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dAElite: A TDM NoC supporting QoS, multicast,
and fast connection set-up

Radu Stefan, Anca Molnos, Kees Goossens

Abstract—Networks-on-Chip are seen as promising interconnect solutions, offering the advantages of scalability and high frequency

operation which the traditional bus interconnects lack. Several NoC implementations have been presented in the literature, some

of them having mature tool-flows. The main differentiating factor between the various implementations are the services and

communication patters they offer to the end-user. In this paper we present dAElite, a TDM Network-on-Chip that offers a unique

combinations of features, namely guaranteed bandwidth and latency per connection, built-in support for multicast, and a short

connection set-up time. While our NoC was designed from the ground up, we leverage on existing tools for network dimensioning,

analysis and instantiation. We have implemented and tested our proposal in hardware and we compared it to Æthereal, a state-of-the-

art NoC with similar features, but no multicast. We find that the connection set-up time is reduced by a factor of 10 and the network

traversal latency is decreased by 33%. Moreover, considering realistic values of the network parameters dAElite has a lower hardware

area when synthesized in 65 nm technology.

Index Terms—Hardware Implementation, Network Architecture and Design, Circuit-Switching Networks

✦

1 INTRODUCTION

As the complexity of Systems-on-Chip (SoC) increases,
traditional bus-based interconnects become limited in
terms of efficiency and performance. Networks-on-
Chip [12], [5] (NoC) were proposed as a scalable replace-
ment that can cope with the increasing number of on-
chip IPs.
SoCs typically execute various, real-time or non real-

time, applications which may have diverse requirements
from the interconnect, e.g., high throughput for video,
low latency for serving cache misses, etc.. These applica-
tions run concurrently in different combinations denoted
as use-cases. Providing NoC service guarantees, e.g.,
minimum bandwidth, bounded latency, is crucial for the
timing analysis, verification, and execution of real-time
applications [17]. At the same time, special communica-
tion patterns like multicast or broadcast may be required,
for example for implementing cache coherence or syn-
chronization primitives, and in certain applications that
involve distributed decision making algorithms. Besides
the service guarantees and various communication pat-
terns, the NoC implementation should have low cost,
and ideally provide fast (re)configuration to adapt to
dynamic use case switches. Existing NoC approaches
either (i) offer service guarantees but do not support
multicast [19], [20], or (ii) provide multicast but at the
expense of a high cost [13], [29] or of compromising the
guarantees of service [24].
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In this study, we have chosen a Circuit Switching
technique to implement a network offering hard guar-
antees in terms of bandwidth and latency per connec-
tion. Circuit Switching was proven to be a cost-effective
technique for implementing real-time communication
[14]. Our proposal supports multicast which is increas-
ingly a requirement in multi-core systems. Our network
uses a time-division-multiplexing (TDM), contention-
free scheme and a distributed routing model similar to
one of the Æthereal [13] flavors. However, we propose
a new configuration infrastructure, that is one order
of magnitude faster than Æthereal, and has efficient
encoding of the configuration data, thus increasing the
speed of setting up and tearing down connections. The
configuration infrastructure also features a novel method
for synchronizing the TDM slot counters. Our proposal
compares favorably in terms of hardware cost and per-
formance to the most cost-effective of the Æthereal mod-
els. We support only guaranteed-services (GS) because,
as suggested in [14], GS offers a better performance-cost
ratio and are in fact the more likely to be required by
applications in the embedded domain. We refer to our
network as distributed-aelite, dAElite, as for network
dimensioning and hardware instantiation we use the
standard Æthereal tools, with a modified back-end to
generate the new architecture.
The rest of this paper is organized as follows. Section 2

describes similar network implementations and other
related work. In Section 3 we describe the contention-free
routing model which is used by our current proposal.
We present overall system view and the building blocks
of our network in Section 4. The various configuration
tasks, including setting up multicast trees are presented
in Section 5. Experimental results are presented in Sec-
tion 6 while the last section presents conclusions.
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TABLE 1
Comparison with network implementations using similar concepts

Network Link sharing Routing Connection Setup End-to-End Flow Cont Connection types

dAElite TDM distributed dedicated separate wire,TDM 1-1,multicast
aelite [19] contention-free TDM source GS headers 1-1,channel trees
TTNoC [31] contention-free, pulsed source GS,over data network none 1-1,multicast
TTNoC [34] contention-free, pulsed distributed unspecified none 1-1,broadcast

Æthereal w/BE [13] contention-free TDM source/distributed GS/BE,guaranteed headers 1-1,multicast1

Kavaldjiev [20] VCs source packet,BE2 none 1-1
Wolkotte [40] SDM distributed separate BE separate wire 1-1

Nostrum [29] TDM,looped unspecified3 container4 none 1-1,multicast
SoCBUS [23] none distributed packet,BE none 1-1

2 RELATED WORK

Many NoC implementations, either connectionless or
connection-oriented, have been proposed in the litera-
ture. These networks may offer both Best-Effort (BE)
and Guaranteed Services (GS). Networks-on-chip as
SPIN [1], xPipes [6], qNoC [11], SoCIN [42], artNoC
[35], Quarc [30] and [33], implement a connectionless
packet switching approach. QNoC implements quality-
of-service through the means of traffic classes, but the
guarantees offered are at best statistical. ArtNoC has
support for multicast but only from one node at a time.
An overview and analysis of several multicast meth-

ods is presented in [2]. Support for multicast is provided
in NoCs presented in [30] and [33]. Another approach
is BENoC [27], which uses a bus to complement the
services of the NoC. While the NoC would provide
high data throughput, the bus would provide low la-
tency messaging, multicast and broadcast. Compared to
BENoC the advantage of our approach is that we can
provide high-troughput multicast and more multicast
connections operating in parallel. A different approach
that can provide multicast is the stochastic commu-
nication proposed in [10]. While this is a significant
departure from the established practices of NoC it may
become useful in future technologies.
Connectionless packet switching NoCs typically do

not offer latency and bandwidth guarantees, thus we do
not discuss them further. In the following we comment
on the connection-oriented, circuit-switching NoCs, as
they are similar to dAElite. Among these we give special
attention to [13], as it is the closest approach to ours.
Æthereal [13] is a hybrid network offering both Best-

