
A Reconfigurable Real-Time SDRAM Controller for
Mixed Time-Criticality Systems

Sven Goossens, Jasper Kuijsten, Benny Akesson, Kees Goossens
Eindhoven University of Technology

{s.l.m.goossens,k.b.akesson,k.g.w.goossens}@tue.nl

ABSTRACT

Verifying real-time requirements of applications is increas-
ingly complex on modern Systems-on-Chips (SoCs). More
applications are integrated into one system due to power,
area and cost constraints. Resource sharing makes their
timing behavior interdependent, and as a result the verifica-
tion complexity increases exponentially with the number of
applications. Predictable and composable virtual platforms
solve this problem by enabling verification in isolation, but
designing SoC resources suitable to host such platforms is
challenging.

This paper focuses on a reconfigurable SDRAM controller
for predictable and composable virtual platforms. The main
contributions are: 1) A run-time reconfigurable SDRAM
controller architecture, which allows trade-offs between guar-
anteed bandwidth, response time and power. 2) A method-
ology for offering composable service to memory clients, by
means of composable memory patterns. 3) A reconfigurable
Time-Division Multiplexing (TDM) arbiter and an associ-
ated reconfiguration protocol. The TDM slot allocations
can be changed at run time, while the predictable and com-
posable performance guarantees offered to active memory
clients are unaffected by the reconfiguration. The SDRAM
controller has been implemented as a TLM-level SystemC
model, and in synthesizable VHDL for use on an FPGA.

1. INTRODUCTION
Modern Systems-on-Chips (SoCs) are growing in complex-

ity. The number of applications mapped to a single system
is increasing, and they have to share resources due to power,
area and cost constraints [10]. Some applications may have
real-time constraints, while others may not, creating sys-
tems of mixed time-criticality. Applications can run simul-
taneously in a large number of different combinations or use-
cases, and can dynamically be started or stopped. The sys-
tem has to be verified in each of these use-cases to guarantee
that application requirements are always satisfied. The ver-
ification complexity grows exponentially with the number of
applications if they can be combined arbitrarily.

When the active use-case changes, hardware components
may have to be reconfigured to adapt to the new set of appli-
cations and requirements. These transitions between differ-
ent use-cases add to the analysis complexity, since running
applications must show correct behavior even during recon-
figuration. Combining applications of mixed time-criticality
and different models of computation makes finding a com-

mon analysis model very difficult. Even if such a model ex-
ists, a single change in an application requires all use-cases
in which the application is active to be re-verified in general.

A solution for the verification problem is to give each ap-
plication its own virtual platform [6, 12]. Literature distin-
guishes two types of virtual platforms. The first is a pre-
dictable virtual platform that guarantees a certain budget
to an application on each resource that it uses, such that
useful bounds on the worst-case response time (WCRT) can
be derived. This limits its applicability to real-time appli-
cations that are formally analyzable.

The second type of virtual platform provides complete
temporal isolation for an application, making its cycle-by-
cycle execution independent of other applications. Such
platforms are called composable and allow independent ver-
ification by execution in isolation, because the application’s
behavior will not change once it is integrated. This prop-
erty is useful in mixed real-time systems, where execution
of test vectors can be the only available verification method
for some applications. Once an application has been verified
on its own on a composable virtual platform, it is also guar-
anteed to work when it shares resources with other appli-
cations, as long as the virtual platform remains unchanged.
Virtual platforms are mapped on predictable and compos-
able resources, and the challenge lies in the design of such
resources.

This paper focuses on creating a reconfigurable predictable
and composable SDRAM controller. Existing solutions are
static, configured once for a single use-case without consid-
ering use-case transitions. We improve on the state-of-the-
art with the following contributions: 1) An SDRAM con-
troller architecture with a run-time reconfigurable command
scheduler. This configuration is a trade-off between worst-
case bandwidth, WCRT or power consumption, as shown
in [7]. Our reconfiguration infrastructure enables changing
this trade-off per use-case at run time. 2) A methodology
for offering predictable and composable service to memory
clients using this memory controller. We introduce com-
posable memory patterns as a way to eliminate interference
between memory requests. 3) A reconfigurable TDM arbiter
and reconfiguration protocol that allows run-time realloca-
tion of the TDM slots in a predictable and composable way.
Implementations of the memory controller and TDM arbiter
in SystemC and on an FPGA are used to experimentally
verify that it gives predictable and composable service to all
clients even during use-case transitions. We show that the
proposed controller is a suitable building block for virtual
platforms.

The rest of this paper is organized as follows: In Section 2,



this paper is positioned with respect to related work. Sec-
tion 3 provides background information on SDRAMs and re-
lated concepts. The contributions start in Section 4, where
the architecture of the controller is presented. Section 5
shows how the controller is used to create a predictable and
composable SDRAM resource, followed by a discussion of
the reconfigurable arbiter and reconfiguration protocol in
Section 6. Finally, experiments are shown in Section 7, and
we end with conclusions in Section 8.

2. RELATED WORK
Several real-time memory controllers have been proposed

in related work. In [3], a completely static memory com-
mand schedule is derived at design time. The controllers
from [2, 15, 16] are more flexible and all provide a degree
of virtualization. The PRET DRAM controller [16] parti-
tions the SDRAM into multiple resources. Access to the
individual resources is interleaved using TDM, which makes
them timing independent. The number of partitions that
can be created is limited by number of banks and ranks on
the SDRAM module, and a second level of arbitration is re-
quired if there are more clients than partitions. The Analyz-
able memory controller [15] dynamically schedules memory
commands according to a set of rules from which an upper
bound on the execution time of a request is determined. It
does not aim to provide composable virtualization. Instead,
when an application is verified, the controller is temporar-
ily set to a mode where it emulates worst-case interference.
Such a verification is only valid under the assumption of per-
formance monotonicity, where faster service always implies
increased performance. This only holds for limited models
of computation, and is not necessarily true for complex ar-
chitectures and adaptive applications. In [2], a controller is
shown that dynamically schedules precomputed sequences
of SDRAM commands according to a fixed set of schedul-
ing rules. Through a design-time analysis, a latency-rate
bound [18] on the performance provided to each applica-
tion is determined, creating predictable virtual resources. A
hardware delay-block can use this worst-case bound to delay
the response for each request until its WCRT , turning this
predictable SDRAM controller into a composable resource.

