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ABSTRACT
Embedded systems are complex, requiring multi-disciplinary
skills for their design. Developing appropriate educational
curricula is a non trivial problem. Embedded system design
requires both theoretical and practical understanding. It is
common in embedded system education to provide practical
laboratory sessions to put into practice what is learnt from
lectures and textbooks.

In this paper, we present our embedded systems laborat-
ory that is given as part of the Embedded Computer Ar-
chitecture (ECA) module at Delft University of Techno-
logy. Our laboratory provides practical, hands-on exper-
ience of programming a multiprocessor embedded system,
that is prototyped on an FPGA. We provide details of the
hardware platform and software APIs that are provided to
the students, along with the laboratory assignment that
was given to the ECA students in the 2011-2012 academic
year. We present example results that were submitted by
groups taking part in the laboratory, and describe the les-
sons we learned from our own practical experience of giving
the laboratory.

Categories and Subject Descriptors: K.3.2 [Computers
and Education]: Computer and Information Science Educa-
tion

General Terms: Algorithms, Design, Experimentation

Keywords: Embedded System Design, Education, Multi-
Processor System on Chip

1. INTRODUCTION
Modern embedded systems are widely used in various in-

dustries, e.g. automotive and consumer electronics, to ex-
ecute complex applications. These systems are typically
resource constrained, and thus it is desirable that applic-
ations share resources, such as processors, interconnect, and
memory blocks, in order to reduce cost. To fully exploit par-
allel resources and improve performance, applications are
required to be parallelised. Parallelisation of applications
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Figure 1: Remote access to FPGA prototype

poses many challenges, not least of which increasing the
complexity of understanding the available trade-offs, e.g. for
performance and energy. Our laboratory assignment enables
students to gain hands-on experience of these challenges, and
allows them to experimentally explore the trade-off design
space for a MultiProcessor System-on-Chip (MPSOC). The
laboratory exercises guide the students through program-
ming and optimising a fractal application for an MPSOC
that is prototyped on an FPGA board (Xilinx ML605).

Like other embedded MPSOCs, resources, such as memory,
are limited and as a result deep software stacks that abstract
from the details of the architecture are not available. Stu-
dents have to get to grips with understanding the low-level
workings of the MPSOC, giving them a chance to observe
first hand all the hazards and pitfalls that come with pro-
gramming an embedded multi-core system. Due to this, it
is common to find laboratory work as part of embedded sys-
tems curricula, as is described in more detail in Section 2.
After the students have finished our laboratory exercises,
they will have experience in programming a resource con-
strained multi-core system, with low debugging visibility,
while trying to maximise application performance through
parallelism at the same time as trying to minimise energy
consumption.

On top of the technical engineering aspects, we recog-
nise that undertaking projects in international companies
and academic institutes involves communicating with people
from many different nationalities and backgrounds [8,9]. Not
only should the students be able to overcome the technical
aspect of the assignments, but they must also be able to



work effectively in a mixed nationality group with diverse
technical backgrounds and experience. To achieve this the
students are assigned to a group of four people, with the
group mix selected to achieve as much intra group diversity
as possible while trying to ensure an even inter group spread
of experience. At the Delft University of Technology, our
laboratory assignment is given to first year Master’s stu-
dents concurrently with theoretical lectures on Embedded
Computer Architecture (ECA). From experience, first year
Master’s students have completed their Bachelor’s studies
in various similar topics and at different universities. Our
laboratory assignments and group organisation encourages
the exchange of this varied knowledge base, through group
problem solving.

Our laboratory assignment consists of five exercises for the
groups to complete. The exercises are structured to expose
the students gradually to the complexity of programming
an embedded multi-core platform. The CompSOC multi-
core platform [1], that is developed as part of a combined
effort between Delft and Eindhoven Universities of Techno-
logy, is used as the target platform for the assignment. The
CompSOC platform is used as part of various embedded
multi-core research objectives, including real-time and low-
power research [13, 14], making it applicable to the subject
matter of the assignments. This platform was also chosen
due to its flexibility and automated design flow, enabling a
custom platform to be created that is suitable for the educa-
tional needs of the laboratory assignment. The CompSOC
platform is prototyped on an FPGA board that is access-
ible to the students through a server that arbitrates board
usage, as shown in Figure 1. During the assignments the
groups take a sequentially executing fractal program writ-
ten in C and finish the assignments with a parallel executing
fractal program that executes on the prototyped CompSOC
platform.

