RD) operation, assuming seamless read data burst
with all data bits toggling between bursts and all banks
open, with the RD commands cycling through all the banks.

(7) IDD4W (Burst Write Current): Measured during
Write (WR) operation, assuming seamless write data burst
with all data bits toggling between bursts and all banks
open, with the WR commands cycling through all the banks
and the ODT (On Die Termination) stable at HIGH.

(8) IDD5 (Refresh Current): Measured during Refresh
(REF) operation, with REF commands issued every nRFC.

(9) IDD6 (Self Refresh Current): Measured during
self-refresh mode, with CKE Low and the DLL off, while the
external clock is Off and all banks are closed (precharged).

A2: Monte Carlo on DRAM Cross-Section
In this section, we present the impact of process-variation
on the timing behavior of the DRAM cross-section presented
in Section 3.2 by performing using Monte-Carlo analysis on
the same, considering ±1σ variations in the device and in-
terconnect parameters. In Figure 6, we present the effects
on the local wordline activation (lwl), and the sensing of the
true (lblt) and complementary (lblc) bitlines by the PSA.

Figure 6: Variation Impact on Bitline and Wordline

As can be observed from the figure, there is a signifi-
cant impact on the timings of the operations associated with
the wordline and bitlines. For instance, the local word line
reaches its required potential (upon activation) of 2.8V at
around 6ns instead of 5ns, which was the case for the base-
line configuration without any variation (shown in Figure 3).
Similarly, the bitlines reach their potential (upon sensing by
the PSA) at around 17ns, compared to around 15ns in the
baseline configuration (Figure 3). The variations in the bit-
lines and wordline impact the activation latency given by
the core-timing parameter nRCD, thereby impacting both
the DRAM frequency (delay) and power consumption.

A3: Core-Timings Check
In this section, we present the Core-Timings Check function
in Algorithm 2, which is an adaptation of the IDD1 Mea-
surement Loop test proposed by JEDEC for DRAMs in [9].
We begin by first providing background information on the
three core-timings of a DRAM memory.

(1) The nCL parameter corresponds to the minimum CAS
latency, which is the delay between the Read command and
the availability of the first bit of output data.

(2) The nRCD parameter corresponds to ACT to RD/WR
latency, which defines when an RD/WR can be issued after
the ACT has been issued to assure completion of activation.

(3) The nRP parameter defined the precharge (PRE) la-
tency, which defines the time required by the precharge op-
eration to completely precharge the local bitlines.

Another important timing constraint to review is the nRAS

timing constraint, which gives the minimum delay between
ACT and PRE commands to the same bank, thus encom-
passing both the nRCD and nCL core-timings [9].

The original IDD1 test on which the CT check function
is based, is employed by memory vendors to measure the
worst-case estimates for IDD1 current. Interestingly, this
test performs Activation, Read and Precharge operations
that employ the three core-timing parameters viz., nCL,
nRCD and nRP , which form the core of DRAM performance
assessment methodology proposed in this work. Hence, we
selected this IDD1 test as a part of our methodology, by
adapting it to check for functional accuracy of the memory,
when the three core-timing parameters are modified by Algo-
rithm 1. We do not use this test for current measurements,
as this requires expensive current measurement hardware,
which is generally available only with DRAM vendors.

Algorithm 2 Core-Timings Check

Require: CT check (k, l, CT [])
1: {Initializing, Bank, Frequency, Data and Address Offsets}
2: Bank = k; Set Freq = l;
3: Set CL = CT[0]; Set RCD = CT[1]; Set RP = CT[2]
4: Data 0 = 0xAAAAAAAA; Addr 0 Offset = 0x0000
5: Data 1 = 0x55555555; Addr 1 Offset = 0x000F
6: {Comment: IDD1 Test Phase}
7: for i = 0 → 1 do
8: {Comment: Representing two sets of data and addresses}
9: Issue: ACT, Addr[i]
10: wait(RCD);
11: Issue: RD, Addr[i]
12: wait(RAS-RCD);
13: Recv: Recv Data[i]
14: if Recv Data[i] == Data[i] then
15: check = TRUE
16: Issue: PRE, Addr[i]
17: wait(RP);
18: else
19: check = FALSE
20: Issue: PRE, Addr[i]
21: wait(RP);
22: Break;
23: end if
24: end for{i}
25: return check



The inputs to Algorithm 2 include selected core-timings,
operating frequency and target bank provided by Step 16 in
Algorithm 1. We begin by initializing these settings (Steps
2 and 3) and selecting two unique data values with all bits
toggling and two address offsets within the target bank, as
required by the JEDEC IDD1 test loop (Steps 4 and 5).
Before the test phase commences (in Step 7), the two data
values are written at the corresponding addresses.