All mentioned controllers calculate their configuration and
allocation settings per use-case, and transition behavior be-
tween use-cases is not considered.

The PARDIS programmable memory controller [4] is re-
configurable in several respects. Two small processors with
custom instruction set architectures take the role of memory
controller, their firmware determining the command schedul-
ing policy, address mapping, refresh scheduling and power
management. However, no bounds on performance are given,
so applying it in a real-time system is not straightforward.
This holds for most non-real-time memory controllers.

An OS-based bandwidth reservation system suitable for
mixed real-time Commercial off-the-shelf systems is shown
in [23], but it does not offer composable service.

Two strategies for dealing with reconfiguration of resources
with real-time service guarantees can be distinguished. The
first strategy requires assumptions on the frequency of re-
configuration events to analytically bound their interference
[5, 14]. The second strategy constrains the reconfiguration
process such that the guaranteed performance during recon-
figuration is not worse than during regular operation [19].
In [14], task-level WCRT analysis for multi-mode applica-
tions that share resources in multi-core systems is discussed.

Mode changes are defined as changes in the set of active
tasks or applications, which we refer to as use-cases switches
in this paper. The resource arbitration mechanism that is
used involves software-based critical sections combined with
priorities. Interference due to reconfiguration is bounded by
limiting the number of active mode changes to one. Contrary
to our approach, intimate knowledge of the task-scheduling
policy and critical sections within a task is required to ensure
safe reconfiguration. [5] presents a reconfiguration method
for soft real-time applications. The hardware offers no ser-
vice during reconfiguration, but the reconfiguration time is
bounded at design time. This approach is not composable
since reconfiguration influences all running applications.

The work presented in [19] describes reconfiguration al-
gorithms for TDM-based servers while guaranteeing schedu-
lability of the client applications. The algorithms assume
server time can be continuously allocated, and by carefully
choosing the location of the unallocated server time and the
length of transition periods, predictable performance bounds
are given. The algorithms are not applicable to composable
resources, since scheduling times may vary as a result of
reconfiguration. The reconfigurable TDM-based network-
on-chip proposed in [8] provides composable service to se-
lected clients during reconfiguration, but other clients can
experience reduced performance. Our work provides an ad-
ditional predictable service level with bounded worst-case
performance even during reconfiguration.

In contrast to related work, this paper present a reconfig-
urable SDRAM controller suitable for mixed real-time sys-
tems. Both predictable and composable service can be of-
fered, allowing the corresponding types of virtual platforms
to use the SDRAM resource. Access to the resource is reg-
ulated by a TDM arbiter, which can be reconfigured while
the service level for running applications remains constant.
The resource is modeled as a latency-rate server, and we
formally prove that behavior during reconfiguration is not
worse than during regular operation.

3. BACKGROUND
This section provides background information on SDRAM

in general, an approach that turns it into a predictable re-
source, latency-rate servers, and our definition of use-case
requirements.

3.1 SDRAM
SDRAM is a type of memory that is widely used as the

first level of off-chip storage for SoCs . An SDRAM device is
hierarchically split into a number of banks (typically four or
eight). Banks share a common command, data and address
bus, but can further operate independently. An SDRAM re-
quest starts with an activate command, which opens a row
from the memory such that it can be read from or writ-
ten to. Each read or write command results in a burst of
data from a number of columns in the open row. Rows
are closed with an explicit precharge command or by at-
taching an auto-precharge flag to a read or write command.
Only one row in each bank can be open at any time. An
SDRAM is volatile, which means data has to be refreshed
regularly using a refresh command at an interval of tREFI
cycles, typically every 7.8 µs. A large set of standardized
timing constraints exists that dictate the minimum distance
between the different commands, based on the state of the
SDRAM [9]. It is the task of the memory controller to make
sure these constraints are all satisfied.



3.2 Predictable SDRAM resource
To create a predictable SDRAM resource, useful bounds

on the execution time of memory requests have to be given.
For this we choose to use the approach from [2], where the
controller translates each request into a design-time con-
structed series of SDRAM commands with a known execu-
tion time, called a pattern. Six different basic patterns exist:
read, write, read-to-write switch, write-to-read switch, re-
fresh and idle patterns. The read and write patterns are ac-
cess patterns that transport data from and to the SDRAM.
They are constructed such that they can be repeated after
themselves without violating SDRAM timing constraints. A
close-page policy is used, meaning all banks are precharged
at the end of a pattern. Switching patterns consist of only
NOPs. They are inserted between read and write patterns to
resolve timing constraints that span across them. A refresh
pattern consists of a single refresh command preceded and
succeeded by enough NOPs such that it can be scheduled
after an access pattern without violating timing constraints.
Based on the pattern lengths and their scheduling rules, the
worst-case execution time (WCET) of a request can be de-
termined. One of the contributions of this paper is to extend
this approach such that the SDRAM resource also becomes
composable, without using hardware delay-blocks to elimi-
nate interference [2, 15].

A pattern set has a worst-case efficiency [1], which is the
fraction of the theoretical peak bandwidth that it guarantees
in the worst case. The gross bandwidth is the product of
the efficiency and the peak bandwidth. It describes the total
bandwidth that is distributable amongst the memory clients.

A memory request has a type (read or write), an address
and a size. The smallest memory request size in most sys-
tems is larger than the size of one read or write burst. This
property is used to create more efficient patterns that exploit
bank-parallelism by interleaving read and write commands
over multiple banks. The number of banks a request is in-
terleaved across is denoted by BI. Orthogonally, executing
multiple read or write bursts to the same bank within a pat-
tern can also increase the efficiency. The burst count (BC)
parameter denotes how many bursts are performed to each
bank per access pattern. Each BI and BC combination leads
to a different pattern set with its own real-time properties
and power consumption [7]. The product of BI and BC se-
lects the total number of bursts in a pattern and thus the
access granularity (AG) of the controller, which is the min-
imum number of bytes that can be efficiently read from or
written to the memory.

3.3 Latency-rate servers
The SDRAM resource is shared using a predictable ar-

biter. To analyze the arbiter’s behavior, we use the latency-
rate (LR) server abstraction [18]. A LR server guarantees a
client a minimum allocated rate (bandwidth), ρ, after a max-
imum service latency (interference) Θ, as shown in Fig. 1.
This linear service guarantee bounds the amount of data
that can be transferred during any interval, independently
of the behavior of other clients. The value of Θ and ρ depend
on the arbiter and its configuration.