Assessment of the assignment completion is carried out in
multiple parts. Before students receive a final grade, for the
laboratory assignment, they will have been assessed in mid-
term group meetings, given a group presentation, submitted
a written report and provided the C code that was used for
the benchmarks of the report.

In the rest of this paper, we continue by presenting the
educational context in which our laboratory is set, in Sec-
tion 2. We follow that, in Section 3 with a detailed de-
scription of the ECA-CompSOC embedded multiprocessor
platform, including its associated software API, that is used
in the assignment. We present details of the assignment as
given in the 2011-2012 academic year in Section 4. We finish
by detailing what we learnt from our experience of giving the
laboratory assignment in Section 5 and making concluding
statements in Section 6.

2. ECA LABORATORY CONTEXT
The field of Embedded Systems is rapidly evolving, with

Embedded Systems education evolving to match [2, 15, 19].
Practical experience, with relevance to industry, forms an
important part of many Embedded Systems curricula [3, 4,
9, 17]. Our laboratory provides the students with an envir-
onment in which they can put theory into practice using the
same tools and prototyping methods that can be found in
industry [18].

Embedded systems are a combination of hardware and
software, with many Embedded Systems courses teach-

ing hardware and software co-design [11, 16]. This style
is closer to what was referred to in [7] as the “something
of everything” approach, due to the breadth of the topic
covered. Our laboratory focusses on software development
for multi-core embedded systems, which is closer to the
“everything of something” approach, from [7]. We do not
claim to have exhaustively covered “everything” on the topic
of software design for embedded multi-core systems, but by
narrowing the scope of our laboratory we enable students to
explore the topic in depth. While there are merits to both
approaches, we chose this approach as being more suited
to first year Master’s students, to whom the laboratory is
given at Delft University of Technology.

Our laboratory assignment, as described in this paper,
formed part of the Embedded Computer Architectures
(ECA) module, given at Delft University of Technology, in
the 2011-2012 academic year. The ECA module is compuls-
ory for first year Master’s students studying the Embedded
Systems Master’s programme, and may be followed as an
optional module for students following related programmes.
As such, it is important that the contents of the ECA mod-
ule, including the laboratory assignment, provides a relevant
and up-to-date educational experience. In this paper, we
focus solely on the ECA laboratory assignment that gives
students hands-on experience of the following educational
goals of the ECA module as a whole:

1. Students can operate with concepts and notions related
to:

(a) Instruction sets: characteristics, functions, formats,
addressing modes;

(b) Processor structure, functions, and pipelining;
(c) Distributed memory hierarchy;
(d) Multiprocessors;
(e) Interprocessor communication.

2. Students can optimise code for a particular processor
using, e.g. code scheduling and loop unrolling.

3. Students can perform design space exploration and
quantify design decisions in terms of performance, en-
ergy consumption, cost, flexibility, programmability,
predictability for various processor and multiprocessors
building blocks and architecture features, e.g. instruc-
tion set, message passing vs. shared memory, etc.

The ECA module is worth five ECTS credit points. The
ECA laboratory assignment is worth 25% of the final grade
for the module, meaning that students should expect to
spend around 35 hours working on the assignment. In or-
der to make sure that the students use this relatively short
amount of time effectively, we decided that using a simple
application, that was reasonably easy to parallelise was im-
portant. We also decided that an application with visual
output would be more interesting to the students than one
that produced text on a command line. As such, we chose a
fractal generator application for the ECA laboratory in the
2011-2012 academic year, which is described in more detail
in Section 4.1.

3. MULTIPROCESSOR PLATFORM
We continue by describing the multiprocessor platform

that is used for the ECA laboratory assignment. The
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Figure 2: ECA-CompSOC hardware platform

CompSOC platform template is a tile-based, Network-
on-Chip (NoC) centric, multiprocessor architecture with
a distributed memory architecture. For the purpose of
the laboratory assignment an instance of the CompSOC
platform is used, which we refer to from this point as the
ECA-CompSOC platform. The ECA-CompSOC platform
instance consists of three processor tiles, a NoC intercon-
nect, and two memory tiles, as presented in Figure 2. In
what follows, we describe each, in turn. The theoretical mo-
tivation and principles behind the platform, its architecture,
its software platform, and the research topics that it serves,
is available in the literature [6, 12–14].