Effort and Guaranteed Services. Æthereal supports three
routing models, distributed routing with BE configura-
tion, source routing with BE configuration and source
routing with GS configuration. More recent studies [14]
suggest that the BE versions of Æthereal are not very
cost-effective. For guaranteed services, Æthereal makes
use of a routing model called contention-free routing
in which each connection may use a link in a given
timeslot. Channel trees [15] enhance the performance
of this basic scheme, by allowing sharing of timeslots
between channels, i.e., connections. This sharing may
render invalid the service guarantees per connection,
thus are not discussed further.
aelite [19] inherits the GS-only model from Æthereal,

and introduces the possibility of using asynchronous and
mesochronous links. Although we have not currently
investigated this possibility, we believe that the same
techniques can be used in dAElite. From here onwards,
we will refer to the GS-only version of Æthereal as aelite,
without any implications to a particular asynchronous or
mesochronous link implementation scheme.
The implementation of multicast in Æthereal was pro-

posed in [32] using separate connections. dAElite uses
instead a broadcast/multicast tree to achieve the same
result. Our solution is more efficient since it avoids both
using separate channels inside the NI and using the
link bandwidth n times, one for each of n destinations.
Compared to Æthereal, we also use a more efficient, low-
cost connection set-up mechanism. The connection state
is stored inside all network elements in a distributed
manner and the network configuration mechanism is
centralized. Moreover, aelite requires a separate data
connection over the network to configure the buses
around the NoC. dAElite programs these busses through
a broadcast mechanism, leading to faster configuration.
A network very similar to aelite is TTNoC [31] which

also uses contention-free routing but claims to offer more
freedom than a fixed, periodic TDM table. The network
supports multicast but because source routing is used we
expect a significant overhead in encoding the multicast
trees in the packet headers. An earlier version of TTNoC
[34] used distributed routing and supported a broadcast
operation. However, a ring topology was intrinsic to this
implementation while our implementation supports any
topology. TTNoC does not include flow control.
Æthereal and dAElite use a TDM scheme to share

the link bandwidth between connections, the model is
described in more depth in the following section. One of
its advantages is low buffer requirements at router level.
Another network that uses a TDM scheme to provide
guaranteed bandwidth is Nostrum [29]. Nostrum does

1. The distributed version of Æthereal could in theory support
multicast at network level, although a solution for configuring the
nework for this scenario was not proposed; multicast was proposed
using separate connections for each target
2. Guaranteed connections have preallocated VCs and setup is as-

sumed to always succeed
3. The paper only mentions that routes are decided at run-time,

possibly they are stored in a distributed fashion inside the routers
4. No explicit connection setup is required, containers can be added

and removed at will at runtime by any of the nodes on the route but
lack of conflicts must be ensured
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not have a fixed TDM wheel size, but instead, the TDM
period is linked to the length of looping connections.
Multicast is supported by adding more receiver nodes
to a closed loop. Nostrum also offers BE communication
using deflection routing. One disadvantage of Nostrum
is that routing paths, and consequently multicast node
sets, must be decided at design time.
The network proposed in [20] uses per-connection

virtual channels (VCs) and round-robin arbitration to
provide communication guarantees. VCs are in general
expensive as they require buffers, multiplexers, demul-
tiplexers and separate flow control. The number of VCs
per router suggested by the authors due to cost concerns
is of only 4 which may limit the number of simultane-
ously supported connections.
aSOC [22], [21] implements the same type of static

TDM schedule found in Æthereal, but it does not im-
plement the actual end-to-end connections, leaving this
task to the IPs.
MANGO [8] is an asynchronous network implemen-

tation that uses, as [20], per-connection virtual channels.
Since the network is clockless, there is no actual TDM
table. Like Æthereal, connection setup is provided by
using a Best-Effort network.
Another possibility for link sharing is SDM, used

by [40]. Like our implementation, it makes use of an
external network for route configuration, but it does
not explicitly specify how this network is implemented.
Reported configuration times are higher than those of
dAElite.
Some implementations like SoCBUS [23] do not share

the link between connections. This approach has a very
low cost but it may result in excessive blocking.
Table 1 summarizes the related approaches to several

aspects of the NoC implementation. One key differen-
tiator is the type of routing employed which also has
implications on the location where the connection state
is stored. Source routing encodes the packet path in
the header of the packet while distributed routing relies
on separate routing decisions at each hop. We consider
source routing to be too expensive for multicast and
broadcast especially if small packets are considered, thus
dAElite utilizes distributed routing.
Our proposal provides a unique set of features, namely

multicast, multi-path routing, a low cost contention-
free routing model and distributed routing, along with
an improved performance/cost ration compared to the
state-of-the-art.

3 BACKGROUND: CONTENTION-FREE ROUT-
ING

In this section we present contention-free routing, which
is the routing model that we used to provide guaranteed
services. Under this model, the bandwidth of each link
is split, in the time domain, into a predefined number
of timeslots. Each connection receives exclusive use of
some of these timeslots from the moment it is set up

until torn down, in a typical circuit-switching scheme.
A network-wide schedule guarantees that packets never
collide and never have to wait for each other (Figure 1),
hence the name of contention-free routing. This reduces
buffer requirements as well as network traversal time.