The LR guarantee is conditional only applies if the client
produces enough requests to keep the server busy. This is
captured by the concept of busy periods, which are periods
where a client requests at least as much service as it has
been allocated on average (ρ). In Fig. 1, the client is busy
as long as the requested service curve stays above the busy

Figure 1: A LR server and its associated concepts.

line. Note that the service bound is maximal if the client
continuously remains busy.

A TDM arbiter divides the resource time into slots that
are distributed to multiple clients. Each slot represents a
time slice in which one client can use the resource. A slot is
non-preemptive, but its length is bounded by the WCET of
a request. We assume allocation of slots to clients is done
at design time, yielding a slot table that maps each slot to
a certain client. The length of the slot table, or frame, (f)
defines the period of the arbiter. Each slot corresponds to a
fraction 1/f of the gross bandwidth.
Intuitively, the service latency expressed in slots (Θslots)

is the worst-case number of slots a client has to wait until
it reaches one of its slots. If a TDM arbiter uses continuous
(greedy) allocation, this is equal to f times the rate not
allocated to this client (1−ρ), plus one, as shown in Eq. (1).
The plus one accounts for the misalignment of the arrival of
a request with the arbitration moments. In the worst case,
a decision has been made one cycle before the arrival, and
the client is too late to claim its slot.

Θslots = f · (1− ρ) + 1 (1)

The service latency only captures the maximum interference
by other clients, but does not consider interference from re-
fresh operations. To convert this number to an actual bound
on the WCRT, the approach from [1] is used. In brief, it con-
siders an interfering refresh at the start of the busy period,
plus an interfering refresh for each refresh interval that fits
within the client’s service latency. The WCET of a request,
which defines the worst-case slot length, is used to convert
this latency from slots to actual time.

Figure 2: Three example TDM table iterations.

3.4 Use-case requirements
A use-case is defined as a set of concurrently running ap-

plications that share the memory resource. If arbitrary com-
binations of applications are allowed, then the number of
use-cases is exponential in the number of applications. In
the worst case, they are all active at the same time, and
the system has to be dimensioned accordingly. However, in
many practical systems this is not the case, as shown earlier
by [8]. For example, applications that have similar function-
ality may never have to run simultaneously, and can use the
same hardware resources. Furthermore, all use-cases that



are sub-sets of a larger use-case do not need separate con-
figurations if they can partially re-use the configuration of
their super-set use-cases. The largest super-sets of applica-
tions that must be able to run simultaneously are called a
maximum cliques. This is the granularity at which config-
urations are generated in this paper. Applications can be
distributed and map to one or more memory clients. The
requirements of those clients have to be satisfied by finding
a valid controller configuration in each maximum clique.

In this paper, we assume each application has known band-
width and response times requirements. Finding these re-
quirements for an application is non-trivial. For applications
having a formal model, they can be derived from application-
level throughput or response time requirements [13,20], while
others might require simulation-based techniques. However,
a detailed discussion is out of the scope of this paper.

4. CONTROLLER ARCHITECTURE
The SDRAM controller presented in this paper is based

on the template proposed by [2]. All the components in the
template are briefly discussed, and changes made as part of
the contributions in this paper are mentioned explicitly.

A TLM-level SystemC version of the controller is imple-
mented to allow rapid prototyping with high debuggability.
Based on the SystemC prototype, a VHDL version targeting
a Virtex 6 ML605 development board [22] from Xilinx was
created.

Figure 3: Example memory controller instance.

Fig. 3 shows the three main blocks that constitute the
memory controller architecture. Working backwards from
the SDRAM itself they are the PHY, SDRAM back-end and
the front-end. Although the figure only shows two memory
clients, up to 16 ports can be instantiated automatically by
the associated design flow if required.

The PHY handles the physical I/O connections to the
SDRAM module. This block was not required at the level
of abstraction used in the template, and is also omitted in
our SystemC version. The VHDL version’s PHY is based on
a reference design generated by the Xilinx MIG 3.6 tool.

The SDRAM back-end interfaces with the PHY and is re-
sponsible for generating commands to access the memory ac-
cording to the incoming requests, while making sure that the
timing constraints between the commands are satisfied. It
translates logical addresses to a physical bank, row and col-
umn in the memory, and it also refreshes the memory every
tREFI cycles [9]. In contrast to [2], which uses a hard-coded
finite-state machine to implement the command scheduler,
this paper proposes a flexible reconfigurable back-end, which
is discussed in detail in Section 6.2.

The primary function of the resource front-end is enabling
sharing of the SDRAM. The atomizer splits incoming mem-

ory requests into fixed size chunks called atoms. This allows
clients to be preempted at the granularity of atoms, inde-
pendently of their actual request behavior. The size of an
atom corresponds to the granularity at which the back-end
handles requests, which typically ranges from 16 bytes up
to 1 KB, depending on its configuration. The configuration
port on the atomizer allows the access granularity to be re-
configured at run time.

The width converter accepts messages using small data-
words from the memory clients (generally 32-bits wide), and
converts them to the width the back-end is working at. In
essence, this is a common serial-to-parallel converter. This
block is new with respect to the template, enabling connect-
ing to memories with wider interfaces than used in the SoC.

The request/response buffer holds incoming requests until
either all data for an atom is buffered (for write requests), or
enough space is available for the response (for read requests).
This is required because data has to be provided to and
accepted from the back-end without blocking according to
the JEDEC specification [9]. A request is only eligible for
scheduling once this condition is met.

The novel reconfigurable TDM arbiter schedules one of the
eligible requests from the request buffers to be processed by
the back-end, and optionally inserts an idle slot if no request
is available. The memory is shared at a fine granularity,
such that each slot corresponds to one read or write atom.
Section 6.1 discusses this in more detail.

The configuration bus allows various memory-mapped reg-
isters to be programmed by a configuration host. In the
SystemC version, this role is taken by a dedicated resource
manager module, while the VHDL version uses a MicroBlaze
processor. The derivation of configurations and the recon-
figuration procedure is shown later in Section 6.