In the IDD1 test phase, two sets of ACT-RD-PRE opera-
tions are performed, with each targeting a different row in
the same memory bank and all the data-bits toggling across
the two accesses. Note that since the nRAS parameter cov-
ers the period between ACT and PRE, it encompasses both
the nRCD and nCL core-timings within itself. As a result,
the total latency for one set of ACT-RD-PRE operations
performed in this test is given by nRAS+nRP . The test be-
gins by issuing an ACT to the address of the first specified
transaction and waiting nRCD clock cycles for it to complete
(Steps 9 and 10). This is followed by issuing the READ com-
mand to the same address and waiting nRAS - nRCD clock
cycles (representing the nCL core-timing parameter and the
complete data transfer period) to read out the data from the
corresponding address (Steps 11 to 13). Once the data is re-
ceived, we adapted the IDD1 test to merely check this data
against the expected value in Step 14, to verify the correct
functioning of the memory for the ACT and RD operations.
If this test passes, a precharge is issued (Step 16) and after
waiting for nRP cycles for the completion of the precharge
operation (Step 17), the second transaction starts. If the
test fails, the test issues a precharge and waits for its com-
pletion (Steps 20 and 21) returns a FALSE to the CT check
call in Algorithm 1. If both set of ACT-RD-PRE tests pass,
a TRUE is returned instead.

To enable this performance assessment, the core-timings
and frequency are set using the Mode register settings [9]
and frequency scaling is performed using existing support in
standard DRAM memory controllers.

A4:Combination of System Parameters
Using the analysis presented in Table 4 in Section 5.1, it is
now possible to estimate the impact of the three system pa-
rameters viz., capacity (C), frequency (F) and width (W),
on DRAM current consumption. However, when a combina-
tion of system parameters differ between two DRAM memo-
ries, the influence all the concerned system parameters must
be taken into account. This can be derived directly from
the results in Table 4 by adding the corresponding impact
(μ and σ%) for one parameter at a time, considering the
most influential parameter first (determined by % change
in μ). In this section, we present the corresponding impact
of the combinations in Table 6, by extrapolating the results
presented in Section 5.1, using the same system parameter
values. Similar extrapolation was performed to derive the
current distributions in Section 6 for the Micron memory.
The baseline values for μ and σ% are presented in Table 2.

Table 6: Multi-Parameter Impact on Currents

F&C F&W C&W F&C&W
Config 2Gb-800-x81Gb-800-x16 2Gb-533-x16 2Gb-800-x16
IDD μ σ μ σ μ σ μ σ
Type mA % mA % mA % mA %
IDD0 113 2.5 112 2.4 99.3 2.4 113 2.4
IDD1 119 2.4 127 2.3 115 2.3 128 2.3
IDD2N 48.6 6.3 42.7 5.0 43.7 5.1 48.6 5.1
IDD3N 52.4 5.5 56.7 5.9 47.2 6.0 52.4 6.0
IDD4R 159 3.4 244 3.2 214 3.2 250 3.2
IDD4W 163 3.8 250 2.7 217 2.7 253 2.7
IDD5 194 2.3 161 2.2 179 2.2 194 2.2
IDD2P0 14.1 18.3 8.4 15.5 14.1 15.9 14.1 16.2
IDD6 11.2 22.6 8.0 15.9 11.2 16.8 11.2 17.2

A5: Impact on Power and Delay
In this section, we present the impact of ±1σ variations in
device and interconnect parameters on basic memory opera-
tions including activation, read, precharge and power-down.

The impact of variation on IDD1 active power and the
corresponding operation latency (tRCD+tData) is depicted
in Figure 7. This represents activation, read and precharge
operations in a particular memory row, with tRCD being the
activation period and tData being the latency to read the
data out. Similarly, the impact on leakage power is plotted
against the tRCD delay in Figure 8.
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In Figure 9, we present a Q-Q (quantile) plot compar-
ing the distributions observed in active and leakage currents
(power) and the delay measures (tRCD, tData) correspond-
ing to ±1σ variations. The linearity in the four measures
shows a Gaussian distribution in the variation, as expected.
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Figure 9: Impact on Currents and Timing

These results show the impact of device and interconnect
variations on the delay and power consumption of DRAM
memories, highlighting the significance of this work.