Fig. 1. Contention-free routing

The problem of computing the schedule which guar-
antees the collision-free movement of packets inside a
network has been addressed in several studies. When
the communication pattern is known beforehand it can
be computed at design-time [18], [25], but if that is not
the case, computation at run-time is also possible [28],
[38].

Contention-free routing may be used in combination
with either source or distributed routing to implement
the global communication schedule. In source routing
(Figure 2a) the path corresponding to each connection
is stored inside the Network Interface (NI) and is sent
inside the header of each packet. Slot tables inside the
NI control the exact time when packets are allowed to
be inserted into the network. No provisions are made
for sending data to multiple destinations.

Fig. 2. Source routing (a) and distributed routing (b)

Distributed routing (Figure 2b) uses slot tables inside
each router in addition to the ones inside the NIs. Packets
are routed based on their time of insertion into the
network and their time of arrival at each router. No
header is thus necessary and the payload efficiency is
higher. Broadcast and multicast can be easily achieved
by setting up the router slot tables to forward the
data packet to multiple destinations simultaneously. Ex-
isting distributed models [13] rely on the Best-Effort
(BE) infrastructure for connection set-up which is both
expensive and does not deliver guarantees regarding
the set-up time [14]. In dAElite we use the contention-
free model with distributed slot tables but we rely on a
different configuration mechanism, based on a dedicated
broadcast configuration network.
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4 DAELITE

In this section we present the principles behind and the
hardware implementation of our proposed NoC. At the
core of our proposal is the broadcast based configuration
layer, which is capable of (1) setting up and tearing
down connections quickly, (2) ensuring synchronization
of the router and NI slot counters, (3) setting and reading
connection state and (4) configuring adjacent buses. We
start by presenting an overview of a typical system
based on dAElite, after which we will give the details
of the configuration infrastructure, the router and NI
architecture. dAElite was implemented and tested in
FPGA.

4.1 System overview

A typical SoC platform based on dAElite is exemplified
in Figure 3. dAElite is a connection based network. For a
master IP to communicate to a slave IP over the network,
a connection is set up between two network interface
shells, one connected to the master, the other connected
to the slave. The network interface shells have the role of
translating the request between the bus protocol spoken
by the IPs and the packet format used by data while
traversing the network.

Fig. 3. Example dAElite platform.

IPs are connected to the NI shells by lightweight local
buses which have the role of multiplexing or demulti-
plexing requests to and from multiple network shells
(and thus network connections). This is because the
network connections are long-lived and an IP can have
several connections simultaneously open to multiple
other IPs.
The buses may be configurable, on the master side to

select address ranges corresponding to each connection,
on the slave side to select arbitration schemes and pri-
orities.
A typical usage scenario is that the required connec-

tions are set up before starting an application or an
execution phase of an application. The application can
use the configured connections during that execution
phase without further intervention to the network con-
figuration. The connections are torn down once they
are no longer needed. Setting up and tearing down

connection can be done dynamically without affecting
the normal operation of the system, i.e., an application
can use existing open connections while others are being
set up and torn down.

4.2 Proposed channel set-up, configuration, and re-

set logic

The configuration infrastructure is used to update to
set-up and tear-down network connections by updating
the contents of the slot tables inside routers and NIs,
to set and read back flow control information for each
connection, to perform the synchronization of the slot
counters inside NIs and routers and to configure buses
adjacent to the network.
We implement the configuration logic as a dedicated

broadcast network with a tree topology, with links run-
ning in parallel to a subset of the normal data network
links. This subset is chosen in such a way as to minimize
the distance from the configuration node to any of the
network nodes.
One IP, by convention called host, has exclusive access

to the configuration logic. The host performs write oper-
ations to a configuration module. These writes typically
have a wide data width, e.g., 32-bit, compared to the
width of the configuration links. The configuration mod-
ule thus serializes the data words received from the host
into several, smaller bit-width configuration words which
are inserted at the root of the broadcast tree.
If the host does not need to send at one time as many

configuration words as are contained in a data word, it
can perform “0-padding”. The configuration module will
also send “0” values into the configuration broadcast tree
when it has no data to send.
The configuration tree provides of forward and a re-

verse paths. The forward configuration path is of broad-
cast type. Each non-leaf node (always a router), forwards
all the configuration data it receives to all its down-
stream neighbors. The NIs, being leaves in the tree, do
no forward the incoming configuration messages. They
do however produce messages for the configuration of
buses using a different type of link. The configuration
payload is deserialized into wider 37-bit words which
are then translated by an NI shell into the DTL protocol,
used by the configuration ports of the buses.
On the reverse path in the configuration tree, messages

converge toward the configuration module. To avoid
arbitration on the response path, the host only issues
one message requiring response at a time. In our case,
the requests requiring a response are read operations
directed at the state tables of the NIs.
The requests and responses traveling through the con-

figuration network take the form of packets, the format
of which will be presented in Section 5.

4.3 Network Routers

The structure of network routers is presented in Figure 4.
Because we are using a distributed routing mechanism
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each router contains a slot table to store the TDM sched-
ule. Incoming packets are “blindly” routed based on this
schedule. A high operating frequency can be achieved
because no arbitration is required and the router does
not need to examine the packet contents.

The schedule for packet destinations for each of the
inputs is contained in a slot table. A counter iterates
circularly through this slot table and the selected row
is used to control the router crossbar. A configuration
submodule, implemented as a state machine is used for
setting the initial value of the counter, as we will discuss
in Section 5.4 and to update the contents of the slot table.