5. COMPOSABLE AND PREDICTABLE

SDRAM RESOURCE
This section discusses how the predictable pattern-based

memory controller is extended to create a composable SDRAM
resource, in which requests from separate memory clients are
temporally isolated. The key idea is to share the SDRAM
through TDM arbitration, and to make the start of a client’s
time slots independent from other clients. To ensure that a
slot always starts at the same time, all slot lengths have to
be equal regardless of the request type or the presence or ab-
sence of an eligible request. Also, the state of the memory
must return to neutral after each request, such that follow-
ing requests are not constrained by previous requests from
other clients. This implies that a close-page policy must be
used. The influence of the request type must also be elimi-
nated, meaning that the timing constraints that allow both
read and write requests must be satisfied at the end of the
slot. To meet these requirements, the predictable memory
patterns are converted to composable patterns. Section 5.1
discusses that process, after which performance bounds for
these patterns are derived in Section 5.2.

5.1 Composable memory pattern generation
Composable memory patterns are constructed at design

time in a similar manner as predictable patterns. The goal
is to create composable read and write patterns that can be
scheduled arbitrarily without violating timing constraints,
and are equal in length. Their length determines the length
of one TDM slot.



Figure 4: Composable pattern generation example.

The composable patterns are generated in three steps.
The first step generates a predictable pattern set using the
algorithms described in [1]. The last two steps make the
pattern set composable. Fig. 4 shows the relation between a
predictable pattern set and its composable counterpart. We
proceed by discussing each of these steps in more detail:

1. Read and write patterns are generated based on a known
command scheduling algorithm like ASAP scheduling or
bank scheduling [1]. NOPs are added at the end of these
patterns, such that they can be repeated after themselves
without violating SDRAM timing constraints. This de-
termines the minimum length of the predictable access
patterns. Based on this, the lengths of the switching pat-
terns is determined.

2. Composable pattern sets cannot contain switching pat-
terns, since they introduce timing dependencies on the
previous request type. Instead of having separate switch-
ing patterns, the required NOPs are distributed amongst
the read and write patterns. NOPs resolving read-to-
write (RtW) constraints can be added at the end of the
read pattern or the beginning of the write pattern, while
NOPs resolving write-to-read (WtR) constraints can be
added at the end of the write pattern or the beginning
of the read pattern. Equalizing the lengths of the ac-
cess patterns reduces the switching overhead in terms of
bandwidth, so the NOPs are distributed to balance the
patterns lengths as much as possible.

3. Finally, any length difference that still remains between
the read and write pattern has to be compensated by
adding NOPs at the end of the shortest pattern.

The idle pattern is made equal to the composable read or
write pattern length, which asserts that all slots always take
the same number of cycles. Refresh patterns are inserted
at the end of a regular slot after every tREFI cycles. The
actual insertion time not influenced by the running applica-
tions since all slots are equally long, meaning refresh is also
composable. The impact of this conversion on the worst-case
performance is shown in the next section.

5.2 Predictable performance bounds
The worst-case analysis for predictable patterns is based

on the notion of worst-case efficiency. To evaluate the per-
formance of composable patterns, the efficiency loss with
respect to the corresponding predictable pattern set has to
be determined. The lengths of the predictable read, write,
write-to-read and read-to-write patterns are denoted by tpr ,
tpw, t

p
wtr and tprtw, while the composable access pattern lengths

are denoted by tcr and tcw, respectively. We need to distin-
guish three different cases, depending on the length of the
predictable patterns:

1. If the read pattern is longer than the write pattern and
both switching patterns combined, then the worst-case

Table 1: (epc)
(

composable efficiency

predictable efficiency

)

for a range of

SDRAM x16 devices
BI 1 1 1 1 2 4 1 2 4 8
BC 1 2 2 4 2 1 8 4 2 1
AG [bytes] 16 32 32 64 64 64 128 128 128 128

DDR2-400 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DDR2-800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.98 0.98
LPDDR-266 1.0 1.0 1.0 1.0 0.97 0.97 1.0 1.0 0.98 n/a
LPDDR-400 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 n/a
DDR3-800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.98 0.98
DDR3-1600 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LPDDR2-800 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LPDDR2-1066 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99

request sequence consists of only read requests, and the
pattern set is read dominant. The composable access
patterns are as long as the predictable read pattern, tcr =
tcw = tpr .

2. If the write pattern is longer than the read pattern plus
both switching patterns, then the worst-case request se-
quence consists of only write requests, and the pattern
set is write dominant. The composable access patterns
are as long as the predictable write pattern, tcr = tcw = tpw.

3. Pattern sets that do not fit in class 1 or 2 show worst-
case behavior if read and write requests are alternated.
These pattern sets are mix dominant. The pattern set in
Fig. 4 is an example of this class. In this case tcr = tcw =
⌈(tpr + tpw + tpwtr + tprtw)/2⌉.

In the worst case, only the dominant pattern of a read or
write dominant pattern set is used. Executing this pattern
is the most time consuming way to transport one unit of
data, so it determines the worst-case efficiency. Composable
patterns based on read or write dominant predictable pat-
terns have composable read and write patterns lengths that
are equal to the dominant pattern length. This means the
worst-case efficiency is unaffected by the conversion.

If the composable pattern set is based on a mix dominant
pattern set, then the worst-case efficiency is only affected
if the two switching patterns are smaller than the length
difference between the read and write pattern, and NOPs
had to be added in Step 3 to balance the patterns. At most
one NOP is required for this by definition, or else the pattern
set would not be mix dominant. If tpr + tpw + tpwtr + tprtw is
odd, then the conversion efficiency (epc) for mix dominant
pattern sets can be expressed as:

epc =
tpr + tpw + tpwtr + tprtw

1 + tpr + tpw + tpwtr + tprtw
(2)

In all other cases epc = 1, and the composable pattern set
efficiency is equal to the predictable pattern set efficiency.

The conversion efficiencies for a representative set of SDRAM
devices from different generations and of various clock fre-
quencies are shown in Table 1. All shown memories use
a 16-bit interface width, and access granularities (AG) up
to 128 bytes are considered. There are no BI 8 results for
LPDDR memories since they only have 4 banks. The max-
imum efficiency loss is observed for LPDDR-266 (2.6%).
Only pattern sets that require switching patterns are sus-
ceptible to efficiency loss. Switching patterns are usually re-
quired for patterns that implement large access granularity
and have a higher inherent efficiency. The slower the mem-
ory, the smaller the access granularity has to be to reach
high efficiency, which explains why the slower memories are
relatively more likely to suffer, but the timing constraints
on which the patterns are based determine the actual losses.