3.1 Processor tiles
The ECA-CompSOC platform consists of heterogeneous

processing tiles, i.e. Tile0 and Tile1 are different from
Tile2, as illustrated in Figure 2. While the tiles are archi-
tecturally different, each processor tile comprises a Micro-
Blaze processing core, a Voltage-Frequency Control Module
(VFCM), a local instruction memory (Imem), a local data
memory (Dmem), and a set of Remote Direct Memory
Access (RDMA) modules with an associated set of local
memory blocks for inter-tile communication.

The 32bit Xilinx MicroBlaze processor is a common core
used in both industry and academic research. It is a soft
core making it suitable for FPGA prototyping. A gnu com-
piler tool-chain for the Miroblaze is provided as part of the
Xilinx FPGA prototyping tool set. In the processor tile, in-
structions and data for the processor are stored in the tile’s
local Imem and Dmem respectively. All of the tile’s local
memories are accessible via a single-cycle latency bus, as
shown in Figure 2 with buses represented as triangles.

Each processor tile has an independent clock domain, al-
lowing the voltage and frequency of each tile to be inde-
pendently managed. The Voltage and Frequency Control
Module (VFCM) has the primary purpose of providing the
tile’s clock signal. By default it provides a clock frequency of
100MHz, and it can be programmed to clock gate or to scale
the voltage and frequency via a set of APIs described in Sec-
tion 3.5. The VFCM module scales the frequency through
clock division. The voltage is not actually scaled on the
FPGA prototype, instead a power model, similar to an in-
stance from the paramatrised model from [10], is used to
calculate the power consumption at each frequency given a
minimum voltage necessary to support the frequency. This
calculation is carried out automatically based on the fre-
quency scaling information. The VFCM also has an embed-
ded timer that can be read by the application using the API
defined in Section 3.5.3.

Inter-tile communication is carried out using RDMAs.
The RDMA’s allow parallelisation of computation and com-
munication, and are used via an API. There are two RDMA

API, defined in Section 3.5.1, commands that are used to
send and receive data relative to the tile initiating the com-
munication.

Each RDMA is connected to a local scratch pad memory,
from which data is sent and received via the NoC. Tiles
0 and 1 have two RDMAs while Tile 2 has 1. On Tiles
0,1 and 2, RDMA0 is connected to a local memory called
DMAmem. On Tiles 0 and 1, RDMA1 is connected to a local
memory called DMAsr. Embedded systems are typically
resource constrained, and the amount of memory available
is not an exception. As such, the memory available on the
ECA-CompSOC platform reflects this. The processor tile
memory sizes are presented in Table 1.

Table 1: Sizes of processor tile local memories

Memory block Size
Imem - all tiles 8 KBytes
Dmem - all tiles 8 KBytes
DMAmem - all tiles 4 KBytes
DMAsr - all tiles 32 Bytes
SHsr - all tiles 32 Bytes

With memory in such short supply the first thing the stu-
dents need to do is modify their program code so that it can
even fit into the tile’s instruction and data memory.

3.2 Memory tiles
In addition to the local memories available on each pro-

cessor tile, the ECA-CompSOC platform has two memory
tiles that are accessible via the NoC, as illustrated in Fig-
ure 2. The global shared memory tile, is a relatively large
memory, compared to the local memory available on the
tiles. Due to its remote location from the tiles, writing and
reading data, to and from this memory, is slow in comparison
to the single-cycle needed to access a processor tile’s local
memories. The frame memory tile acts as a frame buffer,
where visual data can be written for display. Unlike a frame
buffer where the image would be displayed on a screen, an
API call from the application signals that the frame is ready,
initiating its retrieval to the student’s computer. The sizes
of both the global shared memory and the frame memory
are presented in Table 2.

Table 2: Sizes of memory tiles

Memory tile Size
Global shared memory 32 KBytes

Frame memory 256 KBytes

The ECA-CompSOC platform provides the students with
a variety of memories of different capacities to chose from.
This leaves the students with some interesting design choices
as not all memories are accessible from every tile, due to
point-to-point connection availability on the NoC, and not
every memory can be accessed with the same bandwidth.