Fig. 4. dAElite Network Router

On the configuration connections, the router simply
copies the input value to all of the outputs on the
forward path and performs an “or” operation between
all inputs writing the result to the output on the reverse
path.

Data is thus buffered twice inside the router: once
after link traversal, and once after crossbar traversal. The
latency per hop is thus fixed to two cycles. In order to
simplify design data is also buffered twice at each hop
in the configuration tree. This allows the configuration
links to be treated in the same way as the data links
when dealing with timing constraints.

4.4 Network Interfaces

Network interfaces have the role of providing end-to-
end connections over the network. A network interface
(NI) is connected using a network data link to a network
router, and one or more links to network interface shells.
Each link to an NI shell supports an end-to-end connec-
tion to another NI shell at the other side of the network.
NIs thus multiplex several communication channels hav-
ing NI shells as endpoints to a single network data link.

As specified by the contention-free routing model, the
packets belonging to different connections are inserted
into the network only at specific times. The arriving
packets are also forwarded to the proper NI shell based
on their arrival time, according to a strict schedule. The
departure and arrivals schedule is stored inside a slot
table which is part of the NI. The slot table controls

the multiplexer and demultiplexer in the same way the
router slot table controls the router crossbar.

Figure 5 presents a diagram of the network interfaces.
The network slot table, same as the one of the router,
is indexed with the value of a circular counter and is
programmed by a configuration submodule. For each of
the data connections there are input and output FIFOs,
credit counters for end-to-end flow control and decision
logic for enabling or disabling the sending of data from
an input FIFO to the network.

Fig. 5. dAElite Network Interface

Credit-based flow control is provided by the NI for
each of the one-to-one connections going over the net-
work (optionally flow control can also be disabled on
a per-connection basis). Two credit counters are used
for each connection. One credit counter keeps track of
how many words of storage space are available in the
output FIFO at the other end of the network. An input
FIFO is only allowed to send data into the network if the
value of this credit counter is different than 0 and the slot
table indicates it is the connections’ turn to send data. A
second credit counter accumulates the number of words
that were delivered to the destination from the output
FIFO. The value of this counter is periodically sent back
to the other end of the connection and the counter is
reset.

As connections are bidirectional, credits for one direc-
tion are sent on separate bit-lines alongside data in the
opposite direction. The separate credit lines and data
obey the same TDM scheme and there is actually no
distinction between the two at the router level. Other
networks, like aelite [19] send the credits inside packet
headers, but that approach is not viable here as dAElite
does not employ packet headers. The number of bit-lines
transporting credit information is configurable. To make
better use of these lines, the value of the credit counters
is sent serialized, over the 2 cycles of a TDM slot. In our
test design, 3 wires dedicated to sending credit data are
sufficient for sending the value of a 6-bit credit counter
during each slot cycle.

The configuration submodule is responsible for up-
dating other network state information like enabling
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or disabling connections or reading or writing flow
control information to credit counters. It also identifies
special messages which are destined to the buses and
deserializes them to the bus configuration shell.

5 NETWORK CONFIGURATION PROCEDURE

This section describes in detail the network configuration
tasks. Special attention is given to the connection set-
up and tear-down which is the most complex operation.
We describe as well as packet format, explain how
multicast is achieved and present our proposed method
for synchronizing the slot counters inside routers and
network interfaces.

5.1 Configuration packet format

The configuration is performed using configuration
packets, consisting of one or more words, transmitted
one per cycle over the configuration links.
The format of the configuration packet is illustrated

in Figure 6. An end-of-packet is implicitly marked by
the beginning of a new packet, but can also be marked
explicitly. The configuration mechanism supports the
writing of slot tables, reading and writing credit infor-
mation, writing status flags governing NI behavior, and
resetting internal TDM counters.

Fig. 6. dAElite configuration packet format

The configuration links have small bit-width, that is
equal to the size of the configuration words. In order
to optimize the logic of the state machines governing
the configuration process, this width is selected in such
a way that any of the parameters listed below can be
encoded in a single configuration word in addition to
one bit marking the command headers.

• a value uniquely identifying a specific router or NI,
of size (log

2
N) where N is the number of network

elements;
• two values identifying one input and one output

port of a router or a null entry, of size (2×log
2
(p+1))

where p is the number of ports;
• an NI channel id or null value, and an additional

bit to indicate direction (note that in general an NI
is expected to have more connections that a router
has ports, but it has only one link connecting it to a
router), of size (1+log

2
(c+1)) where c is the number

of channels supported by the NI; and

• the value of a credit counter plus one state bit, of
size (1+log

2
(b+1)) where b is the size of the largest

buffer the counter must keep track of.

A configuration word size (including a one-bit marker
for beginning-of-packet and empty flits) of 7 bits is suf-
ficient for a network with 64 network elements (routers
and NIs), routers with an arity of 7, network interfaces
supporting up to 31 channels and buffer sizes of up to 31.
From here onwards, we denote as configuration word a 7-
bit word transmitted on a configuration link.
The first word in each packet indicates the type of

configuration command. The first bit is always zero for
a command word. The packet formats for the various
operations are as follows (Figure 6):
For set-up and tear-down operations, the command

word is followed by a list of slots used at the destination
NI, represented as a bit-mask with one bit per slot.
A list of the traversed Routers and NIs follows, each
with a corresponding input and output descriptor. Each
affected NI/Router recognizes its own id (a constant
parameter defined at circuit design time) from the list
and modifies its internal slot table. The path set-up
procedure will be described in detail in the following
section.
Comparatively, the other configuration operations are

simpler. For the reading of credits, a header, the NI
id, the port (connection) number are broadcast into the
network and the addressed NI will recognize its own id
from the packet and will reply with the counter value
over the reverse configuration link.
Writing of credits is similar, except after the port selec-

tor the new value of the counter is sent. The addressed
NI, once selected will keep watching for port/value
pairs. In this way, writing multiple credit counters of
a single NI can be done in a single configuration packet.
Writing to a bus programming port is again performed

with a packet marked by a distinctive header. The ad-
dressed NI will deserialize the received data to the shell
connected to the configuration port of the bus. We used
this approach for compatibility reasons with existing
configurable bus implementations.