The average loss due to the conversion is 0.22%, so the typ-
ical efficiency loss is negligible.

6. RECONFIGURATION
When an application is started or stopped, the active use-

case changes. This leads to a change in the system state
that is coordinated by a resource manager, which could be
either part of an operating system running on a processor
in the SoC, or a dedicated hardware module, depending on
the required flexibility. A use-case switch leads to reconfig-
uration if the required configuration in the source use-case
and target use-case differ. This section considers the recon-
figuration process of the SDRAM controller.

All the clients that are not active in the target use-case
are handled first during a use-case switch. Because they are
switched off, no service guarantees have to be given to them
during and after reconfiguration. The resource manager first
stops the clients at the processor side. It then triggers a fi-
nal dummy-read request and waits for the response to assert
that no requests for the client are left in the system. Since
requests are never reordered in this implementation, quies-
cence is thus asserted [11] before reconfiguration is initiated.

Next, we handle clients that are active in both the source
and the target use-case. They can be categorized further
into clients that require predictable service or composable
service. The challenge in reconfiguration is maintaining the
predictable and composable service level of applications dur-
ing and after reconfiguration. The following two sections
discuss the reconfiguration procedure and the required hard-
ware to meet this challenge.

6.1 Reconfigurable TDM arbiter
This section discusses the TDM based arbiter used to

share the SDRAM resource across multiple memory clients.
Section 6.1.1 describes how arbiter configurations are gen-
erated based on the memory clients’ requirements. Sec-
tion 6.1.2 then briefly discusses the arbiter architecture, fol-
lowed by an explanation of the reconfiguration protocol in
Section 6.1.3.

6.1.1 Configuration generation

We assume that a memory client has a certain bandwidth
and WCRT requirement that have to be satisfied by the
bandwidth and WCRT guarantees of the controller. What
these guarantees are depends on the chosen pattern set and
the arbiter configuration. The more slots that are allocated
to an application, the higher its guaranteed bandwidth and
the lower its WCRT is. If for example, a TDM table size
of 5 is used (Fig. 2), then each slot corresponds to 1/5’th of
the gross bandwidth.

Several slot-allocation strategies that consider real-time
constraints exist [17, 21], but they are not the focus of this
paper, so we use continuous allocations. We also assume a
fixed table size set by the system designer. Based on the
specified use-cases, a distinct number of maximum cliques
can be found for which allocations are generated at design
time. Clients that need composable service require the same
allocation across all use-cases in which they are active. They
cannot be moved around since this would make their be-
havior use-case dependent. Composable clients are mapped
first, and their slot-allocation is the same in all cliques where
they are active. Predictable clients may have different allo-
cations in different maximum cliques, as long as the perfor-
mance guarantees during reconfiguration are not worse than

Figure 5: TDM arbiter architecture.

during normal operation. How this can be guaranteed is ex-
plained in Section 6.1.3. Predictable clients are mapped in
slots that remain after allocating the composable clients. If
the allocation fails at any point, we rely on the designer to
change the table size or reduce the load of the failing maxi-
mum clique. An allocation example is given in Section 7.2.

6.1.2 Arbiter architecture

The arbiter architecture is shown in Fig. 5. It consists of
a set of registers that represents the active TDM slot table.
Each slot entry contains the bus-port id of the client to which
it belongs. An incrementing wrapping index counter selects
the next client to be scheduled from the slot table. Both
the wrap-around value and the interval at which scheduling
decisions are made are configurable.

An extra copy of the TDM table is kept in the shadow
table, which can be reprogrammed through a configuration
port. All slot reconfigurations are first applied to the shadow
table. One configuration message can reassign a continuous
slot range in the shadow table to a different client. The
shadow table is locked from further updates after each con-
figuration message until its contents are copied to the slot
table. The purpose of the reconfiguration module is to im-
plement our safe reconfiguration protocol. It delays the ac-
tual reconfiguration of the slot table until the index counter
wraps around. Only then the contents of the shadow table
are copied to the slot table, and the new configuration im-
mediately takes effect. If a predictable client is reconfigured
to a different set of slots, then we use two configuration mes-
sages to perform this action: 1) the new slots are enabled, 2)
the old slots are disabled. The implemented reconfiguration
mechanism forces the transition phase where both the new
and old allocation are given to be at least one table iteration
(f). By doing so, we can guarantee that reconfiguration is
safe and does not violate the latency-rate guarantees of the
client (Fig. 8). In the next section, we formally prove this.

6.1.3 Reconfiguration protocol

Predictable clients can have distinct slot allocations in
each maximum clique. The arbiter may be reconfigured to
switch between these allocations, while the client contin-
ues to run. If reconfiguration is not regulated correctly, the
amount of service the client receives may reduce, as shown
in Fig. 6, where the response time for the request of A in-
creases from 6 to 10 slots as a result of reconfiguration. This
could mean its LR guarantees are violated, depending on the
tightness of its service bound.

This paper concentrates on reconfiguration effects at the
slot granularity. We formally prove that the LR guarantees
at this level of abstraction are not invalidated if our recon-
figuration protocol is used. This is a sufficient condition to
guarantee that the LR bound expressed in clock cycles is
also valid, since the transformation function from slots to
clock cycles is monotonically increasing [2].



Figure 6: Example of potentially violated LR guar-

antees for client A during reconfiguration.

A LR server offers a linear lower bound on the provided
service within a busy period [18].

Definition 1. Let τ be the starting time of a busy period
for server si with a service latency Θi and allocated rate ρi.
For any time t until the end of this busy period, a lower-
bound on the provided service by si is given by:

wi(t) = max(0, ρi · (t− τ −Θi)) (3)

A property of a LR guarantee is that it is maximal if the
client is continuously busy. If reconfiguration does not lead
to a violation of the bound under this condition, it is also
safe in all other cases. If a LR server is reconfigured, for
example by changing the underlying TDM slot allocation,
its Θ and ρ may change. We assume the allocations before
and after reconfiguration are chosen such that they satisfy
the LR requirements of the client. This is satisfied by our
design flow.