3.3 The NoC Interconnect
Once the students start working on a multi-core imple-

mentation of their programme code, an understanding of
the platform’s interconnect becomes important. The ECA-
CompSOC platform uses the Æthereal NoC [6] intercon-



nect that provides point-to-point virtual channel connec-
tions, with per connection bandwidth guarantees. The NoC
as configured for the ECA-CompSOC platform does not
provide a fully connected interconnect, i.e. there are a lim-
ited number of point-to-point connections. The connec-
tions that are available do not have uniform bandwidth cap-
abilities. Figure 2 presents the point-to-point connections
that available are available across the NoC on the ECA-
CompSOC platform. On Tiles 0 and 1, RDMA0 has a con-
nection to the global memory tile. On Tile 0, RDMA1 has
a connection with SHsr memories that are local to Tile 1
and 2. Similarly, on Tile 1, RDMA1 has a connection with
SHsr memories that are local to Tile 0 and 2. On Tile 2,
RDMA0 has a connection to the global memory tile, the
frame memory, and the SHsr memories that are local to
Tile 0 and 1. The qualitative bandwidth that is available on
these connections is listed in Table 3.

Table 3: Qualitative connection bandwidths

Tile Connection Bandwidth

Tile0
RDMA0 → global shared mem. slow
RDMA1 → SHsr medium

Tile1
RDMA0 → global shared mem. slow
RDMA1 → SHsr medium

Tile2
RDMA0 → global shared mem. fast
RDMA0 → frame mem. fast
RDMA0 → SHsr medium

In general, the larger the memory the lower the access
bandwidth. This is in keeping with what is seen in other
embedded systems, where larger memories are less likely
to be in close proximity to the processors, or may even
be located off-chip. Given the ECA-CompSOC platform’s
variation in memory sizes and access bandwidths, the stu-
dents have plenty of scope for design space exploration. It
also allows the students to run into common hazards, such
as memory consistency problems, as the variation in access
bandwidths helps to exacerbate memory transaction race
conditions.

3.4 ECA-CompSOC memory map
All data communication on the ECA-CompSOC platform

is carried out using Memory Mapped I/O (MMIO). From
the processor tile’s perspective, the ECA-CompSOC plat-
form has two address spaces. Each processor tile has a local
address space, that includes the addresses of the tile’s local
memories and registers for programming the RDMA mod-
ules, that are accessible via the tile’s local buses. In the
ECA-CompSOC platform, no memory is present in more
than one local address space. The ECA-CompSOC plat-
form’s global address space is relative to the NoC, and in-
cludes addresses of memories that are connected to the NoC.
The same memory may be present in both local and global
address spaces, meaning that it is accessible locally via one
of the processor tile’s local buses and remotely via the NoC.
As an example, the memory map of Tile 2 is presented in
Table 4.

The local and global address maps of all of the ECA-
CompSOC platform’s memory locations is provided in a
header file for the students to use in their programmes.

3.5 Software API
The ECA-CompSOC platform is a complex multipro-

Table 4: Example of memory map adresses of Tile2

Memory mapped block Local base address Global base address
mb2 DMAmem 0x00005000 -

mb2 SHsr 0x00004000 0x03000000
mb2 rdma0 0x000F0000 -

cessor embedded system. Programming the platform at a
low abstraction level is great for students to gain practical
knowledge about these sorts of system. While we do not
want to hide this complexity from the students, there are
some common tasks that risk students focussing too much
on the details, and not seeing the wood for the trees. For
this purpose we provide an API for common tasks, such as,
remote memory access, measuring time, Dynamic Voltage
and Frequency Scaling (DVFS), and debugging the applic-
ations. We proceed to explain each API command in more
detail.

3.5.1 Remote Memory Access API
Remote memory access from processor tiles is carried out

using RDMAs. In order to use an RDMA they must first
be initialised. This is achieved using the following two API
commands:
void hw_declare_dmas(int num_dmas);

DMA * hw_dma_add(int id, void * base_addr);

The first API is used to declare the number of RDMAs
that are available during the execution of the application,
i.e. two for Tile0 and Tile1, and one for Tile2. The second
API is used to instantiate an RDMA and give it a unique
id, with 0 < id < num_dmas. This function returns a pointer
to the DMA object that can be used later in the program
to transfer data using the APIs below. The RDMA base
address, base_addr is specified in the global address map
header file, along with the all the memory addresses in the
ECA-CompSOC system.

In order for a processor tile to transfer data to and from re-
mote memories, the following API commands are provided.

void hw_dma_receive(void * dst, void * src, int block_size,

DMA * dma);

void hw_dma_send(void * dst, void * src, int block_size,

DMA * dma);

int hw_dma_busy(DMA * dma);

The first API is used to program the RDMA, dma, to trans-
fer block_size words of data from a remote address, src,
(e.g. the global shared memory) to a local address, dst (e.g.
DMAmem of a processor tile).