5.2 A connection set-up example

Setting up a network connection consists of:

1) setting up network paths;
2) initializing credit counters; and
3) initializing bus address decoders.

Steps (1) and (2) have to be performed for the both
the request and response channels. Step (3) is the last
one performed as it signals to the bus that it can start
using the connection for transferring data.
We illustrate in this section step-by-step how a path

set-up is performed. Consider the system in Figure 7. We
analyze the operation of setting up a path from port 0
of NI10 to port 0 of NI11. The IP which has access to
the network configuration, which we call the Host IP,
writes data words to the configuration module. As the
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bit width of the dedicated configuration links is typically
lower than the data width of the bus, a single write from
the Host may contain multiple configuration words (for
this system 4), which are sent over the configuration link
by the configuration module.

Fig. 7. Path set-up example

The first configuration word is a header that informs
all the network elements that a path setup sequence will
follow. It is uniquely identified by a most significant bit
with a value of 0 and the value of 4 in the last 4 bit
positions. The next two configuration words contain a
table of slots affected by this path set-up operation. We
assume here a slot table size of 8. The two bits set to one
in this example identify slots 7 and 4.
Three cycles after starting the path set-up process

(Figure 8a), allowance being made for whatever pipeline
stages the configuration logic may contain, the complete
slot table has been registered at router R00, while routers
R01 and R10 have just recognized the path set-up header
entered set-up mode. This is because each router has two
pipeline stages on the configuration path, thus delaying
the configuration by two cycles for the next routers in
the broadcast tree. The configuration module, having
emptied its serialization register is able to accept one
more data word.
The configuration words after this point are organized

in pairs. The first word in a pair identifies a network
element while the second describes modifications to the
slot table of the identified element. The MSB of each
word is set to identify a valid configuration word. For the
first word, a value of 1 in the MSB-1 position identifies an
NI while a value of 0 identifies a router. The ID is stored
in the least significant bits. For NIs the least significant
bits identify the port (channel) number and the following
bit identifies the input or output slot table. For routers,
the least significant bits identify the input port and the
immediately higher bits the output port.
The meaning of the configuration words in Figure 8a is

the following: for the defined slots, the input of the Net-
work Interface NI11 should be forwarded to channel 0.
On the previous path segment, thus with the same slot
table rotated by 1, router R11 should forward data from
input port 1 to output port 2.
After two more clock cycles (Figure 8b), the path

set-up header reaches R11 and NI10, the slot table is

Fig. 8. Path set-up, slot table registered at the first router.

registered in R10 and R01, and the first network element
identifier pair reaches R00. Because R00 does not recog-
nize its own ID in this pair, it ignores the pair but at the
same time it rotates its received slot table by 1 position.

Four cycles later (Figure 8b), after another 4 configura-
tion words have been transmitted, the slot table finally
arrived at all network elements and is stored, rotated
by a different number of positions. So far, the network
element IDs in the configuration packets never matched
the element IDs of the traversed routers. The number of
rotations in the slot table seems to depend so far on the
distance from the root of the configuration tree, but this
is misleading. The number of rotations actually depends
on the number of path elements in the received list that
did not match the local network element ID.

Eventually a configuration word carrying the proper
ID reaches the network elements that need to be config-
ured. In our case that happens simultaneously for R10,
R11, NI11, as shown in Figure 9.

In order to avoid configuring upstream nodes before
downstream nodes, we had to take an additional pre-
caution: we need to verify that no path for data exists
that is shorter than the difference in configuration path
length from the root of the configuration tree.
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Fig. 9. Path set-up, slot table update takes place in R10,
R11, NI11.

The update of the slot table is not performed instan-
taneously but through the use of a counter, one slot
table element is initialized each cycle. We preferred this
approach to reduce the cost of FPGA implementation.
This implies that a cool down period is necessary be-
fore another path set-up or teardown may take place.
A hardware cool down timer inside the configuration
module enforces this policy by blocking channel set-up
packet headers as long as it is different from 0. Other
configuration packets are allowed during this time so the
initialization of credit counters of bus address decoders
can overlap with the actual initialization of slot tables.
The list of traversed routers/NIs begins at destination

to ensure that downstream routers are initialized before
the upstream NI and routers start sending packets. For
each item in the list, the slot table which was sent in the
beginning of the packet is rotated by one slot so that all
routers along the path, when they recognize their id in
the list, already have the properly aligned table. It is not
mandatory that a packet contains a complete source-to-
destination NI path, independent path segments can be
initialized as well. This can be used to set up broadcast
trees, for example.
Connection tear-down can be performed in the follow-

ing way:

1) the application program must first make sure that
no more requests are delivered to the given connec-
tion. This can be enforced by resetting the address
range associated with that port on the bus;

2) the credit values are read back from the credit
counters to check if all data items have reached
their destination; and

3) the route is torn down using the same mechanism
as setting up. For additional safety this can be done
in two stages: first, the source NI to make sure no
more flits are sent into the network, then the rest
of the path.