Definition 2. The required LR service bound of the client,
wr(t) is given by:

wr(t) = max(0, ρr · (t− τ −Θr)) (4)

where (Θr, ρr) represent the client’s LR requirements.

Definition 3. Let c1 and c2 be two different TDM slot
allocations for a client. The corresponding LR parameters
for allocation c1 and c2 are denoted by (Θ1, ρ1) and (Θ2, ρ2),
respectively. Both of these parameter sets satisfy the client’s
LR requirements, such that ρr ≤ min(ρ1, ρ2) and Θr ≥
max(Θ1,Θ2).

We only consider the case where c1 and c2 do not overlap. A
similar analysis is possible in case there is overlap by consid-
ering only the non-overlapping slots as different allocations
and adding a third constant allocation representing the over-
lapping slots, but we do not show it here for space reasons.
We assume that c1 is initially active. To model the behavior
of a TDM arbiter while it is reconfigured from c1 to c2, we
define two time instances: tA is the time at which alloca-
tion c2 is enabled in the slot table, tR is the time at which
allocation c1 is disabled in the slot table.

The total service guaranteed by a TDM-based server to a
client is equal to the sum of the service provided by each slot
that is allocated to it. This property allows us to describe
the guaranteed service during reconfiguration as the sum of
the service provided by allocations c1 and c2. Combining
Definition 1 and 3 yields:

Definition 4. For a time t during a busy period, the ser-
vice guarantee of a server that is reconfigured from c1 to c2
is given by:

wg(t) =max(0, ρ1 · (min(t, tR)− τ −Θ1))

+max(0, ρ2 · (t−max(τ, tA)−Θ2))

The required LR service bound may not be violated before,
during or after reconfiguration. In other words, wg(t) has
to be larger or equal than wr(t) for all t. This is formally
proven in Theorem 1.

Figure 7: Example of the latency-rate guarantees

during reconfiguration.

Theorem 1. If tR − tA ≥ max(Θ1,Θ2) then ∀t, wg(t) ≥
wr(t).

Proof. In the general case, we have to assume there is
no over-allocation, such that ρ1 = ρ2 = ρr. We can also
conservatively substitute Θ1 and Θ2 by Θ′ = max(Θ1,Θ2).
This means that

max(0, ρr · (min(t, tR)− τ −Θ′))+ (5)

max(0, ρr · (t−max(τ, tA)−Θ′)) ≥ (6)

max(0, ρr · (t− τ −Θ′)) (7)

has to hold for all t.
Case 1: As long as c1 is not disabled (t ≤ tR), this inequal-

ity is satisfied by the contribution of the server correspond-
ing to the first use-case (5). Case 2: Similarly, if the busy
period starts after allocation c2 is enabled (tA ≤ τ), then
the inequality is satisfied by the contribution of the server
corresponding to the second use-case (6). Case 3: As long
as wr(t) is 0 (t ≤ τ +Θ′), the inequality is also satisfied.

Case 4: This only leaves the inverse of the union of the
previous three cases: t > tR and tA > τ and t > τ + Θ′.
Applying these case constraints to the main inequality:

max(0, ρr · (tR − τ −Θ′))+max(0, ρr · (t− tA −Θ′)) ≥

ρr · (t− τ −Θ′) (8)

Both max-terms have to contribute to satisfy the equation
for all t, so for now we have to assume that both

tR > τ +Θ′, and (9)

t > tA +Θ′ (10)

hold. Removing the common terms from Eq. (8) leaves:

tR − tA ≥ Θ′ (11)

If we assert that Eq. (11) holds, then wg(t) ≥ wr(t) holds
in Case 4, given that Assumptions (9) and (10) are true.
Combining Eq. (11) with case constraint tA > τ yields (9),
and combining Eq. (11) with case constraint t > tR yields
(10), confirming the assumptions.

This means that if Eq. (11) holds, then wg(t) ≥ wr(t)
holds for all t which concludes the proof.

Equation (11) enforces a minimum interval of max(Θ1,Θ2)
where both the c1 and c2 have to be provided by the server.
During that transition period, the server temporarily assigns
both slot allocations to the client. Fig. 7 illustrates this. By
moving tR further to the left, the interval in which wg is
larger than wr will get smaller, until tR−tA = max(Θ1,Θ2),
where it disappears.



Our arbiter implementation and reconfiguration method
forces a minimum transition period of at least one full table
iteration (f). To satisfy the safety condition Eq. (11), this
has to be larger than Θ expressed as Eq. (1):

f ≥ max(Θ1,Θ2) = f · (1−min(ρ1, ρ2)) + 1 (12)

This equation is true if min(ρ1, ρ2) ≥ 1/f . This condition
is always satisfied for slot based TDM arbiters, since the
minimum allocation for ρ is 1/f , which means our reconfig-
uration protocol is safe.

Figure 8: Splitting the reconfiguration in two steps

that take place in separate table iterations guaran-

tees that the service during reconfiguration is always

greater than the required service.

6.2 Reconfigurable SDRAM back-end
The proposed SDRAM back-end is shown in Fig. 9. It

gets requests from the resource bus that consist of a type
(read/write) and a logical address. Its main function is to
select patterns from the pattern memory, and to transfer
their commands to the PHY.

An incoming request first arrives at the pattern selector.
It generates an index for the pattern Look-Up Table (LUT)
based on the request type (read or write). The index rep-
resents the pattern that should be executed. An optional
offset can be added to this index to select patterns from dif-
ferent pattern sets. The pattern LUT contains the starting
addresses and the number of commands of all patterns in
the pattern memory. Its output is used by the command
player to read commands from the pattern memory. Both
the pattern LUT and the pattern memory are exposed to
the resource manager through the configuration bus and are
thus reconfigurable. Changing the pattern set to trade-off
bandwidth, response times and power consumption [7], im-
plies changing BI and/or BC and reprogramming the ad-
dress generator. This would prevent running clients from
retrieving their data. The pattern set can thus only change
if all clients are stopped, i.e. only if there are no active
clients during a use-case switch.

Each command in the pattern memory consists of a 6-
bit control field and a 3-bit bank field. The control field
contains values for the standard RAS, CAS, CS and WE
signals, and the value for the 10’th address bit in the physi-
cal address, which is the auto-precharge flag. The last bit is
reserved for a strobe signal that is specific to the used PHY,
and selects the desired data-bus (read/write) direction. The
3-bit bank field specifies the bank for which the command
is meant. The pattern memory is implemented as a simple
SRAM memory. The command player increments the com-
mand address every clock cycle, and triggers a new pattern
selection when the current pattern ends.