The second API is used to program the RDMA, dma, to
transfer block_size words of data from a local address, src

(e.g. DMAsr of a processor tile), to remote address dst, (e.g.
SHsr of another processor tile). The MicroBlaze is a 32bit
processor, hence each word equals 4 Bytes.

The third API tests the status of the given dma. It returns
1 when the dma is busy and returns 0 when the dma is ready
for use.

3.5.2 Timer API
Each processor has access to a system timer, and a local

timer. These timers can be read using the following API
commands:

unsigned int get_system_time();

unsigned int get_local_time();



The system timer always runs at maximum frequency
and it starts after the initial system’s reset. The local timer
runs on the tiles scaled clock frequency, e.g. after perform-
ing DVFS by calling the API commands described in Sec-
tion 3.5.3, the local timer runs at the scaled frequency.

3.5.3 VFCM API
The following VFCM APIs are used to perform DVFS for

power management purposes:

void hw_vfcm_clk_gate(unsigned int t);

void hw_vfcm_set_freq(unsigned int freq_level);

The first API command clock gates the processor, and
hence halts the processor for a duration of t cycles in the sys-
tem time domain. The second API command switches the
processor frequency to the freq_level immediately, where
freq_level is the frequency level in MHz. As explained in
Section 3, the FPGA prototyped ECA-CompSOC platform
doesn’t actually perform voltage scaling, instead a power
model is used, that assumes the minimum voltage level ne-
cessary to support the selected frequency, in order to calcu-
late energy energy consumption at different frequency levels.

3.5.4 Debug API
Debugging applications running on an FPGA prototype

is more complicated than on a desktop computer. The Xil-
inx tool suite contains debugging tools that provide some of
the debugging functionality that programmers are used to.
These debugging tools would be great if every group in the
laboratory had their own FPGA board, but in practice this
is not always going to be possible. For the laboratory given
at the Delft University of Technology, all the groups share
a single FPGA board. As such, it is not possible to allow
groups to block the board for debugging purposes. In order
to debug their platforms the students use the following API
command:
void print_debug(int value);

This command prints an integer value (e.g. program line
number) via the FPGA board’s serial connection with the
board server, which in turn relays the value to the student’s
computer. With this simple debug output, the students are
able to monitor their application’s progress and check data
values. This gives the students experience in debugging plat-
forms where it is not possible to use the well known graphical
debugging tools.

3.5.5 A Frame Output API
The visual output of the application is written into the

frame memory. Once the application has finished writing
its visual output into the frame memory, the following API
command can be called to return the image to the student’s
computer:
void print_framebuffer();

The image is retrieved in raw RGB format, before auto-
matically being converted into the Bit Map Picture (BMP)
format.

3.6 Platform Output
After each run on the FPGA board, the contents of the

frame memory along with per-core debug and energy inform-
ation is returned to the student’s computer. The contents
of the frame memory is formatted as a BMP file, as it is

a common non-compressed graphical format. The system
debug and energy information is output as a single text file
per processor, an example of which looks as follows:

cycles| energy nJ| information
------+-----------+-------------------------------

0: 0 nJ: frequency -> 100 MHz
277629: 8606499 nJ: frequency -> 6 MHz
DEBUG: : hex(FFFFFFFF) int(-0000000001)
290450: 8683425 nJ: frequency -> 56 MHz
292094: 8711373 nJ: frequency -> 100 MHz
293092: 8742311 nJ: clock gated
294091: 8743310 nJ: clock ungated
294115: 8744054 nJ: execution finished

System energy consumed: 26490484 nJ

All power management changes are noted in the output
file, along with the time, in cycles, when they were per-
formed. From the example shown, it can be seen that the
processor started with a default frequency of 100 MHz be-
fore changing frequency 3 times. First it changes to 6 MHz,
then 56 MHz and finally 100 MHz where it remains for
the rest of the run, except when the processor was clock
gated. Similarly for clock gating, the time is noted in clock
cycles whenever the processor is gated or ungated. The pro-
cessor’s energy consumption is calculated from the power
management changes using a power model. All power man-
agement changes are accompanied by a running total of the
processor’s energy consumption for the current run. Once
the execution has finished, the finishing time in cycles and
the processors total energy consumption is noted. A final
note in the file states the total system energy consumption
for the run.

The debug API described in Section 3.5.4 provides the
ability to return integer values from the FPGA board. The
single value is presented as both a hexadecimal and signed
integer value, for ease of use. The time at which the debug
command was called is not noted by the API, with DEBUG

printed in the cycle column instead of the time. While the
time at which the debug occurred is not noted, events in the
output file are noted in the order they occurred.