5.3 Multicast

dAElite offers a mechanism to achieve multicast that is
both simple and efficient. The TDM schedule in a dAElite
router is implemented as a table that specifies for each
output port which input port should the data be taken
from during each cycle. Two (or more) output ports are

allowed to use the same input port as a source (Figure
10).

Fig. 10. Multicast in dAElite

The multiple paths to the different destinations form
a tree, rooted at the source NI. This is more efficient and
offers higher performance than having separate connec-
tions from the source NI to all destinations because in the
latter case the bandwidth on output link of the source NI
would need to be divided between all the connections.
The initialization of multicast trees is made possible by

allowing a configuration packet to set up partial paths;
i.e., paths that start at a router instead of a source NI.
In the tree, partial branches should be set-up first, before
the “main branch” which goes to the root of the tree. This
is done to avoid the source NI starting to transmit before
the entire multicast tree has been set up. In the example
in Figure 10, the partial path R01-R11-NI11 should be set
up first and the path NI00-R00-R01-NI01 should be set
up second.
All multicast destination shells will receive the same

stream of messages and will translate them into the
same write commands on the destination buses (issuing
read commands would be pointless since there are no
semantics defined for a simultaneous read from multiple
destination).
One potential problem when using multicast is that

the default flow-control mechanism cannot be used (the
source NI only has one credit counter for each communi-
cation channel). The least expensive solution to this prob-
lem is to guarantee that the destination bus can process
the received memory transaction at the same rate that
they are transmitted. In our scheme guaranteeing this is
made easier by the fact that the connection bandwidth
can be set to a desired value (with a certain granularity)
by allocating more or fewer TDM slots to it.

5.4 Slot counter synchronization

The dAElite network is at the logical level a synchronous
network implementation, which furthermore relies on a
notion of global time. This may in practice be difficult to
achieve [26] due to clock skew issues in large designs.
Nevertheless, studies have shown [7] that clock skew
values in the order of tens of picoseconds are achievable.
Other approaches exist [19] that avoid the problem by
offering synchronous behavior at the logical level while
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relying on a mesochronous or asynchronous implemen-
tation at the physical level.
In this section, making abstraction of how the syn-

chronization issue is solved at the physical level, we
show how to solve the issue of synchronizing the slot
counters at the logical level. Consider the following
scenario, illustrated in Figure 11. We use the following
simplification which allows us to explain the synchro-
nization mechanism: assume that the clock skew be-
tween neighboring nodes (nodes that are connected by
a network link) is sufficiently small to allow correct data
transmission between the nodes and allow the node to
agree on a common value of the current time slot when
they exchange data. Over large distances between nodes
that are not connected using a link that is not required.

Fig. 11. dAElite relaxed synchronous model.

This may be a reasonable assumption for a mesh net-
work where links are short and connect only physically
neighboring nodes. The important aspect here is that
each router agrees on the value of the slot counter and is
able to transfer data to its neighbors. It is sufficient if this
happens only from the logical point of view, regardless
of the physical implementation.
If the slot counter values were reset using a global

reset signal, and that reset signal did not follow the
same skew pattern as the clock, the reset signal will
inevitably be sampled on the wrong clock edge in one of
the various clock skew domains. (Figure 11 shows how
an instantaneous reset signal which does not follow the
pattern of clock skews causes R02 and R03 to disagree
on the current slot number).
To solve this problem we provide a reset mechanism

which follows the logical view of network time. The
reset signal is transmitted as a special packet through
the configuration network. This packet will arrive at the
different nodes in different clock cycles, but the logical

delay is known (two cycles per hop) and the nodes
compensate for it by initializing their slot counters to
the distance to the root of the configuration tree.

6 EXPERIMENTAL RESULTS

Comparing NoC implementations is not straightforward
as the services provided by them may be different.
Furthermore many of the solutions presented in the
literature only give details of the network routers which
makes it difficult to asses the cost of an entire network
able to deliver the service level demanded by an appli-
cation.
The obvious target for comparison is represented by

the Æthereal network, with which dAElite shares the
connection-free-routing based TDM model. We dedicate
therefore the largest part of the cost and performance
evaluation to the comparison with Æthereal.
We have implemented a fully-fledged dAElite NoC

supporting network and remote buses configuration,
link set-up and tear-down, setting status flags, setting
and reading credit information, normal reads and writes
from the IP to the memories, and broadcast from an
IP to multiple memories was prototyped in FPGA. Our
experimental platform, tested in FPGA, is the same
one presented in Figure 3 and uses two MicroBlaze
processors as IPs. For network dimensioning and hard-
ware instantiation we use the standard Æthereal tools,
with a modified back-end to generate the new dAElite
architecture.
In the rest of this section we will present a comparison

of hardware cost to the cost of the aelite network to-
gether with a hardware cost breakdown per component,
a comparison of the connection set-up time and perfor-
mance, as well against aelite, and a general hardware
cost comparison against other network implementations
presented in the literature.