The address generator unit translates a logical address to
the corresponding bank, row and column addresses. The
command player controls the address generator such that
the correct address is given to the PHY at the right time,
i.e. the row address when activating and the column address
during read or write commands. The address generator has

Figure 9: Reconfigurable SDRAM back-end.

four configurable masks/shift units through which the logical
to physical memory-mapping function can be selected.

The final block to consider is the refresh timer. It consists
of a cycle counter with a configurable threshold value. When
the counter reaches the threshold, it resets to zero and a
refresh is scheduled as soon as the current slot finishes.

7. EXPERIMENTS
Two experiments are presented to demonstrate the SDRAM

controller and the reconfiguration protocol proposed in this
paper. The first experiment, Section 7.2, uses the SystemC
version of the controller, while the second experiment, Sec-
tion 7.3, uses the VHDL version.

7.1 Hardware setup
All the features that have been presented in Sections 4

through 6 are implemented and tested in SystemC. The
VHDL version used in these experiments is less generic, and
two options are omitted. 1) The atomizer is not configurable
at run time. Instead, a fixed access granularity is configured
at design time. 2) The pattern set offset is tied to 0, such
that only one set can be stored in the pattern memory at
a time. This is done because we do not require single-cycle
reconfiguration of the pattern set in our experiments. In-
stead, we choose to use a smaller pattern memory. Multiple
pattern sets can still be used, but it requires the resource
manager to re-program the pattern LUT and pattern mem-
ory. This still allows for specialization of the pattern set
based on power, bandwidth or latency constraints [7], but
only in unconnected maximum cliques.

In SystemC, we use a model of the SDRAM module that
is used on the FPGA. It contains a memory module based
on DDR3-1066 devices that have a combined data-bus width
of 64 bits. The module is under-clocked to a command rate
of 400 MHz to compensate for the relative slowness of the
FPGA fabric. Only 32 of the 64 available data pins are con-
nected in the experiments to reduce synthesis time, such that
it effectively behaves like a DDR3-800x32 device. This con-
figuration is similar to that of the default MPMC SDRAM
controller by Xilinx for this FPGA board.

The two-port instance of the controller used in the ex-
periments uses 13754 registers, 9543 LUTs and 1 BRAM,
which implements the pattern memory. A four-port in-
stance uses 22065 registers, 14016 LUTs and 1 BRAM. Most
registers are used for pipelining and to implement the re-
quest/response buffers in the front-end that have 256 bytes



Figure 10: Temporal use-case transition behavior.

of storage space per port. Note that this design was not
optimized for area, and buffer sized could be reduced, for
example by using techniques from [20].

7.2 Temporal behavior during reconfiguration
Seven synthetic applications (A-G) share the SDRAM re-

source in this experiment. Fig. 10 shows the properties of the
applications and the different use-cases that are traversed.
Three maximum cliques are identified, annotated with U1
(A,B,C,D), U2 (A,D,G, F ) and U3 (A,E, F,G). At T1
and T2, use-case transitions take place that change the ac-
tive maximum clique. The applications are implemented by
four traffic generators connected to four ports on the mem-
ory controller (applications on the same horizontal line are
mutually exclusive and share a memory port and traffic gen-
erator). Fig. 10 also shows the applications’ bandwidth and
service requirements. For simplicity of the example, we as-
sume all applications have a relaxed WCRT requirement of
2000 ns and issues only 512-byte requests.

The pattern set that offers most gross bandwidth given the
request size requirement is chosen. It uses BI 4 and BC 1,
delivers 1862 MB/s and is write dominant, meaning the con-
version to composable patterns does not impact worst-case
performance. The slot table size is set to 20, such that each
slot corresponds to 1862/20 = 93 MB/s. Because applica-
tions A and D run in composable virtual platforms, they get
the same slot allocation in all use-cases where they are ac-
tive. This is reflected in the allocation algorithms’ output,
which is shown in Fig. 11. Note that without reconfigura-
tion support, the slots for application F and G would not
be movable, and application E would be unmappable due to
fragmentation.

Figure 11: Slot allocation results.

Fig. 12 shows the temporal behavior of application F in
two separate experiments. Each request is chopped into four
atoms, and each bar represents an atom, which explains the
periodicity. The red x-markers show the WCRT bound for
the atom, which varies slightly due to self-interference. The
bar height shows the actual measured response time.

In the first experiment (green markers), the safe reconfig-
uration mechanism in the TDM arbiter is switched off. At
68 µs, the reconfiguration from U2 to U3 takes place. The
WCRT bounds of some atoms are violated as a consequence
of reconfiguring the arbiter, which is unacceptable.

A second run (blue bars) is performed with the safe re-
configuration mechanism switched on. Here the WCRT is
valid, and the actual response time is slightly lower during
the reconfiguration process, since the client temporarily gets

40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

R
es
p
o
n
se

ti
m
e
[n
s]

Arrival time [µs]

 

 

Non−predictable reconfiguration

Predictable reconfiguration

WCRT bound

Figure 12: Response times with and without pre-

dictable reconfiguration.

more slots. This experiment suggests that our reconfigura-
tion protocol is safe and predictable.

7.3 Composable memory operation
The second experiment shows that composable patterns

turn the SDRAM controller into a composable resource. We
use a two port VHDL instance of the controller. A pattern
set with BI 1 and BC 2 is used, which guarantees a gross
bandwidth of 934 MB/s. The slot table size is set to 8.

Two MicroBlaze processors (MB1 and MB2) are connected
to our memory controller through a DMA. Each MicroBlaze
runs one application, referred to by the name of the MicroB-
laze. The applications consist of a simple loop that generates
bursts of memory requests at an average rate of 90 MB/s.

The request/response buffers are instrumented with timers
that keep track of the arrival and response times of the re-
quests. These timestamps are recorded and read out after
the experiment. For each experiment, we wait until the PHY
finishes its self-calibration, and then program the initial con-
figuration in the memory controller. For the purpose of this
experiment, the start of the refresh timer and the first ar-
biter iteration are synchronized to make the behavior across
multiple runs repeatable, although this is not strictly re-
quired for composability.