The output information described here is the only insight
the students have into the functionality and performance of
their solutions. We do not specify how the data returned
should be visualised or interpreted, but we do state that we
expect design choices to be motivated in the final report.

4. ASSIGNMENT OVERVIEW
In this section, we present and overview of the laboratory

assignment. We describe the fractal application and the five
exercises that the students complete in order to parallelise,
map and optimise the application for the ECA-CompSOC
platform. The students are expected to optimise the applic-
ation for the commonly conflicting constraints of perform-
ance and energy. Following this, we propose our recommen-
ded approach for the students to start solving the exercises.
Finally, we explain what deliverables we expect from the
students, and how the assignment is evaluated.

4.1 Application
In the 2011-2012 academic year, the ECA students were

given sequential C code for a fractal application. The fractal
was chosen as the algorithm is quite compact, is quite easily
parallelised, and provides a visual output, which is more
interesting for students than reading text off of a command
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Figure 3: Output references for the five different set of parameters of Fractal application.

line. For compactness, we show a grayscale version of the
fractal algorithm below:

double x_min = -1.5;
double x_max = 1.5;
double x_step = (x_max-x_min)/x_size;
double y_min = -1.5;
double y_max = 1.5;
double y_step = (y_max-y_min)/y_size;
double x,y;
double new_x,new_y;
int m,n,num;
unsigned char R,G,B;
double real = 0.123;
double imaginary = 0.745;

for(n=0; n<y_size; n++){
for(m=0; m<x_size; m++){

x = x_min + x_step * m;
y = y_min + y_step * n;
for(num=0; ((pow(x,2) + pow(y,2)) <= 4)

&& (num < 0xFF); num++){
new_x = pow(x,2) - pow(y,2) + real;
new_y = 2*x*y + imaginary;
x = new_x;
y = new_y;

}
FrameMemory.R = num;
FrameMemory.G = num;
FrameMemory.B = num;

}
}

Where the integers x_size and y_size are the pixel width
and height of the fractal being produced. It is up to the
students to analyse and understand the code provided. The
real and imaginary variables control the shape of the fractal
produced. We specify that all solutions to the exercises, cre-
ated by the students, should remain functional for all pos-
sible real and imaginary inputs. So that the groups’ solu-
tions may be compared, we specify a set of inputs, presented
in Table 5, for use with benchmarking their solutions.

Table 5: Input parameter sets
Input set real imaginary

1 0.123 0.745
2 0.4 0.3
3 0.15 0.8
4 0.4 0.8
5 0.01 0.8

4.2 Exercises
The laboratory assignment consists of five exercises, that

when completed in order takes the groups from having a se-
quential C code representation of the fractal application to

Figure 4: Actual results from a group for exercise 1

a parallelised and mapped version, for the ECA-CompSOC
platform. In every exercise we clearly introduce the problem
to be solved, and the concept that we expect the students
will learn. To visualise the concepts, we present example
results of actual group solutions in each exercise. The func-
tional correctness of the student’s solutions are checked, us-
ing a bit-wise comparison between the output file of their
solution and the five output references provided in Figure 3.
In the case where the output set does not match the refer-
ence set, the student’s fractal application is deemed to be
incorrect, and the solution is not acceptable. The set of
fractal input parameter pairs that generate the references
are presented in Table 5.

While the fractal application should remain working for
all parameters, the students should use the five pairs when
benchmarking their solutions.

Exercise 1
In this exercise, each group has to parallelise the fractal
application on a desktop computer utilizing the pthreads
library. Furthermore, they should provide a Makefile [5]
with a target “run-fractal-pthreads” and define a para-
meter X to specify the number of pthreads used. “make
run-fractal-pthreads THREAD=X” should execute the fractal
application with X threads on a PC.

This exercise is meant to get the students acquainted to
the fractal application and to parallel programming on a
desktop environment. An example of the graph presents the
results of a solution for this exercise is presented in Figure 4.
The graph shows the performance in milliseconds for the
five fractal images, using different amounts of threads. The
students are required to analyse and explain performance
gain after parallelising the application.

Exercise 2
In this exercise, the groups have to map and execute the
sequential fractal application on one core of the ECA-



Figure 5: Actual results from a group for exercise 2

CompSOC platform. Their technical note should report
the performance, i.e, execution time, and the energy con-
sumed by the application.