6.1 Hardware cost

The hardware cost of dAElite compared aelite (a light-
weight version of Æthereal) is presented in Table 2. Both
implementations consist of 2x2 mesh networks, with 4
NIs and 4 connections. The sizes of the FIFOs imple-
menting the queues inside NIs have been set to 16 words
except for the aelite configuration channels which use
the minimum required size of 3 words on the forward
path with 8 words on the return paths. Our proposed
implementation uses the dedicated configuration infras-
tructure. We believe the FPGA implementation can be
further improved by taking advantage of FPGA specific
structures for implementing slot tables and FIFOs.
For the FPGA implementation using the Xilinx tools,

we performed runs with both area and speed optimiza-
tions. For the ASIC implementation we did not perform
time-constrained synthesis as timing is more likely to be
dictated by floorplaning (in particular the length of the
long router-to-router links) which we did not address in
this paper.
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TABLE 2
Hardware cost comparison

For both aelite and dAElite it is possible to arbitrarily
introduce pipeline stages (in a number multiple of the
slot size) on the links in order to more easily meet the
timing requirements. These will behave at the logical
level as routers with only one input and one output, that
do not require configuration. dAElite also has an advan-
tage here, as it allows a finer granularity in choosing the
number of pipeline stages due to the smaller slot size.
The cost of each hardware component, based on ASIC

synthesis, is presented in Figure 12. “NI-aelite” and
“router-aelite” denote the corresponding component cost
of aelite. The bulk of the cost is in the network interfaces
due to the relatively large FIFOs.

Fig. 12. Hardware cost breakdown

For the routers, the gain of our implementation is
on account of the reduction in flit size to 2 which
eliminates one register per router channel. A multiplexer
per channel per router is also eliminated as we do not
need to shift routing information in packet headers. We
add instead more complex configuration logic and a slot
table. The cost of a dAElite router with a slot table
containing 8 entries is roughly equal to the cost of a
aelite router, however, with a slot table of 32 entries the
cost of the dAElite router is 68% higher.
Compared to aelite, our NIs benefit from a simpler

configuration mechanism which uses a state machine
connected directly to the configuration infrastructure,
instead of interpreting requests on a DTL bus (aelite uses
a regular network channel for configuration, followed by

a shell translating the configuration messages into DTL
bus transactions.) Further area gains originate from the
removal of the table of paths inside the NI, and some
of the configuration buses. The cost of NIs in dAElite is
14.8% lower than that of aelite when the slot table has
8 entries. The dAElite NI with a slot table size of 32 is
still 10.3% less expensive than the aelite NI with a slot
table of size 8.
The cost of dAElite is more sensitive to the size of

the TDM wheel. The slot tables inside the NIs need to
contain entries for both departures and arrivals whereas
in aelite they only contain entries for departures. Addi-
tionally, slot tables are present in each router. We expect,
and we confirm experimentally that the cost increases
linearly with the number of slots. It is expected therefore
that as the number of slots is increased the hardware cost
of dAElite will increase relatively to aelite. We performed
additional synthesis runs to determine the point where
the cost of dAElite becomes higher than that of aelite.
We found that point to correspond to a TDM table size
of 70 (Figure 13). In practice we have found TDM table
sizes of 32 slots (or less) to be sufficient for supporting
most types of traffic [36].
On the other hand, the cost of dAElite increases less

than that of aelite with the number of connections,
because a path per connection is not stored inside the
NIs (the path is stored in a distributed manner inside the
router slot tables). Our setup, which uses a relatively low
number of connections provides a conservative estimate
of the hardware area benefit of dAElite.
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Fig. 13. Dependence of the hardware cost on the number

of slots

dAElite has one disadvantage, namely an increase in
the number of link wires, in part due to the configuration
network, and in part because of the separate wires for
end-to-end credit communication. In our test setup this
increase amounts to 20.8%. This value is analytically
derived from the width of the link w, the number of lines
for credit transmission d, the size of the configuration
links c and the ratio between the number of configura-
tion links and the number of data links r. We used the
formula (w− 1+ d+ r ∗ c)/w− 1. The first -1 term is due
to the fact that one of the wires in aelite signaling the
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beginning of a new packet is not needed in dAElite. In
our test setup w was 39. Denser topologies will present
lower overhead because the configuration network is
only a subtree of the network topology and thus r
is lower. For the mesh topology the r asymptotically
decreases to 0.75 as the size of the network grows. Larger
networks on the other hand will see a slow increase
due to c increasing with log(n) where n is the number
of network elements. These effects cancel each other to
some extent. For example an 8x8 network having the
same link and credit line width would have an overhead
of 19.9%. Increasing the link width obviously decreases
the relative overhead.

6.2 Configuration time

In our proposal, the path set-up time is only dependent
on path length as all slots reserved for a connection are
configured at once, for each one of the routers on the
path.
We present the results of experiments in Table 3. All

results are expressed in cycles. In both cases the configu-
ration code is written in C and compiled with maximum
optimization. The ideal value reported for Æthereal is
taken from [16] and represents the configuration delay
without taking into account processor execution time of
the configuration code, but only the configuration read
and write operations. In aelite, the path set-up time has
is dependent on the distance between the host and the
source node of the path, the distance between the host
and destination node, and is roughly proportional to the
number of reserved slots, as the slots in the source and
destination NIs are reserved separately.
The ideal value for our proposal is computed analyti-

cally from the number of configuration words, which are
sent one per cycle through the configuration network.
This number includes two cycles for each hop on both
the request and response path, six cycles for transmitting
the slot tables (three for the request and three for the
response path), header words and the updating of credits
as indicated in Figure 6. This value also includes the a
cooldown period of 20 cycles (one cycle for each slot
plus a margin of 4 cycles for allowing the configuration
logic to return to the idle state). A second cooldown
period (one period is necessary for both the request and
response path) was not included because it is allowed to
overlap with the writing of credits and it may continue in
background after the connection setup ended. The times
measured on FPGA include both cooldown periods but
the second is completely hidden by the function calling
overhead.
A concern may arise here that for large slot table sizes

the configuration time would be significantly increased.
However this is not an issue in practice, for the following
reasons. Configuring only one slot per cycle is not an
intrinsic characteristic of our proposed architecture, but
rather an implementation detail. This choice was made
to allow packing the slot tables into distributed RAM in

the FPGA implementation. The distributed RAM blocks
have a size of 16 or 32 locations (for Xilinx FPGAs,
depending on the model) and only one location can be
updated per cycle. If the slot table is larger, it will use
multiple distributed RAM blocks and slots in all blocks
could be configured in parallel. The cooldown period
would be limited to 16 or 32 and thus independent on
the number of slots in the TDM period.