Six different runs are performed, divided in two groups of
three runs each. In all runs, MB1 gets 4 slots in the table.

1. Reference run: Only MB1 runs its application, while MB2
remains idle.

2. Interference run: Both MB1 and MB2 are active. MB2
generates an interfering stream of write requests and gets
4 slots in the TDM table.

3. Reconfiguration run: Both MB1 and MB2 are active.
MB2 initially has 1 slot in the TDM table, but is re-
configured to 2 slots after 32 µs.

The first three runs use predictable patterns (Fig. 13), mean-
ing the slot length varies with the request that is executed.
Even though application MB1 is not changed across the
three runs, its behavior is heavily affected by the interfer-
ence from MB2. This makes it unfeasible to verify MB1 by
simulation in systems with many use-cases.

The second group of runs uses composable patterns (Fig. 14)
to effectively eliminate all interference across the two appli-
cations. The figure illustrates that MB1 is not affected by
any of the actions of MB2, its behavior is constant. The
reference run is thus representative for the behavior after
integration, and can be used to verify that the application’s
real-time requirements are satisfied. This enables indepen-
dent verification of applications in isolation.



0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600
R
es
p
o
n
se

ti
m
e
[n
s]

Request arrival time [µs]

 

 

MB1 reference run

MB1 interference run

MB1 reconfiguration run

MB2 interference run

MB2 reconfiguration run

Figure 13: Request latencies using predictable pat-

terns.

8. CONCLUSIONS
This paper introduced a run-time reconfigurable SDRAM

controller architecture. The command scheduler, based on
the concept of memory patterns, is re-programmable, such
that a different pattern set can be loaded into the controller
to select the best trade-off between bandwidth, response-
times and power for the active use-case. The controller
offers both predictable and composable service, making it
a suitable SDRAM resource for use in virtual platforms.
Composability is enabled by the use of composable mem-
ory patterns combined with TDM arbitration, and we show
that the worst-case performance degradation is negligible.
We also introduced a reconfiguration protocol for such an
arbiter, which allows run-time changes to the slot table with-
out degrading the guarantees offered to the running mem-
ory clients. The controller and proposed methods have been
prototyped in SystemC and on an FPGA platform. Experi-
ments show that the controller operates in a predictable and
composable manner, even while it is being reconfigured.

9. ACKNOWLEDGEMENTS
This work was partially funded by projects eu fp7 288008

t-crest and 288248 Flextiles, Catrene ca104 cobra, ca505
benefic and ca703 OpenES, and nl stw 10346 nest.

10. REFERENCES

[1] B. Akesson et al. Classification and Analysis of
Predictable Memory Patterns. In Proc. RTCSA, 2010.

[2] B. Akesson et al. Architectures and modeling of
predictable memory controllers for improved system
integration. In Proc. DATE, 2011.

[3] S. Bayliss and G. Constantinides. Methodology for
designing statically scheduled application-specific
SDRAM controllers using constrained local search. In
Proc. FPT, 2009.

[4] M. Bojnordi and E. Ipek. PARDIS: A programmable
memory controller for the DDRx interfacing
standards. In Proc. ISCA, 2012.

[5] M. Garcia-Valls et al. Real-time reconfiguration in
multimedia embedded systems. Consumer Electronics,
IEEE Transactions on, 57(3), 2011.

[6] K. Goossens et al. Virtual Execution Platforms for
Mixed-Time-Criticality Applications: The CompSOC
Architecture and Design Flow. SIGBED Review, 2013.
To appear.

[7] S. Goossens et al. Memory-Map Selection for Firm
Real-Time Memory Controllers. In Proc. DATE, 2012.

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

R
es
p
o
n
se

ti
m
e
[n
s]

Request arrival time [µs]

 

 

MB1 reference run

MB1 interference run

MB1 reconfiguration run

MB2 interference run

MB2 reconfiguration run

Figure 14: Request latencies using composable pat-

terns.

[8] A. Hansson et al. Undisrupted quality-of-service
during reconfiguration of multiple applications in
networks on chip. In Proc. DATE, 2007.

[9] JEDEC. DDR3 SDRAM Specification, JESD79-3E
edition, 2010.

[10] P. Kollig et al. Heterogeneous Multi-Core Platform for
Consumer Multimedia Applications. In Proc. DATE,
2009.

[11] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. Software
Engineering, IEEE Transactions on, 16(11), 1990.

[12] A. K. Mok et al. Real-time virtual resource: A timely
abstraction for embedded systems. In Proc. EMSOFT,
2002.

[13] O. Moreira et al. Scheduling multiple independent
hard-real-time jobs on a heterogeneous multiprocessor.
In Proc. EMSOFT, 2007.

[14] M. Negrean et al. Timing Analysis of Multi-Mode
Applications on AUTOSAR conform Multi-Core
Systems. In Proc. DATE, 2013.

[15] M. Paolieri et al. An Analyzable Memory Controller
for Hard Real-Time CMPs. Embedded Systems
Letters, IEEE, 1(4), 2009.

[16] J. Reineke et al. PRET DRAM Controller: Bank
Privatization for Predictability and Temporal
Isolation. In Proc. CODES+ISSS, 2011.

[17] R. Stefan et al. An improved algorithm for slot
selection in the æthereal network-on-chip. In Proc.
INA-OCMC, 2011.

[18] D. Stiliadis and A. Varma. Latency-rate servers: a
general model for analysis of traffic scheduling
algorithms. IEEE/ACM Trans. Netw., 1998.

[19] N. Stoimenov et al. Resource adaptations with servers
for hard real-time systems. In Proc. EMSOFT, 2010.

[20] S. Stuijk et al. Exploring trade-offs in buffer
requirements and throughput constraints for
synchronous dataflow graphs. In Proc. DAC, 2006.

[21] S. Stuijk et al. Resource-efficient routing and
scheduling of time-constrained streaming
communication on networks-on-chip. Journal of
Systems Architecture, 54(3), 2008.

[22] Xilinx. ML605 Documentation.
http://www.xilinx.com/support/#nav=

sd-nav-link-140997&tab=tab-bk, 2012.

[23] H. Yun et al. Memguard: Memory bandwidth
reservation system for efficient performance isolation
in multi-core platforms. In Proc. RTAS, 2013.