This exercise is meant to familiarise the students to the
ECA-CompSOC platform and to performance and energy
consumption estimations. In Section 3 we explain how the
performance and the energy consumption are estimated.
The student should provide a graph like the example one
presented in Figure 5 to compare the performance and en-
ergy consumption of application when executing with each
set of parameters.

Exercise 3
In this exercise, the groups have to parallelise the applica-
tion such that it runs on at least 2 of the ECA-CompSOC
processor-tiles. The performance, i.e. execution time, and
the energy consumed by their solution have to be evaluated
and reported in the technical note. This exercise is meant
to familiarise the students to parallelising an application on
an embedded platform.

Exercise 4
In this exercise, every group has to optimise the performance
of the parallel application executing on the ECA-CompSOC
platform. For the optimisation, we recommend the students
to focus on multi-core strategies, e.g. computation versus
communication ratio. The quality of the solutions is graded
according to the following list for the performance:

1. execution time > 35000000 cycles
2. execution time ∈ [30000000 35000000] cycles
3. execution time < 30000000 cycles
This exercise aims at gaining experience with performance

optimisation on an embedded platform and the trade-offs
involved.

Exercise 5
In this exercise, the groups have to minimise the energy con-
sumed by their application such that the execution finishes
before a deadline, D (in cycles). Each of the groups re-
ceives a different value for the deadline D. Energy reduction
is achieved by 1) clock gating a core for a period of time,
and 2) scaling down the voltage and frequency of the core
for a period of time. The available voltage-frequency man-
agement APIs are described in Section 3.5. The groups may
chose to combine both of these techniques.

This exercise is meant to introduce the students to per-
formance constrained energy optimisation on an embedded
platform. Each group has to explain their general energy

Figure 6: Actual results from a group for exercise 5

minimisation approach, and mention the exact points where
they called voltage-frequency management APIs and motiv-
ate their choices.

Finally, the groups should provide an energy graph com-
paring their solutions for all exercise except the first one.
An example of such a graph is presented in Figure 6.

4.3 Recommended approach
Before the students start solving the exercises of the as-

signment, the following steps are recommended:
• Take the time to become familiar with the fractal ap-

plication, the tool-set, and the remote FPGA board en-
vironment. Read and understand the provided docu-
ments.
• Read description of the ECA-CompSOC, and consult

the table of contents of the provided MicroBlaze pro-
cessor reference guide.
• Execute the provided example on the FPGA prototype,

and inspect the source code. Take the time to under-
stand the ECA-CompSOC distributed memory map,
and how to access memory blocks remotely.

Only when the students have completed and are comfort-
able with these steps, should they start to solve the exercises.

4.4 Assignment Deliverable
Each group submits the C code of their solution for the

five assignment exercises and a final report. The final report
should not exceed 4 pages as there is always a short page
limit for scientific publications in conferences. The final re-
port should include the following:
• Descriptions of their solution for each of the 5 exer-

cises, giving the general idea behind their implementa-
tion/parallelisation and application mapping. The re-
port should discuss explicitly the problems they en-
countered when parallelising, executing, and optimizing
the application on the ECA-CompSOC platform, and
their solutions.
• When applicable, details of all the applied performance

optimisation strategies, and explanations about why
those optimisations deliver an increase in performance.
• For exercise 4, the performance results (in execution

time) and a comparison with the performance of the
solutions of the sequential application baseline in ex-
ercise 2, as well as the first parallel implementation in
exercise 3 and 5.
• For exercise 5, the energy consumption results and a

comparison with the energy consumption of the exer-
cises 2 to 4, without clock gating.

4.5 Evaluation Criteria
The ECA laboratory assignment is graded with 10 points,



accounting for 25% of the final grade for the ECA module.
The 5 exercises account for a maximum of 6 points, the
final report and the presentation account for a maximum
of 2 points each. At the initiative of the instructors, bonus
points are granted for original, exceptionally good solutions
or observations. To get a final grade of 6, each group needs
to solve exercise 1 to 3, to provide the report, and to give
the final presentation. The final score for the project is
determined based on the following criteria:
• Functional correctness. If, for an exercise, the output

picture does not bit-wise match the reference picture
provided, the group will not get any points for that
exercise.
• The technical merit of the approach. Aspects as innov-

ation level and implementation quality are considered.
• Code readability. The maximum number of points can

be obtained only if the code is clear and commented.
Unreadable, un-understandable code will be penalised
with up to half of the maximum points awarded for that
exercise.
• Clarity and conciseness of the final report. Report or-

ganisation, content, and language are important aspects
at this point.
• The presentation. Here we look at the clarity, concise-

ness of the slides and talk, and at the students’ capab-
ility to ask questions and to answer questions from the
auditorium.