TABLE 3

Configuration times

The improvement in set-up time compared with aelite
is due to the following:

• overheads are reduced: the original implementation
used DTL transactions encoded into packets;

• we avoid transmitting redundant information, the
slot tables at the intermediate nodes are generated
by rotating the slot table at destination; and

• the configuration bandwidth is not dependent on
the slot table size and the number of slots allocated
to configuration. A dedicated infrastructure is less
expensive than implementing the same functionality
over a generic network.

Our FPGA experiments indicate that dAElite config-
uration is roughly one order of magnitude faster than
aelite.

6.3 Additional performance benefits

Compared to aelite, dAElite presents several other per-
formance benefits:
Firstly, in dAElite, the router (and link) traversal delay

is 2 cycles. This is lower than the 3 cycles used by aelite.
We are able to achieve this without a negative impact
on the clock frequency, because dAElite does not need to
look at packet contents before making a routing decision.
Routing is performed solely based on the packet arrival
time and the contents of router’s own slot table. This
results in a reduction in the network traversal latency of
33%.
Secondly, the dAElite TDM slot is 2 words, and could

be further decreased to a single word if necessary. In
aelite it is not possible to arbitrarily decrease the slot
table size because packets contain a header and the
header overhead would become higher in shorter pack-
ets. A small TDM slot size is useful for improving the
scheduling latency (packets need to wait for their turn
before they can be inserted into the network).
Thirdly, dAElite does not suffer from header overhead.

In aelite, the header overhead is between 11% and
33% because one header is required at least every 3
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slots (possibly every slot when slots belong to different
connections) and the header represents one third of the
slot size.
Fourthly, dAElite allows routing one connection over

multiple paths at no additional cost. In [37] it was shown
that multipath routing can provide bandwidth gains of
24% on average. Multipath routing is also possible in
aelite [37], but at an increased hardware cost.
Finally, aelite reserves at least one slot on each of the

NI-router and router-NI links for configuration traffic.
For a slot wheel size of 16 this represents 6.25% of the
link bandwidth which cannot be used for data. This is
not the case for dAElite.
All these improvements stack up, making dAElite a

more attractive solution.

6.4 dAElite compared to other NoCs

We compare here the cost of the dAElite to the cost
of other Networks-on-Chip reported in the literature. A
conclusive comparison is difficult to perform because
the different NoCs support different features and fur-
thermore most publications only report the cost of the
routers while our proposal consists of an entire NoC, in-
cluding the interface to IPs. dAElite compares favorably
in terms of router hardware area cost but the bulk of the
cost is concentrated in the NIs. Nevertheless we present
here a comparison using the available data.
We have synthesized our design in TSMC 65nm, 90nm

and 130nm. We report the area after synthesis in Table 4,
compared to other values of the router area reported in
the literature. We do not report timing as we expect it to
be more affected by other factors like length of the links.
We expect dAElite to perform well in terms of operating
frequency as it allows arbitrary pipelining of links and
it lacks complex decision logic like arbiters.
A solution similar in concepts and functionality to

dAElite is the one proposed in [4]. Same as dAElite, it
makes use of a separate configuration network but it
is based on a SDM scheme instead of TDM. The result
is roughly 6.7 times more expensive but it offers more
routing flexibility (in SDM any of the 4 lanes of an input
port can be forwarded to any of the 4 lanes of an output
port, but in our TDM scheme, one TDM time-slot can be
forwarded only to the immediate next time-slot).
Compared to each of the other solutions dAElite

shows an advantage in terms of hardware cost, an
advantage ranging from 18% to more than one order of
magnitude.

7 CONCLUSIONS

In this paper we have proposed, implemented and
evaluated a hardware prototype of a TDM NoC using
contention-free, distributed routing, that has the follow-
ing distinctive features: (i) support for QoS; (ii) sup-
port for multicast/broadcast; (iii) lower area cost than
previously proposed implementations and no header
overhead; and (iv) configuration and path set-up times

TABLE 4
Cost of a dAElite router compared to other

implementations

16-bit 5-port router, 130 nm technology:
artnoc [35] 2-flit buffers, 4 Virtual Channels

0.060 mm2

Wolkotte [41] circuit switched 0.050 mm2

Wolkotte [41] packet switched 0.180 mm2

dAElite router 0.016 mm2

16-bit 4-port router:
Mango [9] 120 nm, 8 Virtual Channels

0.188 mm2

dAElite router 130 nm 0.020 mm2

32-bit 8-port router, 130 nm technology:
Quarc [30] (not full 8x8 crossbar) 0.063 mm2

dAElite router (full 8x8 crossbar) 0.053 mm2

36-bit 8-port router, 130 nm technology:
SPIN [3] (not full 8x8 crossbar) 0.240 mm2

dAElite router 0.057 mm2

5-port router, 90 nm technology:
Banerjee and Wolkotte [4], 4 SDM lanes 16 bit/lane

0.108 mm2

dAElite router 64 bit links divided into 4 TDM slots
0.016 mm2

32-bit 4-port router, 130 nm technology:
xpipes lite [39], 4 stages output buffer 0.091 mm2

dAElite router 0.020 mm2

significantly shorter than the closest approach. We are
currently looking into the possibility of making this
implementation open source.
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