5. LESSONS LEARNT
The laboratory as described here was successfully given

in the 2011-2012 academic year at Delft University of Tech-
nology. From conversing with the students, their feedback
was in general positive. The students enjoyed the laboratory
and found the level of difficulty to be appropriate. We found
that in practice the students were spending more time than
scheduled working on the laboratory project. This seems
to indicate that even though the level of difficulty of the
laboratory assignment is correct, the quantity of work was
possibly a bit much.

Parts of our laboratory, were reappropriated for use with
the Embedded Systems Laboratory (an evolution of the
laboratory from [9]) given at Eindhoven University of Tech-
nology. Their laboratory course is a full module, which
coulde be a better format for our laboratory course given
at Delft University of Technology. While our laboratory re-
mains part of the Embedded Computer Architecture (ECA)
module, we will need to reconsider the workload to ensure
a balance with the rest of the ECA module.

6. CONCLUSION
Students that follow our laboratory will have gained

hands-on experience programming a multi-core embedded
system. They will have overcome the difficulties of pro-
gramming for a resource constrained platform with limited
debug visibility. They will have investigated their solution’s
design space for both performance and energy consumption,
learning the trade-offs that exist on such a platform. Aside
from the technical achievements, the students will have
done this while working in multi-cultural groups, with di-
verse backgrounds and experience, similar to what is found
in international companies and academia.

7. REFERENCES
[1] B. Akesson, A. Molnos, A. Hansson, A. Ambrose, and

K. Goossens. Composability and predictability for
independent application development, verification, and
execution. In MPSoC: Hardware Design and Tool
Integration. 2010.

[2] P. Bertels, M. D’Haene, T. Degryse, and
D. Stroobandt. Gathering skills for embedded systems
design. In WESE, 2007.

[3] H. Dai, Z. Jia, X. Li, and Y. Guo. Practical training in
the embedded system education: A new way to
narrow the gap with industry. In ICYCS, 2008.

[4] A. G. Dean. Teaching optimization of time and energy
in embedded systems. In WESE, 2010.

[5] GNU Org. Make, 2012.
http://www.gnu.org/software/make/.

[6] K. Goossens and A. Hansson. The Æthereal network
on chip after ten years: Goals, evolution, lessons, and
future. In DAC, 2010.

[7] M. Grimheden and M. Törngren. How should
embedded systems be taught?: experiences and
snapshots from swedish higher engineering education.
SIGBED Rev., 2(4), 2005.

[8] B. Haetzer, G. Schley, R. S. Khaligh, and
M. Radetzki. Practical embedded systems engineering
syllabus for graduate students with multidisciplinary
backgrounds. In WESE, 2011.

[9] A. Hansson, B. Akesson, and J. van Meerbergen.
Multi-processor programming in the embedded system
curriculum. SIGBED Rev., 6(1), 2009.

[10] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded
systems. In DAC, 2004.

[11] H. Mitsui, H. Kambe, and H. Koizumi. Use of student
experiments for teaching embedded software
development including HW/SW co-design. Education,
IEEE Trans., 52(3), 2009.

[12] A. Molnos, A. Ambrose, A. Nelson, R. Stefan,
K. Goossens, and S. D. Cotofana. A composable,
energy-managed, real-time MPSOC platform. In
OPTIM, 2010.

[13] A. B. Nejad, A. Molnos, and K. Goossens. A unified
execution model for data-driven applications on a
composable MPSoC. In DSD, 2011.

[14] A. Nelson, A. Molnos, and K. Goossens. Composable
power management with energy and power budgets
per application. In SAMOS, 2011.

[15] A. L. Sangiovanni-Vincentelli and A. Pinto.
Embedded system education: a new paradigm for
engineering schools? SIGBED Rev., 2(4), 2005.

[16] P. Schaumant. Hardware/software co-design is a
starting point in embedded systems architecture
education. In WESE, 2008.

[17] Q. Shi, L. Xiang, T. Chen, and W. Hu. FPGA-Based
embedded system education. In ETCS, 2009.

[18] Xilinx, 2012. http://www.xilinx.com.

[19] Y. Zhang, Z. Wang, and L. Xu. A global curriculum
design framework for embedded system education. In
MESA, 2010.


